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In recent decades, tremendous emerging techniques thrive the artificial intelligence field due to the increas-
ing collected data captured from multiple sensors. These multi-view data provide more rich information than
traditional single-view data. Fusing heterogeneous information for certain tasks is a core part of multi-view
learning, especially for multi-view clustering. Although numerous multi-view clustering algorithms have
been proposed, most scholars focus on finding the common space of different views, but unfortunately ig-
nore the benefits from partition level by ensemble clustering. For ensemble clustering, however, there is no
interaction between individual partitions from each view and the final consensus one. To fill the gap, we pro-
pose a Consensus Guided Multi-View Clustering (CMVC) framework, which incorporates the generation of
basic partitions from each view and fusion of consensus clustering in an interactive way, i.e., the consensus
clustering guides the generation of basic partitions, and high quality basic partitions positively contribute
to the consensus clustering as well. We design a non-trivial optimization solution to formulate CMVC into
two iterative k-means clusterings by an approximate calculation. In addition, the generalization of CMVC
provides a rich feasibility for different scenarios, and the extension of CMVC with incomplete multi-view
clustering further validates the effectiveness for real-world applications. Extensive experiments demonstrate
the advantages of CMVC over other widely used multi-view clustering methods in terms of cluster validity,
and the robustness of CMVC to some important parameters and incomplete multi-view data.
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1 INTRODUCTION

Multi-view data with heterogeneous representations are becoming more and more popular in both
academic and industrial areas (Bickel and Scheffer 2004; Ying et al. 2007; Chen et al. 2010; Zhang
et al. 2008). For example, images can be extracted different descriptors, such as RGB values, Fourier
coeflicient, SIFT, HOG or deep features; the news might be reported by different media and different
channels; and the literary work is broadcasted via multiple translations in different languages.
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These multi-view data provide more rich information to uncover the intrinsic structure than the
traditional single-view data. Moreover, it has been widely recognized that the multi-view learning
helps to handle outliers and noisy features for better performance (Wang et al. 2013; Sun 2013;
Guo 2013).

The goal of multi-view clustering is to make use of heterogeneous information from different
views to provide a comprehensive clustering result (Zhou and Liu 2008; Kim et al. 2010; Eaton et al.
2010). The key problem of multi-view clustering is how to fuse the heterogeneous information.
One naive way is directly to concatenate the features from different views together and apply
traditional single-view learning methods on the new representation. However, data collected from
different views might have little in common within the original feature spaces. For example, the
photic features and acoustic features, they share high similarity in high level for cluster structure or
partition level, rather than the photic or acoustic spaces. In light of this, some scholars aim to seek a
unified common space to represent multi-view data (Blaschko and Lampert 2008; Chaudhuri et al.
2009). However, it becomes more challenging when it comes to unsupervised tasks. Some views
containing irrelevant or noisy representation might severely damage the common space and lead
to degraded performance. Besides, with the increase of the number of views, there is little common
space shared by all the views.

Ensemble clustering, also known as consensus clustering (Strehl and Ghosh 2003), aims to fuse
several partitions into an integrated one. Different from clustering problem, ensemble clustering is
formulated as a fusion problem in essence. In light of this, numerous methods have been proposed
including graph-based methods (Strehl and Ghosh 2003; Fern and Brodley 2004), co-association
matrix based (Fred and Jain 2005) and k-means-based methods (Wu et al. 2013). Especially, k-
means-based Consensus Clustering (KCC) transforms the ensemble clustering problem into a k-
means clustering problem and provides flexible utility functions for different scenarios (Wu et al.
2015). For a long time, ensemble clustering has not been paid much attention in the multi-view
clustering area due to different research problems. Actually, there are several benefits of fusing
multi-view information in partition level, such as meaningful cluster structure and robustness to
outliers. However, there is no interaction between individual partitions from each view and the
final consensus one.

Therefore, the existing studies on multi-view clustering either pay little attention to fusing
multi-view information in partition level (Kumar et al. 2011; Liu et al. 2013), or overlook the in-
teraction between individual partitions from each view and the final result (Wu et al. 2013). In re-
sponse to this, we propose a novel framework, Consensus Guided Multi-View Clustering (CMVC)
to integrate heterogeneous information and to seek a consensus partition from different views.
In essence, CMVC is an extension of our previous work KCC for multi-view clustering, which
also achieves the multi-view clustering in the partition space by integrating the individual basic
partitions from each view. Consequently, CMVC inherits the robustness and empirical good per-
formance of consensus clustering. However, it is a kind of waste that the high-quality consensus
partition is not further utilized. In light of this, beyond fusing basic partitions, CMVC further em-
ploys the high-quality consensus partition to guide the updating of basic partitions, which later
contribute to a new consensus partition. Fusing basic partitions into a consensus one and updating
basic partitions with the guidance of the consensus one are iteratively optimized for multi-view
clustering. In such a way, CMVC updates basic partitions and the consensus one in a joint fusion
way.

