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Abstract— The platooning of autonomous vehicles can signif-
icantly benefit road traffic. Most previous studies on platoon
control have only focused on specific communication topologies,
especially those with real eigenvalues. This paper extends existing
studies on distributed platoon control to more generic topologies
with complex eigenvalues, including both internal stability analy-
sis and linear controller synthesis. Linear platoon dynamics are
derived using an inverse vehicle model compensation, and graph
theory is employed to model the communication topology, leading
to an integrated high-dimension linear model of the closed-
loop platoon dynamics. Using the similarity transformation,
a sufficient and necessary condition is derived for the internal
stability, which is completely defined in real number field. Then,
we propose a Riccati inequality based algorithm to calculate the
feasible static control gain. Further, disturbance propagation is
formulated as an H∞ performance, and the upper bound of
spacing errors is explicitly derived using Lyapunov analysis.
Numerical simulations with a nonlinear vehicle model validate
the effectiveness of the proposed methods.

Index Terms— Autonomous vehicle, disturbance propagation,
internal stability, platoon.

I. INTRODUCTION

AUTONOMOUS driving is the current trend of intelligent
transportation systems. To meet the social demand on

improving safety and efficiency, emerging technologies such
as lidar, differential global position system, and high accu-
racy digital maps are employed onboard to improve control
accuracy, shorten travel time, and lower energy consump-
tion [1], [2]. Environment sensing is a premise of autonomous
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control, which benefits transportation safety largely if partic-
ipants can cooperate with each other. By utilizing wireless
communication, a host vehicle can receive information from
other participants such as pedestrian and road side equipment,
enabling better awareness of potential dangers, and thus better
decisions can be made [3], [4]. One important application of
the cooperative systems is the vehicle platooning. Employing
a shorter spacing compared to traditional adaptive cruise
control (ACC) systems, platooning of connected vehicles has
the potential to significantly increase traffic capacity [5]–[7]
and reduce fuel consumption [8], [9].
The design of a platoon needs to consider three important

performances, namely, internal stability, string stability, and
scalability [10]. A platoon with linear time-invariant dynamics
is internal stable if and only if all real parts of the eigenvalues
of the closed-loop system are negative [11], [12], while the
string stability requires the attenuation of spacing errors along
the platoon [13]. Scalability represents the scaling trend of
the stability margin of a platoon with the increase of its
size [11]. These three performances are all closely related
to traffic safety and smoothness, and have received intensive
attention recently. Previous works usually focus on one of
them; see [10], [16] for a recent review. Earlier platoon
applications date back to the 1980s, which normally used the
radars as their exclusive sensors to detect neighboring vehicles.
Within this sensing framework, the nodes in a platoon can
only acquire information from its immediate neighbors, i.e.,
the front and back ones. Consequently, the types of underlying
communication topologies are quite limited, with predecessor
following (PF) type [17], [18], and bidirectional PF (BPF)
type [11], [19] as typical examples. The relationship between
these configurationally simple topologies and string stability
has been investigated by Ploeg et al. [14], Liang and Peng [18],
Seiler et al. [20], and Middleton and Braslavsky [21],
which have revealed certain essential limitations for rigid for-
mation. Several approaches were proposed to improve string
stability, such as adding communication links [7] and relaxing
formation rigidity [22].
With the rapid development of wireless communica-

tion technologies [23], new topologies become available
for platoon applications, for instance, leader PF (LPF),
two-PF (TPF), and two-BPF (TBPF) [11]. However, only a few
communication topologies have been fully studied in terms
of their relationship with internal stability, string stability,
and scalability. A well-known example is the platoon system
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developed by the PATH program, where the leader’s state is
broadcasted to all the followers, resulting in a LPF topol-
ogy [7]. Darbha and Rajagopal [24] studied the maximum
spacing error of platoons with undirected topologies, and
showed that it is necessary to have one vehicle linked to a
large number of other vehicles to restrain the growth of spacing
errors. Ploeg et al. [14] compared the string stability between
PF topology and TPF topology under constant time-headway
policy, and pointed out that TPF can yield a better string
stability margin at a larger communication delay. Using the
Routh–Hurwitz stability criterion, Zheng et al. [11] explicitly
established the threshold of the linear feedback gains for
communication topologies with real eigenvalues, and further
compared the scalability of platoons under BPF topology and
bidirectional LPF topology. In [6], two basic methods were
proposed to improve the stability margin in terms of topology
selection and control adjustment from a unified viewpoint.
More recently, a distributed model predictive control algorithm
was introduced for heterogeneous vehicle platoons in [25],
which could guarantee internal stability for any unidirectional
topologies. This diverse body of works has provided certain
insights into the impact of different communication topologies
on platoon performance.
The information exchange among vehicles enabled via

wireless communication has the potential to improve platoon
performances. However, network imperfections, such as time-
delay and packet loss, may impair platoon performances,
which need to be carefully addressed for practical applications.
More recently, Bernardo et al. [41] modeled the platooning
as a consensus problem, where time-varying heterogeneous
delays were explicitly considered. Xiao and Gao [40] derived
a minimum time-headway gaps to guarantee string stability
for both homogenous and heterogeneous platoons, where the
time delays of actuators and sensors were considered. In [38],
a definition for heterogeneous string stability was proposed,
and a necessary and sufficient condition for heterogeneous
string stability was given for the constant spacing strategy.
Note that heterogeneous platoons are often investigated under
simple topologies such as PF and LPF; see [5], [14], [38], [40].
Despite some recent attention on topological

varieties [5]–[7], [10], [24], [25], the types of topologies
involved in previous studies are still rather limited, and most
existing results are only applicable for the case where all the
eigenvalues of the corresponding Laplacian matrix are real.
To the best of our knowledge, the relationship between generic
topologies and platoon internal stability is still unknown,
especially when the Laplacian matrix contains complex
eigenvalues. This paper studies the internal stability of a
platoon under generic topologies with complex eigenvalues,
proposes controller synthesis methods to find feasible control
gains, and analyzes the error propagations. The vehicles in
the platoon are assumed to share a three-order linear model
achieved by an inverse model compensation, as used in [26].
A distributed linear feedback controller is designed
considering the constant spacing policy. The main
contributions of this paper are summarized as follows.
First, a sufficient and necessary condition on the internal
stability is derived for platoons under topologies with complex

