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We evolve a binary black hole system bearing a mass ratio of q ¼ m1=m2 ¼ 2=3 and individual spins of
Sz1=m

2
1 ¼ 0.95 and Sz2=m

2
2 ¼ −0.95 in a configuration where the large black hole has its spin antialigned

with the orbital angular momentum, Lz, and the small black hole has its spin aligned with Lz. This
configuration was chosen to measure the maximum recoil of the remnant black hole for nonprecessing
binaries. We find that the remnant black hole recoils at just above 500 km=s, the largest recorded
value from numerical simulations for aligned spin configurations. The remnant mass, spin, and
gravitational waveform peak luminosity and frequency also provide a valuable point in parameter space
for source modeling.
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I. INTRODUCTION

Since the breakthroughs in numerical relativity of 2005
[1–3] it is possible to accurately simulate moderate-mass-
ratio and moderate-spin black-hole binaries. State of the art
numerical relativity codes now routinely evolve binaries
withmass ratios as small as q≲ 1=16 [4–9], and are pushing
toward much smaller mass ratios. Indeed, there have been
some initial explorations of q ¼ 1=100 binaries [6,7].

However, when it comes to highly-spinning binaries,
prior to the work of [10] of the SXS Collaboration [11], it
was not even possible to construct initial data for binaries
with spins larger than ∼0.93 [12]. This limitation was due
to the use of conformally flat initial data. Conformal
flatness is a convenient assumption because the Einstein
constraint system takes on a particularly simple form.
Indeed, using the puncture approach, the momentum
constraints can be solved exactly using the Bowen-York
ansatz [13]. There were several attempts to increase the
spins of the black holes while still preserving conformal
flatness [14,15], but these introduced negligible improve-
ments. Lovelace et al. [10] were able to overcome these
limitations by choosing the initial data to be a superposition
of conformally Kerr black holes in the Kerr-Schild gauge.
Using these new data, they were able to evolve binaries
with spins as large as 0.97 [16] and, later, spins as high as
0.994 [17]. Production simulations remain still very
lengthy.
Recently, we introduced a version of highly-spinning

initial data, also based on the superposition of two Kerr
black holes [18,19], but this time in a puncture gauge. The
main differences between the two approaches is how easily
the latter can be incorporated into moving-punctures codes.

In Refs. [18,20], we were able to evolve an equal-mass
binary with aligned spins, and spin magnitudes of χ ¼ 0.95
and χ ¼ 0.99 respectively, using this new data and compare
with the results of the Lovelace et al., finding excellent
agreement.
Studies of aligned spin binaries have provided insight on

the basic spin-orbit dynamics of black hole mergers and
also allow for a first approximation for source parameter
estimations of gravitational wave signals [21] because this
reduced parameter space [22] contains two of the most
important parameters for the modeling waveforms: the
mass ratio (in addition to the total mass) and the spin
components along the orbital angular momentum [23].
In [24] we found, after extrapolation of a fitting formula,

that the maximum recoil for binaries with aligned/
anti-aligned spins occurs when the mass ratio between
the smaller and larger black hole is near q ¼ 2=3. Since that
study used Bowen-York initial data, we were not able to
produce actual simulations of near-maximal spinning holes
to verify this prediction. In this paper, we revisit this
configuration with our new HISPID initial data, which is
able to generate binaries with spins much closer to unity.
Here we evolve a binary with spins χi ¼ 0.95 and measure
a recoil of ∼502 km=s, the largest recoil ever obtained for
such nonprecessing binary black hole mergers.
In this paper, we show the results of a convergence series

of simulations of unequal-mass binary with aligned spins of
χ ¼ 0.95. There is no similar simulation to our knowledge in
the literature, thus filling a gap in the gravitational wave-
forms template banks that are currently used in the detection
and parameter estimation of gravitational wave signals as
observed by LIGO and other detectors [21,25]. This impor-
tant region of parameter space of highly spinning binaries is
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currently poorly covered by current catalogs [9,22,26] and
benefits from new, accurate simulations.
We use the following standard conventions throughout

