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We evolve a binary black hole system bearing a mass ratio of ¢ = m,/m, = 2/3 and individual spins of
Si/m? = 0.95 and S5/m3 = —0.95 in a configuration where the large black hole has its spin antialigned
with the orbital angular momentum, L%, and the small black hole has its spin aligned with L?. This
configuration was chosen to measure the maximum recoil of the remnant black hole for nonprecessing
binaries. We find that the remnant black hole recoils at just above 500 km/s, the largest recorded
value from numerical simulations for aligned spin configurations. The remnant mass, spin, and
gravitational waveform peak luminosity and frequency also provide a valuable point in parameter space

for source modeling.
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I. INTRODUCTION

Since the breakthroughs in numerical relativity of 2005
[1-3] it is possible to accurately simulate moderate-mass-
ratio and moderate-spin black-hole binaries. State of the art
numerical relativity codes now routinely evolve binaries
with mass ratios as small as ¢ < 1/16 [4-9], and are pushing
toward much smaller mass ratios. Indeed, there have been
some initial explorations of ¢ = 1/100 binaries [6,7].

However, when it comes to highly-spinning binaries,
prior to the work of [10] of the SXS Collaboration [11], it
was not even possible to construct initial data for binaries
with spins larger than ~0.93 [12]. This limitation was due
to the use of conformally flat initial data. Conformal
flatness is a convenient assumption because the Einstein
constraint system takes on a particularly simple form.
Indeed, using the puncture approach, the momentum
constraints can be solved exactly using the Bowen-York
ansatz [13]. There were several attempts to increase the
spins of the black holes while still preserving conformal
flatness [14,15], but these introduced negligible improve-
ments. Lovelace et al. [10] were able to overcome these
limitations by choosing the initial data to be a superposition
of conformally Kerr black holes in the Kerr-Schild gauge.
Using these new data, they were able to evolve binaries
with spins as large as 0.97 [16] and, later, spins as high as
0.994 [17]. Production simulations remain still very
lengthy.

Recently, we introduced a version of highly-spinning
initial data, also based on the superposition of two Kerr
black holes [18,19], but this time in a puncture gauge. The
main differences between the two approaches is how easily
the latter can be incorporated into moving-punctures codes.

2470-0010/2018,/97(10)/104026(9)

104026-1

In Refs. [18,20], we were able to evolve an equal-mass
binary with aligned spins, and spin magnitudes of y = 0.95
and y = 0.99 respectively, using this new data and compare
with the results of the Lovelace er al., finding excellent
agreement.

Studies of aligned spin binaries have provided insight on
the basic spin-orbit dynamics of black hole mergers and
also allow for a first approximation for source parameter
estimations of gravitational wave signals [21] because this
reduced parameter space [22] contains two of the most
important parameters for the modeling waveforms: the
mass ratio (in addition to the total mass) and the spin
components along the orbital angular momentum [23].

In [24] we found, after extrapolation of a fitting formula,
that the maximum recoil for binaries with aligned/
anti-aligned spins occurs when the mass ratio between
the smaller and larger black hole is near ¢ = 2/3. Since that
study used Bowen-York initial data, we were not able to
produce actual simulations of near-maximal spinning holes
to verify this prediction. In this paper, we revisit this
configuration with our new HISPID initial data, which is
able to generate binaries with spins much closer to unity.
Here we evolve a binary with spins y; = 0.95 and measure
a recoil of ~502 km/s, the largest recoil ever obtained for
such nonprecessing binary black hole mergers.

In this paper, we show the results of a convergence series
of simulations of unequal-mass binary with aligned spins of
x = 0.95. There is no similar simulation to our knowledge in
the literature, thus filling a gap in the gravitational wave-
forms template banks that are currently used in the detection
and parameter estimation of gravitational wave signals as
observed by LIGO and other detectors [21,25]. This impor-
tant region of parameter space of highly spinning binaries is
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currently poorly covered by current catalogs [9,22,26] and
benefits from new, accurate simulations.