Fig. 1. Sketch of vehicle longitudinal dynamics.

eigenvalues. This result covers many previous studies that are
only suitable for limited kind of topologies. In contrast to
previous works [6], [11], [27], the condition provided in this
paper is in real number field, facilitating the design of feedback
gains subsequently. Second, by utilizing the proposed internal
stability condition, a Riccati inequality based algorithm is
proposed to compute the distributed feedback gain, which
is decoupled from the communication topology. This makes
the computation complexity independent of the platoon
size, offering improvements over previous studies whose
computation is scaling with platoon size [28], [29]. Third,
we formulate the problem of disturbance propagation as an
H∞ performance. By combining the Riccati inequality and
Lyapunov analysis, an upper bound on the spacing errors of
the platoon is provided. This result indicates that disturbance
propagation is mainly determined by the topology structure,
while the design of feedback gains only has a limited
influence, which agrees with the results on the stability
margin for platoons in [6] and [11].
The remainder of this paper is organized as follows.

Section II presents the problem statement, including platoon
configuration and modeling. Section III gives an internal sta-
bility theorem. The linear matrix inequality (LMI) based algo-
rithm for controller synthesis is presented in Section IV. The
results on disturbance propagation is presented in Section V.
Simulation results demonstrate the effectiveness of this study
in Section VI, and Section VII concludes the paper.

II. PROBLEM STATEMENT

A. Notations

Real and complex domains are denoted by R and C,
respectively. A ∈ Rn×m denotes a real matrix of size n × m.
Given a square matrix A, we denote He(A) = A + AT .
A ⊗ B represents the Kronecker product between A and B
of appropriate dimensions. Let Z be a complex matrix, then
Z∗ is its conjugate complex matrix. 1N denotes a column
vector of size N with all its entries being 1. en,i ∈ Rn is an
n-dimensional column vector with all the elements being zero
except for the i th entry being 1. Matrix A being Hurwitz means
that every eigenvalue of A has strictly negative real part.

B. Model for Vehicle Dynamics

This study considers a platoon composed by a series of pas-
senger cars. Each car is equipped with an internal combustion
engine, an automatic transmission, and a hydraulic brake sys-
tem. Only longitudinal dynamics are considered in the study,
consisting of some nonlinear components, such as engine,
transmission, aerodynamics, and tire slip. Fig. 1 demon-
strates the sketch of vehicle longitudinal dynamics, where key
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TABLE I

KEY PARAMETERS IN FIG. 1

Fig. 2. Inverse model compensation.

parameters are explained in Table I. The inputs are throttle
angle αthr and brake pressure Pbrk, and the outputs are the
longitudinal acceleration a, velocity v, and position p [30].
To compensate for the salient nonlinearities introduced by

engine static nonlinearity, torque converter coupling, discon-
tinuous gear ratio, and quadratic aerodynamic drag, an inverse
model compensation method is used. With the approach pro-
posed in [11], shown in Fig. 2, the vehicle longitudinal dynam-
ics can be approximated to the first-order inertial function
depicted in (1), where ades is the desired acceleration, a is
the actual vehicle acceleration response, and τa is the inertial
time delay

a(s) = ades(s)

τas + 1
. (1)

Choose vehicle position p, velocity v, and acceleration a
as the state variable, then a state space representation of the
vehicle dynamics is derived in (2) as used in [6] and [11]

ẋ = Ax + Bu (2)

where

x =
⎡
⎣

p
v
a

⎤
⎦ , A =

⎡
⎣
0 1 0
0 0 1
0 0 − 1

τa

⎤
⎦ , B =

⎡
⎣

0
0
1
τa

⎤
⎦.

Remark 1: For conciseness and completeness, the linear
model (4), which is obtained from the realistic model shown
in Fig. 1 by using an inverse model compensation, is used in
the following theoretical analysis. However, we shall employ
a realistic model in simulations to validate the proposed
methods. Note that this strategy has been widely adopted
in [5], [6], [12], [14], and [15], where similar linear vehicle

models are used for theoretical analysis. The major difference
lies in the techniques to simplify realistic vehicle dynamics;
see [10], [16] for comprehensive discussions.

C. Closed-Loop Platoon Dynamics

A platoon is composed of N + 1 vehicles, including one
leader and N followers. The leader is indexed by 0, and the
followers are numbered as 1, 2, . . . , N , consecutively
The communication topology is modeled by a directed

graph G =(V , E), which is widely used in the multiagent
control community[31]–[34]. The topological connectivity of
the platoon is included in G, which is depicted by a set of
nodes V = {1, 2, . . . , N} and a set of edges ε ⊆ V × V . The
connectivity between two nodes are denoted by an adjacency
matrix M = [mij ] ∈ R

N×N , with entries mij > 0, if ( j, i) ∈ ε
(i.e., node i receives information from node j), and mij = 0,
if ( j, i) /∈ ε. In this paper, equal weights are adopted, resulting
in the adjacency matrix definition shown in (3). Note that no
self-loop is permitted in a platoon, i.e., (i, i) /∈ ε

{
mij = 1, i f ( j, i) ∈ ε

mij = 0,i f ( j, i) /∈ ε.
(3)

The Laplacian matrix associated with G is defined as
LG = [li j ] ∈ R

N×N , where
⎧⎪⎨
⎪⎩
li j = −mij , if i �= j

lii =
N∑
k1

mik , if i = j.
(4)

To describe the connectivity between the leader and follow-
ers, a pinning matrix is defined

PG =
⎡
⎢⎣

pG1
. . .

pGN

⎤
⎥⎦ (5)

where pGi = 1, if node i receives information from the leader,
and pGi = 0, otherwise. Note that the combination of Lapla-
cian matrix and pinning matrix determines the characteristics
of the communication topology.
The objective of platoon control is to track the leading

speed, and maintain a desired spacing between two consec-
utive followers. For node i , its desired state is

