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ABSTRACT

The concept of City 2.0 or smart city is offering new opportunities for handling waste management prac-
tices. The existing studies have started addressing waste management problems in smart cities mainly by
focusing on the design of new sensor-based Internet of Things (IoT) technologies, and optimizing the
routes for waste collection trucks with the aim of minimizing operational costs, energy consumption
and transportation pollution emissions. In this study, the importance of value recovery from trash bins
is highlighted. A stochastic optimization model based on chance-constrained programming is developed
to optimize the planning of waste collection operations. The objective of the proposed optimization
model is to minimize the total transportation cost while maximizing the recovery of value still embedded
in waste bins. The value of collected waste is modeled as an uncertain parameter to reflect the uncertain
value that can be recovered from each trash bin due to the uncertain condition and quality of waste. The
application of the proposed model is shown by using a numerical example. The study opens new venues
for incorporating the value recovery aspect into waste collection planning and development of new data
acquisition technologies that enable municipalities to monitor the mix of recyclables embedded in indi-

vidual trash bins.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The smart city can be defined as a smart combination of infras-
tructure, activities and aware citizens with well performance in
fundamental components such as smart economy, environment,
mobility, quality of living and smart government (Giffinger et al.,
2007). As urban population is growing very fast (Fazio et al,
2012), there is an urgent need for efficient utilization of resources
in urban areas and mega cities. In order to manage advanced,
newly emerging and fundamental needs, the use of smart infras-
tructure and capabilities offered by Industry 4.0 is considered as
one solution (Balakrishna, 2012). The use of the wireless sensors
and actuators will enable technologies such as Internet of Things
(IoT) to reconstruct urban activities in smart cities in almost all
aspects of daily life (Jara et al., 2014).

One fundamental challenge in improving the quality of life in
urban area is the proper management of growing waste generated

* Corresponding author.
E-mail addresses: parthjat@buffalo.edu (P. Jatinkumar Shah), thanag@teiath.gr
(T. Anagnostopoulos), arkady.zaslavsky@csiro.au (A. Zaslavsky), sarabehd@buffalo.
edu (S. Behdad).

https://doi.org/10.1016/j.wasman.2018.05.019
0956-053X/© 2018 Elsevier Ltd. All rights reserved.

as a result of industrial development and consumers’ consumption
behaviors. Waste generation rate is growing rapidly due to the rise
in the standards of living, rapid urbanization and developed econo-
mies (Minghua et al., 2009). In order to increase the quality of life
for citizens and minimize negative environmental effects, the
effective management of the waste becomes very critical.

Waste management practices deal with different activities
ranging from waste collection, and waste separation to waste
recovery and recycling. Various waste collection and recovery sys-
tems have been developed for effective management of different
types of wastes during their entire lifecycles. Information and com-
munication technologies (ICT) offer fundamental advantages for
solving waste management issues when incorporated with existing
systems. One example is the dynamic collection of waste due to the
capabilities offered by ICT. In past years, waste collection was trea-
ted in a static manner, but nowadays dynamic solutions are
enabled by the production of newly developed sensors, actuators
and IoT technologies (Carli et al.,, 2013), where bins can be
equipped with various IoT components and sensors such as capac-
ity sensors, weight sensors, temperature sensors, humidity sensors,
chemical sensors, pressure sensors and actuators (Li et al., 2013).
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Although recent research in smart cities has proposed some IoT-
based strategies for waste collection, transportation, dynamic rout-
ing, and dynamic waste collection scheduling, some important
issues are still remaining. The objective of value recovery from
waste is one of the important issues on which very few studies,
if any, has been done. The focus of previous research mainly has
been on the on-time waste collection rather than the value
recovery.

In this paper, we offer a stochastic optimization model for
enhancing the value recovered from collected waste in smart com-
munities. It should be noted that the proposed approach can be
employed for any types of waste or mixture of waste. We have
developed a waste value recovery function and an allocation model
for simultaneous maximization of waste value recovery and mini-
mization of transportation costs. The value embedded in each trash
bin is modeled as a random variable with normal distribution. The
model has been solved using chance constrained programming
method to deal with the uncertainty in the objective function. An
example of plastics waste recovery has been provided to show
the application of the model, since plastics have a high daily use,
high waste rate and high levels of recycling.

The rest of this paper is organized as follows. Section 2 presents
the related research and prior studies. Section 3 represents the pro-
posed system architecture for waste management in smart cities.
Section 4 describes our allocation models. Section 5 represents
the application of the proposed models and several sensitivity
analyses on the model parameters. Finally, Section 6 concludes
the paper and discusses the future scope.

2. Literature review

Waste management practices can be divided into different cat-
egories, ranging from waste collection, and separation to waste
recovery and recycling. While an extensive literature exists regard-
ing the optimization of general waste collection and recovery oper-
ations, the literature on waste management in smart cities is
limited. In this section, first we will provide an overview of
research on the scheduling of waste collection and recovery oper-
ations, and then we will discuss the most recent studies on waste
management practices in smart cities.

