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Impact of Communication Erasure Channels on
Control Performance of Connected and Automated

Vehicles
Thu Nguyen, Le Yi Wang, George Yin, Hongwei Zhang, Shengbo Eben Li, Keqiang Li

Abstract—Connected and automated vehicles mandate inte-
grated design of communications and control to achieve co-
ordination of highway vehicles. Random features of wireless
communications introduce new types of uncertainties into net-
worked systems and impact control performance significantly.
Due to typical packet loss, erasure channels create random link
interruption and switching in network topologies. This paper
models such switching network topologies by Markov chains
and derives their probability transition matrices from stochastic
characterizations of the channels. Impact of communication
erasure channels on vehicle platoon formation and robustness
under a weighted and constrained consensus framework is ana-
lyzed. By comparing convergence properties of networked control
algorithms under different communication channel features, we
characterize some intrinsic relationships between packet delivery
ratio and convergence rate. Simulation case studies are performed
to verify the theoretical findings.

Keywords. Communications, erasure channel, platoon formation,
networked system, consensus control.

I. INTRODUCTION

CONNECTED and automated vehicles (CAVs) coordi-
nate highway vehicle operations by integrated network

control, sensing, and communications [1], [2]. CAVs offer
potential benefits of enhanced safety, more efficient highway
usage, reduced fuel consumption, and improved passenger
comfort. Vehicle platoons, as a fundamental framework of
CAVs, have especially drawn great attention. During the past
several decades, platoon control has been advanced exten-
sively in methodology development, demonstration systems,
and highway testing. These include platoon demonstration
projects DEMO2000, CarTALK2000, FleetNet, PATH, AHS,
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and SARTRE [1], [3], [4]. Platoon formation, stability, ro-
bustness, reliability, operational complexity, and validations
have been studied extensively, mostly in longitude opera-
tions, including decentralized control in [5], string stability
of connected vehicles [6], and stability and robustness under
adaptive cruise control [7], [8], to cite only a few. More
complicated lane changes were investigated in [9]. Impact
of sensor limitations was studied in [10]. Different control
techniques such as adaptive observers [11], adaptive predictive
control [12], and different feedback strategies [13] have been
reported. [14] contains a comprehensive review of different
network topologies and control strategies in platoon control.
Although direct sensor measurements by Radar, Lidar, or

camera systems have already been deployed in commercial ve-
hicles [15], wireless communication systems will be the main
backbone platform for vehicle-to-vehicle communications in
CAVs [16], [17]. At present, CAV connectivity is typically im-
plemented by using the IEEE 802.11p-based Dedicated Short
Range Communications (DSRC) or cellular networks (e.g.,
LTE and 5G). Analytical models of reliability of the IEEE
802.11p in VANET’s safety [18] and performance evaluations
of safety in the DSRC networks have been studied in [17].
Random features of wireless communications such as era-

sure rate, packet loss, or packet delivery ratio, introduce new
types of uncertainties into networked systems and impact
control performance significantly [16]. Impact of communica-
tions on networked control systems can be treated by viewing
communication systems as added uncertainties and constraints.
[19] characterized the impact of noisy communication chan-
nels on control performance in a standard feedback loop. [20]
treated a communication channel in a control loop as added
delays and analyzes dependance of control performance on
such delays. [21] modeled communication systems for multi-
agent systems as a time-varying network by considering mo-
bility, and established the networked system’s control quality.
To understand how a communication system can influence a
feedback system’s performance, [22] established fundamental
limitations on control performance when a communication
channel is inserted. In [23], an in-depth study of coordinated
control and communication design was conducted in which
TCP-based communication protocols were employed. [24]
concentrated on block erasure channels [25] and established
safety distances accordingly.
Platoons communicate via wireless systems. It has been

established togeter with experimental verifications that such
systems can be reasonably represented by Markov chain mod-
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els. In particular, Markovian models are shown to be useful
representations for binary channels [26], radio communication
systems [27], and fading channels [28]. Since mobile wireless
communication systems are typical cases of dynamic fading
channels, they can be modelled by Markov chains [29].
Employing Markov chains to model communication channels
and the weighted-and-constrained consensus (WCC) [30], [31]
to coordinate a platoon’s operation, this paper provides a
modeling and control methodology and impact analysis for
highway platoon control under erasure channels. It models
the channel interruptions from block erasure and the resulting
switching network topologies by Markov chains and derives
their probability transition matrices from channels’ stochastic
characterizations. Impact of communication erasure channels
on vehicle platoon formation, robustness, and convergence
rate is analyzed and illustrated. As a general framework, the
Markov chain model of communication network topologies
can also accommodate actively managed networks for resource
allocation, interference avoidance, and transmission schedul-
ing.
By comparing convergence properties of networked control

algorithms under block erasure channels, we characterize some
intrinsic relationships between communication erasure rates
and platoon formation convergence performance. The findings
of this paper can serve as useful guidelines on communica-
tion resource allocations and vehicle coordinations. The main
contributions of this paper are the following aspects.

(1) We employ Markov chain models to represent erasure
channels and the resulting switching network topologies.
Probability transition matrices are derived to represent
communication network dynamics.

(2) To study impact of communication erasure channels on
platoon control performance, we integrate the Markov
chain models of erasure channels with the weighted-and-
constrained consensus framework to link communication
system features to platoon control.

(3) The relationships among packet delivery ratio, communi-
cation resource, network topology structure, and platoon
control performance are quantitatively established, and
demonstrated by simulation case studies.

(4) We study the impact of communication block erasures on
platoon coordination with vehicle dynamic models and
illustrate their relationships.

The rest of the paper is arranged as follows. Section II
presents networked control algorithms for highway platoon
formation and control. Section III introduces Markov chain
models for communication erasure channels. Impact of era-
sure channels on platoon control performance is analyzed in
Section IV by establishing convergence rates as functions of
the Markov chains for the erasure channels. Section V presents
simulation case studies to validate the theoretical conclusions
and demonstrate effectiveness of the proposed algorithms. The
algorithms are further extended to include vehicle dynamics in
Section VI. The impact of erasure channels on such platoon
control problems is evaluated. Finally, Section VII presents
some potential research problems and points out future di-
rections on integrated control and communications in platoon

control.