{
vi = v0

pi = pi−1 − di,i−1
(6)

where di, j is the desired spacing between vehicle i and
vehicle j . Here, di, j is determined by a constant spacing
policy, which has the potential to increase the traffic capacity
and fuel efficiency [11], [15]. The relationship shown in (6)
can be further written in a compact form

xi = xi−1 − Di,i−1 (7)

where

Di,i−1 =
⎡
⎣
di,i−1
0
0

⎤
⎦.
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The feedback controller is linear and distributed in a form as

ui =K
N∑
j=1

(li j (x j−xi−Di, j ))+KpGi(x0 − xi − Di,0) (8)

where

K = ( k1 k2 k3 ) (9)

is the static feedback gain, li j is the entry of Laplacian matrix,
and pGi is the entry of the pinning matrix. The tracking error
of node i with respect to the leader is expressed as

x̃i = x0 − xi − Di,0. (10)

It can be verified that ADi,0 = 0 and Di, j = Di,0 − Dj,0.
Differentiating (10) on both sides and substituting (2) into it,
a linear model of the closed-loop platoon dynamics is obtained

˙̃xi = Ax̃i + BK
N∑
j=1

(li j (x̃ j− x̃i ))+BKpGi(x̃0− x̃i)+Bu0 (11)

where u0 is the control input of the leading vehicle. Define a
collective state including all the followers as

X̃ = [
x̃ T1 · · · x̃ TN

]T
. (12)

Then all the dynamics of the followers can be rewritten as

˙̃X = [IN ⊗ A − H ⊗ (BK )] X̃ + (1N ⊗ B)u0 (13)

where H = (LG + PG).
As is shown in (13), the internal stability is affected not only

by the vehicle dynamics and the feedback gain, but also by
the communication topology. All the vehicles in the platoon
are interconnected through the communication topology. Each
topology corresponds to a unique H matrix. Note that ideal
communication network is assumed in this work, i.e., no com-
munication delay or packet loss is considered.

III. INTERNAL STABILITY WITH GENERIC

COMMUNICATION TOPOLOGIES

A platoon with linear time-invariant dynamics is internally
stable if and only if all the eigenvalues of the closed-loop
system have negative real parts [11]. We derive a sufficient
and necessary condition for a stable platoon with generic
communication topologies in this section.

A. Eigenvalues of H Matrix

The properties of the eigenvalues of H greatly influence
the internal stability of a platoon. Here, we briefly discuss the
eigenvalues of H before presenting the stability analysis.
The eigenvalues of H can be complex with arbitrary mul-

tiplicity even though H is a real matrix. Two kinds of real
matrices are known to only have real eigenvalues: 1) symmet-
ric matrix and 2) triangular matrix [11]. For an arbitrary matrix
which is neither symmetric nor triangular, it is not easy to
decide whether it contains complex eigenvalues. Table II lists
the properties of six H matrices corresponding to different
communication topologies, namely, PF, BPF, TPF, TBPF, two
predecessor single following (TPSF), single predecessor two

TABLE II

PROPERTIES OF TYPICAL TOPOLOGIES

Fig. 3. Typical communication topologies.

following (SPTF), and a mixed topology. Since the first four
types are well-known (see [11] for details), their H matrices
are not listed here for brevity. These topologies are demon-
strated in Fig. 3. The H matrices of the first four topologies
have special structures with real eigenvalues, while the last
three types contain complex eigenvalues. In fact, the HMix is a
combination of HTPSF and HPF, indicating that a small change
on topologies with real eigenvalues would result in topologies
with complex eigenvalues.
Where

HTPSF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 3 −1
−1 −1 3 −1

. . .
. . .

. . .
. . .

−1 −1 3 −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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HSPTF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 −1

−1 3 −1
. . .

−1 3
. . . −1

−1
. . . −1 −1
. . . 2 −1

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

HMix =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 3 −1
−1 −1 3 −1

−1 −1 3 −1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

B. Stability Analysis

Lemma 1 [35]: Let H be an arbitrary square matrix of
size N , λi , i = 1, 2, . . . , q be the real eigenvalues of H includ-
ing multiplicity, and λi = σi + jωi , λ

∗
i = σi − jωi , i = q + 1,

q + 2, . . . , q + r be the conjugate complex eigenvalues of H
including multiplicity. Then there exists a nonsingular matrix
V ∈ R

N×N , such that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V−1HV = J∈RN×N

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1
. . .

Jq
Jq+1

. . .

Jq+r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where Ji , i = 1, 2, . . . , q are the same as the diagonal
subblocks of the Jordan canonical form of H corresponding
to the real eigenvalues, which have the form

Ji =

⎡
⎢⎢⎢⎢⎣

λi 1

λi
. . .

. . . 1
λi

⎤
⎥⎥⎥⎥⎦

, i = 1, 2, . . . ,q. (15)

The remaining diagonal subblocks have the following form:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ji =

⎡
⎢⎢⎢⎢⎢⎣

Si I2

Si
. . .

. . . I2
Si

⎤
⎥⎥⎥⎥⎥⎦

Si =
[

σi ωi

−ωi σi

]
, i = q+1, . . . , q+r (16)

whose sizes are two times of the diagonal subblocks of the
Jordan canonical form of H corresponding to the complex
eigenvalues λi = σi + jωi , i = q + 1, q + 2, . . . , q + r . Let ni

be the size of Ji , i = 1, 2, . . . , q + r , then

q+r∑
i=1

ni = N. (17)

Remark 2: The result in Lemma 1 equivalently converts an
arbitrary square matrix into a canonical form without changing
eigenvalues, which offers convenience for the subsequent
stability analysis.
We are now ready to present the first theorem on internal

stability.
Theorem 1: Let λi , i = 1, 2, · · · , q be the real eigenvalues

of H including multiplicity, and λi = σi + jωi , λ
∗
i = σi −

jωi , i = (q+1), (q+2), . . . , (q+r) be the conjugate complex
eigenvalues including multiplicity. For a homogeneous linear
platoon described by (13), the platoon is internally stable if
and only if the following matrices are Hurwitz:
⎧⎪⎨
⎪⎩

A − λi BK , i = 1, . . . , q

I2 ⊗ A −
[

σi ωi

−ωi σi

]
⊗ (BK ), i = q + 1, . . . , q + r.

