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Abstract

Since its emergence, the cloud manufacturing concept has been transforming the manufacturing and remanufacturing industry into
a big data and service-oriented environment. The aggressive push toward data collection in cloud-based and cyber-physical systems
provides both challenges and opportunities for predictive analytics. One of the key applications of predictive analytics in such
domains is predictive quality management that aims to fully exploit the potentials provided by the enormous data collected via
cloud-based systems. As a case study, a data set of hard disk drives’ Self-Monitoring, Analysis and Reporting Technology
(SMART) attributes from a cloud-storage service provider has been analyzed to derive some insights about the challenges and
opportunities of using product lifecycle data. An analysis of time-to-failure monitoring of hard disk drives in real-time has been
carried out and the corresponding challenges have been discussed.
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1. Introduction informational and data bottlenecks in manufacturing

applications [3]. Among such applications, predictive
Since the emergence of cloud manufacturing [1], there health management has been introduced as a key
has been an aggressive push toward data collection for enabler of future manufacturing systems within cyber-
predictive analytics purposes [1,2]. The transition physical platforms [4]. Capabilities provided by the
from product-based manufacturing systems to service- Big Data environment allow various sorts of
oriented platforms paves the way for solving the analytical, statistical or data-driven predictive
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algorithms [5] to be applied to manufacturing
problems in order to improve performance. One of the
key manufacturing concerns relates to quality control
and health monitoring. Utilizing Big Data capabilities
helps to ameliorate such concerns by applying
statistical and data-driven algorithms on the data
gathered from the manufacturing equipment or the
final products. For example, despite the relatively
young age of such concepts, some applications in
health assessment and prognostics [6], machine
availability monitoring [7] and machine tool
monitoring [8] have been introduced and developed
based on the Big Data capabilities and advanced
analytics.

Cloud-based capabilities are changing the way data
collection and the corresponding analyses are carried
out for quality control and health management. Table
1 compares some key features of quality control in
traditional and cloud-based manufacturing paradigms.
While the transition toward cloud-based quality
control and health monitoring can mitigate the cost of
data collection, the enormous amount of data
generated every day by each manufacturing and
remanufacturing plant would make data storage,
warehousing and computation more challenging and
costly. On the other hand, compared to the traditional
quality control methods that aim at collecting specific
performance measures data, cloud-based platforms
need to handle the real-time analysis of heterogeneous
data types and complex working conditions.
Challenges related to heterogeneous data formats and
complex working conditions in cloud-based machine
health monitoring have been previously highlighted

[9].

Table 1 — Comparison of data collection and analysis
for health management between traditional and
cloud-based systems

Traditional | Cloud-based
Time interval Less Very frequent
frequent
Type of data Specific Heterogeneous
data types
Data analysis Offline Real-time
Data  collection | High Relatively
cost lower
Data storage and | Low High
warehousing cost

This paper provides a case study of cloud-based
product monitoring in real-time. A massive data set of

hard disk drives’ Self-Monitoring, Analysis and
Reporting Technology (SMART) attributes from a
cloud storage service provider has been analyzed and
a real-time quality monitoring scheme has been
provided. Furthermore, the potential challenges that
need to be overcome in such systems have been
discussed.

The rest of this paper is structured as follows. Section
2 provides a brief background of the hard disk drive
failure prediction studies, illustrating the gap that
could be covered via cloud-based systems. Section 3
provides the analysis of the data of a cloud-storage
provider and discusses the potential challenges that
should be addressed. Finally, Section 4 concludes the

paper.
2. Background

Most of the data produced in the world are stored
on hard disk drives [10], therefore, their imminent
failure prediction has been a subject of considerable
importance in the literature. Previous efforts have been
made to use SMART attributes, which are real-time
measurements of the drives’ technical status, in order
to predict hard drive failures.

Older failure prediction studies focused on critical
thresholds on SMART attributes for failure prediction
[11]. Machine learning algorithms and statistical tests
have been utilized subsequently for disk drive failure
predictions [12,13]. For example, Zhu et al. [14] have
investigated the usage of a Support Vector Machine
(SVM) model and backpropagation neural network
models on a dataset of 23395 drives for failure
prediction. They argued that while SVM provides the
lowest false alarm rate, the neural network model
presents a better failure detection rate up to 95%.
However, Li et al. [15,16] highlighted the fact that the
accuracy of the failure prediction models may not
reflect their practicality. They proposed two different
metrics for disk failure based on the probability of data
being at risk. They used classification trees and
recurrent neural networks for failure prediction and
gradient boosted regression trees for residual life
prediction. Similarly, Pang et al. [17] developed
ensemble classification models to predict various
levels of the remaining working time of the drive.
However, most of the studies focus on the benefits of
using SMART attributes for homogenous drive
populations. Rincon et al. [18] have recently extended
such analyses to more heterogeneous data from data
centres. They used decision tree, neural network, and
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logistic regression.