Different from existing algorithms, CMVC has two advantages: (1) multi-view information is
fused in partition level (in the experimental part, we showcase the large margin of the methods that
fuses information in partition level over others); (2) the basic partitions and consensus clustering
are iteratively updated in a mutually promotional way. Figure 1 shows the pipelines of the proposed
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Fig. 1. Different pipelines for multi-view clustering.

CMVC and other types of multi-view clustering. In our framework, several basic partitions are gen-
erated from each view, followed by the ensemble clustering to obtain the consensus partition; the
consensus partition further supervises the generation of the basic partitions. The above processes
are iteratively updated for multi-view clustering. The intuition here is that consensus clustering
guides the generation of basic partitions, and higher quality basic partitions positively contribute
to the consensus clustering as well. Calculations are approximated to speedup and the process
leads to the generalization of CMVC, indicating that complex multi-view clustering can be han-
dled by two iterative simple k-means clusterings with high efficiency and rich feasibility. Next, we
extend CMVC to handle the incomplete multi-view clustering. Extensive experiments demonstrate
the advantages of CMVC over other widely used multi-view clustering methods. Beyond accurate
clustering performance, CMVC is insensitive to some important parameters, such as the trade-
off parameter A, the random feature selection rate and the number of sub-views. Finally, CMVC
shows appealing merits in learning from incomplete multi-view data with high robustness, which
validates its effectiveness for real-world applications. Our contributions are highlighted as follows:

— We propose a novel framework CMVC to fuse heterogeneous information in partition level.
Generally speaking, the high-quality consensus partition is further used to guide the gen-
eration of basic ones, which also are conductive to the consensus partition.

—By an approximate calculation, CMVC is formulated into two iterative k-means clusterings
with high efficiency, which leads to the generalization with different utility and distance
functions and provides rich feasibility for different scenarios.

—Experimental results demonstrate the effectiveness of joint fusion. Especially, CMVC shows
appealing merits in learning from incomplete multi-view data with high robustness.

The rest of this article is organized as follows. Section 2 gives a brief related work on multi-
view clustering. We illustrate the objective function and its corresponding solution in Section 3.
Sections 4 and 5 provide the approximation calculation and the generalization of CMVC, respec-
tively. In Section 6, we extend CMVC to handle incomplete multi-view clustering. Section 7 demon-
strates the experimental results compared with the state-of-the-art. Finally, we conclude this article
in Section 8.

2 RELATED WORK

Much progress has been made over the past decade in developing effective multi-view clustering
algorithms, whose goals are to fuse multiple representations and partition instances into differ-
ent clusters. Here, we summarize the existing multi-view clustering algorithms in the literature
roughly into four groups. (1) The simplest way is to treat the multi-view data as the single-view
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Table 1. Comparisons Among Different Multi-View Clustering Algorithms

Features for fusion Fusion way
Types Representative methods | Low level Middle level High level | One time fusion Joint fusion
Directly fusion ConKM, ConNMF v Ve
Subspace fusion CCA,PVC v v
Late fusion HCC, KCC v v
Joint fusion CRSC, Multi NMF Ve Ve
Our model CMVC v v v

data by concatenating multi-view features directly and conduct the traditional clustering process
via optimizing certain loss functions (Bickel and Scheffer 2004; Kumar and Daume 2011). Li et al.
(2015) employed local manifold fusion to integrate heterogeneous features with approximated bi-
partite graphs for accelerating the speed. (2) The second category aims to project the data in differ-
ent views into a common low-dimensional latent subspace with the structure preserved, then any
clustering algorithms on the common space can be applied to obtain the final partition (Blaschko
and Lampert 2008; Chaudhuri et al. 2009). For instance, Singh and Gordon (2008) proposed Col-
lective NMF (ColNMF) to employ the same bases to present multi-view data; Li et al. (2014) estab-
lished the latent space for partial multi-view data with the same example in different views close
to each other; Cai et al. (2013) leveraged I, ; norm to obtain a shared indicator matrix; Ying et al.
(2007) found all non-redundant clustering views of the data; in Guo (2013), the authors formulated
the subspace learning of multiple views as a joint optimization problem with a group sparsity con-
straint. (3) The third category is named late integration or late fusion (Bruno and Marchand-Maillet
2009; Tao et al. 2017), which generates basic partitions from each view individually, and fuses them
into an integrated one. Actually, the third category is the well-known ensemble clustering (Strehl
and Ghosh 2003). Numerous methods have been proposed including graph-based methods (Fern
and Brodley 2004; Tao et al. 2016, 2017), co-association matrix based (Fred and Jain 2005; Liu et al.
2015, 2017b) and k-means-based methods (Wu et al. 2013; Liu et al. 2015, 2016, 2018). (4) The above
three categories are regarded as one-time fusion. Differently, the fourth category belongs to joint
fusion. Some methods interactively learn basic indictors and the consensus subspace by making the
basic ones consistent with the consensus one. In Kumar et al. (2011), within the spectral clustering
framework, the authors integrated eigenvectors learnt from different views via co-regularization.
Similarly, Liu et al. (2013) achieved the consistency between individual matrix factorizations and
the consensus one. Other multi-view clustering methods include local learning (Zhang et al. 2008),
pareto optimization (Wang et al. 2008), spectral embedding (Xia et al. 2010), and so on.