(18)

Proof: Internal stability requires the following condition:
(IN ⊗ A − H ⊗ (BK )) is Hurwitz. (19)

According to Lemma 1, there exists a nonsingular transfor-
mation matrix V , such that V−1HV = J , where J is the
canonical form of H . Then, we have the following similarity
transformation:
(V−1 ⊗ I3)(IN ⊗ A − H ⊗ (BK ))(V ⊗ I3)

= IN ⊗ A − J ⊗ (BK ). (20)

Due to the structure of J , the resulting matrix [IN ⊗ A −
J ⊗ (BK )] is a block diagonal matrix. In particular, the main
diagonal blocks corresponding to real eigenvalues λi is are⎡

⎢⎢⎢⎢⎣

�i BK

�i
. . .

. . . BK
�i

⎤
⎥⎥⎥⎥⎦

(21)

where {
�i = A − λi BK

λi∈ R
i = 1, 2, . . . , q. (22)

The main diagonal blocks corresponding to complex eigen-
values are⎡

⎢⎢⎢⎢⎣

	l I2 ⊗ (BK )

	l
. . .

. . . I2 ⊗ (BK )
	l

⎤
⎥⎥⎥⎥⎦

(23)

where⎧⎪⎨
⎪⎩

	l = I2 ⊗ A −
[

σl ωl

−ωl σl

]
⊗ (BK )

λl = σl + jωl , (q + 1) ≤ l ≤ (q + r).

(24)
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It is easy to know that the eigenvalues of the submatri-
ces (21) and (23) are determined by �i and 	l , respectively

eig(IN ⊗ A − H ⊗ (BK ))

= eig(IN ⊗ A − J ⊗ (BK ))

=
( q⋃
i=1

eig(�i )

)
∪
⎛
⎝

r⋃
l=q+1

eig(	l)

⎞
⎠. (25)

Thus, the condition (19) holds if and only if
{

�i is Hurwitz, i = 1, . . . , q

	l is Hurwitz, l = (q + 1), . . . , (q + r)
(26)

which is equivalent to (18), and this completes the proof. �
We note that the result of Theorem 1 is applicable for

general linear time-invariant dynamics, in addition to the
vehicle model (2). Our following results will directly depend
on the vehicle dynamics.
Remark 3: If H has only real eigenvalues, then the condi-

tions in
Theorem 1 will be reduced to: (A− λi BK ) being Hurwitz,

i = 1, 2, . . . , N , which has been reported in [11] for the sta-
bility analysis of platoon control. However, the results in [11]
fail to deal with complex eigenvalues. Here, the results in
Theorem 1 can cover general cases. Besides, the condition (18)
is in real number domain, even if the communication topology
contains complex eigenvalues. This offers conveniences for
further controller synthesis.
Remark 4: If H has zero eigenvalues, then stability requires

A to be Hurwitz, which is actually infeasible for the vehicle
model (2). Thus, a necessary condition to guarantee the
internal stability is det(H ) �= 0. As shown in
Theorem 1, the influence of communication topology on

internal stability is reflected by the eigenvalues of H . A better
topology will ensure a larger stability margin, which can be
exploited for other system performance design (see a recent
result [6] for details).

IV. CONTROLLER SYNTHESIS

This section introduces two algorithms to calculate the static
state feedback gain K based on the Riccati inequality. We first
present a method to calculate a stable feedback gain, and then
further propose a way to design a controller with a guaranteed
convergence speed. The following lemmas are needed before
preceding to the main theorems.
Lemma 2[35]: Given Q = [qi j ]∈RN×N , then all the

eigenvalues of Q are located in the union of the N disks

N⋃
i=1

⎧⎨
⎩z∈ C | |z − qii | ≤

N∑
j=1, j �=i

|qi j |
⎫⎬
⎭. (27)

Lemma 3 [36]: Given A ∈ RN×N , then A is Hurwitz if and
only if there exists a positive definite matrix P > 0, such that

He(AP) < 0. (28)

The following theorem provides a sufficient condition to
solve the distributed control gain.

Theorem 2: For a homogeneous platoon under node
model (2) using control law (8), and given λi , 1 ≤i ≤ q + r ,
as the eigenvalues of H , then we have the following.

1) A necessary condition to ensure internal stability is that
there exists a positive real number μ satisfying

0 <μ ≤ λi + λ∗
i

2
, 1 ≤ i ≤ q + r. (29)

2) If there exists a positive definite matrix Q > 0, such
that

He(QA) − μQBBT Q < 0. (30)

then there exists a control law (8) which guarantees the internal
stability of the platoon system (13), and the feasible static
control gain K can be constructed as

K = 1

2
BT Q. (31)

Proof: As for the first statement, the definition of H makes
it a diagonally dominant matrix, i.e.,

|hii | ≥
N∑

j=1, j �=i

|hi j |, i = 1, . . . , N (32)

where hi j , 1 ≤ i, j ≤ N are the entries of the matrix H . The
definition of H guarantees that hii > 0. For the disks defined
in (27), the following inequality holds:

z ≥ hii −
N∑

j=1, j �=i

|h| ≥ 0. (33)

Therefore, all the disks defined in (27) are located in the closed
right half-plane. Then, for any eigenvalue, λi , 1 ≤ i ≤ q + r,
we have

0 ≤λi + λ∗
i

2
, 1 ≤ i ≤ q + r (34)

where the equality holds only if λi = 0 [since the region pro-
posed by (27) is a circle, zero can be reached only if λi = 0].
If zero is an eigenvalue of H , then from Theorem 1, A must

be Hurwitz, which in fact cannot be satisfied. Therefore, all the
eigenvalues of H have positive real parts, thus inequality (34)
can be strengthened to

0 <
λi + λ∗

i

2
, 1 ≤ i ≤ q + r. (35)

Thus, a necessary condition is that there exists a positive real
number μ satisfying (29).
Next, we shall show that the control gain K (31) stabilizes

the platoon system. To this end, let μ0 be a real positive
number and P0 = Q−1 be a symmetric matrix satisfying (29)
and (30), respectively. Internal stability requires to the condi-
tion (18). Without loss of generality, let H contain both real
eigenvalues and complex eigenvalues.
For real eigenvalues, i.e., λi , i = 1, 2, · · · , q , from

