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Abstract 

Since its emergence, the cloud manufacturing concept has been transforming the manufacturing and remanufacturing industry into 
a big data and service-oriented environment.  The aggressive push toward data collection in cloud-based and cyber-physical systems 
provides both challenges and opportunities for predictive analytics. One of the key applications of predictive analytics in such 
domains is predictive quality management that aims to fully exploit the potentials provided by the enormous data collected via 
cloud-based systems. As a case study, a data set of hard disk drives’ Self-Monitoring, Analysis and Reporting Technology 
(SMART) attributes from a cloud-storage service provider has been analyzed to derive some insights about the challenges and 
opportunities of using product lifecycle data. An analysis of time-to-failure monitoring of hard disk drives in real-time has been 
carried out and the corresponding challenges have been discussed.  
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1. Introduction 

Since the emergence of cloud manufacturing [1], there 
has been an aggressive push toward data collection for 
predictive analytics purposes [1,2]. The transition 
from product-based manufacturing systems to service-
oriented platforms paves the way for solving the 

informational and data bottlenecks in manufacturing 
applications [3]. Among such applications, predictive 
health management has been introduced as a key 
enabler of future manufacturing systems within cyber-
physical platforms [4]. Capabilities provided by the 
Big Data environment allow various sorts of 
analytical, statistical or data-driven predictive 
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algorithms [5] to be applied to manufacturing 
problems in order to improve performance. One of the 
key manufacturing concerns relates to quality control 
and health monitoring. Utilizing Big Data capabilities 
helps to ameliorate such concerns by applying 
statistical and data-driven algorithms on the data 
gathered from the manufacturing equipment or the 
final products. For example, despite the relatively 
young age of such concepts, some applications in 
health assessment and prognostics [6], machine 
availability monitoring [7] and machine tool 
monitoring [8] have been introduced and developed 
based on the Big Data capabilities and advanced 
analytics. 

Cloud-based capabilities are changing the way data 
collection and the corresponding analyses are carried 
out for quality control and health management. Table 
1 compares some key features of quality control in 
traditional and cloud-based manufacturing paradigms. 
While the transition toward cloud-based quality 
control and health monitoring can mitigate the cost of 
data collection, the enormous amount of data 
generated every day by each manufacturing and 
remanufacturing plant would make data storage, 
warehousing and computation more challenging and 
costly. On the other hand, compared to the traditional 
quality control methods that aim at collecting specific 
performance measures data, cloud-based platforms 
need to handle the real-time analysis of heterogeneous 
data types and complex working conditions. 
Challenges related to heterogeneous data formats and 
complex working conditions in cloud-based machine 
health monitoring have been previously highlighted 
[9]. 
 
Table 1 – Comparison of data collection and analysis 
for health management between traditional and 
cloud-based systems 

 Traditional Cloud-based 
Time interval Less 

frequent 
Very frequent 

Type of data Specific Heterogeneous 
data types 

Data analysis Offline Real-time 
Data collection 
cost 

High Relatively 
lower 

Data storage and 
warehousing cost 

Low High 

 
This paper provides a case study of cloud-based 
product monitoring in real-time. A massive data set of 

hard disk drives’ Self-Monitoring, Analysis and 
Reporting Technology (SMART) attributes from a 
cloud storage service provider has been analyzed and 
a real-time quality monitoring scheme has been 
provided. Furthermore, the potential challenges that 
need to be overcome in such systems have been 
discussed.  
The rest of this paper is structured as follows. Section 
2 provides a brief background of the hard disk drive 
failure prediction studies, illustrating the gap that 
could be covered via cloud-based systems. Section 3 
provides the analysis of the data of a cloud-storage 
provider and discusses the potential challenges that 
should be addressed. Finally, Section 4 concludes the 
paper.  

2. Background 

Most of the data produced in the world are stored 
on hard disk drives [10], therefore, their imminent 
failure prediction has been a subject of considerable 
importance in the literature. Previous efforts have been 
made to use SMART attributes, which are real-time 
measurements of the drives’ technical status, in order 
to predict hard drive failures.  