We summarize the differences among these multi-view clustering algorithms in Table 1. Com-
pared to subspace fusion methods, the late fusion methods usually achieve better performance
since the more informative partitions are used to obtain the final result. However, this kind of
methods employs only one-time fusion, which means that there is no interaction between basic
partitions. Recently, Co-regularized Spectral Clustering (CRSC) (Kumar et al. 2011), MultiNMF
(Liu et al. 2013) alternatively fuse basic information and the consensus one; they use middle-level
features such as eigen features or latent space features, which are less effective than the one of
partition level. In our model, CMVC fuses multi-view information of partition level to obtain the
consensus one. Then, we update basic ones with the consensus partition and the original low-level
features from each view.

In essence, CMVC is an extension of KCC (Wu et al. 2015) for multi-view clustering. The ma-
jor difference lies in the interaction between basic partitions and the consensus one. Although
partition-level fusion brings high-quality performance, it is a pity if we cannot further employ the
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consensus one to obtain better results. That is one of our motivations in this article. In CMVC, the
consensus partition and basic ones are updated in a mutually promotional way.

3 CONSENSUS GUIDED MULTI-VIEW CLUSTERING

We first present the objective function of CMVC and give the corresponding solution and approx-
imate calculation. Then, the generalization of CMVC with different distance functions and utility
functions is derived, and finally we apply CMVC to handle the incomplete multi-view clustering.

3.1 Objective Function
Let X = {X(l),X @ ., xr )} be the data with r multiple representations or views, and X@) =

{xiv),xév), . ,xi,v)} denote n instances in the vth view. The objective function of CMVC is as
follows:
r r
; (v) _ @) ~(@)2 _ * 17(0)
min Zlnx H@C®)||2 Alec<H,H ). (1)
= v=

where H®) is the cluster assignment matrix derived from X(®), C(*) is the corresponding centroid
matrix, H* is the final consensus cluster indicator matrix, and A is a tradeoff parameter between
standard k-means and disagreement with the consensus clustering. U, is the categorical utility
function (Mirkin 2001) measuring the similarity between two partitions, which is widely used in
ensemble clustering (Wu et al. 2015; Liu et al. 2017b) and constrained clustering (Liu and Fu 2015;
Liu et al. 2017a).

To better understand U,, we next introduce the contingency matrix, which counts the co-
occurrence for two discrete random variables. Table 2 shows a typical example for two partitions,

7 and 7)) containing K clusters. In the table, ”5;1) denotes the number of data objects belonging

to both cluster C(i) in 7 and cluster Ck in 7w, ng, = K ;:J) and n(l) Zk 1<),k <K
Let p](clj) = n(l)/n P+ = Ng+/n, and p (l)/n Based on the variables in Table 2 we have the

following equatlon for U,:
K K (pl® ok
* kj
UeH . HO) = > e D=2 =D (09’ (2)
o1 e\ Pee =
where p,(:;) is the joint probability of one instance belonging to both the kth cluster in H* and the

jth cluster in H®), py, and piz;.) are the portion of the kth cluster in H* and the jth cluster in H(®),
respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 42. Publication date: April 2018.



42:6 H. Liu and Y. Fu

The objective function incorporates the generation of basic partitions and fusion of consensus
clustering into a one-step framework. Basic partitions from different views and the consensus
clustering are conductive to the generation of each other. Therefore, the objective function has
two benefits: (1) multi-view information is fused in partition level; (2) the consensus clustering
guides the generation of basic partitions as side information, further high-quality basic partitions
positively contribute to the consensus clustering as well.