this paper. In all cases, we use geometric units whereG ¼ 1
and c ¼ 1. Latin letters (i; j;…) represent spatial indices.
Spatial 3-metrics are denoted by γij and extrinsic curvatures
by Kij. The trace-free part of the extrinsic curvature is
denoted by Aij. A tilde indicates a conformally related
quantity. Thus γij ¼ ψ4γ̃ij and Aij ¼ ψ−2Ãij, where ψ is
some conformal factor. We denote the covariant derivative
associated with γij by Di and the covariant derivative
associated with γ̃ij by D̃i. A lapse function is denoted by α,
while a shift vector by βi.
This paper is organized as follows. In Sec. II A, we

provide a brief overview of how the initial data are
constructed and prove its convergent properties. In
Sec. II B we describe the numerical techniques used to
evolve these data. In Sec. III, we present detailed wave-
form, trajectories, masses and spin results of the binary
evolution. In Sec. III A, we analyze the various diagnostics
to determine the accuracy of the simulation and show the
numerical convergence of the evolution system. We also
provide values for the final remnant mass, spin and recoil
velocity as well as the peak luminosity and corresponding
peak frequency and amplitude as derived from the gravi-
tational waveform. Finally, in Sec. IV, we discuss our
results and how they apply to parameter estimation and
follow up simulations to gravitational wave observations.

II. NUMERICAL TECHNIQUES

A. Initial data

We construct initial data for a black-hole binary with
individual spins χ1;2 ¼ 0.95 using the HISPID code [18,19],
with the modifications introduced in [20]. The HISPID code
solves the four Einstein constraint equations using the
conformal transverse traceless decomposition [27–30].
In this approach, the spatial metric γij and extrinsic

curvature Kij are given by

γij ¼ ψ4γ̃ij; ð1Þ

Kij ¼ ψ−2Ãij þ
1

3
Kγij; ð2Þ

Ãij ¼ M̃ij þ ðL̃bÞij; ð3Þ

where the conformal metric γ̃ij, the trace of the extrinsic
curvature K, and the tracefree tensor M̃ij are free data. The
Einstein constraints then become a set of four coupled
elliptical equations for the scalar field u ¼ ψ − ψ0

and components of the spatial vector bi (ψ0 is a
singular function specified analytically). The resulting
elliptical equations are solved using an extension to the
TWOPUNCTURES [31] thorn.

The free data are chosen by superimposing two boosted
Kerr black holes, as described in more detail in [18]. The
superposition has the form

γ̃ij ¼ γ̃ðþÞ
ij þ γ̃ð−Þij ; ð4Þ

K ¼ KðþÞ þ Kð−Þ; ð5Þ

Mij ¼ ½ÃðþÞ
ij þ Ãð−Þ

ij �TF; ð6Þ

ψ0 ¼ ψ ðþÞ þ ψ ð−Þ − 1; ð7Þ

where (þ) and (−) refer to the two black holes, γ̃ð�Þ
ij and Ãij

are the conformal metric and trace-free extrinsic curvatures
for a boosted and rotated Kerr black hole, Kð�Þ is the mean
curvature, and the conformal factor ψ ð�Þ is chosen such that

ψ ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγð�Þ

ij Þ12

q
(where γð�Þ

ij is the physical metric from

a boosted and rotated Kerr black hole).