II. NETWORKED CONTROL ALGORITHMS

We first describe the platoon control framework introduced
in [30]. Consider a platoon of r+1 vehicles driving in the same
lane. The leading vehicle serves as a reference and is labeled
as vehicle 0 with position p0n (hence, p0n = 0). In the platoon
formation, the position of each vehicle is determined by the
central point of its length and denoted by pin, i = 1, . . . , r
which is the distance of the ith vehicle to the leading vehicle.
The consecutive inter-vehicle distances are denoted by dn =
[d1n, . . . , d

r
n]

′, where din is the distance between vehicle i and
vehicle i− 1 at time n and is given by din = pin−pi−1

n for i =
1, . . . , r. The vehicle speeds are vn = [v1n, . . . , v

r
n]

′, where z′

is the transpose of z. The platoon has a total length L. The goal
of platoon control is to distribute the length L appropriately
to inter-vehicle distances so that the highway space resource
can be optimally utilized and vehicle safety can be enhanced.
Due to disturbances and other factors, at time n, the total

actual length of the platoon Ln can be time varying and differ-
ent from L. On the other hand, in algorithm development, we
aim at Ln = L (i.e., maintaining a constant-length platoon).
Platoon length variations will be viewed as disturbances to
the consensus control problem in this paper. Consequently, in
control design, we impose the design constraint

r∑

i=1

din = L, n = 0, 1, . . . (1)

Due to terrain conditions and vehicle mass disparity, desired
front distances for vehicles differ. For example, a heavy
truck needs more front space than a smaller passenger car.
Consequently, we introduce a weighting factor γi for vehicle
i’s front distance. It follows that the goal of platoon control is
to achieve consensus on the weighted distances din/γi, namely,

din
γi

→ β, i = 1, . . . , r,

for some constant β. Here, the desired convergence is either
with probability one (w.p.1.) or in mean square (MS).
For notational simplicity in the algorithm development, we

use xi
n = din and denote the states by xn = [x1

n, . . . , x
r
n]

′, the
weighting coefficients by γ = [γ1, . . . , γr]′, and the scaling
matrix by Ψ = diag[1/γ1, . . . , 1/γr], respectively. Denote by
1l the column vector of all 1s. Together with the constraint (1),
the target of the weighted and constrained consensus control
is

Ψxn → β1l

subject to 1l′xn = L. It follows from γ′Ψ = 1l′ that

β =
L

γ′1l
=

L

γ1 + · · ·+ γr
.

In our previous work [31], a stochastic approximation
algorithm was developed for control of networked systems.
At time step n, vehicle platoon control updates xn to xn+1

by the amount un

xi+1
n = xi

n + ui
n, i = 1, . . . , r (2)
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where ui
n is the node control for the ith node, or in a vector

form
xn+1 = xn + un (3)

with xn =
[
x1
n, . . . , x

r
n

]′
, un =

[
u1
n, . . . , u

r
n

]′
. These nodes

are linked by a network, represented by a directed graph G
whose element (i, j) indicates estimation of the state xj

n by
node i via a communication link and also a permitted control
aijn (called link control) that adjusts din and djn coordinately.
From its physical meaning, node i can always observe its own
state, which is not considered as a link in G. The total number
of communication links in G is ls.
The idea of the “link control” is motivated by resource shar-

ing: An increase on distance di by aijn is offset by a decrease
on dj by the same amount so that the total platoon length L
remains intact. As a result, the control ui

n is determined by
the link control aijn as

ui
n = −

∑

(i,j)∈G

aijn +
∑

(j,i)∈G

ajin . (4)

The most relevant implication in this control scheme is that
for all n,

r∑

i=1

xi
n = L, (5)

that is, the constraint (1) is always satisfied. Consensus control
seeks control algorithms such that Ψxn → β1l under the
constraint (5).
A link (i, j) ∈ G entails an estimate x̂ij

n of xj
n by node i

with observation noise ξijn . That is

x̂ij
n = xj

n + ξijn . (6)

Let x̃n and ξn be ls-dimensional vectors that contain all x̂ij
n

and ξijn in a selected order, respectively. Then, (6) can be
written as

x̃n = H{1}xn + ξn, (7)

where H{1} is an ls × r matrix whose rows are elementary
vectors such that, if the lth element of x̃n is x̂ij

n , then the
lth row in H{1} is the row vector of all zeros except for a
“1” at the jth position. Each link in G provides information
δijn = xi

n/γ
i − x̂ij

n /γ
j , an estimated difference between the

weighted xi
n and xj

n. This information may be represented by
a vector δn of size ls containing all δijn in the same order as
x̃n, where δn can be written as

δn = H{2}Ψxn − Ψ̃x̃n = H{2}Ψxn − Ψ̃H{1}xn − Ψ̃n

= Hxn − Ψ̃ξn,
(8)

where the link scaling matrix Ψ̃ is the ls × ls diagonal matrix
whose kth diagonal element is 1/γj if the kth element of x̃n

is x̂ij
n ; H{2} is an ls × r matrix whose rows are elementary

vectors such that, if the lth element of x̃(k) is x̂ij , then the
lth row in H{2} is the row vector of all zeros except for a “1”
at the ith position, and H = H{2}Ψ− Ψ̃H{1}.
The information δijn can only be used by nodes i and

j. When the platoon control is linear, time invariant, and
memoryless, we have aijn = µngijδ

ij
n , where gij is the link

control gain and µn is the global time-varying scaling factor

which will be used in state updating algorithms as the recursive
step-size. Selections of the link gains and µn are to ensure
convergence of the consensus control. Their further impact
on convergence rate will become clearer later. Let G be the
ls× ls diagonal matrix that has gij as its diagonal elements. In
this case, the node control becomes un = −µnJ

′

Gδn, where
J = H{2} − H{1}. For convergence analysis, we note that
µn is the global control variable and we may represent un

equivalently as

un = −µnJ
′

G(Hxn − Ψ̃ξn) = µn(Mxn +Wξn), (9)

with M = −J
′

GH and W = J
′

GΨ̃. This, together with (3),
leads to

xn+1 = xn + µn(Mxn +Wξn). (10)

It can be directly verified that Ψ̃H{1}Ψ−1 = H{1}, HΨ−1 =
J, J1l = 0,Ψ−11l = γ. These imply that 1l

′

M
′

= 0, 1l
′

W =
0,MΨ−11l = Mγ = 0. When the topology changes with time,
we use the index θn to represent the network topologies. In
this case, the system matrices M and W become functions of
θn, and the stochastic approximation algorithm becomes

xn+1 = xn + µnM(θn)xn + µnW (θn)ξn,
1l′xn = L.