3.2 Solutions

To solve the optimization problem in Equation (1), we propose an iterative update procedure. Gen-
erally speaking, we first apply k-means on each individual view to generate H®), 1 < v < r, and
then the two following steps are repeated until convergence: (1) fixing H®), update H*; (2) fixing
H*, update each H®),

Fixing H®), Update H*: When all H®) are fixed, the optimization problem becomes a consensus
clustering problem. Here, we introduce Theorem 3.1 to transfer the ensemble clustering into a
k-means clustering problem.

THEOREM 3.1. Given r basic indicator matrix HY, ..., H"), and let H = [HY, ..., H")] be the
n X rK matrix concatenating all the indicator matrices from each view, we have

,
> UH H®)) o —||H - H'GII, 3)

v=1
where G = [G(l), G® .. .| G(V)] is the centroid of H.
The proof can be found in our previous work (Wu et al. 2013, 2015).

Remark 1. Theorem 3.1 converts the complex consensus clustering problem into a simple k-
means clustering with squared Euclidean distance, which has the neat formulation. Moreover,
Theorem 3.1 also gives a new insight into the objective function of CMVC as follows:

-
min )" [IX®) = HOC@|12+ A|H® - H G2, (4)
B v=1
Beyond the utility function measuring the similarity in the partition level, we can also use the
distance to measure the disagreement and form it into the k-means framework. It is worthy to note
that different from the loss function in Liu et al. (2013), we have one more variable G®@, which is
learnable and plays a role in shuffling the order of clusters in H*.

Fixing H*, Update H®): According to Equation (4), the optimization problem has the following
format with fixed H*:
min IX® — HO @12 4+ AlH®) - H*G@)|2, (5)
H v
At this point, we can also iteratively update unknown variables C(*), G®), and H®) by three
subproblems.
(1) When C®) and H® are fixed, we only care about the term that is relevant to G@ and
minimize J; = ||[H® — H*G(U)llé, we have

Ji = tr((H®) - H*G®)(H™) - H*G™)T). (6)
Next, we take the derivative of J, over G(v), and have
0
N o) | 2HTH*G®@ = 0. (7)
AG@)
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ALGORITHM 1: The Algorithm of CMVC

Input: X0 x@  x): data matrices for r views;
K: number of clusters;
A: tradeoff parameter.
Output: optimal H*;
1: Initialize H®) by running k-means on X(®);
2: repeat
3 letH =[HW,H®, .. H";
4: Run k-means on H to update H* by Equation (3);
5. For each view, update H(®) by Algorithm 2;
6: until the objective value of Equation (1) remains unchanged.

ALGORITHM 2: Update H®) with Fixed H*

Input: X©): the vth view data matrix;
H*: consensus clustering;
K: number of clusters;
A: tradeoff parameter.
Output: optimal H®);
1: repeat
2. Update G'”) by Equation (8);
3. Update H® by Equation (9);
4 Update C(?) by Equation (12);
5: until the objective value of Equation (5) remains unchanged.

The solution leads to the update rule of G*) as follows:
G(v) — (H*TH*)_lH*TH(U)- (8)

(2) When C®) and G are fixed, the derivative method is not suitable for the binary variable
H®): thus, we exhaustively calculate the distance between each instance and centers, then find
the label that makes the objective function minimized:

k = argmin||X* - C |2 + Allz; - H;G™|13, )
J
where Xi(v) is the ith instance in view X, CJ(.U) and H; are the jth row and ith row in C® and

H*, respectively, and z; is a 1 X K vector with 1 in the jth position and 0 in other places.
(3) When G®) and H®) are fixed, let J, = || X — H(U)C(v)llg, we have

I = tr((X(v) _ H(U)C(v))(X(v) _ H(U)C(v))T), (10)
where tr(-) means the trace of a matrix. Then, by taking derivative of C(*), we get
0k _ —2HOTX®) 4 2g@THE @), (11)
ocw@)

Setting Equation (11) to be 0, we can update C(®) as follows:
cl) = (H(U)TH(U))—lH(U)Tx(v)_ (12)
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By these two steps, we alternatively update H* and H®) and repeat the process until the ob-
jective function value converges. We summarize the algorithm of CMVC in Algorithm 1. In the
iterative fashion, the basic partitions are fused for the robust consensus partition H*; then, the
consensus partition is involved to guide the generation of basic partitions, which successively
contribute to a new consensus partition. Therefore, basic partitions from different views and the
consensus clustering are conductive to the generation of each other.