In order to identify research gaps in waste collection problems
in smart cities, first we will review the literature on vehicle routing
problems. Various heuristic and non-heuristic models have been
offered in transportation literature for solving routing problems,
to name a few studies Reed et al. (2014) have proposed a dynamic
model for capacitated vehicle routing problems using Ant Colony
System algorithm (Reed et al., 2014). Hemmelmayr et al. (2013)
have proposed a heuristic solution for solid waste collection as a
periodic truck routing problem (Hemmelmayr et al., 2013), where
the collected waste can be delivered into some intermediate facil-
ities and not every collection points need to be covered every day.
Banditvilai and Niraso (2017) have proposed a simulation frame-
work for modeling the night shift solid waste collection in Phuket
Municipality, Thailand and developed a heuristic approach for
assigning waste collection zones and routings (Banditvilai and
Niraso, 2017). In order to solve periodic routing problem in the
municipal waste collection, Triki (2017) developed a model for
defining the routing of collection vehicle with considering the
extended planning horizon for some zones, where not all the zones
should be served in one planning horizon and the planning horizon
can be flexible depending on the needs of different regions (Triki,
2017). To serve multiple disposal facilities with huge amount of
waste, Wy et al. (2013) have developed a routing model by inte-
grating several heuristics algorithms to minimize the number of
collection vehicles and the total route time considering several

factors and constraints such as multiple disposal facilities, different
types of client demands (e.g. residential, commercial, industrial),
different time periods for demands, and different sizes of contain-
ers (Wy et al., 2013).

Moreover, various dynamic models and algorithms have been
proposed in the literature to facilitate both waste collection and
recovery practices. Gruler et al. (2017) have combined metaheuris-
tics with simulation and proposed a hybrid algorithm for waste
management in clustered urban areas (Gruler et al., 2017) consid-
ering the impact of cooperation among vehicles departed from dif-
ferent depots and the corresponding savings this cooperation could
create. Braier et al. (2017) have proposed an integer programming
model to optimize the dynamic routs of collection vehicles for the
case of waste collection in Morén, Argentina (Braier et al., 2017). To
perform routing enforced with the conflicts context and time win-
dows, Minh et al. (2013a, 2013b) introduced a memetic algorithm
to achieve multi-objective optimization for determining the num-
ber of vehicles and the trip times considering several constraints
such as the time window of waste collection for each regions, the
conflicts between waste characteristics, and the availability of
multiple landfills (Minh et al., 2013a, 2013b).

Most recently, the concept of waste management in smart com-
munities has been the point of attention in the literature. Overall,
the studies that have addressed information technology-based
waste collection objectives can be categorized into four main
groups: (1) studies that have focused on the development of data
acquisition technologies such as sensor-based technology, geo-
graphic information systems (GIS), and image processing technolo-
gies, (2) studies that have discussed data transformation platforms
for transferring data collected through data acquisition technolo-
gies to central control platforms used by municipalities, (3) studies
that have developed analytical models to demonstrate the applica-
tion of capabilities of IoT enabled technologies for proper waste
collection activities, and finally (4) studies that have shown the
capabilities of information technology in real case studies. The
main focus of the current study is on the third group of studies,
waste collection operations in a smart environment, however, we
will briefly review several studies from other categories.

To name a few studies from each category, Vicentini et al.
(2009) designed a testing prototype of intelligent containers to
measure the actual weight and volume of waste present in each
container in Pudong, New Area, Shanghai and transfer the informa-
tion to a central control system for municipalities. Faccio et al.
(2011) defined a framework for integrating real-time data col-
lected from traceability devices into waste collection routing mod-
els to determine the number of vehicles, travel time, and areas
covered by each vehicle. Chang et al. (1997) also applied a multi-
objective optimization model within a GIS environment to opti-
mize the routing and scheduling of waste collection vehicles in Tai-
wan. Zamorano et al. (2009) also conducted a GIS-based data
collection in Churriana de la Vega, Spain to show that the number
of location of trash containers can be optimized to reduce the costs
resulting from an excessive number of containers. In addition to
minimizing operational costs, some studies have adopted multiple
objectives. For example, Anghinolfi et al. (2016) have formulated a
multi-objective mixed integer linear programing model that aims
to not only minimize costs but also environmental impacts. Rada
et al. (2013) discussed the application of Web-GIS with RFID in
multiple Municipalities in the north of Italy and showed the waste
separation efficiency and cost reduction in several aspects.

Most of the IoT-enabled waste management studies have been
focused on optimizing routing and scheduling of waste collection
vehicles within smart communities. Two types of methods have
been developed to facilitate waste collection in smart cities,
namely static and dynamic planning models (Anagnostopoulos
et al., 2015b). The static models ignore the real-time status of trash
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bins, while the purpose of dynamic models is to include the most
up-to-date information received by sensors on the trash bin status
into consideration when defining the waste collection plans. Since
static approaches do not consider the dynamic capabilities offered
by IoT, a number of studies have developed dynamic models with
the aim of reducing the total cost, time and distance
(Anagnostopoulos et al., 2015b; Minh et al, 2013a, 2013b).
Christodoulou et al. (2016) have worked on a project named Dyna-
cargo (Dynamic Cargo Routing on-the-Go), where they have pro-
posed various routing algorithms to solve dynamic routing
problems using IoT components and real-time monitoring of waste
bins trash levels (Christodoulou et al., 2016).

Sharmin and Al-Amin (2016) developed an Ant Colony algo-
rithm and solved a dynamic routing system to find the shortest
path while minimizing transportation costs with the overall pur-
pose of waste management in smart cities (Sharmin and Al-
Amin, 2016). Shinde et al. (2017) have designed a dynamic smart
solid waste management system by integrating RFID, GSM, GIS sys-
tem to manage the solid waste in an automatic waste monitoring
system (Shinde et al., 2017). Anagnostopoulos and his colleagues
developed several studies that handle dynamic routine models
for waste collection in smart cities (Anagnostopoulos et al.,
2015b,c; Anagnostopoulos and Zaslavsky, 2014). For more infor-
mation about the waste collection and routing problems in smart
cities, we refer readers to the following review paper by
Anagnostopoulos et al. (2017).