Lemma 3, we know internal stability holds if and only if there
exist matrices Pi>0, i = 1, 2, . . . , q , such that

He[(A− λi BK )Pi ] < 0, 1 ≤ i ≤ q + r. (36)
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Let Pi = P0, i = 1, 2, . . . ,q , and K = (BT P−1
0 )/2. Then

He[(A− λi BK )Pi ]
= He

[(
A − λi B

BT P−1
0

2

)
P0

]

= He(AP0) − λi BBT . (37)

Since inequality (29) holds, combining (30) yields

He[(A − λi BK )Pi ] = He(AP0) − λi BBT

≤ He(AP0) − μ0BBT

< 0. (38)

Thus, the condition (36) is satisfied.
For complex eigenvalues λi = σi + ωi , i = (q + 1),

(q + 2), · · · , (q + r), internal stability holds if and only if
there exist matrices P̃i>0, (q + 1) ≤ i ≤ (q + r), such that

He

{[
I2 ⊗ A −

[
σi ωi

−ωi σi

]
⊗ (BK )

]
P̃i

}
< 0. (39)

Set P̃i = I2 ⊗ P0, and K = (BT P−1
0 )/2. Then

He

{[
I2 ⊗ A −

[
σi ωi

−ωi σi

]
⊗ (BK )

]
P̃i

}

= He

{[
I2⊗A−

[
σi ωi

−ωi σi

]
⊗

(
B
BT P−1

0

2

)]
(I2 ⊗ P0)

}

= He [I2 ⊗ (AP0)] − He

{[
σi ωi

−ωi σi

]
⊗

(
BBT

2

)}

= He [I2 ⊗ (AP0)] − I2 ⊗ (σi BBT )

− He

{[
0 ωi

−ωi 0

]
⊗
(
BBT

2

)}
. (40)

Here, since BBT is symmetric, thus

He

{[
0 ωi

−ωi 0

]
⊗
(
BBT

2

)}
= 0. (41)

Substituting (41) into (40), we have

He

{[
I2 ⊗ A −

[
σi ωi

−ωi σi

]
⊗ (BK )

]
P̃i

}

= He[I2 ⊗ (AP0)] − I2 ⊗ (σi BBT )

= I2 ⊗ [He(AP0) − σi BBT ]
≤ I2 ⊗ [He(AP0) − μ0BBT ]
< 0. (42)

The last two inequalities hold due to the satisfaction
of (29) and (30). Therefore, the condition (39) holds.
From Theorem 1, (36) and (39) guarantees the internal

stability defined by Theorem 2, and (31) is one of the feasible
controllers. This completes the proof. �
Riccati matrix inequality (30) is the key to Theorem 2.

As long as this LMI can be solved, a feasible control gain can
be formulated through (31). The influence of communication
topology is decoupled by the parameter μ, which should be
no larger than any real part of the eigenvalues. Therefore,
the computation complexity is independent of the platoon size.
This fact offers us benefits compared to previous studies whose
computation burden is scaling with platoon size; see [28], [29].

Remark 5: When there exists an eigenvalue close to the
imaginary axis, the resulting feedback gain will become
numerically large. This is inevitable for such communication
topologies, which can be viewed as certain essential limi-
tations [6]. Since the feedback gain influences the system
dynamics through topology eigenvalues in (18), a smaller real
part amount to a weaker influence, leading to the requirement
that the feedback gain must be large enough to stabilize the
system. This fact agrees with the results in [6] and [11].
We note that since (A, B) is controllable, the control gain
in Theorem 2 can always be solved. In other words, for a
homogeneous platoon with node model (2) and control law (8),
the existence of a stabilizing control gain K is equivalent to
det(H ) �= 0.
Theorem 2 provides an approach to find the stabilizing

control gain. One drawback is that there is no guarantee for
the convergence speed of spacing errors. A long convergence
time may be intolerable in real applications. To address this
issue, the following theorem is proposed.
Theorem 3: For a homogeneous platoon with node model (2)

and control law (8). Let μ be the positive scalar defined in
Theorem 2, if there exists a positive scalar δ and a symmetric
matrix P > 0, such that

He(AP) − μBBT + 2δP < 0 (43)

then the spacing errors converge to zero exponentially faster
than exp(−δt) with the control gain defined by (31).
Proof: With the control gain defined by (31), similar to

the proof of Theorem 2, the following two conditions can be
verified:

He((A − λi BK + δ I3)P)

= He(AP) − λi BBT + 2δP

≤ He(AP) − μBBT + 2δP

< 0 (44)

and

He((I2 ⊗ A −
[

σi ωi

−ωi σi

]
⊗ (BK ) + δ I6)(I2 ⊗ P))

= He [I2 ⊗ (AP0)] + 2δ I2 ⊗ P − I2 ⊗ (σi BBT )

− He

{[
0 ωi

−ωi 0

]
⊗
(
BBT

2

)}

= I2 ⊗
[
He(AP0) − σi BBT + 2δP

]

≤ I2 ⊗
[
He(AP0) − μBBT + 2δP

]

< 0. (45)

With (25) and Lemma 3, it is obvious that

(IN ⊗ A − H ⊗ (BK ) + δ I3N ) is Hurwitz. (46)

Define a symmetric matrix P̄ = (IN ⊗ P) ∈ S3N×3N > 0.
Then we have

He(P̄(IN ⊗ A − H ⊗ (BK ) + δ I3N )) < 0. (47)

Choose a Lyapunov function as VE = X̃ T P̄ X̃ > 0, then

V̇E = X̃ T (He(P̄(IN ⊗ A − H ⊗ (BK ))))X̃

< −2δ X̃ T P̄ X̃

= −2δVE . (48)
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According to the well-known Comparison lemma [36], it is
obtained from (48) that VE (t) < e−2δt VE (00). Then

λmin(P)‖X̃ (t)‖22 ≤ VE (t) < e−2δt VE (0)

≤ λmax(P)‖X̃ (0)‖22. (49)

Therefore, it yields
∥∥∥X̃ (t)

∥∥∥
2

< e−δt
∥∥∥X̃ (0)

∥∥∥
2

√
λmax(P)/λmin(P). (50)

Since the state variable X̃ is composed by tracking errors,
the condition (50) indicates that spacing errors converge to
zero exponentially with a speed no slower than exp(−δt). �
Theorem 3 guarantees a better convergence speed at the

price of worse solvability. A demand of large convergence
speed may result in the infeasibility of the proposed LMI
condition.