While the previous efforts have mostly focused on
the prediction of an impending failure or the
possibility of a failure within a fixed horizon, such
efforts could be improved by providing a real-time
continuous quality monitoring measure via the data
provided by the cloud services. From the cloud
manufacturing standpoint, investigating hard disk
drive data is substantial, as these devices are among
the first mediums that were utilized in cloud-based
service-oriented platforms. In order to investigate the
potentials provided by the cyber-physical systems
regarding quality monitoring, we present a case study
of hard disk drives’ time-to-failure prediction.
However, the framework presented and the challenges
mentioned can be applied to any other cloud
manufacturing and remanufacturing setting.

3. Case study: hard disk drive time to failure
prediction

3.1. Datasets

In order to investigate predicting hard disk drives’
time to failure using SMART attributes, two datasets
have been analyzed. The datasets have been generated
based on the Backblaze raw hard drive test data [19].

The first data set- ‘A4 - consists of SMART stats for
91,701 drives, including 6854 failed drives. The
Backblaze data report the SMART values of hard
drives at the end of each day in the period of 2013-
2017. The Backblaze data report 40 different SMART
stats for data related to 2013-2014 and 45 SMART
stats for data related to 2015-2017. For both data sets,
the columns that contained missing data in more than
one-third of the rows have been removed.

Table 2 summarizes the SMART attributes and
their definitions that have been considered. The data
include a failure identifier that indicates whether or not
the hard drive was in working condition at the end of
the reporting day. The drives that failed were replaced
the next day and would be removed from the data sets
of the subsequent days. Therefore, the failure dates of
the failed drives can be extracted from the Backblaze
data. The second data set-‘B’- contains a random
sample of 3297 hard drives’ SMART stats and the
corresponding time to failures.

Table 2 — SMART attributes and their definition

SMART Definition

Attribute

SMART 1 Read Error Rate

SMART 3 Spin Up Time

SMART 4 Start/Stop Count

SMART 5 Reallocated Sectors Count

SMART 7 Seek Error Rate

SMART 9 Power-On Hours

SMART 10 Spin Retry Count

SMART 12 Power Cycle Count

SMART 184 | End-to-End error / IOEDC

SMART 187 | Reported Uncorrectable Errors

SMART 188 | Command Timeout

SMART 189 | High Fly Writes

SMART 190 | Temperature Difference or
Airflow Temperature

SMART 191 | G-sense Error Rate

SMART 192 | Power-off Retract Count

SMART 193 | Load Cycle Count

SMART 194 | Temperature

SMART 197 | Current Pending Sector Count

SMART 198 | Uncorrectable Sector Count

SMART 199 | UltraDMA CRC Error Count

SMART 240 | Head Flying Hours

SMART 241 | Total LBAs Written

SMART 242 | Total LBAs Read

3.2. Analysis

Dataset ‘4’ has been preprocessed and the columns
containing missing values in more than one-third of
the rows have been removed. Table 3 provides a
comparison between the descriptive statistics of the
failed and working drives’ SMART stats.

The general procedure of the analysis is as follows.
First, a statistical analysis is carried out on data set ‘4.
The purpose of this step is to evaluate the differences
in values and trends of the SMART attributes across
the failed and working hard disk drives. The SMART
attributes that undergo great changes in drives that
approach an impending failure may be good indicators
for failure prediction. The next step is motivated by the
mentioned point and is designed to look into the
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relationship between SMART stats and the time to
failure of the drives via regression analysis. In this step
the SMART readings from dataset ‘B’ are used as
inputs of the analysis and the time to failure is the
target value of the prediction. Figures 1 and 2 illustrate
the trend of several common SMART attributes over
time, up to the drive’s failure date, for two different
drives with significantly different life spans.
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Figure 1 — Trend of SMART stats vs. time to failure
for a drive with 600 working days
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Figure 2 — Figure 1 — Trend of SMART stats vs.

time to failure for a drive with 1200 working days
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Table 3 - Comparison of descriptive statistics between the failed and working drives” SMART stats (dataset ‘4’)