3.3 Convergence Analysis and Discussion

From the solutions, we can see that H* and H®) are iteratively updated. When H®) is fixed, we
transfer the optimization problem over H* into a k-means clustering, which has a good conver-
gence property. And, given fixed H*, we decompose the optimization problem over H(®) into three
subproblems, and each of them is a convex problem with respect to one variable. Therefore, our
proposed algorithm guarantees that CMVC can converge to a local optimum.

4 APPROXIMATE CALCULATION

From the above solution, the first step employs k-means to optimize H* in an efficient way. How-
ever, in the second step, a lot of heavy matrix computation, including multiplication and inverse,
are needed to update H(®). Thus, we wonder if we could also employ k-means to approximately
calculate H®). Here, we use the following equation to substitute Equation (5) for an efficient so-
lution:

min IX® — HOC@|12 4 A|H = HOG@) |2, (13)
H v

Compared to Equation (5), in Equation (13), just the second term has been changed. Note that
|H* = HOG@) |2 is just U.(H®), H*). Although U.(H®), H*) # U.(H*, H"), here, we replace
U.(H*,H®) by U.(H®), H*) due to the fact that both have the same function measuring the
similarity between H* and H®). In addition, Lemma 4.1 demonstrates that U.(H®), H*) and
U.(H*,H®)) share the consistent order in the solution space.

LEMMA 4.1. Given three partitions H*, H; and H,, if U.(H*, H;) ; U.(H*,H,), then we have
U (Hy, H*) Z Uc(Ha, H").

Proor. It is self-evident that

HII'Ia;‘X UC(H*>H1) < HII'Ia"X UC(HI’H*)a (14)

holds for any feasible region F. Therefore, if let F = {H’, H"'}, we have
Uc(H',H;) = U.(H", Hy) & U (Hy,H') = Uc(Hz, H”), (15)

which indicates that U, (H*, Hy) and U.(H;, H") have the same ranking over all the possible parti-
tions in the universal set F. We complete the proof. O

By Lemma 4.1, we have the following theorem to update H®) in a fast way.
THEOREM 4.2. Let X(®) be the matrix of the vth data, H* be the consensus clustering matrix, and

D®) is a concatenated matrix consisting of X*) and H*, then we have

K
min |[X© ~ HOCO|2 + A|H - HOGD |2 & min ' 3" f(dimy). (16)
H® H® k=1ieCy
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ALGORITHM 3: The Algorithm of Generalized CMVC

Input: X0 x@  x): data matrices for r views;
K: number of clusters;
A: tradeoff parameter.
Output: optimal H*;
1: Initialize H®) by k-means on X(®) with the distance function in Equation (20);
2: repeat
3 letH=[HW H®, ... HNI;
4 Run k-means on H to update H* with the distance function in Equation (21);
5. For each view, update H(®) by k-means with distance function in Equation (22);
6: until H* remains unchanged.

where Cy. is the kth cluster in H®) and my is its corresponding centroid, d; is the ith row in D) and
f is a k-means distance, which can be computed as follows:

fdimi) = lldig = mpall3 +AlldS) = myal12, (17)

where d; = <di,1,di,2> with di,l = <di,11, cees di,1m> and di,l = <di,1m+la cees di,1m+K>: and Mg, 1, Mg, 2
have the similar definitions.

Proor. We start from the right side of the objective function of k-means:

K
DD, fdim)

k_liECk
—ZZH% mic 113 + Allds 2 = mi o3

k=1ieCyg (18)
—ZZHdll—mleﬁAZZHdlz m 2|13

k=1ieCy k=1ieCyg

=1X® — H®CO|2 4 A)|H* = HOIG®)) 2.
We finish the proof. i

Remark 2. Theorem 4.2 provides a way to transfer the optimization problem of Equation (13)
into a k-means clustering. By taking a close look, we can see that the k-means distance function is
nothing but the weighted squared Euclidean distance. When A = 1, the weighed squared Euclidean
distance degenerates into the traditional Euclidean distance.

Remark 3. The goal of the objective function in Theorem 4.2 not only aims to uncover the cluster
structure in the vth view, but also makes use of H* to guide the clustering process. Different from
the traditional side information, which applies the pairwise constraints for clustering, the guidance
is directly employed on the partition level, rather than the instance level. Such kind of partition
level side information (Liu and Fu 2015; Liu et al. 2017a) provides more consistency than pairwise
constraints and leads to better performance.