V. DISTURBANCE PROPAGATION

In addition to internal stability, robustness with respect
to external disturbances is another important performance
measure for platoons, which is also known as disturbance
propagation. A commonly studied disturbance propagation is
the uniform string stability (see [5], [7], [14], [18], [22]),
which requires a uniform attenuation of spacing errors along
the platoon. However, when various communication topolo-
gies are involved, uniform string stability is difficult to
analyze theoretically. Similar to the approach proposed by
Shaw and Hedrick [38], we do not expect the disturbance on
the leader to attenuate uniformly along the string. Instead, we
require bounded spacing errors of the followers when there
exist bounded disturbances on the leader.
Since the state variable of the closed-loop platoon dynamics

consist of spacing errors, the performance of disturbance
propagation can be represented by the following bound:

∥∥∥X̃/ω0

∥∥∥∞ < γρ (51)

where ω0 is the disturbance on the input of the leader.
To take the disturbance into account, we rewrite the closed-
loop dynamics as

˙̃X = [IN ⊗ A − H ⊗ (BK )] X̃ + (IN ⊗ B)ω (52)

where ω = 1N ⊗ ω0.
The following theorem provides a controller synthesis

method considering both internal stability and disturbance
propagation performance.
Theorem 4: For a homogeneous platoon with node model (2)

and control law (8). Let μ be defined in Theorem 2, and PH

be a positive definite solution of (53), if there exist two scalars
rA > 0 and ρ > 0 such that LMI (54) has a positive definite
solution P , then the distributed control gain (55) stabilizes
the platoon with a disturbance propagation bound expressed
by (56)

PH H + HT PH − 2μPH > 0 (53)[
He(AP) + (1−rA)BBT P

P −1/ρ

]
< 0 (54)

K = 1

μ
rAB

T P−1 (55)

‖X̃/ω‖∞ < γρ =
√

λmax(PH )

ρλmin(PH )
. (56)

Proof: Theorem 4 holds if and only if the following two
statements hold [39].

1) Internal stability is guaranteed when ω ≡ 0.
2) For zero initial conditions, the following inequality is

satisfied:
∫ +∞

t=0

∥∥∥X̃(t)
∥∥∥2
2
dt < γ 2

ρ

∫ +∞

t=0
‖ω(t)‖22 dt . (57)

To prove these two statements, the following Lyapunov
function is chosen:

V = X̃ T (PH ⊗ PA)X̃ > 0 (58)

where PA = P−1 is defined for conciseness in the following
proof.
For the first statement, since ω ≡ 0, then it follows that:
V̇ = X̃ T He[PH ⊗ (PA A) − (PH H ) ⊗ (PABK )]X̃

= X̃ T {PH ⊗ [He(PAA) − rAPABBT PA]}X̃
−X̃ T

[
1

μ
(He(PHH )−2μPH ) ⊗ (rAPABBT PA)

]
X̃

< X̃ T {PH ⊗ [He(PAA) − rAPABBT PA]}X̃ . (59)

Based on Schur lemma, LMI (54) can be transformed into

He(PAA) + (1−rA)PABBT PA + ρ I< 0 (60)

which guarantees V̇ < 0. Thus, the internal stability is
ensured.
For the second statement, it is equivalent to proving

∫ +∞

t=0

[
X̃ T X̃ − γ 2

ρ ωT ω
]
dt

<
1

ρλmin(PH )

[
V ( t)|+∞

0 −
∫ +∞

t=0
V̇ (t)dt

]
(61)

which is guaranteed by

ρλmin(PH )
(
X̃ T X̃ − γ 2

ρ ωTω
)+ V̇ < 0. (62)

Differentiating the Lyapunov function along the system
dynamics yields

V̇ = He[X̃ T (PH ⊗ PA)(I ⊗ B)ω]
+ X̃ T He [PH ⊗ (PA A)] X̃

− X̃ T He

[
(PH H ) ⊗

(
rA
μ

PABBT PA

)]
X̃ . (63)

For the first term in (63), the following inequality holds:
He

[
X̃ T (PH ⊗ PA)(I ⊗ B)ω

]

≤ X̃ T [PH ⊗ (PABBT PA)]X̃ + λmax(PH )ωTω. (64)

To prove (64), we rewrite it into the following form:
[
X̃
ω

]T [
PH ⊗ (PABBT PA) −PH ⊗ (PAB)

−PH ⊗ (BT PA) λmax (PH )

] [
X̃
ω

]
≥ 0.

(65)
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With Schur lemma, (65) holds if and only if(
PH − 1

λmax(PH )
PH PH

)
⊗ (PABBT PA) ≥ 0 (66)

which is congruent with inequality as the following equation:(
P−1
H − 1

λmax(PH )
IN

)
⊗ (PABBT PA) ≥ 0. (67)

Since λ (P−1
H ) = 1/λ(PH ), inequality (67) obviously holds,

so does (64). Substitute (56), (63), and (64) into (62), we have

ρλmin(PH )[X̃ T X̃ − γ 2
ρ ωTω] + V̇

≤ ρ X̃ T (PH ⊗ I )X̃ − λmax(PH )ωT ω + V̇

≤ X̃ T [PH ⊗ (He(PAA) + ρ I + (1−rA)PABBT PA]X̃
−rA

μ
X̃ T [(He(PHH ) − μPH ) ⊗ (PABBT PA)]X̃

≤ X̃ T [PH ⊗ (He(PAA) + ρ I + (1−rA)PABBT PA]X̃
< 0. (68)