Mean Std Min Max
Failed Working Failed Working Failed Working Failed Working
failure 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00
smart 10 1.99E+03 | 2.62E+01 | 4.76E+04 | 2.03E+03 | 0.00E+00 | 0.00E+00 | 1.64E+06 | 2.62E+05
smart_12 23.34 8.80 28.77 58.42 0.00 0.00 1053.00 16419.00
smart 194 | 25.78 27.87 4.70 6.61 13.00 13.00 50.00 52.00
smart 197 | 301.15 0.04 3465.90 1.09 0.00 0.00 65534.00 | 80.00
smart 198 | 226.39 0.04 2968.88 1.07 0.00 0.00 65534.00 | 80.00
smart 199 | 5.38E+01 | 1.38E+01 | 6.51E+02 | 1.52E+03 | 0.00E+00 | 0.00E+00 | 1.98E+04 | 4.03E+05
smart_1 1.11E+09 | 7.56E+07 | 8.18E+10 | 8.10E+07 | 0.00E+00 | 0.00E+00 | 6.63E+12 | 2.44E+08
smart 3 402.26 249.79 1372.26 883.76 0.00 0.00 9370.00 9766.00
smart_4 36.25 10.66 468.61 79.59 1.00 1.00 26675.00 | 7796.00
smart 5 2117.90 2.03 8753.74 177.73 0.00 0.00 65224.00 | 39856.00
smart 7 1.51E+11 | 1.44E+10 | 3.99E+12 | 1.81E+12 | 0.00E+00 | 0.00E+00 | 2.19E+14 | 2.81E+14
smart 9 1.81E+04 | 1.63E+04 | 1.23E+04 | 1.10E+04 | 0.00E+00 | 0.00E+00 | 1.41E+05 | 6.57E+04
Table 4 — Descriptive statistics of the time to failures of drives in data set ‘B’
Count Mean Std Min 25% 50% 75% Max
Time to failure 3297 329.41 269.88 0 109 262 493 1455

As can be seen, SMART attributes 3, 5, 10 and 199
seem to be stable and constant over time for both
drives. SMART attributes 9 and 12 that respectively
refer to power-on hours and power-on cycle counts,
intuitively, increase over time. However, the
difference between the step-like shapes of the SMART
12 trends for two drives suggests that the two drives
underwent different power-on cycles. The rest of the
attributes, while maintaining similar trends, seem

2351-9789 © 2018 The Authors. Published by Elsevier B.V.
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different for each drive. These trends may be used for
the remaining useful life predictions.

As can be seen, significant differences can be
observed among the SMART stats of the failed and
working devices. Higher values of read error rate
(SMART 1), spin retry count (SMART 10), pending
sector count (SMART 197), uncorrectable sector count
(SMART 198), CRC error count (SMART 199), spin up
time (SMART 3), star/stop count (SMART 4),
reallocated sector counts (SMART 5) and seek error
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rates (SMART 7) are observed in drives with an
impending failure. Also, failed drives, on average,
have higher power-on time and power-on cycle counts
(SMART 9 and 12). Such differences may suggest a
relationship between the SMART stat values and the
time to failure.

In order to investigate the predictability of the time
to failure based on the SMART values, regression
analyses have been carried out on dataset ‘B’. Dataset
‘B’ contains a random selection of SMART values and
the corresponding time to failures at that point, over
the lifespan of 3297 failed drives. In other words,
Dataset ‘B’ has been generated by sampling the
SMART stats of the 6854 failed drives during their
working days. Therefore, since the actual failure date
of those drives is known, the time to failure can be
calculated using the date of the SMART stat reading.
Thus 3297 sets of hard disk drive SMART stats and
the time to failure for the same drives are pooled.
Figure 3 illustrates the distribution of the hard disk
drive time to failures in dataset ‘B’
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Figure 3 — Histogram of hard disk drives’ time to
failures in data set ‘B’

The time to failure values will be the output of the
regression model and the SMART stats will act as the
input variables. In addition, Table 4 presents the
descriptive statistics of the time to failure values.