We use the following standard conventions throughout
this paper. In all cases, we use geometric units where G = 1
and ¢ = 1. Latin letters (i, j, ...) represent spatial indices.
Spatial 3-metrics are denoted by y;; and extrinsic curvatures
by K;;. The trace-free part of the extrinsic curvature is
denoted by A;;. A tilde indicates a conformally related
quantity. Thus y;; = y*7; and A;; = y~?A;;, where y is
some conformal factor. We denote the covariant derivative
associated with y;; by D; and the covariant derivative
associated with y;; by D;. A lapse function is denoted by a,
while a shift vector by f'.

This paper is organized as follows. In Sec. II A, we
provide a brief overview of how the initial data are
constructed and prove its convergent properties. In
Sec. IIB we describe the numerical techniques used to
evolve these data. In Sec. III, we present detailed wave-
form, trajectories, masses and spin results of the binary
evolution. In Sec. IIT A, we analyze the various diagnostics
to determine the accuracy of the simulation and show the
numerical convergence of the evolution system. We also
provide values for the final remnant mass, spin and recoil
velocity as well as the peak luminosity and corresponding
peak frequency and amplitude as derived from the gravi-
tational waveform. Finally, in Sec. IV, we discuss our
results and how they apply to parameter estimation and
follow up simulations to gravitational wave observations.

II. NUMERICAL TECHNIQUES

A. Initial data

We construct initial data for a black-hole binary with
individual spins y; , = 0.95 using the HiSPID code [18,19],
with the modifications introduced in [20]. The HiSpID code
solves the four Einstein constraint equations using the
conformal transverse traceless decomposition [27-30].

In this approach, the spatial metric y;; and extrinsic
curvature K;; are given by

vii = w7, (1)

~ 1
Kij =y ?A; + gKYij’ (2)

Ay = M+ (Lb);, (3)
where the conformal metric 7;;, the trace of the extrinsic
curvature K, and the tracefree tensor M; ; are free data. The
Einstein constraints then become a set of four coupled
elliptical equations for the scalar field u =y —yy
and components of the spatial vector b (y, is a
singular function specified analytically). The resulting
elliptical equations are solved using an extension to the
TwoOPUNCTURES [31] thorn.

The free data are chosen by superimposing two boosted
Kerr black holes, as described in more detail in [18]. The
superposition has the form

Vij = 77,('/'+) + 75,'_)’ (4)
K =K% + K6, (5)
~ ~(=):TF
My = A7 + AT (6)
Wo=Wwu) twe — L (7)

where (+) and (—) refer to the two black holes, 77,(.? and A; i
are the conformal metric and trace-free extrinsic curvatures
for a boosted and rotated Kerr black hole, K*) is the mean

curvature, and the conformal factor y/ ) is chosen such that

W) = v/ det(ygji)) (where iji) is the physical metric from
a boosted and rotated Kerr black hole).

To get )75?
isotropic (QI) coordinates and perform a fisheye (FE)
radial coordinate transformation followed by a Lorentz
boost (see [20] for more details). The FE transformation is
needed because it expands the horizon size, which greatly
speeds up the convergence of the elliptic solver and has
the form

, etc., we start with Kerr black holes in quasi-

rQr = rFE[l — Apg exp(_rlz?E/sFEz)]v (8)

where rpg is the fisheye radial coordinate, rqgp is the
original QI radial coordinate, and Apg and spg are
parameters.