Benefits of the approximate calculation lie in three points. (1) The optimization problem over
H®) can be solved by a k-means clustering with high efficiency. (2) CMVC can be solved via two
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42:10 H. Liu and Y. Fu

Table 3. Sample Instances of the Point-to-Centroid Distance

Distance ¢(x) f(x,y)
Squared Euclidean distance  ||x||? llx — yll2
KL-divergence —H(x) 2}1:1 x;jlog %
J
Cosine distance Nxlla x|l — Z?Izl xiy;/1lyll2

Note: H means Shannon entropy.

iterative k-means clusterings, which indicates that such complex multi-view clustering can be han-
dled by the simplest clustering algorithm in a neat mathematical way. (3) The integrated k-means
framework leads to a good generalization with different k-means distances and utility functions.
Although it is difficult to strictly prove the convergency of the CMVC with the approximate ver-
sion, it has fast converge speed in practice.

Next, we provide the time complexity for our proposed CMVC, which consists of two iterative
phases, consensus partition fusion and basic partition updating. For the consensus partition fusion,
KCC is employed to transform it into a k-means clustering on the concatenated basic partitions
H =[H®,...,H"], which leads the time complexity for this phase O(t;nK?r). Here, t; is the
average iteration number. Recall that H is a binary matrix and only r elements in each row are
non-zero. With a matrix indexing the non-zero elements, the time complexity drops to O(t;nKr).
For the basic partition updating, we still formulate it as a k-means clustering on D(®) and the time
complexity is O(t;nK(m,, + K)), where t, is the average iteration number and m,, is the number of
features for the v-th view data matrix. Thus, the overall time complexity for CMVC is O(q(t;nKr +
to,nK(m + rK))), where m = })'_, m,, and it is linear to the number of instances and features, which
could be a candidate tool for large-scale multi-view data clustering.

5 GENERALIZATION OF CMVC

So far we use squared Euclidean distance or Frobenius norm to derive the objective function of
CMVC. In practice, squared Euclidean distance is not powerful enough to capture the complex
structure of multi-view data. In this section, we demonstrate that there exist rich distance func-
tions and utility functions, which can be involved in the CMVC framework. Before giving the
generalization of CMVC, we introduce the Point-to-Centroid Distance (P2C-D) (Wu et al. 2012),
which is an extension of Bergman divergence (Banerjee et al. 2005).

Definition 1. Let S € R be a non-empty open convex set. A twice continuously differentiable
function f: S XS — R, is called P2C-D, if there exists some higher order continuously differen-
tiable convex function ¢ : S — R such that

fley) =d(x) = p(y) - (x - y) V(). (19)

It has been shown that Bregman divergence (Banerjee et al. 2005) as a family of distances fits the
classic k-means with arithmetic centroids, which makes the objective function value decrease in
the iterative instance assignment and centroid update. If we relax the requirement of ¢ in Bregman
divergence from the strictness of the convexity to the continuously differentiable convexity,
this leads to the more general P2C-D (Wu et al. 2012), which also guarantees the convergency
of k-means-like algorithms. Table 3 gives some examples of the P2C-D. It is worth noting that
cosine similarity is a widely used metric in high-dimensional clustering. However, it cannot be
generalized by Bregman divergence.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 42. Publication date: April 2018.



Consensus Guided Multi-View Clustering 42:11

Table 4. Sample KCC Utility Functions

U(H", H®) p(m) f(hi, mi)
Uc K PR - [P ]2 Sy Hm |2 = 1[P@) ]2 Sy Ay = my 12
Un K (H(P) - (H(P®)) i (—H(my,;)) = (H(P®))) T D(hy, il Imy )
Ucos K P P |l = 1IP@ ] i Hmellz = 1P®) [l 1 (1= cos(hy, i, m. )
Note: D means KL-divergence, cos means cosine similarity, my ., = P](:)) = Pr1/Ppys - - - Pk /Py, )- and P(®) ig the cluster

distribution of H(®).

Based on the P2C-D, we studied the KCC (Wu et al. 2015) and derived a necessary and sufficient
condition for KCC utility functions. Note that the category utility function U, is just a special
case of KCC utility functions. By giving different convex functions ¢, a rich group of KCC utility
functions can be derived. Table 4 shows some examples of KCC utility functions derived from
various ¢. We can see that ¢ is just the summation of several convex functions. This indicates that
the rich k-means distance functions can derive from not only various convex functions, but also
the combination of different convex functions.

By this means, a rich group of objective functions of CMVC can be formatted with different
convex functions. Here, let f; be the k-means distance during the generation basic partition with
$1, fo with ¢, be the k-means distance when optimizing H* and f3 can be used to update H(®).
Then, we have the following distances:

filx,y) = $1(x) = d1(y) = (x = y) Vi (y), (20)

r

falx,y) = Z(¢2(xi) = $2(ys) = (xi = 4:) "V (ui)), (21)

i=1

f(x,y) = 1(x1) = d1(y1) — (x1 = y1) "V (y1) + Az (x2) — d2(y2) — (x2 — y2) Vo (12)).  (22)

In Equations (21) and (22), a vector is decomposed into several blocks, on each block one k-means
distance function is used to calculate the part of distance, the final result can be obtained by the
summation or linear combination. In the generalization of CMVC, we use fj to initialize H (@)
apply f; to get the consensus clustering H*, and employ f; to approximately optimize H®). The
algorithm of generalized CMVC is given by Algorithm 3.