Therefore, the second statement holds. This completes the
proof. �
Theorem 4 provides a method to analyze the disturbance

propagation for generic communication topology. Note that
inequality (53) is not a constraint on the control gain. As long
as det (H )�= 0, this inequality can be solved to find a positive
definite matrix PH . Inequality (54) is consistent with (43) in
Theorem 3, which can be transformed into each other with
proper tuning. The control gain given by (55) is also consistent
with the one proposed previously. If rA = μ/2 is chosen,
the control gain provided by (55) will be just the same to (31).
In addition, Theorem 4 gives a bound of the overall tracking

errors when bounded input disturbance is applied to the leader
in a platoon. The bound γρ is determined by two terms,
i.e., the eigenvalues of PH , and the positive scalar ρ. The
eigenvalues of PH represent the influence from the intrinsic
property of the communication topology on the platoon per-
formance. A better topology can yield a smaller ratio between
λmax(PH ) and λmin(PH ), which will lead to a lower bound γρ .
A larger choice of ρ can also yield a lower bound, but this
would restrict the feasibility of LMI (54), which often results
in a numerically large control gain K .
Remark 6: For symmetric topologies, i.e., H = HT , the

bound can be further improved to (69), where the eigenvalues
of H are directly involved, which is much more convenient
for numerical calculations

γρ =
√

λmax(H )

ρλmin(H )
. (69)

Remark 7: The bound provided by Theorem 4 does not
have a connection with platoon size explicitly, but this does
not mean γρ will not scale with platoon size. For a badly
designed topology H , the ratio λmax(PH )/λmin(PH ) may
increase together with platoon size, such as topology PF,
BPF. Yet for some topologies, this ratio can be bounded
by a constant upper limit, such as leader BPF(LBPF) type.
The bound γρ is mainly determined by the structure of H ,
the control gain design can influence γρ through ρ only to a
limited extent.

When investigating disturbance propagation, relative spac-
ing error is often employed by literature, i.e.,

x̄i = xi−1 − xi − Di,i−1 . (70)

Unlike the previously defined x̃i , relative spacing error
is more concerned about local situation. Similarly, define a
collective variable X̄ = [ x̄ T1 · · · x̄ TN ]T , then we have

X̄ = (U ⊗ I3)X̃ (71)

where

U =

⎡
⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦∈RN .

Then the platoon with a disturbance on the leader can be
rewritten into

˙̄X = [IN ⊗ A − H̄ ⊗ (BK )]X̄ + (eN,1 ⊗ B)ω0 (72)

where H̄ = UHU−1.
Note that formula (72) and (52) are equivalent, they can

be rewritten onto each other with coordinate transformation.
With (72), we propose the following proposition.
Proposition 1: For a homogeneous platoon with node

model (2) and control law (8). Let μ be defined by (73), and
PH̄ be a positive definite solution of (74), if there exist two
scalars rA > 0 and ρ > 0 such that LMI (75) has a positive
definite solution to P , then the distributed control gain (76)
stabilizes the platoon with a disturbance propagation bound
expressed by (77)

0 < μ ≤ λi (H̄) + λ∗
i (H̄)

2
, 1 ≤ i ≤ q + r (73)

PH̄ H̄ + H̄ T PH̄−2μPH̄ > 0 (74)[
He(AP) + (1−rA)BBT P

P −1/ρ

]
< 0 (75)

K = 1

μ
rAB

T P−1 (76)

‖CC X̄/ω0‖∞ < γ̄ρ =
√

λmax(PH̄ )

ρλmin(PH̄ )
(77)

where CC = IN ⊗ C , and C = [ 1 0 0 ].
The proof of Proposition 1 is similar to that of Theorem 4,

which is omitted here for brevity. Note that observe matrix C
is added in (77) in order to focus on relative spacing error,
i.e., leave out the influence from speed and acceleration.
The remarks on Theorem 4 still hold analogously here.

VI. SIMULATION AND DISCUSSION

In this section, numerical examples are provided to validate
the effectiveness of the previous theoretical results.

A. Simulation Layout

Consider a platoon with 1 leader and 10 followers, in which
each vehicle is represented by a highly nonlinear model. With
the inverse model compensation and distributed control law,
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Fig. 4. Layout of a platoon in simulations.

TABLE III

NOMINAL VALUE OF KEY PARAMETERS

the platoon layout can be represented by Fig. 4. The numerical
values of the key parameters are listed in Table III.
To yield a proper value of the inertial time delay τa , a model

identification is applied by using the MATLAB toolbox ident,
as shown in Fig. 5 [37]. Here, we considered diverse driving
conditions, i.e., different operation speed and different wind
speed. Seven operation speed points are considered ranging
from 20 km/h to 80 km/h, and five wind speed points are
taken into account ranging from −54 km/h to 54 km/h.
Therefore, totally 7× 5 = 35 identifications were carried out,
resulting in the following range of τa :

0.40 s ≤ τa ≤ 0.67 s. (78)

Then, the mean value of (78) is taken for the following
simulations, i.e., τa = 0.54 s, which is close to the values
adopted by [11].

B. Distributed Control Gain

Three communication topologies are considered in the fol-
lowing simulations: TPSF, LPF, and the mixed topology shown
in Table II. For brevity, only the procedure of control gain
calculation corresponding to TPSF is shown in detail below.

Fig. 5. Procedure of model identification.

The Laplacian matrix and pinning matrix corresponding to
TPSF are

LG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1
−1 −1 3 −1

−1 −1 3
. . .

. . .
. . .

. . . −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈R10×10 (79)

PG = diag
[
1 1 0 · · · 0 0

]∈R10×10. (80)

The eigenvalues of H = LG + PG are

λ1 = 0.48 λ6 = 3.71

λ2 = 0.77 λ7 = 4.34+ j0.83

λ3 = 1.29 λ8 = 4.34− j0.83

λ4 = 2.02 λ9 = 4.09+ j0.42

λ5 = 2.87 λ10 = 4.09− j0.42. (81)

Thus μ is set as

μ = 0.47. (82)

Then the Riccati inequality (30) is solved by using the LMI
toolbox in MATLAB. The solution of P0 is

P0 =
⎡
⎣

9.55 −1.22 −0.17
−1.22 1.00 −0.71
−0.17 −0.71 1.06

⎤
⎦. (83)
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Fig. 6. Simulation results on spacing errors. (a) TPSF—Lower convergence speed. (b) TPSF—Higher convergence speed. (c) LPF—Lower convergence
speed. (d) LPF—Higher convergence speed. (e) Mixed—Lower convergence speed. (f) Mixed—Higher convergence speed.