We use an attenuation function described in [18,20] to
modify both the metric and elliptical equations inside the
horizons. We briefly summarize the procedure here. The
elliptical equations for u and b’ are modified to

I,UR l//s K2 AUAU ~

Dz”_g<?+ 28y _Dz(w(”w(‘))):a
9)

R R
Ambl + gD/Ml] - ggl//6]/”DJK = 0, (10)

where Ay b’ = D;(Lb)" is the vector Laplacian and R is the
scalar curvature associated with #;;, and where the attenu-
ation function ¢ takes the form

g9=94%xg-, (11)
1 if i > Foax

g+ = 0 if 'y < TI'min » (12)
G(ry) otherwise,
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where the function G(r) smoothly transitions from 0 at
¥ = Fpmin to 1 at r = ry,,. Here r is the coordinate distance
to puncture (+) or (—), and the parameters 7, < Fmax are
chosen to be within the horizon. Note that if g = 1, the
Einstein constraints will be satisfied. The function G(r.)
can be chosen such that g is C*, however, this leads
to poorer performance than choosing G(r.) to be a
polynomial such that ¢ is differentiable a finite number
of times when r, = r;, and ry = r,,. In addition, the
background metric itself is modified so that

7ij = 0ij + 9(7i; — 6i)), (13)
I — gl (14)
Finally, far from the holes, we attenuate y;;, K, and .

This is achieved by consistently changing the metric fields
and their derivatives so that

7 = fr) () - 6) + 65, (15)
K® = f(ro)K®), (16)
(W =1) = flro)(yew = 1), (17)

where f(r) =exp(—r*/st,) and ry is the coordinate
distance to puncture (+) or (—).

For compatibility with the original TWOPUNCTURES
code, we chose to set up HISpID so that the parameters
of the binary are specified in terms of momenta and spins of
the two holes. However, unlike for Bowen-York data, the
values specified are only approximate, as the solution
vector b’ can modify both of these. In practice, we find
that the spins are modified by only a trivial amount while
orbital angular momentum (as measured from the differ-
ence between the total angular momentum measured at
spatial infinity and the two spin angular momenta) is
reduced significantly. Furthermore, for this unequal-mass
case (and generally when the two black holes are not
identical), the linear momentum of the two black holes are
modified by different amounts. This means that the system
with the default parameters will have net Arnowitt-Deser-
Misner (ADM) linear momentum. To compensate for both
of these changes, the boost applied to each black hole needs
to be adjusted. In practice, the change in orbital angular
momentum is the larger of the two. We adjust these boosts
using an iterative procedure. To compensate for the missing
angular momentum, we increase the magnitude of the
linear momentum of each black hole by a factor of 6L/D,
where OL is the missing angular momentum and D is the
separation of the two black holes in quasi-isotropic coor-
dinates. This process is repeated until the orbital angular
momentum is within 1 part in 10 000 of the desired value.
To remove excess linear momentum, we subtract half
the measured net linear momentum from each black hole.

Here, we repeat this subtraction until the measured linear
momentum is smaller than 107%M. The net effect is that the
two black holes have linear momentum parameters with
different magnitudes, and both black holes have linear
momentum parameters larger in magnitude than those
predicted by simple quasicircular conditions would imply
[32]. All parameters for the y = 0.95 run are given in
Table I. Finally, in order to get a satisfactory solution for the
initial data problem, i.e., constraints residuals below 1078, as
measured on the adaptive-mesh refinement (AMR) compu-
tational grid (see Sec. III A), we used 450 x 450 x 22
collocation points (the third dimension is an axis of
approximate symmetry).

In Fig. 1, we show the convergence of the L? norms
of the Hamiltonian (H) and the momentum constraint

TABLEI Initial data parameters for a y = 0.95 highly spinning
binary with mass ratio ¢ = 2/3. The two spins are given by
S, = (0,0, S;) and the two momenta are P; = (Pr, P, 0), where
i =1, 2. The parameter M is the sum of the masses of the two
black holes. Unlike for Bowen-York data, the momenta and spins
cannot be specified exactly. However, the horizon masses of each
black hole (m!' and mZ') closely match the mass parameters m,
and m, that are used to define the background metric. Quantities
denoted by “init” were measured at t =0, while quantities
denoted by “equi” are measured at t = 200. Relaxed quantities
shown are from the high resolution N144 simulation. mf, S;, y;
are masses, spin angular momenta, and dimensionless spins,
respectively, of the two black holes. The quantity ry is the polar
coordinate radius of the horizons. Finally, M spy and J, are the
ADM mass and total angular momentum measured at spatial
infinity. Also included are the attenuation and fisheye parameters
described in the text.