Al Mamun et al. (2016) have proposed a design for automati-
cally monitoring of trash bin status by developing an integrated
sensing system (Al Mamun et al., 2016). In addition to the capabil-
ities offered by IoT infrastructure, Elia et al. (2016) have discussed
the importance of evaluating the performance of new business
models coming to the waste management market as a result of
IoT-based solutions. They compared the cost efficiency of dynamics
scheduling models of waste pick up (based on household needs)
with the traditional waste collection models such as fixed routing
and call-based service (Elia et al., 2016).

As discussed above, the previous literature on waste manage-
ment in smart cities has mainly focused on enhancing waste col-
lection activities by solving dynamic vehicle routing and
scheduling problems. While the collection of waste is an important
issue, the waste separation and recovery are other key aspects that
should be included in smart waste management planning
practices.

Waste separation has a very high impact on the effectiveness of
waste management systems (Sukholthaman and Sharp, 2016).
Waste separation from origin in household is an essential element
to achieve high rates of recycling and reuse (Stoeva and Alriksson,
2017). A considerable number of survey studies have been con-
ducted to identify the psychological and demographic factors that
influence people’s recycling behavior. To name a few, Xu et al.
(2017) have constructed several questionnaires and survey analy-
ses to identify the impact of individual moral obligation and past
experience on household waste separation intention and behavior
(Xu et al., 2017). Ofstad et al. (2017) designed a questionnaire to
better understand the mechanisms behind changing people’s recy-
cling behavior (Ofstad et al., 2017).

Improving the waste separation and recovery operations by
relaying mainly on the household behavior seems challenging
and impractical. The most recent capabilities offered by IoT-
enabled solutions may solve some of the challenges by providing
some intermediate solutions, where the reported weight and types
of the waste could help city officials in planning waste collection
activities and giving priorities to regions with higher potential of
value recovery. While the concept of value recovery from waste
is well-addressed in the sustainability literature, the value

recovery has not received sufficient attention in prior smart cities
studies.

So far, most of the previous studies have been focused on the
design of new sensor-based IoT technologies, dynamic routing,
and scheduling problems to reduce operational, fixed and trans-
portation costs and time. To the best of our knowledge, no study
has been focused on the importance of value recovery from trash
bins in smart cities. The main contribution of this paper is on
pointing out the importance of value recovery efforts and propos-
ing a framework for incorporating the uncertain value of recovered
waste form individual bins in decision making during waste collec-
tion operations. The existing studies optimize the allocation of
waste collection vehicles based on minimizing the operational
costs without considering the potential value recovered from col-
lection activities. To address this research gap, in this study we
have developed a stochastic optimization model with the aim of
maximizing the uncertain value recovery from trash bins while
minimizing transportation costs. The study also reveals the need
for designing new sensor technologies such as infrared spec-
troscopy sensors that facilitate the detection of the mix and condi-
tions of waste in trash bins. The current data acquisition
technologies only focus on collecting the weight, volume and loca-
tion of waste containers with little attention to the mix of waste.
This is particularly important in societies where not all types of
waste (e.g. plastic, glass, food, metal) are separated from origins
and technological advancements are needed to facilitate waste
detection, separation, collection and recovery.

Once products reach their end-of-use phase, there are several
options available for their value recovery ranging from repair and
reuse to remanufacturing and recycling. It should be noted that
the value recovery is not limited to only economic outcomes and
can refer to any economic, environmental and social outcomes
(e.g. recovering specific goods for reuse, social outcomes, less pol-
lution). In this paper, we focus on the economic value rather than
environmental or social value of recovery operations. However, the
objective function of the proposed model can be tuned to reflect
other environmental and social aspects as well.

3. Overview of waste collection and recovery infrastructure

The proposed model in this paper is assumes similar configura-
tion for smart cities as (Anagnostopoulos et al., 2015a). In the pro-
posed model the smart city is divided into discrete multiple sectors
where a heterogeneous fleet of trucks handle the waste collection
operations. Each sector within the city has an intermediate depot
or a set of intermediate depots which serves as a waste separation
unit and a temporary waste storage and a certain number of Low
Capacity Trucks (LCTs) that serve the sector. In addition, the city
has a certain number of High Capacity Trucks (HCTs) that transfer
collected wastes in depots in large quantity to a recovery site out-
side of the city (Fig. 1). Similar to Anagnostopoulos et al. (2015a),
the current study aims to assign trash bins to LCTs, but the pro-
posed method and objective are different than the previous study.
While Anagnostopoulos et al. (2015a,b,c), developed a heuristic
assignment algorithm with the aim of minimizing operational
costs, the current study develops an optimization model and aims
to maximize the value recovery. Therefore, although both studies
try to solve assignment problems, their proposed methods and
objectives are different.

Each house has several smart bins for collecting different types
of waste. For example, plastic waste bin, paper waste bin, food
waste bin and a bin for other waste. Specifically, LCTs move within
the city and transfer waste bins from households to the intermedi-
ate depots. An intermediate depot serves as a temporary waste
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Fig. 1. An overview of the infrastructure available for waste collection and recovery.
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storage unit and also as a waste separation unit. Depots separate
the waste according to their types and determine the value recov-
ery variable according to the quantity and the type of waste col-
lected. HCTs collect a specific type of waste (e.g. plastics) from
the intermediate depots and transfer it to the recovery plants out-
side the city where collected waste is recycled. The number of LCTs
and HCTs depends on the total quantity of waste and trucks capac-
ity. An additional truck can be used if the transportation cost sav-
ing by adding an extra truck is greater than the cost of an
additional truck. The recycling of plastics has been used as an
example since recycling is a very common end-of-use recovery
options, and also plastics have a long history of recycling. The his-
tory of plastic recycling gets back to 1970s (Hopewell et al., 2009).