(11)

In this paper, the dynamics of the network topology is modeled
by a Markov chain: θn is a Markov chain taking values in a
finite set A = {1, . . . , l0}. The probability transition matrix of
θ will be specified in our case studies.
One useful property of M(θ) is that for each fixed θ, the

matrix M(θ) ∈ Rr × Rr has the defining property that the
transpose M ′(θ) is a generator of a continuous-time Markov
chain [31]. Although this matrix does not represent a phys-
ical Markov chain, this property is essential in establishing
consensus and convergence properties of our algorithms.
To proceed, we use an example to illustrate the steps

involved in arriving at the stochastic approximation algorithm
(11). This example will also serve as a case for subsequent
simulation studies.
Example 2.1: Consider a platoon of five vehicles with total

length L = 82m. Vehicle i controls the distance di, i =
1, 2, 3, 4. Then the condition d1+d2+d3+d4 = L is imposed
as a constraint. Suppose that the initial distance distribution
among the four vehicles are d10 = 17.5m; d20 = 20.5m;
d30 = 19m; d40 = 25m. Weighted consensus from vehicle
control aims to distribution distance according to the terrain
and vehicle conditions defined by γ1 = 18, γ2 = 20, γ3 = 24
and γ4 = 30, with the total 1l

′

γ = 92. As a result,

x = (d1, d2, d3, d4)
′,

γ = (18, 20, 24, 30)′,
Ψ = diag(1/18, 1/20, 1/24, 1/30).

From the total length 82m, the weighted consensus is d1 =
16.0435m; d2 = 17.8261m; d3 = 21.3913m ; d4 = 26.7391m;
and the desired weighted average distance is

β =
L

γ1 + γ2 + γ3 + γ4
= 0.8913.
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By choosing the order for the links as
(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3) we have

G = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)} .

It follows that Ψ̃ = diag
[
1/20 1/18 1/24 1/20 1/30 1/24

]
.

Suppose that the control gains on the links are selected as
g12 = g21 = 5, g23 = g32 = 10 and g34 = g43 = 13. Then the
link control gain matrix is

G =




5
5 010

10

0 13
13




(12)

III. COMMUNICATION BLOCK ERASURE CHANNELS

In this paper, we focus on communication erasure channels
and their impact on platoon control performance. Under this
communication protocol, we will derive Markov chain models
for the network topology dynamics in Section IV and present
their case studies in Section V.
Block-erasure channels represent channel models where

transmitted packets are either received or lost. The loss of
a packet may be caused by erasure of one or multiple bits
within the packet during transmission. Typically, block-erasure
channels are simple models for fading channels. Due to
power limitation, transmission noise, signal interference, some
codewords in a packet may be completely lost [32], [33], [16].
Probability of packet erasure can be reduced by introducing
error detection and correction bits.
For a given communication channel, packet loss is a ran-

dom process. For simplicity, it is commonly assumed that
the process is independent and identically distributed (i.i.d.).
However, there are situations in which the present packet-
loss probability depends on previous link conditions due to
environment conditions or communication system manage-
ment. Typically environment conditions are temporally related
since an underling cause for a link interruption (such as an
obstacle in a communication antenna’s line of sight) creates
a dynamic relationship in consecutive transmissions. This
temporal dependence is modeled in this paper by a Markov
chain so that a presently connected link can have different
packet loss properties from the case when this link is broken.
We consider block-erasure channels with certain channel

codings that include error detection. In this protocol, channel
error detecting codes such as parity-check matrices are encap-
sulated and used by the receiver to either detect transmission
errors or in some cases correct the missing or erroneous
bits. The detection/correction mechanism is shown in Fig. 1.
During one round-trip, starting at time tk, the source generates
a data block, which is channel coded with codeword ctk
and transmitted. Due to channel uncertainties, the decoder
receives the codeword ĉtk with possible erasure of one or
more bits. After decoding and error correction, the receiver
either acknowledges receipt of the data, or indicates a packet
erasure. Under certain pre-designed decision time intervals,
transmission of data is confined to the interval [tk, tk+1).

Encoder 

Error correction Codes 

Decoder 
Error detection  

and correction 
Data 

Received 

Data 
Transmission Receiver 

Erasure 
Re-send 

Channel 

Fig. 1. An erasure channel with error detection and correction and re-
transmission

Consequently, re-sending data is permitted only before tk+1.
Suppose that the round-trip time for one transmission is τ . If
tk+τ < tk+1, a re-transmission is implemented and the above
transmission process renews.

At tk+1, the data are either received correctly or declared
to be lost. In the later case, the channel is equivalently
disconnected during [tk, tk+1) since no data are received.
Since this event is random, the channel is modeled as a
random link, with probability pk to be linked and 1 − pk to
be disconnected in this interval. Applying this scenario to all
channels, we have a randomly switching network topology
such that the probability for each topology is generated from
individual link connection probabilities.

Probabilistic models for erasure channels can be derived
from channels’ signal-to-noise ratio (SNR). In a VANET
framework under low density parity-check (LDPC) convolu-
tional coding [34], such models were derived in [23]. When
a networked control system is implemented on such block
erasure channels with a probabilistic model, for simplicity
we assume that all links have a uniform probability ρ to
be linked and 1 − ρ for erasure, although different link
erasure probabilities can also be accommodated. A network
of n nodes can have a total of 2n possible bi-directional
links, implying 2n possible network topologies. This set of
topologies forms the state space for the Markov chain θ
in (11). If these erasure channels are independent, then the
probability distribution of θ can be derived accordingly. We
use an example to illustrate this process. The methodology
is applicable to both Markovian models and i.i.d. models for
erasure channels. In this example, we use i.i.d. channel models,
namely, the channels are mutually independent, both spatially
and temporally. Examples on the Markovian models will be
covered in case studies in Section V.

Example 3.1: Continuing Example 2.1, we now specify
the Markov chain {θn} in the case of i.i.d. channels. Let
0 ≤ ρ ≤ 1 be the packet delivery ratio. Then {θn} is a Markov
chain taking values in a finite set A = {1, 2, . . . , 2ls} =
{1, 2, . . . , 64} (since ls = 6 in this example), and P(θn =

k) = ρl
real
n (k)(1−ρ)ls−lreal

n (k), where lrealn (k) =
∑ls

i=1 λ
i
n(k)

is the total number of connected links at time n and λi
n(k)

is an indicator variable showing whether the kth link is up at
time n.

The network interconnection is defined by the random
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topology matrices

H
{1}
n (k) =




0 λ1
n(k) 0 0

λ2
n(k) 0 0 0
0 0 λ3

n(k) 0
0 λ4

n(k) 0 0
0 0 0 λ5

n(k)
0 0 λ6

n(k) 0



,

H
{2}
n (k) =




λ1
n(k) 0 0 0
0 λ2

n(k) 0 0
0 λ3

n(k) 0 0
0 0 λ4

n(k) 0
0 0 λ5

n(k) 0
0 0 0 λ6

n(k)



,

where λi
n(k) = 1l{yi

n(k)≤ρ},∀i = 1, 2, 3, 4, 5, 6 with yi
n(k) ∼

U(0, 1). Consequently, we have

Hn(k) = H
{2}
n (k)Ψ− Ψ̃H

{1}
n (k)

Jn(k) = H
{2}
n (k)−H

{1}
n (k)

Mn(k) = −Jn(k)
′

GHn(k)

Wn(k) = Jn(k)
′

GΨ̃.