It is also worth noting that the generalization of CMVC provides new insights to solve some
complex objective functions. For the objective function in Equation (1), we can use the gradient
method to solve it; however, if we use cosine similarity or KL-divergence as the distance function
or utility function, the objective function cannot be summarized in the matrix formulation. That
means these complex objective functions cannot be solved by Algorithms 1 and 2.

6 HANDLING INCOMPLETE MULTI-VIEW DATA

In real-world scenarios, it is common that multi-view data could be corrupted by faulty device or
transmission loss. This results in incomplete multi-view data with missing feature values of some
instances. While much efforts have been taken in the studies of the multi-view clustering problem,
handling incomplete multi-view data is an underlying problem, i.e., when the data from one view
or more views are inaccessible. In light of this, we extend CMVC to handle this challenging, i.e.,
the Incomplete Multi-view Clustering (IMC) problem (Zhao et al. 2016).

To solve the IMC problem, one naive way is to remove these data points with missing values.
However, it is quite inappropriate to shrink the size of training samples due to a few missing
entries, which wastes the rich information from other views. Another natural way is to fill in the
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missing elements by the average value or the value from nearest neighbors, or the value from a
predict model (Williams and Carin 2015; Bhadra et al. 2017). Although these strategies facilitate the
missing issue to some extent, these new artificial points would disturb the original feature space
and lead to a skewed cluster structure with large missing ratio (Shao et al. 2015). Back to CMVC,
the missing values affect the updating of H* and basic partition H®). In the following, we handle
the missing values in terms of updating H* and H®), respectively.

Let Xﬁv) with ngv) instances (nﬁ”) < n) be a subset of X(®). We first initialize H®) for each view.
Due to n§”) < n, missing values result in missing labels in H(®). When updating H*, these missing
labels do not provide any utility for consensus. That means these missing labels do not contribute
the centroid matrix G in Equation (3). Therefore, the centroids are no more the arithmetic average
of assigned elements of H = [H("), ..., H"], which has the following computation formulation:

ZiECkﬂxgv) hi
= Srany 2 @3)
ICe N X5

where h; is the ith row of H.
When updating H(®), Theorem 4.2 concatenates the data from the vth view and the consensus
partition H* as a whole matrix. The corresponding centroids consist of two parts my = (my 1, mg 2).
Similar to Equation (23), the missing values in the vth view are not involved in the computation of
my. 1. Note that there is no missing label in H*. Equation (24) gives the updating rules of centroids

with missing values:
 Ziecpnx dit _ Diec, di2

M1 =—"—" v »Mk2= ICy|

= (24)
ICk N Xs |

By this means, we can still make use of k-means to update H* and H*) with the above centroids
updating rules and modified k-means distance. In the phase of initialization, the missing instances
are labeled as a vector with all zeros in H®), and the rest instances are organized for clustering
with labels from 1 to K.

In the phase of consensus, we adjust the distance function of f as follows:

r

foley) = Y 1(xi € X)) £ (i), (25)

v=1

where f7(x;,ys) = ¢2(xi) — $2(ys) — (xi — 4:)TVa(ys) and 1(x; € X{*)) = 1if x; is in X*) and 0
otherwise. By this means, the centroids are also updated by arithmetic mean, with the denominator
representing the number of non-missing instances.

Similarly, in the phase of updating individual partitions, the distance function of f3 can be ad-
justed as follows:

fiey) = 1(xi € X)) filxr, 1) + Af (x2. 7). (26)

Note that there exist missing elements in H () but each instance in H* has a label from 1 to K. For
the incomplete multi-view CMVC, we have the following theorem.

THEOREM 1. The incomplete multi-view clustering problems with objective function Equations (4)
and (13) can be guaranteed to converge in finite two-phase iterations with the distance function in
Equations (25) and (26) and the centroid updating rules in Equations (23) and (24), respectively.
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Proor. Here, we give the proof when updating H(®). The proof for updating H* has the similar
procedure. Starting from the objective function of k-means, we have

K
D, D, Fldimy) =

k=1ieCy

M=

D (@1(din) = dalmi ) = (diy = mer) Vi (mi 1))

1\ (v)
ieCrNXs (27)

>~
Il

+ . (¢2(di,2) - ¢2(mk,z) - (di,Z - mk,z)TV¢2(mk,z)) .