To be aware of bin’s status, bins are equipped with IoT compo-
nents such as RFID tag, capacity sensor, actuator and a static GPS.
RFID tag is used for identification of certain beans. Capacity sensor
is used to measure volume of the waste in bin. Actuators is used to
lock the lid of bin when in bin gets full with waste. Static GPS is
used to identify locations of the bins. Truck drivers are embedded
with a smart phone which has a GPS tracker and a Google map
android app. When the bin gets full or reaches to a predefined
threshold, the system is informed through a wireless sensor net-
work (Anagnostopoulos et al., 2015a).

4. Proposed chance-constrained optimization model
Fig. 2 shows the general schematic diagram of the smart city
with waste bins, waste collection depots, LCTs and HCTs.

The system illustrated in Fig. 2 is mathematically represented as
follows:

Sectors: $=1,2,3,---,s
Depots:D=1,2,3,---,d
Bins:B=1,2,3,---.b
ICT:L=1,2,3,---,1

HCT:H=1,2,3,---,h

E REREEEI

Bs = The number of bins in sector s
Ls = The number of LCTs in sector s
ws), = Weight of Bin b in sector s
W, = Weight of Depot d

/4 = Waste value recovery variable
= percentage of value recovered = recycling yield

C, = Capacity of Binb
Cq = Capacity of depot d
C, = Capacity of LCT |
Cn = Capacity of HCT h

s,d,b,lLheN

The optimization model for collection and recovery of waste
includes two sub models. (1) First the waste generated in each sec-
tor is transferred to its corresponding depot through LCTs, (2) Sec-
ond, the waste collected in each depot is transferred into recovery
center through HCTs. The purpose of the model is to allocate LCTs
and HCTs to bins and depots and determine the quantity of waste
collected by each LCT and HCT. It should be noted that depots can
be assigned to sectors in different ways. For example, one depot
can be assigned to more than one sectors, or the opposite, more
than one depot per sector, or one per recycling unit of the smart
city. In configuration shown in Fig. 2, at least one depot is assigned
to each sector.

Sub-Model 1: Collection of waste from all sectors by LCTs and
transport to depots

Xy, = Transportation cost of collecting a unit waste from Bin b by LCT |

Qyp,; = Quantity of waste to be collected from Bin b by LCT |

Sector
Waste Recovery Center
e e @ ® g g~ PY
'. e ...A' 'A .. oy
.A...A.. e oo 2e “.':.-.
:c * ®e o '. o.'.- c: .A...
ee ® ee :. ..A....:.:...° @ Waste Seperation Unit
. e o® . o on
-eo 'A......:.: :-....A..A....A. A LCT
o e o e o ® 6 6 o & 6 6 o986 4 00 o
e * eea Teocsce] o O I HCT
A % S e oA :¢.. .A..' +
. - . . e a®
e o, ecae ® ece® ec e " @ o e Waste Bin
el st alliile A e
* . 0:0:00:..o -
e o ® el
.':-é:...- L]

Fig. 2. Different elements of waste collection and recovery system.
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The use of capacity sensors makes it possible for municipalities
to know the waste volume of every bin in all sectors.

It is assumed that the main decision-makers in Sub-model 1 are
municipalities whose main objective often is not necessarily the
economic viability of waste collection, but the collection of all
waste generated in a region while minimizing the total collection
cost.

Each LCT has different transportation cost to collect waste from
particular bin as the distance between each LCT and that bin are
different. The transportation or shipment cost is calculated for
one unit waste. More accurately, the transportation cost X;,; can
be calculated considering both the fixed cost of collection and
the variable cost based on the travel distance as follow:

Xp) =V + Cpy

where v is the fixed cost and c;,;is the variable cost calculated based
on the distance.

We have assumed that the average transportation cost can be
calculated based on the historical data available from the average
distance traveled by LCTs and the unit cost of transportation. All
transportation costs between LCTs and bins are assumed as differ-
ent fixed numbers. Municipalities calculate X, by considering dif-
ferent cost items such as the fixed cost of opening a collection site,
fixed cost of a new truck, and the operational cost based on the dis-
tance traveled. By increasing the investment cost, for example for
increasing the fleet size, the fixed cost per unit waste increases.
Since Sub-model 1 is developed to help municipalities with plan-
ning the short-term waste collection activities (e.g. daily or weekly
waste collection), it does not determine the long-term decision
variables such as the optimal number of trucks, the optimal num-
ber of depots, and the optimal collection calendar.

The optimal fleet size can be calculated by considering different
factors such as the amount of waste that should be collected, the
maximum delay of waste collection, and the cost of adding trucks.
In Sub-model 1, the number of LCTs in each sector is given Lg, and is
not considered as a decision variable. However, the fixed cost of
adding LCT can still be considered when calculating Xp;.