(13)

IV. CONVERGENCE AND RATE OF CONVERGENCE

In this section, we employ a Markov chain model for erasure
channels and establish convergence and rate of convergence of
the algorithm (11). The Markov chain model can be used to
represent temporally dependent link properties, link transmis-
sion scheduling strategies, co-channel interference avoidance
methods, among others.
By embedding erasure channels in our algorithms as a

Markov chain, convergence properties become dependent on
the erasure channels. Consequently, the main results will allow
us to analyze impact of erasure channels on platoon control
performance. We begin with the following assumptions.
(A1) The following conditions hold.

– µn ≥ 0, µn → 0 as n → ∞ and
∑

n µn = ∞.
– {θn} is a discrete-time Markov chain taking values
in A, which is irreducible and aperiodic.

– {ξn} is a sequence of i.i.d. random variables inde-
pendent of {θn} such that E|ξn|2 < ∞, Eξn = 0.

– For each θ ∈ A, M ′(θ) is a generator of a
continuous-time Markov chain. [Denote M ′(θ) =

M̃(θ) = (m̃ij(θ)). Then m̃ij(θ) ≥ 0 for each i 6= j
and

∑
j m̃ij(θ) = 0 for each i.]

– Denote M =
∑l0

k=1 M(k)νk, where ν =
(ν1, . . . , νl0) is the stationary distribution associated
with the Markov chain {θn}. Assume that M ′

=∑l0
k=1 M

′(k)νk is irreducible.
Remark 4.1: We comment on the assumptions briefly.
• The condition on the step size sequence {µn} is not a
restriction since it can be selected by the designer. Com-
monly used sequences include µn = 1/n, or µn = 1/nα

with 0 < α < 1, among others.

• Recall that a Markov chain with generator M ′ is said to
be irreducible if the system of equations





νM
′
= 0

ν1l =

l0∑

i=1

νi = 1

has a unique positive solution. The solution ν =
(ν1, . . . , νl0) ∈ Rl0×l0 is termed a stationary distribution.

• As a special case of the assumed Markov chains, the
process {θn} may be a sequence of i.i.d. random variables
taking values in A with P (θn = k) = pk. We assume
pk > 0 for each k ∈ A.

• If we require an additional condition that for each k ∈
A, 1l′W (k) = 0, then the constraint 1l′xn = L will be
automatically satisfied.

• In lieu of the i.i.d. sequence {ξn}, we can treat correlated
noises. We use i.i.d. sequences here for simplicity.

Following the ideas of the ODE (ordinary differential equa-
tion) method in stochastic approximation [35], define

tn =

n−1∑

j=0

µj , ̟(t) = max{n : tn ≤ t}, (14)

the piecewise constant interpolation x0(t) = xn for t ∈
[tn, tn+1), and the shift sequence xn(t) = x0(t+ tn).
By Gronwall’s inequality and a standard argument, we can

establish the following assertion: Under (A1), for any 0 <
T < ∞,

sup
n≤̟(T )

E|xn|2 ≤ K and sup
0≤t≤T

E|xn(t)|2 ≤ K, (15)

for some K > 0, where ̟(·) is defined in (14). Furthermore,
we can obtain the following result.
Theorem 4.2: Under (A1), the iterates xn generated by

algorithm (19) together with the constraint 1l′xn = L satisfy
Ψxn → β1l or xn → Ψ−1β1l = x∗ w.p.1 as n → ∞.
Outline of proof. We will be very brief since the main
technique is from the book of Kushner and Yin [35]. First, it
can be shown that {xn(·)} is equi-continuous in the extended
sense as defined in [35, p.102]. By the Arzelá-Ascoli theorem
(also in the extended sense), we extract any convergent sub-
sequence with limit denoted by x(·). Let {δn} be a sequence
of real numbers such that δn

n−→ 0, supj≥n
µj

δn
→ 0, and

(
∑̟(n,ℓ+1)−1

j=̟(n,ℓ) µj)/δn → 1 as n → ∞. Then we have for any
t, s > 0,

xn(t+ s)− xn(t) =

̟(tn+t+s)−1∑

j=̟(tn+t)

µj [M(θj)xj +W (θj)ξj ].

For each n, choose an increasing sequence {̟(n, l)} satis-
fying n = ̟(n, 1) < ̟(n, 2) < · · · Denote for simplicity
̟l = ̟(n, l). Then

xn(t+ s)− xn(t)

=

̟(tn+t+s)−1∑

̟l=̟(tn+t)

δn
1

δn

̟l+1−1∑

j=̟l

µj [M(θj)xj +W (θj)ξj ].

(16)
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For the first term on the right-hand side of (16), by the
continuity of the function M(α)x in x, it is easy to see that
the limit of 1

δn

∑̟l+1−1
j=̟l

µjM(θj)xj is the same as that of

1

δn

̟l+1−1∑

j=̟l

µjM(θj)x̟l

=
1

δn

̟l+1−1∑

j=̟l

µj [M(θj)−M ]x̟l
+

1

δn

̟l+1−1∑

j=̟l

µjMx̟l
.

(17)
Since {θn} is a finite state Markov chain that is irreducible
and aperiodic, it is well known (see [36, p. 488]) that {θn}
is ergodic. That is, (1/n)

∑n
j=1 M(θj) converges to its mean

with respect to the stationary distribution {νj : j ≤ m}. Thus
the first term in the last line of (17) converges to 0 w.p.1,
whereas as n → ∞,

̟(tn+t+s)−1∑

̟l=̟(tn+t)

δn
1

δn

̟l+1−1∑

j=̟l

µjMx̟l
→

∫ t+1

t

Mx(u)du.

Likewise, we can show that
∑̟(tn+t+s)−1

j=̟(tn+t) µjW (θj)ξj →
0 w.p.1 as n → ∞. Combining the above arguments to-
gether, we obtain that the limit satisfies the ODE

ẋ = Mx. (18)

The irreducibility of M ′ implies that the stationary point of
(18) is given by x∗ = Ψ−1β1l in view of the constraint. Using
the methods of [37], we can then conclude the proof. �

Using Remark 4.1, the above argument is based on the
assumption that {θn} is a Markov chain. If we are dealing
with an i.i.d. sequence {θn}, then νk above is replaced by pk.
The proof in fact will be simpler.
To improve convergence rate, we use the idea of post-

iterate averaging in [35, Chapter 11], resulting in a two-stage
stochastic approximation algorithm. We first obtain a coarse
approximation by using a sequence of relatively large step
sizes, and then we refine it by taking an iterate average. For
simplicity, we select µn = 1/nγ for some (1/2) < γ < 1.
The algorithm is given as follows:

xn+1 = xn +
1

nγ
M(θn)xn +

1

nγ
W (θn)ξn,

xn+1 = xn − 1

n+ 1
xn +

1

n+ 1
xn+1.