Older failure prediction studies focused on critical 
thresholds on SMART attributes for failure prediction 
[11]. Machine learning algorithms and statistical tests 
have been utilized subsequently for disk drive failure 
predictions [12,13]. For example, Zhu et al. [14] have 
investigated the usage of a Support Vector Machine 
(SVM) model and backpropagation neural network 
models on a dataset of 23395 drives for failure 
prediction. They argued that while SVM provides the 
lowest false alarm rate, the neural network model 
presents a better failure detection rate up to 95%. 
However, Li et al. [15,16] highlighted the fact that the 
accuracy of the failure prediction models may not 
reflect their practicality. They proposed two different 
metrics for disk failure based on the probability of data 
being at risk. They used classification trees and 
recurrent neural networks for failure prediction and 
gradient boosted regression trees for residual life 
prediction. Similarly, Pang et al. [17] developed 
ensemble classification models to predict various 
levels of the remaining working time of the drive. 
However, most of the studies focus on the benefits of 
using SMART attributes for homogenous drive 
populations. Rincon et al. [18] have recently extended 
such analyses to more heterogeneous data from data 
centres. They used decision tree, neural network, and 
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logistic regression. 
While the previous efforts have mostly focused on 

the prediction of an impending failure or the 
possibility of a failure within a fixed horizon, such 
efforts could be improved by providing a real-time 
continuous quality monitoring measure via the data 
provided by the cloud services. From the cloud 
manufacturing standpoint, investigating hard disk 
drive data is substantial, as these devices are among 
the first mediums that were utilized in cloud-based 
service-oriented platforms. In order to investigate the 
potentials provided by the cyber-physical systems 
regarding quality monitoring, we present a case study 
of hard disk drives’ time-to-failure prediction. 
However, the framework presented and the challenges 
mentioned can be applied to any other cloud 
manufacturing and remanufacturing setting.  

 

3. Case study: hard disk drive time to failure 
prediction 

3.1. Datasets 

In order to investigate predicting hard disk drives’ 
time to failure using SMART attributes, two datasets 
have been analyzed. The datasets have been generated 
based on the Backblaze raw hard drive test data [19].  

The first data set-‘A’- consists of SMART stats for 
91,701 drives, including 6854 failed drives. The 
Backblaze data report the SMART values of hard 
drives at the end of each day in the period of 2013-
2017. The Backblaze data report 40 different SMART 
stats for data related to 2013-2014 and 45 SMART 
stats for data related to 2015-2017. For both data sets, 
the columns that contained missing data in more than 
one-third of the rows have been removed.  

Table 2 summarizes the SMART attributes and 
their definitions that have been considered. The data 
include a failure identifier that indicates whether or not 
the hard drive was in working condition at the end of 
the reporting day. The drives that failed were replaced 
the next day and would be removed from the data sets 
of the subsequent days. Therefore, the failure dates of 
the failed drives can be extracted from the Backblaze 
data. The second data set-‘B’- contains a random 
sample of 3297 hard drives’ SMART stats and the 
corresponding time to failures.  
 
 

  Table 2 – SMART attributes and their definition 
SMART 
Attribute 

Definition 

SMART 1 Read Error Rate 
SMART 3 Spin Up Time 
SMART 4 Start/Stop Count 
SMART 5 Reallocated Sectors Count 
SMART 7 Seek Error Rate 
SMART 9 Power-On Hours 
SMART 10 Spin Retry Count 
SMART 12 Power Cycle Count 
SMART 184 End-to-End error / IOEDC 
SMART 187 Reported Uncorrectable Errors 
SMART 188 Command Timeout 
SMART 189 High Fly Writes 
SMART 190 Temperature Difference or 

Airflow Temperature 
SMART 191 G-sense Error Rate 
SMART 192 Power-off Retract Count 
SMART 193 Load Cycle Count 
SMART 194 Temperature 
SMART 197 Current Pending Sector Count 
SMART 198 Uncorrectable Sector Count 
SMART 199 UltraDMA CRC Error Count 
SMART 240 Head Flying Hours 
SMART 241 Total LBAs Written 
SMART 242 Total LBAs Read 

3.2. Analysis 

Dataset ‘A’ has been preprocessed and the columns 
containing missing values in more than one-third of 
the rows have been removed. Table 3 provides a 
comparison between the descriptive statistics of the 
failed and working drives’ SMART stats.  

The general procedure of the analysis is as follows. 
First, a statistical analysis is carried out on data set ‘A’. 
The purpose of this step is to evaluate the differences 
in values and trends of the SMART attributes across 
the failed and working hard disk drives. The SMART 
attributes that undergo great changes in drives that 
approach an impending failure may be good indicators 
for failure prediction. The next step is motivated by the 
mentioned point and is designed to look into the 
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relationship between SMART stats and the time to 
failure of the drives via regression analysis. In this step 
the SMART readings from dataset ‘B’ are used as 
inputs of the analysis and the time to failure is the 
target value of the prediction. Figures 1 and 2 illustrate 
the trend of several common SMART attributes over 
time, up to the drive’s failure date, for two different 
drives with significantly different life spans.  