To get γ̃ð�Þ
ij , etc., we start with Kerr black holes in quasi-

isotropic (QI) coordinates and perform a fisheye (FE)
radial coordinate transformation followed by a Lorentz
boost (see [20] for more details). The FE transformation is
needed because it expands the horizon size, which greatly
speeds up the convergence of the elliptic solver and has
the form

rQI ¼ rFE½1 − AFE expð−r2FE=sFE2Þ�; ð8Þ

where rFE is the fisheye radial coordinate, rQI is the
original QI radial coordinate, and AFE and sFE are
parameters.
We use an attenuation function described in [18,20] to

modify both the metric and elliptical equations inside the
horizons. We briefly summarize the procedure here. The
elliptical equations for u and bi are modified to

D̃2u−g

�
ψR̃
8

þψ5K2

12
−
ÃijÃ

ij

8ψ7
− D̃2ðψ ðþÞ þψ ð−ÞÞ

�
¼ 0;

ð9Þ

Δ̃Lbi þ gD̃jM̃ij − g
2

3
ψ6γ̃ijD̃jK ¼ 0; ð10Þ

where Δ̃Lbi ≡ D̃jðL̃bÞij is the vector Laplacian and R̃ is the
scalar curvature associated with γ̃ij, and where the attenu-
ation function g takes the form

g ¼ gþ × g−; ð11Þ

g� ¼

8>><
>>:

1 if r� > rmax

0 if r� < rmin

Gðr�Þ otherwise;

; ð12Þ
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where the function GðrÞ smoothly transitions from 0 at
r ¼ rmin to 1 at r ¼ rmax. Here r� is the coordinate distance
to puncture (þ) or (−), and the parameters rmin < rmax are
chosen to be within the horizon. Note that if g ¼ 1, the
Einstein constraints will be satisfied. The function Gðr�Þ
can be chosen such that g is C∞, however, this leads
to poorer performance than choosing Gðr�Þ to be a
polynomial such that g is differentiable a finite number
of times when r� ¼ rmin and r� ¼ rmax. In addition, the
background metric itself is modified so that

γ̃ij → δij þ gðγ̃ij − δijÞ; ð13Þ

Γ̃k
ij → gΓ̃k

ij: ð14Þ

Finally, far from the holes, we attenuate γ̃ij, K, and ψ0.
This is achieved by consistently changing the metric fields
and their derivatives so that

γ̃ð�Þ
ij → fðr�Þðγ̃ð�Þ

ij − δijÞ þ δij; ð15Þ

Kð�Þ → fðr�ÞKð�Þ; ð16Þ

ðψ ð�Þ − 1Þ → fðr�Þðψ ð�Þ − 1Þ; ð17Þ

where fðrÞ ¼ expð−r4=s4farÞ and r� is the coordinate
distance to puncture (þ) or (−).
For compatibility with the original TWOPUNCTURES

code, we chose to set up HISPID so that the parameters
of the binary are specified in terms of momenta and spins of
the two holes. However, unlike for Bowen-York data, the
values specified are only approximate, as the solution
vector bi can modify both of these. In practice, we find
that the spins are modified by only a trivial amount while
orbital angular momentum (as measured from the differ-
ence between the total angular momentum measured at
spatial infinity and the two spin angular momenta) is
reduced significantly. Furthermore, for this unequal-mass
case (and generally when the two black holes are not
identical), the linear momentum of the two black holes are
modified by different amounts. This means that the system
with the default parameters will have net Arnowitt-Deser-
Misner (ADM) linear momentum. To compensate for both
of these changes, the boost applied to each black hole needs
to be adjusted. In practice, the change in orbital angular
momentum is the larger of the two. We adjust these boosts
using an iterative procedure. To compensate for the missing
angular momentum, we increase the magnitude of the
linear momentum of each black hole by a factor of δL=D,
where δL is the missing angular momentum and D is the
separation of the two black holes in quasi-isotropic coor-
dinates. This process is repeated until the orbital angular
momentum is within 1 part in 10 000 of the desired value.
To remove excess linear momentum, we subtract half
the measured net linear momentum from each black hole.