The static feedback gain is calculated through (31)

KTPSF = BT P−1
0

2
= [ 0.28 1.90 2.19 ]. (84)

Similarly, we can calculate the feedback gain corresponding
to LPF and the mixed topology, i.e.,

KLPF = [
0.19 1.04 1.11

]

KMixed = [
0.23 1.51 1.60

]
. (85)

C. Simulation Results

In the simulations, the leader is assumed to follow a desired
trajectory as shown

v0 =

⎧⎪⎨
⎪⎩

15 m/st ≤ 5s

15 + 1 tm/s 5s < t ≤ 10 s

200 m/s 10s < t .

(86)

The initial states of all the followers are set as xi (0) =
[ 0 15 0 ], 1 ≤ i ≤ 10. The Simulink toolbox in MATLAB
is used to run the nonlinear simulations.
The relative spacing errors of the followers are shown

in Fig. 6 on the left side. On the right side of Fig. 6,
a comparative result is presented to show the effectiveness
of Theorem 3. It is obvious that the algorithm proposed by
this paper is valid to provide a feasible control gain that
ensures internal stability under various communication topolo-
gies. Theorem 3 provides a better convergence speed. The
engine speed and throttle angle of the vehicles corresponding
to Fig. 6(a) are presented in Fig. 7. Note that the spikes
existing in Fig. 7(b) are caused by gear shift. Fig. 8 shows
the disturbance propagation performance of topology TPSF,
LPF, Mixed, and PF. Input disturbance is designed as
ω0 = 0.75sin(π t/10). As shown in Fig. 8, relative spacing
errors of the TPSF and LPF are bounded, which is actually
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Fig. 7. Simulation results on vehicle status. (a) Engine speed. (b) Throttle angle.

Fig. 8. Results of disturbance propagation. (a) TPSF. (b) LPF. (c) Mix. (d) PF.

their intrinsic property. The performance of the mixed topol-
ogy is determined by its subcomponents, i.e., TPSF and PF.
The TPSF subpart will attenuate relative spacing error, while
the PF subpart will amplify relative spacing error under certain
input frequencies. To better support the statement, Fig. 8(d) is
given. It is obvious that disturbance amplifies along the platoon
with PF topology.
Note that disturbance propagation is mainly determined by

the topology, while control gain only has limited influence.
The statement is supported by Fig. 9, in which we investi-
gated the relationship among disturbance propagation upper
bound, topology, control gain and platoon size. By writing
disturbance propagation upper bound, we mean γ̄ρ defined
in (77). In Fig. 9(a), a platoon with topology BPF and the
two control gains in Table IV is studied. Note that K1 and K2
share the same γ̄ρ , because the same ρ is used in their
calculation (by using Proposition 1). The red line in Fig. 9(a)

TABLE IV

STABILIZING CONTROL GAIN

specifies the bound provided by Proposition 1, i.e., γ̄ρ . Since
the maximum platoon size involved here is 20, which is not
very large, the norm of the platoon transfer function can be
numerically calculated by MATLAB, i.e., ‖CC X̄/ω0‖∞. And
the numerically calculated norm can be viewed as the true
performance of the platoon. In Fig. 9(a), the magenta and
blue lines represent the true performance corresponding to
K1 and K2, respectively. Same goes for Fig. 9(b).
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Fig. 9. Disturbance propagation upper bound. (a) BPF. (b) LBPF.

Fig. 10. Control inputs (i.e., desired acceleration). (a) TPSF. (b) LPF. (c) Mix. (d) PF.

From Fig. 9, we can see that different topologies have
different performances on disturbance propagation. The γ̄ρ

of LBPF does not amplify along with platoon size, while
the γ̄ρ of BPF goes up. Different control gains can change the
propagation performance, i.e., ‖CC X̄/ω0‖∞. But this change
does not alter the trend of the norm along with the platoon
size. For BPF with K1, the norm goes up along with the
platoon size, with the other control gain K2, the norm still
goes up. It can also be seen from Fig. 9 that the γ̄ρ proposed by
Proposition 1 has the same trend to the numerically calculated
norm ‖CC X̄/ω0‖∞. The γ̄ρ proposed by Proposition 1 is valid
for not only one control gain, but also a set of control gains.
For some of them, γ̄ρ is very close to le f t‖CC X̄/ω0‖∞.

Yet for other control gains, γ̄ρ may be a bit farther from
‖CC X̄/ω0‖∞.
To see if the control inputs (desired accelerations) pro-

vided by controller K are compatible with driving comfort,
we plotted the control inputs (see Fig. 10) corresponding to
the simulation shown in Fig. 6 (left column). It can be seen
from Fig. 10 as follows.
1) Different topologies can lead to different control inputs,

which means that distributed controller is topologically
related.

2) The control inputs are compatible with driving com-
fort since the desired values are in the range
of [−2.5, 1.5]m/s2, which is often used in the design
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of ACC systems. Increasing the control gain K or the
magnitude of the leader behavior will both increase the
control inputs (i.e., desired acceleration).

VII. CONCLUSION

This paper studied the internal stability and controller
synthesis for vehicular platoons with generic communication
topologies. For theoretical analysis, a linear vehicle model was
derived by using the inverse model compensation. Directed
graph was employed to model the communication topologies,
resulting in a linear time invariant closed-loop platoon model
when employing the constant spacing policy.
The main conclusions are summarized as follows.

Theorem 1 provides a sufficient and necessary condition
for platoons to achieve internal stability. Theorems 2 and 3
present two Riccati inequality based algorithms to compute
the feedback gains. The overall upper bound of the spacing
errors due to disturbance on the input of the leader is explicitly
provided, showing that the structure of the topology mainly
determines the disturbance propagation performance.
One future work is to address internal stability with generic

communication topology subjected to communication failure
and delay. Also, since vehicles in real traffic are heteroge-
neous, stability of heterogeneous platoon is another important
problem that is worth further investigation.
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