Currently, the problem is formulated as a resource-allocation
model as shown in Table 1. The proposed model can be integrated
with the traveling salesman problem to determine the accurate
value of X, based on the shortest path method and Dijkstra’s algo-
rithm (Bast et al., 2016) since the cost depends on the route
planned. This requires adding several constraints related to path
planning and the use of graph modeling techniques in determining
the shortest path based on the locations of bins that should be vis-
ited by LCT I and the location of Bin b.

It should be noted that the model does not limit the assignment
of each bin to just one truck, so each bin can be covered by a set of
trucks. The model aims to allocate the quantity of waste from bins
into LCTs to minimize the transportation cost for the whole system.
The model can be solved for each sector separately. In this model,
known input parameters are bin’s weights (ws;), LCT’s capacity
(C)), and unit transportation costs (X;;). The allocation problem
can be solved using excel solver by the linear programming

Table 1
Sub-Model 1: Allocation of LCTs to Bins in Section s.

method. The output of this model are the quantity (Qp) of waste
transformed from bins to the depot in sector s.

Objective function : Min» ~ >~ Qy(X5.) 1)
beB el
St.: ZQb.l <G vlel 2)
beB
> Qui=wsp,VbeB 3)

leL

The objective function of Sub-model 1 can be improved by con-
sidering the trade-off between the cost of collection and the effi-
ciency of collection such as prioritizing neighborhoods or bins
based on the waste value and urgency. Chemical sensors are being
developed that can identify waste nature and decay parameters to
prioritize bins for collection which may become an annoyance to
neighborhoods due to possible stench coming out of those bins.
In future research, this could be an additional source of data for
routing and prioritized collection scheduling.

As the number of IoT-enabled waste management project
increases, more data will be available for optimization of the col-
lection efforts. For example, as part of the European Union
H2020 project biotope (Biotope, 2017), two use cases relevant to
waste collection are developed including Smart Waste Manage-
ment use case by ITMO University (Lamichhane, 2017), and Bottle
Bank Management from the city of Lyon, France (Gastaud, 2017)
where capacity sensors, temperature sensors, accelerometer, and
GPS are used to optimize routing and waste pick-up schedules.

Sub-Model 2: Collection of waste from depots by HCTs and
transport to the recycling site

Y4 = Transportation cost to collect a unit waste from depot d by HCT h

4, = Quantity of waste to be collected from depot d by HCT h

As discussed before, the aim of this model is to maximize the
value that can be recovered from the waste collected in each
region. The value that can be recovered from each unit of waste
is an uncertain parameter and depends on the condition and mix
of waste. It can also refer to the recycling yield. To formulate the
profit obtained from recovery, let’s define a new function Z which
depends on both transportations cost and the value recovered by
recycling the waste. Basically, the total revenue is the product of
the quantity of waste, the value recovery percentage, and the
amount of money recovered per unit of weight. For example, if
the purpose is to calculate the total profit obtained from recovering
plastic in the region, Function Z can be defined as the difference of
the total money recovered through recycling of plastic and the
total transportation cost. The recovered value of recycled plastic
is varying between $0.1 and $ 4.0 per Kg according to the type of
plastic waste and its condition with the average value around

Bin’s Weight in Sector s (Kg)

LCT’s Capacity (Kg) A Wso
C‘l Q1.1 (X1‘1) Q2,1 (XZ“I)
CZ Q‘I,Z (XI,Z) 02.2 (XZ,Z)
C3 Q1,3 (Xl,3) Q2,3 (X2,3)
.CI Q1,| (X11) bl.l (X21)

Ws3 . . Wsp
Q31 (X31) Qb1 (Xp,1)
%,2 (X3,2) Qb.z (Xb,z)

Q3,3 (X3,3)

-Q3,| (X3))

Qb3 (Xp3)

.Qh,l (Xby)
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$0.6 per Kg (Plastics News, 2017). For more information about
plastics recovery operation, we refer the readers to (Al-Salem
et al., 2009).

Z = Value recovery by recycling() — Transportation cost()

Z = Value recovery parameter
x revenue obtained from recycling(per unit)
— unit transportation cost

Zin=72axP—Yan (4)

By using Sub-model 1, at this point waste from all bins are col-
lected and transferred by LCTs to the respective depots. Using Sub-
model 2, we will determine the quantity of waste that should be
transferred from depots to the recycling site (Table 2). At depots,
wastes are separated according to the type and condition of plas-
tics. Also, the value recovery parameter A4 is an uncertain param-
eter and depends on the type and condition of the waste. We can
find a distribution for this parameter using historical data. In this
study, we assume that parameter A4 follows normal distribution
with mean (u,) and standard deviation (7;).

Considering the normal distribution for the amount of waste
generated is not an invalid assumption and appears to be an ade-
quate representation of the waste generated in the system over
time, due to the application of Central Limit Theorem and the anal-
yses provided in prior studies (Johansson, 2006). In addition, Chang
and Davila (2008) conducted several sampling campaigns in solid
waste landfills in the Lower Rio Grande Valley in Texas to identify
the statistical distributions of key recyclable items such as paper,
plastic and food and concluded that population distributions are
normally distributed after a log transformation.