Initial Data Quantities

P! /M = 0.00101
P;/M = —0.00100
m, /M = 0.39860

S, /M? = 0.15094
T/ M? = 0.74449
miinit /A1 — 039846
Sinit /M2 = 0.15090
2= 0.95042
Ainit/pf — 0.422

Py/M = —0.097945

Pi/M = 0.098958

may/M = 0.60140

S,/M? = —0.34359
minit/ M = 0.60019

Sinit/ M2 = —0.34347

20 = —0.95346

pHinit AT — 0,420

Relaxed Quantities

mi /M = 0.3985 £0.0001  m} " /M = 0.6002 = 0.0008
SSM/M? = 0.1518 £ 0.0001 S5 /M? = —0.3440 + 0.0004
22 = 0.9503 = 0.0002 2 = —0.9534 £ 0.0006
e/ = 0.173 4 0.001 /M = 0.273 + 0.001

Additional Parameters

Fmin = 0.01 Tmax = 0.4
AFEZ =0.86 SFE2 — 1.5
Apg; = 0.936 sgg1 = 1.5
Sgar = 10.0
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FIG. 1. The convergence of the L? norm of the Hamiltonian and

momentum constraint residuals of the initial data solver versus
the number of collocation points (N x N x 40). The L? norm is
measured with respect 10° randomly chosen points lying outside
the two horizons and inside a sphere with radius equal to the
separation of the two black holes. The observed power law of
~N~7 for the convergence rate is consistent with the C® smooth-
ness of the attenuation function g [see Eq. (11)].

components (M') versus the number of collocation points
(NyxNgxNy) =N xN x (40). Here, the constraints
are not measured on the computational grid, but rather on
10° randomly chosen points located in the volume outside
the two horizons and inside a sphere with radius equal to the
separation of the two black holes. The convergence is
algebraic (approaching 8th order). (Algebraic convergence
is expected because of the use of the attenuation functions
mentioned above). This initial-data L2 norm is defined to be

where ¥, are 10° randomly chosen points.

B. Evolution

We evolve black hole binary initial data sets using the
LazEv [33] implementation of the moving punctures
approach for the conformal and covariant formulation of
the Z4 (CCZA4) system (Ref. [34]) which includes stronger
damping of the constraint violations than the standard
BSSNOK [35-37] system. For the run presented here, we
use centered, eighth-order accurate finite differencing in
space [38] and a fourth-order Runge-Kutta time integrator.
Our code uses the CACTUS/EINSTEINTOOLKIT [39,40] infra-
structure. We use the CARPET mesh refinement driver to
provide a “moving boxes” style of mesh refinement [41].
Fifth-order Kreiss-Oliger dissipation is added to evolved
variables with dissipation coefficient ¢ = 0.1. For the CCZ4
damping parameters, we chose x; = 0.21, x, =0, and
k3 = 0 (see [34]).

We locate the apparent horizons wusing the
AHFINDERDIRECT code [42] and measure the horizon
spins using the isolated horizon algorithm [43]. We
calculate the radiation scalar y, using the Antenna
thorn [44,45]. We then extrapolate the waveform to an
infinite observer location using the perturbative formulas
given in Ref. [46].

For the gauge equations, we use [2,47,48]

(0, — pI0;)a = —2a°K, (18a)
o = e, (18b)

Note that the lapse is not evolved with the standard 1 +
log form. Here we multiply the RHS of the lapse equation
by an additional factor of a. This has the effect of increasing
the equilibrium (coordinate) size of the horizons. For the
initial values of shift, we chose (¢ = 0) = 0, while for the
initial values of the lapse, we chose an ad-hoc function
a(t =0) =2, where =1+m;/(2r)) +m,/(2r;) and
r; is the coordinate distance to black hole i. For the function
n, we chose

n(r) = (n. —ny) exp(=(r/ng)*) +n,. (19)

where 1, = 2.0/M, n, = 40.0M, and 7, = 0.25/M. With
this choice, # is small in the outer zones. As shown
in Ref. [49], the magnitude of # limits how large the
timestep can be with df,, o 1/5. Since this limit is
independent of spatial resolution, it is only significant in
the very coarse outer zones where the standard Courant-
Friedrichs-Lewy condition would otherwise lead to a large
value for drt,y.