Here, we repeat this subtraction until the measured linear
momentum is smaller than 10−6M. The net effect is that the
two black holes have linear momentum parameters with
different magnitudes, and both black holes have linear
momentum parameters larger in magnitude than those
predicted by simple quasicircular conditions would imply
[32]. All parameters for the χ ¼ 0.95 run are given in
Table I. Finally, in order to get a satisfactory solution for the
initial data problem, i.e., constraints residuals below 10−8, as
measured on the adaptive-mesh refinement (AMR) compu-
tational grid (see Sec. III A), we used 450 × 450 × 22
collocation points (the third dimension is an axis of
approximate symmetry).
In Fig. 1, we show the convergence of the L2 norms

of the Hamiltonian (H) and the momentum constraint

TABLE I. Initial data parameters for a χ ¼ 0.95 highly spinning
binary with mass ratio q ¼ 2=3. The two spins are given by
S⃗i ¼ ð0; 0; SiÞ and the two momenta are P⃗i ¼ ðPr

i ; P
t
i; 0Þ, where

i ¼ 1, 2. The parameter M is the sum of the masses of the two
black holes. Unlike for Bowen-York data, the momenta and spins
cannot be specified exactly. However, the horizon masses of each
black hole (mH

1 and mH
2 ) closely match the mass parameters m1

and m2 that are used to define the background metric. Quantities
denoted by “init” were measured at t ¼ 0, while quantities
denoted by “equi” are measured at t ¼ 200. Relaxed quantities
shown are from the high resolution N144 simulation. mH

i , Si, χi
are masses, spin angular momenta, and dimensionless spins,
respectively, of the two black holes. The quantity rH is the polar
coordinate radius of the horizons. Finally, MADM and Jtot are the
ADM mass and total angular momentum measured at spatial
infinity. Also included are the attenuation and fisheye parameters
described in the text.

Initial Data Quantities

Pr
1=M ¼ 0.00101 Pt

2=M ¼ −0.097945
Pr
2=M ¼ −0.00100 Pt

1=M ¼ 0.098958
m1=M ¼ 0.39860 m2=M ¼ 0.60140
S1=M2 ¼ 0.15094 S2=M2 ¼ −0.34359
Jtot=M2 ¼ 0.74449 MADM=M ¼ 0.98873
mH init

1 =M ¼ 0.39846 mH init
2 =M ¼ 0.60019

Sinit1 =M2 ¼ 0.15090 Sinit2 =M2 ¼ −0.34347
χinit1 ¼ 0.95042 χinit2 ¼ −0.95346
rH init
1 =M ¼ 0.422 rH init

2 =M ¼ 0.420

Relaxed Quantities
mHequi

1 =M ¼ 0.3985� 0.0001 mHequi
2 =M ¼ 0.6002� 0.0008

Sequi1 =M2 ¼ 0.1518� 0.0001 Sequi2 =M2 ¼ −0.3440� 0.0004
χequi1 ¼ 0.9503� 0.0002 χequi2 ¼ −0.9534� 0.0006

rHequi
1 =M ¼ 0.173� 0.001 rHequi

2 =M ¼ 0.273� 0.001

Additional Parameters
rmin ¼ 0.01 rmax ¼ 0.4
AFE2 ¼ 0.86 sFE2 ¼ 1.5
AFE1 ¼ 0.936 sFE1 ¼ 1.5
sfar ¼ 10.0
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components ðMiÞ versus the number of collocation points
ðNA × NB × NϕÞ ¼ N × N × ð40Þ. Here, the constraints
are not measured on the computational grid, but rather on
106 randomly chosen points located in the volume outside
the two horizons and inside a sphere with radius equal to the
separation of the two black holes. The convergence is
algebraic (approaching 8th order). (Algebraic convergence
is expected because of the use of the attenuation functions
mentioned above). This initial-data L2 norm is defined to be

jjfjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n¼1

fðx⃗nÞ2
vuut ;

where x⃗n are 106 randomly chosen points.