The value recovery from each individual trash bin depends on
both weight and parameter 44 which could vary from one neigh-
borhood to other depending on the level of affluence and socio
demographic characteristics of residents. In this study, it is
assumed that with the current sensor-based technologies munici-
palities have access to the weight and trash level of individual bins
at the time of planning and running the optimization model, so
they use the information of individual bins as inputs to the opti-
mization model. In the current study, /4 is defined as an uncertain
variable with its own normal distribution and is an input to the
optimization model. However, in the future, new infrared spec-
troscopy and image processing technologies would make it possi-
ble to monitor the content of each trash bin and determine the
actual value of each trash bin and better estimate parameter A4
for each trash bin. The waste generation behavior of residents
can be simulated based on historical data as well. For example,
Johansson (2006) conducted a discrete event simulation to analyze
the waste generation and collection events in Malmoe, Sweden.
The purpose of the study was to first simulate waste generation
and then calculate the total operational costs of different collection
strategies. For example, what would be the total costs if each full
container should be emptied out within 24 or 48 h. The compar-

Table 2
Sub-Model 2: Allocation of HCTs to Depots.

ison of different scenarios showed that depending on the number
of containers and the distance between them, different static and
dynamic collection strategies are preferred. In the current study,
however, we have used an optimization approach rather than sim-
ulation models. While we have considered a distribution for the
value embedded in each container, we have incorporated the dis-
tribution to the objective function of the model and have solved
the model to find the optimal collection strategy. The benefits of
the optimization model are to allow municipalities to run the
model based on their semi-predefined calendar rather than assum-
ing a free calendar and timing for collection operations. In this
study, we do not assume a free calendar for waste collection in
which each full container is emptied out as soon as possible or
within a certain timeline. The previous studies showed that free
calendar is often costly and may not be preferred to residents.
Therefore, we assume that municipalities monitor the status of
the city at certain times and they will collect targeted full or
semi-full containers that need to be emptied out. This is different
than traditionally fixed calendar schedules in which municipalities
visit every container at certain times no matter if the container is
full or not. In Section 5, we further discuss the impact of different
types of collection calendar to both municipalities and residents.

The objective function of Sub-model 2 based on the recycling
profit can be written as:

Objective function:

Maxy > " dan(Zan) =Maxy > qap(Za*p - Yan)

deD heH deD heH
OrMin = > qan(%a *P — Yan) ®)
deD heH
St qun <G vheH ©)
deD
quh =Wy vdeD )

heH

Constraint (6) assures that the collection weight assigned to
each HCT is less that it maximum capacity and Constraint (7) guar-
antees that all the waste in depot d is assigned to HCT. Since the
objective function is uncertain, the problem cannot be solved using
simple linear program. We have applied chance constrained
method to solve the problem. According to chance constrained
method, we can restate the objective function by a decision vari-

able (rﬁ) and then add a probabilistic constraint into the optimiza-
tion model.

Min m

Pr(Z qu7h(;,d*de,h)m) >a deD heH

deD heH

The objective function defines the target value with confidence
level o, where

Depot’s Weight (Kg)

HCT’s Capacity (Kg) WA W,
G qi1 (Z11) A2.1 (Z21)
G 12 (Z12) Q22 (Z22)

G

Cy

Q13 (Z13)

quh (Z1n)

Q23 (Z23)
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We can convert the above-mentioned constraint to its crisp
equivalent. Let us define G as follow:

GZ*Z qu‘h(/ld*pfydh) 71';1

deD heH

Jq4 is the only random variable in the above expression. Since /4 fol-
lows normal distribution, G also follows normal distribution with
the following expected value and variance:

EG) ==Y qup(da*p—Yan) —m

deD heH

2
Var(G) = Var(Jq) [Z > qd,h(p)}

deD heH

Since G follows normal distribution, z5& follows standard nor-
mal distribution.

G- EG) E(G)
Pr( Var(G) ’Var(c)> -
Let us define:
_ G—-E(G)

v/ Var(G)
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E(G)
v/ Var(G)
Therefore, the probability constraint can be written as follow:

Y (a)\/Var(G) < —E(G)

Y lo) < —

¥ (0)\/Var (7q) {Z > dan (p)} <D0 dan(fgxp—Yan) +m

deD heH deD heH

The stochastic optimization model is now converted to a linear
programing. The linear optimization model can be solved with
existing solution algorithms such as simplex algorithm offered in
the available software packages such as Matlab or Excel solver in
order to obtain the global optimum solution.

5. Numerical example

This section provides an example of the model application. Due
to the unavailability of data regarding the amount of waste gener-
ated in each neighborhood and the mix and configuration of the
city and the number of waste collection vehicles, we have used a
simple numerical example. According to an estimation by
Navigant Research (2016), the global market for smart waste col-
lection technology is growing from $57.6 million in 2016 to over
223.6 million in 2025, therefore it is expected that new sets of
real-world data will be available in the future to test the feasibility
of the proposed model.

Fig. 3 shows an overview of different elements of the system for
this particular example, and a specific configuration of Fig. 2 in
which the number of waste depots in each neighborhood is 1.
Tables 3-5 summarize the values of input parameters to the

Sector

@ Waste Seperation Unit
A LcT

RN

+HCT

e Waste Bin

Fig. 3. Different elements of the waste collection and recovery system.

Table 3
The input data assumed for infrastructure parameters.