(19)

We further assume 1l′W (k) = 0 for each k ∈ A. Then 1l′xn =
L.
To emphasize the dimension of the vector 1l, we sometimes

write 1lκ for an integer κ in what follows. Since M is assumed
to have rank r− 1, without loss of generality, assume that the
first r− 1 columns are independent. For each k ∈ A, partition
the matrices M(k) and W (k) as

M(k) =

(
M11(k) M12(k)
M21(k) M22(k)

)
, (20)

W (k) =

(
W11(k) W12(k)
W21(k) W22(k)

)

where M11(k) ∈ R(r−1)×(r−1), M12(k) ∈ R(r−1)×1,
M21(k) ∈ R(r−1)×1, M22(k) ∈ R1×1, and similarly for
Wij(k). Accordingly, we partition xn, xn, and W (k) as

xn =

(
x̃n

xn,r

)
, xn =

(
Ξn

xn,r

)
, ξn =

(
ξ̃n
ξn,r

)
, (21)

respectively, with compatible dimensions as those ofM(k) for
each k ∈ A.
It follows from (19) that





x̃n+1 = x̃n +
1

nγ
M̃(θn)x̃n

+
1

nγ
[W11(θn)ξ̃n +W12(θn)ξn,r]

+
1

nγ
M12(θn)(L− 1l′r−1x̃n)

Ξn+1 = Ξn − 1

n+ 1
Ξn +

1

n+ 1
x̃n+1,

(22)

where M̃(k) = M11(k) − M12(k)1l
′
r−1. Note that xn,r =

L− 1l′r−1x̃n and xn,r = L− 1l′r−1Ξn.
Define

M0 =

l0∑

k=1

νkM̃(k), M12 =

l0∑

k=1

νkM12(k),

W 11 =

l0∑

k=1

νkW11(k), and W 12 =

l0∑

k=1

νkW12(k).

We assume that M0 is nonsingular. Denote x∗ = (x̌∗, x∗
r)

′,
where x̌∗ is the first (r − 1)-dimensional vector of x∗ and
x∗
r is the last component. Similar to Theorem 4.2, denote the

interpolated and shifted sequence by x̃n(t). It then can be
shown that any convergent subsequence of x̃n(·) has the limit

d

dt
x̃(t) = M0x̃(t) +M12L.

The stationary point of the above ODE is −(M0)
−1M12L.

x̃n → x̃∗ = −(M0)
−1M12L and Ξn → x̃∗ as n → ∞.

Next, define

B̃n(t) =
1√
n

⌊nt⌋−1∑

j=0

[W 11ξ̃j +W 12ξj,r]. (23)

Define also

Bn(t) =
√
n[x⌊nt⌋+1 − x̃∗] for t ∈ [0, 1], (24)

where ⌊z⌋ denotes the integer part of z. Then it can be
shown that Bn(t) = −M

−1

0 B̃n(t) + o(1), where o(1) → 0
in probability. The details of the argument can be found on
[38], [39], which is omitted here.
Theorem 4.3: Under (A1) and assuming that ξ̃n and ξn,r

are independent, the following assertions hold:
• Bn(·) converges weakly to B(·), a Brownian motion with
covariance M−1

0 Σ0(M
−1

0 )′t, where
Σ0 = W 11E(ξ̃1ξ̃

′
1)W

′

11 +W 12E(ξ1,rξ
′
1,r)W

′

12;
•

√
n(x̃n − x̃∗) converges in distribution to a normal

random variable with mean 0 and asymptotic covariance
M

−1

0 Σ0(M
−1

0 )′.
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We point out that the asymptotic covariance is a main
performance indicator for the convergence rate. As a result,
to study impact of erasure channels on convergence rates,
we primarily use this covariance matrix to evaluate how fast
convergence to platoon formation can be achieved and how
this rate depends on the channel erasure ratio (or equivalently,
the packet delivery ratio). Such studies will be carried out by
case studies in the next section.

V. SIMULATION CASE STUDIES
In this section, the performance of the Weighted and Con-

strained Consensus Control Algorithm (WCCCA) (11) in the
block eraser channel problem is assessed through two different
models. The system under study is defined as in Example
2.1. In addition, we include observation noises, represented by
an i.i.d. sequence {ξn} of Gaussian noises with mean 0 and
variance 1. In all the numerical results, we have run 100 times
the WCCCA that utilizes a sequence of stepsizes µn = 0.1

n0.04 .
Example 5.1: We first consider the i.i.d. erasure channels

specified in Example 3.1. To illustrate the impact of packet
delivery ratio on convergence rate of the WCCCA, four
different values of the packet delivery ratio ρ are compared:
0.4, 0.8, 0.9 and 1. In order to obtain these results, we have
run the WCCCA 100 times. The results are summarized in
Tables I and II. Table I shows the mean square errors (MSE)
of weighted consensus with respect to different packet delivery
ratios and numbers of iteration steps. Apparently, the higher
the packet delivery ratio is, the smaller the consensus error
becomes. Also, the longer the iteration steps are, the smaller
the consensus errors become.
In Table II, we compare the sample variances of Ξn − x̃∗

S̄n = (1/n)

n∑

j=1

(Ξj − x̃∗)
′

(Ξj − x̃∗)

by the WCCCA algorithm to these of x̃n − x̃∗

Sn = (1/n)
n∑

j=1

(x̃j − x̃∗)
′

(x̃j − x̃∗)

by adding the post-iterate averaging algorithm. The results
demonstrate that the post-iterate averaging algorithm performs
better, with smaller S̄n, than the original one for large n.
In addition, S̄n is larger when the packet delivery ratio is
reduced. Furthermore, it appears that the post-iterate averag-
ing procedure demonstrates more accuracy and more robust
convergence rates.

TABLE I
MEAN SQUARE ERRORS BETWEEN THE DESIRED CONSENSUS STATES AND

THE ESTIMATED ONES.

Iteration ρ
MSE of the estimator for

d1 d2 d3 d4
ρ = 1 0.1719 0.0986 0.0779 0.2068

N = 300 ρ = 0.9 0.1910 0.1093 0.0867 0.2281
ρ = 0.8 0.2217 0.1320 0.1021 0.2648
ρ = 0.7 0.2605 0.1458 0.1140 0.3071
ρ = 1 0.1052 0.0638 0.0529 0.1270

N = 500 ρ = 0.9 0.1168 0.0707 0.0583 0.1405
ρ = 0.8 0.1333 0.0781 0.0635 0.1603
ρ = 0.7 0.1615 0.1044 0.0811 0.1962

TABLE II
COMPARISON BETWEEN Sn FROM THE TRADITIONAL ALGORITHM AND

S̄n FROM THE POST-ITERATE AVERAGING ALGORITHM.