We performed three simulations at low (N100), medium
(N120), and high (N144) resolutions. The number
“NXXX” denotes an overall scale factor for the grid
structure. For example, N100 has a resolution of M /1.0
in the wavezone, and N120 is a factor of 1.2 higher with a
wave zone resolution of M/1.2. In all cases, the grid
structure consists of 11 levels of refinement with the finest
mesh extending to £0.3M (in all directions) from the
centers of the two black holes, while the coarsest level
extends to 4000 (in all directions). The resolution on the
finest level is M /256, M /307.2, and M /368.64 for N100,
N120, and N144 resolutions. On the coarsest grid, the
resolution is M /0.25, M /0.3, and M /0.36 for N100, N120,
and NI144, respectively. We initially have the finest
mesh centered around both black holes, but after the gauge
settles and the horizons have expanded, we remove the
finest mesh around the larger BH. The highest resolution
run required 868 222 SUs in our local machine, Blue Sky on
32 nodes until merger, and then 24 nodes afterwards in a
wall-time of 69 days. The two lower resolution runs
required an additional 681530 SUs on Blue Sky, for a
total of 1549752 SUs.
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III. RESULTS

We performed a convergence set of three simulations
from a coordinate separation of 10M (simple proper
distance of 13.8M) through merger for an unequal-mass
binary, ¢ = 2/3 where the larger hole spin is antialigned
and the smaller aligned with the orbital angular momentum
and both have dimensionless magnitudes of 0.95. Note that
by simple proper distance we mean the proper distance of
that part of the coordinate line joining the centers of the two
black holes that is between the two horizons.

Figure 2 shows the tracks of the holes in the orbital (xy-)
plane, their relative separation (both the coordinate
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FIG. 2. The trajectories of the two black holes, as well as the
time dependence of the orbital separation (coordinate and simple
proper distance) and phase.

separation and the simple proper distance along the line
joining the black holes), as well as the orbital phase. To
calculate the eccentricity, we fit a sinusoidal part and a secular
part to the simple proper distance over a period of two orbits
after the gauge settles (from r=230M to t=580M). The
eccentricity is then e=|(D— Dy, )/D|=0.0013, where D is
the simple proper distance.

Note that we did not need to use an eccentricity reduction
procedure like [50-53] (although, this would be possible).
Rather, the initial data obtained using HISPID with the
parameters obtained by setting the radial momentum (pre-
solve) and post-solve net linear angular momentum to the
values given by [32] is sufficient to obtain binaries with
eccentricity ~0.001. This shows that the improved pro-
cedure of [32] to provide quasicircular orbits, tested for
lowers spins, also holds for the high spin binary here
considered.

The waveform of the leading (2,2) mode is shown in
Fig. 3. We extract y, directly from the simulations, and
then compute the strain / by double integration over time.
Note that at the relevant scale of the waveform, the initial
burst of radiation from our initial data is relatively small,
almost invisible. This is in contrast for what is observed in
Bowen-York or other conformally flat initial data, where
for high spins, of the order of 0.9, the initial burst can have
an amplitude comparable to that of the merger of the two
black holes and lead to serious contamination of the
evolution. Besides, Bowen-York data cannot reach spin
values of 0.95 as shown in this paper, since it is limited by
spins below 0.93 [12,14,15].