Figure 4 depicts the result of the dimensionality
reduction applied to the SMART attributes in data set
‘B’. t-distributed Stochastic Neighbor Embedding (t-
SNE) [20] algorithm has been used. t-SNE is a
dimensionality reduction method that maps every data
point to a location in a low dimensional space and has
found to be more effective in data visualization
compared to other high dimensional data visualization
algorithms [20].

t-SNE Dimension Reduction of SMART Attributes
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Figure 4 — Visualization of SMART attributes in data
set ‘B’

The data points have been colored based on their
brand. Note that the brand information has not been
seen by the learning algorithm for dimensionality
reduction and the color coding has been done after the
neighbor embedding process. It is observed that a
significant separation exists in SMART values of at
least one brand compared to the rest of the brands. In
other words, the data points of four of the hard drive
brands cluster together relatively well and are
separated from the fifth one. This highlights the
challenges in failure prediction and time to failure
estimation of hard drives based on SMART attributes
in heterogeneous populations of drives. Based on this
observation, three different regression models have
been developed based on the brand information. One
regression analysis has been done on the full data set
‘B’ and two separate regression analyses have been
done only on the two most frequent hard drive brands
in the data set. The SMART attributes have been used
as the predictor matrix and the time to failure has been
considered as the output variable. Random forests [21]
have been used as the regression algorithms. Decision
tree models have been previously used for hard disk
drive failure prediction. Moreover, ensemble decision
tree models have been shown to be reliable and stable
in failure prediction [15,16]. Random forests
overcome the overfitting problem of the decision trees
and also provide estimates of variable importance
without variable deletion. Figure 5 illustrates the
results of the cross-validation of the predicted values
and the actual time to failures based on the trained
random forest models.
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Figure 5 — Time to failure predictions for each model

Figure 6 depicts the performance of the regression
models. Figure 6 suggests that developing models for
each specific brand would relatively improve the
performance of the prediction.
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Figure 6 — Performance of regression models

Table 5 ranks the top ten most important variables
of each model based on the decrease in mean squared
error. The ranking helps to infer the most useful
attributes for estimating the time to failure. Except
SMART 9, which refers to the power-on time of the
device and is representative of the devices’ age and is
quite important in all three models, the rest of the
variables do not share the same ranking over the three
models. The reason may originate from the fact that
different manufacturers may not use the same
standards for the same attributes.

Table 5 — Variable importance in each regression
model

Top ten important features
ranking
Variable All Brand 1 Brand 2
Brands
SMART 9 1 2 1
SMART 240 |2 1
SMART 7 3 4 6
SMART 193 | 4 6 2
SMART 192 |5 8 3
SMART 4 6 10 8
SMART 1 7 5 10
SMART 12 8 9
SMART 242 | 9
SMART 194 | 10 5
SMART 241
SMART 3
SMART 5
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3.3. Challenges in cloud-based quality monitoring

While the case study presented above illustrates the
use of data generated in cloud-based systems for
condition monitoring, it also provides the challenges
present in doing so. It was previously mentioned that
dealing with heterogeneous data types is one of the
major challenges of cloud-based manufacturing
systems [9]. However, our study suggests that even
when utilizing homogenous data types, lack of proper
standardization may be a critical hurdle in cloud-based
health monitoring. Our segmentation analysis showed
that the stats reported by the SMART attributes may
correlate differently with each other across various
brands. Unified product/services data standards are
required for future cloud-based health management
systems.

Another  important  attribute  that needs
consideration refers to the frequency of data
collection. Since data storage and management
become challenging for large amounts of data,
optimum data collection frequency for each
prognostication task should be obtained in order to
avoid unnecessary costs related to data computation,
data storage, and energy consumption.

4. Conclusions

The emergence of cloud-computing has been
pushing toward a paradigm shift in manufacturing,
entailing a transition from product-manufacturing
plants to service-oriented entities. While the
communications with and the usage of the
manufacturing resources have been changing toward a
Big Data environment, corresponding quality
monitoring techniques should adapt accordingly.
Since cloud-manufacturing platforms facilitate
manufacturing data collection, data-driven condition
monitoring techniques could be exploited to seize such
opportunities.

It should be noted that the analyses discussed in this
manuscript are based upon real-time product health
status monitoring via product specific data. However,
failures can also occur due to other unpredictable
reasons such as consumer misuse, disasters or
inappropriate environmental conditions.

This paper provides a case study of a real-world
cloud storage health monitoring and failure prediction
system. Hard disk drives’ SMART attributes have
been utilized in order to predict the time to failure of
drives in Redundant Array of Inexpensive Disks

(RAID) systems of cloud storage centres. Moreover,
challenges with respect to data collection frequency
and data standardization have been discussed.

Future work should focus on other pattern
recognition techniques to improve the performance of
predictions. Moreover, data from other cloud-based
sectors should be investigated in order to analyze the
generalization of the predictions.
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