B. Evolution

We evolve black hole binary initial data sets using the
LAZEV [33] implementation of the moving punctures
approach for the conformal and covariant formulation of
the Z4 (CCZ4) system (Ref. [34]) which includes stronger
damping of the constraint violations than the standard
BSSNOK [35–37] system. For the run presented here, we
use centered, eighth-order accurate finite differencing in
space [38] and a fourth-order Runge-Kutta time integrator.
Our code uses the CACTUS/EINSTEINTOOLKIT [39,40] infra-
structure. We use the CARPET mesh refinement driver to
provide a “moving boxes” style of mesh refinement [41].
Fifth-order Kreiss-Oliger dissipation is added to evolved
variables with dissipation coefficient ϵ ¼ 0.1. For the CCZ4
damping parameters, we chose κ1 ¼ 0.21, κ2 ¼ 0, and
κ3 ¼ 0 (see [34]).

We locate the apparent horizons using the
AHFINDERDIRECT code [42] and measure the horizon
spins using the isolated horizon algorithm [43]. We
calculate the radiation scalar ψ4 using the Antenna
thorn [44,45]. We then extrapolate the waveform to an
infinite observer location using the perturbative formulas
given in Ref. [46].
For the gauge equations, we use [2,47,48]

ð∂t − βi∂iÞα ¼ −2α2K; ð18aÞ

∂tβ
a ¼ 3

4
Γ̃a − ηβa: ð18bÞ

Note that the lapse is not evolved with the standard 1þ
log form. Here we multiply the RHS of the lapse equation
by an additional factor of α. This has the effect of increasing
the equilibrium (coordinate) size of the horizons. For the
initial values of shift, we chose βiðt ¼ 0Þ ¼ 0, while for the
initial values of the lapse, we chose an ad-hoc function
αðt ¼ 0Þ ¼ ψ̃−2, where ψ̃ ¼ 1þm1=ð2r1Þþm2=ð2r2Þ and
ri is the coordinate distance to black hole i. For the function
η, we chose

ηðr⃗Þ ¼ ðηc − ηoÞ expð−ðr=ηsÞ4Þ þ ηo; ð19Þ

where ηc ¼ 2.0=M, ηs ¼ 40.0M, and ηo ¼ 0.25=M. With
this choice, η is small in the outer zones. As shown
in Ref. [49], the magnitude of η limits how large the
timestep can be with dtmax ∝ 1=η. Since this limit is
independent of spatial resolution, it is only significant in
the very coarse outer zones where the standard Courant-
Friedrichs-Lewy condition would otherwise lead to a large
value for dtmax.
We performed three simulations at low (N100), medium

(N120), and high (N144) resolutions. The number
“NXXX” denotes an overall scale factor for the grid
structure. For example, N100 has a resolution of M=1.0
in the wavezone, and N120 is a factor of 1.2 higher with a
wave zone resolution of M=1.2. In all cases, the grid
structure consists of 11 levels of refinement with the finest
mesh extending to �0.3M (in all directions) from the
centers of the two black holes, while the coarsest level
extends to �400M (in all directions). The resolution on the
finest level is M=256, M=307.2, and M=368.64 for N100,
N120, and N144 resolutions. On the coarsest grid, the
resolution isM=0.25,M=0.3, andM=0.36 for N100, N120,
and N144, respectively. We initially have the finest
mesh centered around both black holes, but after the gauge
settles and the horizons have expanded, we remove the
finest mesh around the larger BH. The highest resolution
run required 868 222 SUs in our local machine, Blue Sky on
32 nodes until merger, and then 24 nodes afterwards in a
wall-time of 69 days. The two lower resolution runs
required an additional 681 530 SUs on Blue Sky, for a
total of 1 549 752 SUs.
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FIG. 1. The convergence of the L2 norm of the Hamiltonian and
momentum constraint residuals of the initial data solver versus
the number of collocation points ðN × N × 40Þ. The L2 norm is
measured with respect 106 randomly chosen points lying outside
the two horizons and inside a sphere with radius equal to the
separation of the two black holes. The observed power law of
∼N−7 for the convergence rate is consistent with the C6 smooth-
ness of the attenuation function g [see Eq. (11)].
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III. RESULTS