Iteration Sn Sn

ρ = 1 ρ = 1 ρ = 0.9 ρ = 0.8 ρ = 0.7
100 4.6131 3.1069 3.5049 4.0216 4.3711
200 4.2182 1.8284 2.1008 2.4456 2.6853
300 4.0053 1.3276 1.5367 1.7791 1.9850
400 3.8980 1.0514 1.2221 1.4116 1.5876
500 3.8521 0.8756 1.0196 1.1758 1.3291
600 3.7931 0.7550 0.8796 1.0114 1.1473
700 3.7562 0.6647 0.7748 0.8879 1.0110
800 3.7210 0.5946 0.6932 0.7929 0.9059
900 3.7083 0.5391 0.6286 0.7182 0.8224
1000 3.6799 0.4940 0.5758 0.6575 0.7545

We now demonstrate the effectiveness of the WCCCA and
the impact of block erasure channels on platoon formation.
Fig. 2 shows inter-vehicle distance trajectories. It is clear that
the WCCCA achieves fast convergence: with only a relatively
small number of iterations, the inter-vehicle distances have
distributed close to the desired weighted consensus. By com-
paring convergence rates under different packet delivery ratios
in the four subplots, we can see that convergence is faster if
the packet delivery ratio is higher. From these results, it is
also clear that the WCCCA is robust against erasure channel
uncertainties, evidenced by convergence under all levels of
packet delivery ratios.
We finally assess asymptotic efficiency of the algorithm

by comparing sample variances with respect to the Cramér-
Rao lower bounds under different packet delivery ratios. Fig.
3 shows that the scaled empirical variances approach the
theoretical Cramér-Rao lower bounds. The convergence speeds
obtained based on the four choices of ρ are further compared
in Table III, which indicates that the packet delivery ratio ρ
impacts convergence rates significantly. Since the WCCCA
achieves asymptotically the Cramér-Rao lower bounds, the
relationship between the packet delivery ratio and convergence
rate in Table III is fundamental, in the sense that to further
improve convergence rate, communication resources must be
assigned to increase the packet delivery ratio.

TABLE III
COVARIANCES OF WEIGHTED CONSENSUS ERRORS OBTAINED FROM

SIMULATION BASED ON 4 DIFFERENT CHOICES OF ρ.

Iteration Covariance
ρ = 1 ρ = 0.9 ρ = 0.8 ρ = 0.7

500 0.0837 0.0853 0.0887 0.0907
1000 0.0856 0.1069 0.1117 0.1126
1500 0.0431 0.0478 0.0505 0.0512
2000 0.0244 0.0269 0.0284 0.0289
2500 0.0154 0.0172 0.0181 0.0184
3000 0.0107 0.0120 0.0128 0.0130

Example 5.2: This example evaluates the performance of
WCCCA in the block erasure channel problem for a larger
platoon. Consider a platoon of eleven vehicles with total length
L = 220. Assume that d10 = 17.5m; d20 = 20.5m; d30 = 19;
d40 = 25m; d50 = 22m; d60 = 30m; d70 = 18.5m; d80 = 27m;
d90 = 16.5m; d100 = 24m and γ1 = 18, γ2 = 20; γ3 = 24;
γ4 = 30; γ5 = 22; γ6 = 28; γ7 = 36; γ8 = 32; γ9 = 40;
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Fig. 2. Platoon control performance under communication erasure channels.

γ10 = 34. Suppose that

G = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4),
(5, 6), (6, 6), (6, 7), (7, 6), (7, 8), (8, 7), (8, 9), (9, 8),

(9, 10), (10, 9)} .

and g12 = g21 = 5, g23 = g32 = 10,g34 = g43 = 13, g45 =
g54 = 15, g56 = g65 = 17, g67 = g76 = 19,g78 = g87 = 21,
g89 = g98 = 25 and g910 = g109 = 30.
The effectiveness of the WCCCA on the platoon control

in the block erasure channels problem is illustrated by all
related quantities plotted in Fig. 4 and Fig. 5. They show
that the algorithm performs for a larger platoon. However, it
takes longer time to converge to consensus than in the case of
Example 5.1.
Example 5.3: In this example, the impact of communica-

tion erasure channels and the effectiveness of the WCCCA on
platoon control performance are further studied by expanding
the erasure channel model in Example 5.1 to a Markov chain
mode. The same system as in Example 5.1 is considered. For
illustration, we randomly generate a transition matrix P of
dimension l0 × l0 of the Markov chain {θn}. Due to the size
of the matrix we report below some parts of it only. The full
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Fig. 3. Evolution of the theoretical asymptotic covariance fn =

Trace
(
M

−1
0 Σ0(M

−1
0 )′

)

n
and the empirical one obtained by simulation

̂̃eTn ̂̃en.

matrix is available upon request.

P =




0.0049 0.0160 0.0283 . . . 0.0015 0.0230 0.0305
0.0079 0.0308 0.0021 . . . 0.0186 0.0225 0.0006
0.0033 0.0203 0.0083 . . . 0.0138 0.0309 0.0097

...
...

...
. . .

...
...

...
0.0294 0.0285 0.0072 . . . 0.0091 0.0169 0.0266
0.0060 0.0132 0.0047 . . . 0.0144 0.0257 0.0221
0.0338 0.0099 0.0209 . . . 0.0090 0.0159 0.0150




In such a case, P (θn = k) = πk, where π = (π1, . . . , π64)
is the stationary distribution of the Markov chain satisfying the
condition πP = π. Fig. 6 presents the inter-vehicle distance
trajectories as well as the sample variance with respect to the
Cramér-Rao lower bounds. As in the previous example, it is
also interesting to see that the WCCCA has the potential to
attenuate the block erasure channel’s impact on the platoon
formation and is robust against erasure channel uncertainties
under the Markov chain model. These simulation results
further demonstrate the impact of communication erasure
channels on vehicle platoon formation and the robustness
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Fig. 4. Platoon control performance under communication erasure channels
for larger platoon.

under the WCCCA.
Example 5.4: In this example, we demonstrate the perfor-

mance of the algorithm when the erasure channel is a Markov
chain. For comparison with Example 5.1, we create a Markov
chain {θn} whose invariant distribution is the same as the case
in Example 5.1.
All related quantities are plotted in Fig. 7 and Fig. 8.