Sectors=S =10
Depots=D = 10

HCTs=H =5

Bins in each sectors =B = 23

Capacity of Depots = Cp = 1500 Kg

Capacity of LCTs = C; = 300 Kg
LCTs=L=3 Capacity of bins = Cg = 50 Kg Capacity of HCTs = Cy = 2000 Kg
Table 4
The values assumed for the weights of 23 bins in Sector i at the time of running the model.
wi1 =50 Kg wie =41 Kg Wi11 =32 Kg Wiy .16 = 49 Kg Wi21 =45 Kg
Wi, =45 Kg wi7=11Kg Wi 12 = 46 Kg Wi 17 = 47 Kg Wi = 50 Kg
w3 =40 Kg wig=5Kg Wi 13 = 26 Kg wi1s = 15 Kg W23 = 27 Kg
wi4 =25 Kg Wig =50 Kg W14 = 16 Kg Wi 19 = 6 Kg
wi5 =38 Kg Wi10 =44 Kg Wiy .15 = 48 Kg Wi 20 = 35 Kg
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Table 5
The input values for unit transportation costs (Xy), weights of Sector i’s bins (w4 ) and LCT’s capacity (C;) for allocation model 1.
Bins Weight (Kg)
50 45 40 25 38 41 11 5 50 44 32 46 26 16 48 49 47 15 6 35 45 50 27
LCT capacity (Kg) 300 0.09 0.15 0.19 0.10 0.08 0.02 0.14 0.14 0.20 040 0.24 0.15 0.14 0.14 0.10 0.20 0.02 0.14 0.12 020 0.14 0.14 0.05
300 0.04 0.06 0.05 0.14 0.09 0.02 0.25 0.16 0.05 0.15 0.25 0.15 0.08 0.08 0.15 0.25 0.20 0.13 0.13 0.15 0.14 0.11 0.07
300 0.15 0.25 0.01 0.15 0.14 0.03 0.03 0.20 0.25 0.16 0.25 0.15 0.09 0.18 020 030 0.14 0.12 0.14 0.20 0.20 0.09 0.09

model. In this particular example, one waste separation unit or
depot is assigned to each sector.

Sub-Model 1:

The linear programming model has been solved for the above-
mentioned example using the Excel solver. Table 6 shows the
quantities of waste that should be collected by LCTs from 23 bins
in each sector in order to minimize the total transportation cost
as the outputs of the allocation model 1. While we have not
included any constraint that limits the assignment of each bin to
just one truck, the results in Table 6 shows that each bin is mainly
assigned to one LCT.

Table 6
Outputs of allocation model 1.

The output of Sub-model 1 illustrates the quantity of waste that
should be collected by each LCT from each bin to reduce the trans-
portation cost.

Sub-Model 2:

Tables 7 and 8 summarize the input values used in Sub-model 2
to determine the quantity of waste that are collected from depots
by HCTs and transferred to the recycling site.

Sub-model 2 has been formulated in Excel solver and the quan-
tities of waste that should be collect by HCTs from depots in order
to minimize transportation cost and maximize waste value recov-
ery function are listed in Table 9.

The output of Sub-model 2 illustrates the quantity of waste that
should be transferred by each HCT from each depot to increase the

The quantity of waste collected from Bin i (Kg)

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23
50 45 40 25 38 41 11 5 50 44 32 46 26 16 48 49 47 15 6 35 45 50 27
LCT’s Capacity (Kg) LCT1 300 O 0 0 25 38 8 0 5 0 4 32 0 0 0 48 0 47 0 6 0 0 0 27
LCT2 300 50 45 0O 0 0 13 0 0 50 O 0 0 26 16 0 0 0 0 0 35 45 0 0
LCT3 300 O 0 40 0 0 0 1 0 0 0 0 46 0 0 0 49 0 15 0 0 0 50 0
Table 7
The weights of waste collected in Depot i (obtained from model 1) and the input parameters for Sub-model 2.
W, = 791 Kg W, = 1240 Kg W, = 451 Kg Wip = 450 Kg o = 0.005
W, = 1118 Kg W5 = 1489 Kg W; = 1477 Kg Var(ig) = 0.05 1;4=0.5
W3 = 699 Kg Ws = 552 Kg Wy = 987 Kg p=06
Table 8
Inputs of Sub-model 2 (Z,).
Depot’s Weight (Kg)
1 2 3 4 5 6 7 8 9 10
791 1118 699 1240 1489 552 451 1477 987 450
HCT’s Capacity (Kg) 2000 0.244 0.125 0.219 0.780 0.256 0.470 0.490 0.189 0.147 0.147
2000 0.154 0.158 0.890 0.580 0.178 0.312 0.143 0.123 0.189 0.174
2000 0.256 0.178 0.860 0.145 0.240 0.214 0.289 0.147 0.165 0.201
2000 0.880 0.145 0.147 0.217 0.560 0.104 0410 0.289 0.147 0.207
2000 0.125 0.174 0.360 0.140 0.184 0.212 0.140 0.240 0.125 0.109
Table 9
Outputs of Sub-model 2: the quantities of waste collected by HCTs and transferred to the recovery center.
Depot’s Weight (Kg)
791 1118 699 1240 1489 552 451 1477 987 450
HCT’s Capacity (Kg) 2000 226 0 0 0 1489 0 0 0 0 0
2000 0 0 0 0 0 552 0 0 987 0
2000 565 0 0 534 0 0 451 0 0 450
2000 0 0 0 523 0 0 0 1477 0 0
2000 0 1118 699 183 0 0 0 0 0 0
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value recovery profit.