We performed a convergence set of three simulations
from a coordinate separation of 10M (simple proper
distance of 13.8M) through merger for an unequal-mass
binary, q ¼ 2=3 where the larger hole spin is antialigned
and the smaller aligned with the orbital angular momentum
and both have dimensionless magnitudes of 0.95. Note that
by simple proper distance we mean the proper distance of
that part of the coordinate line joining the centers of the two
black holes that is between the two horizons.
Figure 2 shows the tracks of the holes in the orbital (xy-)

plane, their relative separation (both the coordinate

separation and the simple proper distance along the line
joining the black holes), as well as the orbital phase. To
calculate the eccentricity, we fit a sinusoidal part and a secular
part to the simple proper distance over a period of two orbits
after the gauge settles (from t¼230M to t¼580M). The
eccentricity is then e¼jðD−DsecÞ=Dj¼0.0013, where D is
the simple proper distance.
Note that we did not need to use an eccentricity reduction

procedure like [50–53] (although, this would be possible).
Rather, the initial data obtained using HISPID with the
parameters obtained by setting the radial momentum (pre-
solve) and post-solve net linear angular momentum to the
values given by [32] is sufficient to obtain binaries with
eccentricity ∼0.001. This shows that the improved pro-
cedure of [32] to provide quasicircular orbits, tested for
lowers spins, also holds for the high spin binary here
considered.
The waveform of the leading (2,2) mode is shown in

Fig. 3. We extract ψ4 directly from the simulations, and
then compute the strain h by double integration over time.
Note that at the relevant scale of the waveform, the initial
burst of radiation from our initial data is relatively small,
almost invisible. This is in contrast for what is observed in
Bowen-York or other conformally flat initial data, where
for high spins, of the order of 0.9, the initial burst can have
an amplitude comparable to that of the merger of the two
black holes and lead to serious contamination of the
evolution. Besides, Bowen-York data cannot reach spin
values of 0.95 as shown in this paper, since it is limited by
spins below 0.93 [12,14,15].
From the waveforms we compute the radiated energy

and radiated linear and angular momentum using the
formulas given in [54,55]. The recoil of the remnant is
given by −δP⃗=Mrem, where δP⃗ is the radiated linear
momentum and Mrem is the mass of the remnant black
hole. Our results are summarized in Fig. 4.

A. Diagnostics

One of the most important diagnostics for a black-hole-
binary simulation is the degree to which the constraints are

-6

-4

-2

0

2

4

6

-6 -4 -2  0  2  4  6

y/
M

x/M

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  200  400  600  800  1000
 0

 12

 24

 36

 48

 60

 72

 84

 96

d/
M

φ o
rb

ita
l

t/M

Coordinate
SPD

Phase

FIG. 2. The trajectories of the two black holes, as well as the
time dependence of the orbital separation (coordinate and simple
proper distance) and phase.

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0  200  400  600  800  1000

r 
M

 Ψ
42,

2

t/M

-0.004
 0

 0.004

 60  85  110  135  160

-0.06

 0

 0.06

 800  850  900  950  1000
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  200  400  600  800  1000
 0

 24

 48

 72

 96

 120

 144

|r
 M

 Ψ
42,

2 |

-A
rg

r 
M

 Ψ
42,

2  

t/M

Amplitude
Phase

-0.4

-0.2

 0

 0.2

 0.4

 0  200  400  600  800  1000

r/
M

 H
2,

2

t/M

FIG. 3. The real (red) and imaginary (blue) parts of the (2,2) mode of ψ4 (left), its amplitude and phase (middle), and the reconstructed
strain h22 (right) as measured by an observer at location r ¼ 102.6M. The strain is extrapolated to infinite observer location using the
analytic perturbative extrapolation described in [46].