From the waveforms we compute the radiated energy
and radiated linear and angular momentum using the
formulas given in [54,55]. The recoil of the remnant is
given by —6P/M.,.,, where 6P is the radiated linear
momentum and M, is the mass of the remnant black
hole. Our results are summarized in Fig. 4.

A. Diagnostics

One of the most important diagnostics for a black-hole-
binary simulation is the degree to which the constraints are

0.06 . . . . . 0.06 — 144 0.4
Amplitude \
Phase
0.04 0.05} 120
0.2
0.02 _ 0.04f 9% o
N « Y«
o< o< > of
= 0 > 003} 72 = L o
2 = 5 2
-0.02} ~ o0.02} 48 <
0.2
-0.04} 0.01} 24
-0.06
0.06 800 850 900 950 1000 o 0 04
0 200 400 600 800 1000 0 200 400 600 800 1000 o 200 400 600 800 1000
M M
FIG. 3. The real (red) and imaginary (blue) parts of the (2,2) mode of y, (left), its amplitude and phase (middle), and the reconstructed

strain h,, (right) as measured by an observer at location r = 102.6M. The strain is extrapolated to infinite observer location using the

analytic perturbative extrapolation described in [46].
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FIG. 4. (left) The evolution in velocity space of the recoil vector during the inspiral. (middle) The cumulative recoil versus time. (right)
The instantaneous radiated power and cumulative radiated energy versus time. All calculated at infinite observer location.

satisfied and to what degree the horizon masses and spins  configuration, the smaller black hole was actually better
are conserved. In Fig. 5, we show the individual horizon  resolved. Consequently, the spin of the smaller black hole
mass and dimensionless spin during the evolution, as well ~ was actually conserved to a better degree. The spin of the
as the remnant mass and spin post-merger. Due to our grid ~ smaller black hole decreased slowly for a net change of
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FIG. 5. The dimensionless spin (top) and horizon (Christodoulou) mass (bottom) for the two horizons in the binary and the final
remnant black hole. The y-scale for the mass and spins is set by black hole 2 and is kept the same for the other two black holes.
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FIG. 6. The coordinate radii (minimum, maximum and average) of the three horizons versus time for the full simulation. Note that
there is an extremely rapid evolution of the horizon size and shape during the first few M of evolution.
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FIG.7. L? norm of the Hamiltonian and momentum constraints
versus time. Note the rapid growth during the first 2M of
evolution. The CCZ4 damping parameters k;, managed to
suppress the constraint growths during the evolution down to
merger and afterwards.

0.0002, or 0.02%., the larger black hole, on the other hand,
showed a spin decrease (in magnitude) of 0.001, or 0.1%.
The smaller black hole’s mass varied by less than 0.005%,
while the larger black hole’s mass increased by 0.013%.
Note that prior to merger, the spins are within +0.003 of
0.95 and the masses change by less than 0.13%. In Fig. 6,
we show the coordinate radii of the three horizons. Note the
rapid change in the coordinate radii at early time.
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In Fig. 7, we show in detail the L?> norm of the
Hamiltonian and momentum constraints during the evo-
lution of the binary for the highest resolution
run (N144). Here the L? norm is over the region outside
the two horizons (or common horizon) and inside a
sphere of radius 30M. Note how the constraints start
small (5% 107 —5x107®) and quickly increase to
107> — 107, This increase is due to unresolved features
in the initial data (i.e., the AMR grid cannot propagate
high-frequency data accurately). The constraints then
damp to 5x 1078 —5 x 1077 and remain roughly con-
stant from then on.

In Fig. 8, we again show the L? norm of the constraints,
but for the three different resolutions (N100, N120, N144).
In the bottom panel of each we show the Richardson
extrapolation convergence order, d. The data is sampled
every 48M of evolution time, starting after 1 orbit when
the constraints settle at t = 150M. In all four constraints,
we see a convergence order of between 4 and 8.