 
Figure 1 – Trend of SMART stats vs. time to failure 

for a drive with 600 working days 

 

 
Figure 2 – Figure 1 – Trend of SMART stats vs. 

time to failure for a drive with 1200 working days 
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Table 3 -  Comparison of  descriptive statistics between the failed and working drives’ SMART stats (dataset ‘A’) 
 

Mean Std Min Max  
Failed Working Failed Working Failed Working Failed Working 

failure 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 
smart_10 1.99E+03 2.62E+01 4.76E+04 2.03E+03 0.00E+00 0.00E+00 1.64E+06 2.62E+05 
smart_12 23.34 8.80 28.77 58.42 0.00 0.00 1053.00 16419.00 
smart_194 25.78 27.87 4.70 6.61 13.00 13.00 50.00 52.00 
smart_197 301.15 0.04 3465.90 1.09 0.00 0.00 65534.00 80.00 
smart_198 226.39 0.04 2968.88 1.07 0.00 0.00 65534.00 80.00 
smart_199 5.38E+01 1.38E+01 6.51E+02 1.52E+03 0.00E+00 0.00E+00 1.98E+04 4.03E+05 
smart_1 1.11E+09 7.56E+07 8.18E+10 8.10E+07 0.00E+00 0.00E+00 6.63E+12 2.44E+08 
smart_3 402.26 249.79 1372.26 883.76 0.00 0.00 9370.00 9766.00 
smart_4 36.25 10.66 468.61 79.59 1.00 1.00 26675.00 7796.00 
smart_5 2117.90 2.03 8753.74 177.73 0.00 0.00 65224.00 39856.00 
smart_7 1.51E+11 1.44E+10 3.99E+12 1.81E+12 0.00E+00 0.00E+00 2.19E+14 2.81E+14 
smart_9 1.81E+04 1.63E+04 1.23E+04 1.10E+04 0.00E+00 0.00E+00 1.41E+05 6.57E+04 

 
Table 4 – Descriptive statistics of the time to failures of drives in data set ‘B’ 

 Count Mean Std Min 25% 50% 75% Max 
Time to failure 3297 329.41 269.88 0 109 262 493 1455 

 
 

 
As can be seen, SMART attributes 3, 5, 10 and 199 

seem to be stable and constant over time for both 
drives. SMART attributes 9 and 12 that respectively 
refer to power-on hours and power-on cycle counts, 
intuitively, increase over time. However, the 
difference between the step-like shapes of the SMART 
12 trends for two drives suggests that the two drives 
underwent different power-on cycles. The rest of the 
attributes, while maintaining similar trends, seem 

different for each drive. These trends may be used for 
the remaining useful life predictions. 

As can be seen, significant differences can be 
observed among the SMART stats of the failed and 
working devices. Higher values of read error rate 
(SMART 1), spin retry count (SMART 10), pending 
sector count (SMART 197), uncorrectable sector count 
(SMART 198), CRC error count (SMART 199), spin up 
time (SMART 3), star/stop count (SMART 4), 
reallocated sector counts (SMART 5) and seek error 
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rates (SMART 7) are observed in drives with an 
impending failure. Also, failed drives, on average, 
have higher power-on time and power-on cycle counts 
(SMART 9 and 12). Such differences may suggest a 
relationship between the SMART stat values and the 
time to failure.  

In order to investigate the predictability of the time 
to failure based on the SMART values, regression 
analyses have been carried out on dataset ‘B’. Dataset 
‘B’ contains a random selection of SMART values and 
the corresponding time to failures at that point, over 
the lifespan of 3297 failed drives. In other words, 
Dataset ‘B’ has been generated by sampling the 
SMART stats of the 6854 failed drives during their 
working days. Therefore, since the actual failure date 
of those drives is known, the time to failure can be 
calculated using the date of the SMART stat reading. 
Thus 3297 sets of hard disk drive SMART stats and 
the time to failure for the same drives are pooled.      
Figure 3 illustrates the distribution of the hard disk 
drive time to failures in dataset ‘B’.  

 
Figure 3 – Histogram of hard disk drives’ time to 
failures in data set ‘B’ 
 

The time to failure values will be the output of the 
regression model and the SMART stats will act as the 
input variables. In addition, Table 4 presents the 
descriptive statistics of the time to failure values. 

Figure 4 depicts the result of the dimensionality 
reduction applied to the SMART attributes in data set 
‘B’. t-distributed Stochastic Neighbor Embedding (t-
SNE) [20] algorithm has been used. t-SNE is a 
dimensionality reduction method that maps every data 
point to a location in a low dimensional space and has 
found to be more effective in data visualization 
compared to other high dimensional data visualization 
algorithms [20]. 