It should be noted that the optimization model can be run based
on calendars defined by municipalities on daily, alternate daily or
weekly basis. Often, historical data on the amount of waste gener-
ated during predefined periods would be helpful in guiding munic-
ipalities about the best timeline and calendar for scheduling of
collection activities. In the proposed approach in this study, we
assume that municipalities have access to real-time waste levels
in each trash bins and can include full or even partially full trash
bins as inputs to the model. In practice, we can consider three types
of waste collection calendar: (1) Fixed calendar, (2) Free contender,
and (3) Variable calendar (Anghinolfi et al., 2016). In Fixed calendar,
the day and time of collection are known to households and munic-
ipalities make decisions on the allocation of LCT to trash bins. In the
case of the free calendar, the days and timing of collection are not
known in advance, so municipalities can monitor the waste levels

Objective function
value

3 4 5 6
Number of LCTs

(a) Sensitivity analysis on the number of LCTs,

Objective function value

0.04 0.05 0.06 0.07

Variance (Ad)

0.08

(c) Sensitivity analysis on the variance of A4,

100
&
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O
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in each individual bin and decides on the timing of collection and
which trash bins to cover. Finally, the variable calendar is an inter-
mediate scenario in which municipalities decide about the collec-
tion day, but all eligible trash bins (e.g. full or partially full based
on a defined threshold) will be covered by different LCTs. Overall,
while the free calendar and the flexibility of running the model at
any time is cost efficient, the free calendar option may not be con-
sidered fully satisfactory to citizens since they perhaps would like
to know if their neighborhood is covered and what would be the
collection days. Therefore in this study, we assume that municipal-
ities have a predefined calendar for running the model, while they
cover all full trash bins or trash bins that reach to a predefined
threshold value during the collection day, this can be regarded as
a version of variable calendar. Also, since the focus of the proposed
model is on value recovery, determining the optimal time of collec-
tion will be a future extension of the current study.
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Fig. 4. (a) Sensitivity analysis on the number of LCTs, (b) Sensitivity analysis on the number of HCTs. (c) Sensitivity analysis on the variance of A4, (d) Sensitivity analysis on

the mean of %4 (pd). (e) Sensitivity on the capacity of LCTs.
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We have run some sensitivity analyses on several parameters of
the model. Fig. 4(a)-(c) respectively show the sensitivity analysis
on the number of LCTs, the number of HCTs, and the variance of
(ha)-

Fig. 4(a) shows that as the number of LCTs increases, the value
of the objective function or the transportation cost decreases. This
is due to the point that the fixed cost of adding new LCTs is not
considered in this example. Also, we should note that based on
the total amount of waste that needs to be collected and the capac-
ity of each truck, the minimum number of truck required in this
example is 3, so the sensitivity analysis is run for values more than
3. Fig. 4(b) shows that as the number of HCTs increases, the value

of the Sub-model 2’s objective function (min m) decreases, mean-
ing the waste value recovery increases and the transportation cost
decreases. This is an expected result since by adding more number
of vehicles, the lower-price service could be offered. We should
note that in the current model, the fixed cost of adding new vehi-
cles to the waste collection fleet has not been considered, so the
sensitivity results are intuitive. In reality, adding more vehicles
would decrease transportation costs up to a certain level, after than
increasing the number of vehicles would increase the total cost of
the system since each additional vehicle means additional costs.
Therefore, there is a point in which that cost of adding more vehi-
cles is no longer off set by the profit of waste collection efforts. The
optimal number of vehicles also depends on the demand for waste
collection which varies among different regions depending on the
population, and the waste generation rate in each region.

Fig. 4(c) shows that as the variance of A4 increases, the value of

the objective function (m) increases meaning that the waste value
recovery decreases and the transportation cost increases. Fig. 4(d)
shows that as the mean value of 24 (llq) increases, the objective

function (m) and transportation cost decreases since the waste
value recovery increases as 4 increases. Finally, Fig. 4(e) illustrates
the sensitivity analysis on the capacity of LCTs. Increasing the
capacity of LCTs allows for the collection of more waste and higher
transportation cost. It should be noted that in the current model,
the fixed cost of adding capacity, and the penalty cost of not col-
lecting all waste is not included in the current model, otherwise,
there will be a tradeoff between the penalty cost and the profit
of value recovery.

6. Conclusion

The immediate collection of the waste is a very challenging
problem in the modern societies. The concept of smart trash bins
and waste collection in smart cities opens the opportunity for
municipalities to monitor the amount of waste collected in each
region and facilitate the timely collection and recovery of the
waste generated. This paper has introduced a stochastic optimiza-
tion model to enhance the value recovery of waste collection oper-
ations considering the point that the value embedded in waste
collected is uncertain due to different mix and conditions of waste.
The model consists of two Sub-models: (1) a resource allocation
model that determines the quantity of waste that should be col-
lected and transferred to waste separation units by several low-
capacity trucks assigned to each sector or neighborhood in a city,
and (2) a model that determines the amount of waste collected
from depots and transferred to a recovery center by high-
capacity trucks. The chance constrained method has been used to
convert the stochastic model into a linear programming model.
The main contribution of the paper resides on the use of informa-
tion of the uncertain value embedded in individual containers in
planning the collection operations. The objective is to maximize
the profit obtained from the recovery operations. The application

of the model has been shown using an example of plastics
recovery.

The directions for future work of this paper include the use of
real data to formulate and solve the allocation models in smart
cities, the use of more accurate estimation models to quantify
the value that can be recovered from collected waste, quantify
environmental and social impacts of value recovery operations in
addition to economic outcomes, and considering the role of other
factors such as citizens contribution in waste generation and
recovery to develop innovative structure for waste management
practices in smart cities. In addition, the model could be extended
to include other decision variables such as the optimal number of
vehicles that should be added to the fleet, the route planning of
each vehicle, and the timing of collection operations. Furthermore,
the use of simulation techniques such as agent-based modeling
would help decision makers better formulate the status of a smart
city and model the interactions among different stakeholders
involved in the entire waste generation, collection and recovery
chain.
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