One method which we found was useful for increasing
the run speed was to change the lapse condition. Rather
than using the standard 1+ log lapse, we use a modified
slicing closely related to harmonic slicing. This alternative
lapse keeps the horizons at a larger coordinate size than
1+ log. However, there is still a rapid decrease in the
coordinate size of the horizons at very early time. This
rapid change in the gauge (see Fig. 6) may be responsible
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The constraints versus time for three resolutions: N100 in red, N120 in blue, and N144 in green. The bottom panel in each

figure shows the convergence order, d, versus time. The data is sampled every 48M and starts at t = 150M after 1 orbit of evolution.
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TABLE II. Remnant quantities for the three resolutions (labeled N100, N120, and N144) and extrapolated to infinite resolution. The
percent difference of the extrapolated value and N144 resolution, % A is given. In addition, the extrapolated value is compared with
the expected values from fitting formulas. M,ep,/Mqui and yyen, are the final mass and spin of the remnant measured on the horizon.
Vrecoit a0d Lyeqi are the recoil velocity in km/s and the peak Luminosity in dimensionless units, measured at infinite observer location.

Mequiwg;ak and |r/ Mequineak| are the peak frequency and amplitude of the 22 mode of the strain. The equilibrium mass Mg, =

. ; 22
m?qul + m;qm

convergence order, d, is also given.

is used for normalization. The last two rows are for the amplitude and phase of rM, equi‘Pﬁz. The Richardson extrapolation

Quantity N100 N120 N144 Inf. Res. Yo A e d Fit Fit % difference
Mem/Mequi 0.9626 0.9622 0.9620  0.9619 £ 0.0009 0.01% 5.1 0.9620 0.01%

Xrem 0.5116 0.5121 0.5124  0.5125 +0.0001 0.02% 5.6 0.5100 0.49%

V recoil 498.83 500.08 500.81 501.83 £1.14 0.20% 3.0  497.60 0.84%
Lpear (X 10%) 7.9051 7.9384 7.9523  7.9623 £+ 0.0203 0.13% 4.8 7.8400 1.54%
MequinZak 0.3271 0.3276 0.3278  0.3279 £ 0.0019 0.03% 5.0 0.3309 0.91%
|r/Mequng§ak 0.3748 0.3749 0.3749  0.3749 £ 0.0010 0.00% 11.0 0.3743 0.16%
rMequi|‘Pﬁ2| x 10 0.5741 0.5756 0.5763  0.5769 £ 0.0004 0.07% 4.1

Arg(¥3?) /27 10.4693 10.4908 10.4937 10.4941 £ 0.0004 0.01% 11.0

for the initial jump in the constraint violations seen
in Fig. 7.

IV. DISCUSSION

In this paper we demonstrated that it is possible to
accurately evolve unequal-mass black-hole binaries with
spins well beyond the Bowen-York limit using the “moving
puncture” formalism, and to efficiently generate convergent
initial data for such binaries with low eccentricity without
resorting to expensive iterative eccentricity-reduction pro-
cedures. This means that comparative studies of these
challenging evolutions by the two main methods to numeri-
cally solve the field equations of general relativity field
equations (the generalized harmonic approach used by SXS
and various flavors of the “moving punctures” approach
used by many other groups) are now possible beyond the
equal-mass case [18,20]. Independent comparison, along
the lines explored in [56,57], have been very successful in
demonstrating the accuracy and correctness of moderate-
spin black hole simulations. These new techniques also
open the possibility of exploring a region of parameter
space which is of high interest for both astrophysical and
gravitational wave studies.

In addition, we computed the peak luminosity, fre-
quency, and amplitude which are key characteristic features

of the merger phase of the binary, and have contributed to
the remnant final black hole modeling by evaluating the
final mass, spin, and recoil of the merged black hole. In
particular we have computed the largest recoil velocity
recorded of nonprecessing binaries, just above 500 km/s,
as predicted by the extrapolation of the formulas given in
[24]. The agreement between the extrapolation of the fitting
formulae and the measured values from this simulation, as
shown in Table II, give us a measure of the expected
accuracy of these kinds of simulations.
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