 

 
Figure 4 – Visualization of SMART attributes in data 
set ‘B’  
 

The data points have been colored based on their 
brand. Note that the brand information has not been 
seen by the learning algorithm for dimensionality 
reduction and the color coding has been done after the 
neighbor embedding process. It is observed that a 
significant separation exists in SMART values of at 
least one brand compared to the rest of the brands. In 
other words, the data points of four of the hard drive 
brands cluster together relatively well and are 
separated from the fifth one. This highlights the 
challenges in failure prediction and time to failure 
estimation of hard drives based on SMART attributes 
in heterogeneous populations of drives. Based on this 
observation, three different regression models have 
been developed based on the brand information. One 
regression analysis has been done on the full data set 
‘B’ and two separate regression analyses have been 
done only on the two most frequent hard drive brands 
in the data set. The SMART attributes have been used 
as the predictor matrix and the time to failure has been 
considered as the output variable. Random forests [21] 
have been used as the regression algorithms. Decision 
tree models have been previously used for hard disk 
drive failure prediction. Moreover, ensemble decision 
tree models have been shown to be reliable and stable 
in failure prediction [15,16]. Random forests 
overcome the overfitting problem of the decision trees 
and also provide estimates of variable importance 
without variable deletion. Figure 5 illustrates the 
results of the cross-validation of the predicted values 
and the actual time to failures based on the trained 
random forest models.  
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Figure 5 – Time to failure predictions for each model 
 
Figure 6 depicts the performance of the regression 
models. Figure 6 suggests that developing models for 
each specific brand would relatively improve the 
performance of the prediction. 

 
Figure 6 – Performance of regression models 
 
 

Table 5 ranks the top ten most important variables 
of each model based on the decrease in mean squared 
error. The ranking helps to infer the most useful 
attributes for estimating the time to failure. Except 
SMART 9, which refers to the power-on time of the 
device and is representative of the devices’ age and is 
quite important in all three models, the rest of the 
variables do not share the same ranking over the three 
models. The reason may originate from the fact that 
different manufacturers may not use the same 
standards for the same attributes.  
 
Table 5 – Variable importance in each regression 
model  

Top ten important features 
ranking 

Variable  All 
Brands 

Brand 1 Brand 2 

SMART 9 1 2 1 
SMART 240 2 1  
SMART 7 3 4 6 
SMART 193 4 6 2 
SMART 192 5 8 3 
SMART 4 6 10 8 
SMART 1 7 5 10 
SMART 12 8  9 
SMART 242 9 3  
SMART 194 10 9 5 
SMART 241  7  
SMART 3   4 
SMART 5   7 
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3.3. Challenges in cloud-based quality monitoring 

While the case study presented above illustrates the 
use of data generated in cloud-based systems for 
condition monitoring, it also provides the challenges 
present in doing so. It was previously mentioned that 
dealing with heterogeneous data types is one of the 
major challenges of cloud-based manufacturing 
systems [9]. However, our study suggests that even 
when utilizing homogenous data types, lack of proper 
standardization may be a critical hurdle in cloud-based 
health monitoring. Our segmentation analysis showed 
that the stats reported by the SMART attributes may 
correlate differently with each other across various 
brands. Unified product/services data standards are 
required for future cloud-based health management 
systems. 

Another important attribute that needs 
consideration refers to the frequency of data 
collection. Since data storage and management 
become challenging for large amounts of data, 
optimum data collection frequency for each 
prognostication task should be obtained in order to 
avoid unnecessary costs related to data computation, 
data storage, and energy consumption. 

4. Conclusions 

The emergence of cloud-computing has been 
pushing toward a paradigm shift in manufacturing, 
entailing a transition from product-manufacturing 
plants to service-oriented entities. While the 
communications with and the usage of the 
manufacturing resources have been changing toward a 
Big Data environment, corresponding quality 
monitoring techniques should adapt accordingly. 
Since cloud-manufacturing platforms facilitate 
manufacturing data collection, data-driven condition 
monitoring techniques could be exploited to seize such 
opportunities.  

It should be noted that the analyses discussed in this 
manuscript are based upon real-time product health 
status monitoring via product specific data. However, 
failures can also occur due to other unpredictable 
reasons such as consumer misuse, disasters or 
inappropriate environmental conditions. 

This paper provides a case study of a real-world 
cloud storage health monitoring and failure prediction 
system. Hard disk drives’ SMART attributes have 
been utilized in order to predict the time to failure of 
drives in Redundant Array of Inexpensive Disks 

(RAID) systems of cloud storage centres. Moreover, 
challenges with respect to data collection frequency 
and data standardization have been discussed.  

Future work should focus on other pattern 
recognition techniques to improve the performance of 
predictions. Moreover, data from other cloud-based 
sectors should be investigated in order to analyze the 
generalization of the predictions.  
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