The simulation results show that our algorithm still performs
well in this case. However, due to the dependent structure of
the transition matrix, it takes longer time for convergence to
consensus than the one in Example 5.1.

VI. INTERACTION WITH VEHICLE DYNAMICS

In Sections III-V, we have focused on the impact of commu-
nication block erasures on platoon coordination, under an ideal
assumption that control demands are implemented without any
delay or dynamics. In practical systems, when a demand wants
to change a vehicle’s speed or position, the control action is
an applied torque on the vehicle. The vehicle’s response to
such a control input is subject to the vehicle dynamics. Inter-
connection and interaction between information gathering and
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(b) ρ = 0.9
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(c) ρ = 0.8
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Fig. 5. Evolution of the theoretical asymptotic covariance fn =

Trace
(
M

−1
0 Σ0(M

−1
0 )′

)

n
and the empirical one obtained by simulation

̂̃eTn ̂̃en for larger platoon.
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(a) Platoon control performance
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Fig. 6. Platoon control performance under Markovian communication erasure
channels.
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Fig. 7. Platoon control performance under Markovian communication erasure
channels.

decision making at the higher level (cyber space) and vehicle
control (physical space) were discussed in [30].
In this section, we include vehicle dynamics and evaluate

impact of communication block erasures on platoon coordina-
tion under a more realistic environment. Inclusion of vehicle
dynamics creates a two-layer structure. When the consensus
control generates an action toward a desired platoon formation,
it serves as a command to the local controller for execution.
Due to vehicle dynamics and road/traffic conditions, execu-
tion of such control actions encounters standard performance
limitations such as steady-state errors, overshoot, rising time,
delay, and other relevant performance measures. For detailed
studies on platoon stability under both communication links
and vehicle dynamics, we refer the reader to [30]. This section
concentrates on erasure channels.

A. Vehicle Dynamics and Normalization
The dynamics of the jth vehicle follows the basic law

mj v̇j = Fj − L0
j(v̇j) + ε0j (25)

where mj is the mass of the vehicle, Fj is the vehicle
driving force (when it is positive) or braking force (when
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Fig. 8. Evolution of the theoretical asymptotic covariance fn =

Trace
(
M

−1
0 Σ0(M

−1
0 )′

)

n
and the empirical one obtained by simulation

̂̃eTn ̂̃en under Markovian communication erasure channels.

it is negative), L0
j(v̇j) is the modeled load force (which is

known and can be used in control action), and ε0j is the
uncertainty term which captures modeling errors, unknown
factors on tires, roads, weather conditions, measurement noise,
etc. Normalization of (25) results in

v̇j =
Fj

mj

−
L0
j(v̇j)

mj

+
ε0j
mj

= uj − Lj(v̇j) + εj = wj + εj .

Here, uj = Fj/mj is the control variable, Lj(v̇j) =
L0
j(v̇j)/mj is the normalized drag, εj = ε0j/mj is the

normalized uncertainty, and wj = uj − Lj(v̇j) is a linearized
control input.
Together with pj(t), the position of j th vehicle at time t,

we have 



ṗj = vj ,
v̇j = wj + εj ,
yj = pj , j = 1, . . . , r.

(26)

Define ηj = [pj , vj ]
′. We have

η̇j = Aηj +Bwj +Bεj ; yj = Cηj (27)



11

with A =

[
0 1
0 0

]
, B =

[
0
1

]
, C = [1, 0], noting that the

matrices A, B, and C are same for all j due to normalization
and input linearization.

B. Platoon Dynamics and Vehicle Control

The consensus control strategies based on algorithm (11)
produce the desired distances d(t) = [d1(t), . . . , dr(t)]

′ in
the presence of block communication erasure channels at
the decision time t . For the jth vehicle, dj(tk), the dis-
tance of the jth vehicle to its front vehicle (the (j − 1)th
vehicle), will be the command to the vehicle’s on-board
dynamic controller. The actual vehicle distance will be denoted
by d̃j(t). The local control is then a tracking control that
follows dj(tk) during t ∈ [tk, tk+1). Due to dynamics of
the vehicle control systems, the actual inter-vehicle distance
trajectories d̃(tk) = [d̃1(tk), . . . , d̃r(tk)]

′ are different from
d(t) = [d1(t), . . . , dr(t)]

′. As a result, they create a cyber-
physical interaction which influences substantially the platoon
control performance.
We first build the entire platoon dynamics from the lin-

earized and normalized vehicle dynamics (27)

η̇j = Aηj +Bwj +Bεj ; yj = Cηj , j = 1, . . . , r.

Denote y = [y1, . . . , yr]
′, w = [w1, . . . , wr]

′, η =
[η′1, . . . , η

′
r]

′, ε = [ε1, . . . , εr]
′. Let Ir be the r-dimensional

identity matrix. Define the block diagonal matrices Ã =
Ir ⊗A, B̃ = Ir ⊗B, C̃ = Ir ⊗C, where ⊗ is the Kronecker
product [40]. Then the platoon dynamics is

η̇ = Ãη + B̃w + B̃ε; y = C̃η.

For the jth vehicle, the controller Fj will be designed based
on the A, B, C, and the tracking error ej(t) = dj(t) − d̃j(t)
in the following feedback structure [41]

żj = ej ;wj = −Kηj + k0zj , (28)

which includes both the state feedback term −Kηj for stability
and transient performance, and the integral output feedback
k0zj for eliminating steady-state tracking errors. Since the
linearized and normalized subsystems have the same A, B,
and C matrices, the controller matrices k0 and K will also be
uniform over all subsystems.
By denoting z = [z′1, . . . , z

′
r]

′, e = [e1, . . . , er]
′, K̃ = Ir ⊗

K , the controller for the platoon is

ż = e;w = −K̃η + k0z.

Note that d̃1 = p1−p0, . . ., d̃r = pr−pr−1, where the leading
vehicle’s position p0 is external to the system as the time-
varying reference to the platoon. Then, e1 = d1 − (p1 − p0),
. . ., er = dr−(pr−pr−1). The platoon dynamics is represented
by 




ż = e

η̇ = Ãη + B̃w + B̃ε

w = −K̃η + k0z

e = −SC̃η +B1p0 + d

(29)

where

S =




1 0 · · · 0 0
−1 1 · · · 0 0
...

...
0 0 · · · −1 1


 ;B1 =




1
0
...
0


 .