EVOLUTIONS OF UNEQUAL MASS, HIGHLY SPINNING … PHYS. REV. D 97, 104026 (2018)

104026-5



satisfied and to what degree the horizon masses and spins
are conserved. In Fig. 5, we show the individual horizon
mass and dimensionless spin during the evolution, as well
as the remnant mass and spin post-merger. Due to our grid

configuration, the smaller black hole was actually better
resolved. Consequently, the spin of the smaller black hole
was actually conserved to a better degree. The spin of the
smaller black hole decreased slowly for a net change of
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0.0002, or 0.02%., the larger black hole, on the other hand,
showed a spin decrease (in magnitude) of 0.001, or 0.1%.
The smaller black hole’s mass varied by less than 0.005%,
while the larger black hole’s mass increased by 0.013%.
Note that prior to merger, the spins are within �0.003 of
0.95 and the masses change by less than 0.13%. In Fig. 6,
we show the coordinate radii of the three horizons. Note the
rapid change in the coordinate radii at early time.

In Fig. 7, we show in detail the L2 norm of the
Hamiltonian and momentum constraints during the evo-
lution of the binary for the highest resolution
run (N144). Here the L2 norm is over the region outside
the two horizons (or common horizon) and inside a
sphere of radius 30M. Note how the constraints start
small (5 × 10−9 − 5 × 10−8) and quickly increase to
10−5 − 10−4. This increase is due to unresolved features
in the initial data (i.e., the AMR grid cannot propagate
high-frequency data accurately). The constraints then
damp to 5 × 10−8 − 5 × 10−7 and remain roughly con-
stant from then on.

In Fig. 8, we again show the L2 norm of the constraints,
but for the three different resolutions (N100, N120, N144).
In the bottom panel of each we show the Richardson
extrapolation convergence order, d. The data is sampled
every 48M of evolution time, starting after 1 orbit when
the constraints settle at t ¼ 150M. In all four constraints,
we see a convergence order of between 4 and 8.
One method which we found was useful for increasing

the run speed was to change the lapse condition. Rather
than using the standard 1þ log lapse, we use a modified
slicing closely related to harmonic slicing. This alternative
lapse keeps the horizons at a larger coordinate size than
1þ log. However, there is still a rapid decrease in the
coordinate size of the horizons at very early time. This
rapid change in the gauge (see Fig. 6) may be responsible

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

 0  200  400  600  800  1000

H
 C

on
st

ra
in

t

t/M

H
Mx

My

Mz
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for the initial jump in the constraint violations seen
in Fig. 7.

IV. DISCUSSION

In this paper we demonstrated that it is possible to
accurately evolve unequal-mass black-hole binaries with
spins well beyond the Bowen-York limit using the “moving
puncture” formalism, and to efficiently generate convergent
initial data for such binaries with low eccentricity without
resorting to expensive iterative eccentricity-reduction pro-
cedures. This means that comparative studies of these
challenging evolutions by the two main methods to numeri-
cally solve the field equations of general relativity field
equations (the generalized harmonic approach used by SXS
and various flavors of the “moving punctures” approach
used by many other groups) are now possible beyond the
equal-mass case [18,20]. Independent comparison, along
the lines explored in [56,57], have been very successful in
demonstrating the accuracy and correctness of moderate-
spin black hole simulations. These new techniques also
open the possibility of exploring a region of parameter
space which is of high interest for both astrophysical and
gravitational wave studies.
In addition, we computed the peak luminosity, fre-

quency, and amplitude which are key characteristic features

of the merger phase of the binary, and have contributed to
the remnant final black hole modeling by evaluating the
final mass, spin, and recoil of the merged black hole. In
particular we have computed the largest recoil velocity
recorded of nonprecessing binaries, just above 500 km=s,
as predicted by the extrapolation of the formulas given in
[24]. The agreement between the extrapolation of the fitting
formulae and the measured values from this simulation, as
shown in Table II, give us a measure of the expected
accuracy of these kinds of simulations.
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