C. Examples
For illustration, we use the system in Example 5.1 to

demonstrate integration of platoon consensus decision and
vehicle control. Since Example 5.1 does not involve vehicle
dynamics, the convergence rate is expressed in terms of the
number of iteration steps. When the vehicle dynamics is
introduced, the vehicle signal processing sampling time is
introduced. The sampling rate is usually quite high. As a result,
the actual convergence speed of platoon consensus control is
predominantly determined by how fast the vehicles can be
controlled to follow the decisions from the cyber space. In
the following case studies, the sampling rate is 100 Hz, and
consensus control is shown with respect to the clock time.
Example 6.1: Consider the system in Example 5.1 with the

same initial distance distribution among the five vehicles are
d01 = 17.5 m; d02 = 20.5 m; d03 = 19 m; d04 = 25 m; and
the same weighting γ1 = 18, γ2 = 20, γ3 = 24 and γ4 =
30, with the total weight 1l

′

γ = 92. At each decision point,
the consensus control of Example 3.1 issues a new distance
distribution d1k, d2k, d3k, d4k. These desired distances will be
communicated to the vehicles as the commend signals. The
vehicles’ on-board controllers will implement their tracking
control according to

żj = ej = k0(dj − (Cηj − pj−1));wj = −[k1, k2]ηj + k0zj ,
(30)

where pj−1 is an external signal to the jth vehicle. The control
parameters are selected as k0 = 4.096, k1 = 7.68, k2 = 4.8,
which will place the poles of the local closed-loop systems at
−1,−1,−1.
Suppose that the link observation noises are i.i.d. sequences

of Gaussian random variables with mean zero and variance 1.
Fig. 9 shows the inter-vehicle distance trajectories. Starting
from a platoon formation, suppose that a sudden braking of
the leading vehicle results in a sudden distance change in d1
by 4 m. This disturbance causes initially a large deviation
of the platoon formation. The top plot shows how distances
are gradually distributed according to the desired distributions.
The middle plot illustrates that the weighted distances con-
verge to a constant. The weighted consensus error trajectories
are plotted in the bottom plot.
Example 6.2: The impact of vehicle control can be further

studied. Suppose that for the system in Example 6.1, a more
aggressive control action is adopted. The vehicle controller is
designed to place the poles of the local closed-loop systems
at −1.4,−1.4,−1.4. The corresponding control parameters are
k0 = 8, k1 = 12, k2 = 6. Since the larger control gains are
used, more engine torques will be used in vehicle control.
Suppose that the link observation noises are i.i.d. sequences
of Gaussian random variables with mean zero and variance 1.
Fig. 10 shows the inter-vehicle distance trajectories. Starting
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Fig. 9. Platoon control performance with vehicle dynamics in communication
erasure channels and relatively slow local controllers

from a platoon formation, suppose that a sudden braking of
the leading vehicle results in a sudden distance change in d1
by 4m. This disturbance causes initially a large deviation of
the platoon formation.. In comparison to Fig. 9, the platoon
control achieves a faster convergence. In the case of more
aggressive local controllers p = 1.4, the weighted distances
converge faster to the constant β no matter what the value of
packet delivery ratio ρ is.
Finally, we evaluate the impact of the communication era-

sure channels on the platoon control z. In order to analyze
the impact, the commonly used criterion is the weighted
consensus errors. From Fig. 11 and Table IV, we have an
empirical evidence to conclude that the errors converge faster
if the packet delivery ratio ρ is higher. Furthermore, consensus
errors converge to 0 more rapidly when more aggressive local
controllers p = 1.4 are used.
Example 6.3: In this example, we study the impact of

vehicle control in a more realistic scenario: in lieu of the
model in Examples 6.1 and 6.2, we now consider a Markov
chain model. For illustration, the transition matrix P of the
Markov chain {θn} is the same as the one in Example 5.3.
Fig. 12 shows platoon control performances with different
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Fig. 10. Platoon control performance with vehicle dynamics in communica-
tion erasure channels and more aggressive local controllers.
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Fig. 11. Evolution of Weighted consensus error obtained from simulation
based on 4 different choices of ρ and different choices of local controllers p.
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TABLE IV
COMPARISON OF WEIGHTED CONSENSUS ERRORS OBTAINED FROM
SIMULATION BASED ON 4 DIFFERENT CHOICES OF ρ AND DIFFERENT

CHOICES OF LOCAL CONTROLLERS p.

Time p = 1
ρ = 1 ρ = 0.9 ρ = 0.8 ρ = 0.7

20 0.01657 0.02553 0.03930 0.06037
40 0.01782 0.02505 0.03696 0.05592
60 0.01379 0.02108 0.03270 0.05094
80 0.01137 0.01827 0.02922 0.04657
100 0.00971 0.01609 0.02632 0.04265

Time p = 1.4
ρ = 1 ρ = 0.9 ρ = 0.8 ρ = 0.7

20 0.000977 0.001031 0.001017 0.001064
40 0.005547 0.006109 0.006826 0.007445
60 0.002068 0.002145 0.002165 0.002252
80 0.001572 0.001617 0.001618 0.001706
100 0.001314 0.001338 0.001374 0.001535
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Fig. 12. Platoon control performance with vehicle dynamics in Markovian
communication erasure channel based on different choices of local controllers
p.

local controllers p. As expected, all these results clearly
illustrate that the performance of the platoon control in the
case of more aggressive controllers p = 1.4 outperforms the
ones in the low-gain controllers p = 1.
Let us remark that with the specific transition matrix as in

Example 5.3 the platoon control in Fig. 9 achieve a faster
convergence then the one in Fig. 12. However, in comparison
to Fig. 10, the platoon control trajectories converge fast in
both i.i.d case and Markov chain case. These results clearly
show that with the more aggressive controllers p = 1.4
the algorithm provides better performance in both i.i.d and
Markovian channels.

VII. CONCLUSION

In this paper, we have addressed the problem of communi-
cation erasure channels on control performance of connected
and automated vehicles under the weighted and constrained
consensus framework. Markov chain models are used to
represent switching network topologies resulted from channel
erasures. Under some traditional assumptions on the ergodicity
of the Markov chains, by using techniques from stochastic
approximation, desired convergence properties of the proposed

control algorithm are established. We have also investigated
the impact of communication erasure channels on the inter-
actions between consensus decision on the cyber space and
vehicle control in the physical space. Our findings are verified
by various numerical simulations. Not only do the numerical
simulations demonstrate that communication erasure channels
have significant impact on vehicle platoon performance but
also they highlight robustness of vehicle platoon control under
the WCCCA.
One important direction of platoon control is to consider

more comprehensive two-dimensional movements. We have
recently introduced a new framework to deal with similar
problems for pedestrian movements [42]. In this framework,
two-dimensional movements are modeled by a virtual m lane
scenario in which a two-time-scale model is introduced. The
framework models the in-lane movements as a platoon-type
multi-agent dynamic system in continuous time, and lane
changes are Markov chains. Convergence properties have been
established.
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