1€

@

k

The k-means includes two iterations of assignment phase and updating centroids. In the assign-
ment phase, each instance is assigned to the nearest centroid so that the objective function de-
creases. Thus, we analyze the change of the objective function value during updating centroids
with missing values. Next, we prove that the computation of centroid by Equation (24) is the op-
timal.

Let qx = {(qk.1, qk.2) be any centroid of the concatenated matrix D) consisting of X () and H*.
Then, we calculate the difference of objective function value difference with the centroids g and
meg:

K
A=Y > (Alnar) - fildim)

k=1i€eCy

K

Z ($1(di;1) — $1(q,1) — (i1 — qr.1) "VP1(qr.1) — ¢1(di1)

k=1\iecpnx®

+ di(mics) + (dis = mie ) Voi(mi 1) + ) ($2(di2) = da(qr.2)

ieCyp
—(di2 - Qk,z)TV¢z(Qk,z) — ¢a(diz) + pa(mp,2) + (di2 — mk,z)TV¢2(mk,2)) .

According to Equation (24), we have } [ICr N Xﬁv)lmk,l and };cc, di;2 = |Cilmy .

ieCpnx(® diy =
Therefore, the above equation can be simplified as

K
A= Z Z (p1(mp,1) — P1(qk,1) — (di1 — Qk,l)TV¢1(Qk,1))

k=1\iecpnx{”

+ 3 ($2(me2) — d2(qr.2) — (di2 = qi2) " Va(gr.2) (28)

ieCy

K
= Z (le ﬂXs(v)lﬁ(mk,l,CIk,1) + |Ck|f2(mk,z,qk,z))-
k=1

Since f; and f, are two distance functions, we have A > 0 and the updating rule in Equation (24)
is optimal. Due to the limited solution space, the modified k-means converges in finite iterations
and we finish the proof. ]

The incomplete multi-view problem is a more general scenario in essence. As aforementioned,
we can also employ k-means for incomplete multi-view clustering, although the computation of
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Table 5. Experimental Datasets

Datasets #instance #cluster #view #features
Digit 2,000 10 2 240, 74
3-Sources 169 9 3 3,560, 3,631, 3,068
Multilingual 600 6 3 9,749, 9,109, 7,774
4-Areas 4,236 4 2 20, 13,214
Caltech101 2,386 20 6 48, 40, 254, 1,984, 512, 928
BBCSport 544 5 2 3,138, 3,203

some variables is slightly different. Actually, the weights of the views containing missing value
will naturally decrease according to the missing ratio when generating the consensus H*.

7 EXPERIMENTAL RESULTS

In this section, we evaluate CMVC on six broadly used multi-view datasets, including two image
datasets, three text datasets, and one academic data set. We first demonstrate the effectiveness of
CMVC compared with several state-of-the-art methods, and then explore the major impact factors
of CMVC; finally, the results on incomplete multi-view data validate the robustness of CMVC.

7.1 Experimental Setup

Datasets: We summarize six real-world datasets in the experiments in Table 5. UCI Handwritten
Digit!: This image data set includes 0-9 handwritten digits, where gray level values and Fourier
coefficients are extracted as two views. 3-Sources?: This is an online news text datasets coming
from BBC, Guardian and Reuter from February to April 2009. Three media are represented as three
views. Multilingual®: Three different languages in the text data are regarded as three views. Here,
we follow Liu et al. (2013) and use a subset with 600 instances. 4-Areas*: This academic dataset
has two views, the conference view and abstract term view, which consists of 20 conferences in
four areas with 28,702 authors and 13,214 terms in the abstract. Each author is labeled to one or
multiple areas. After removing cross-domain authors, we have 4,236 authors with the conference
view and term view. Caltech101 (Li et al. 2007) provides an image set of 101 categories for the
object recognition task. By following Li et al. (2015), we use a 20-class subset, which consists of
2,836 images and encodes each image with six different features. BBCSports®: The news article
dataset contains 737 news articles from the BBC Sport website corresponding to five sport topics
from 2004 to 2005, such as athletics, cricket, football, rugby, and tennis. In the experiment, we use
a subset of this dataset provided by Xia et al. (2014).

Baseline algorithms: Here, we compare our CMVC method with a number of baseline algorithms
including two baseline methods with concatenated features, four multi-view clustering methods,
and one ensemble clustering method. ConKM runs standard k-means on the concatenated repre-
sentation from different views. ConNMF works on the concatenated data to obtain the new latent
representation via NMF. CoINMF treats the multi-view data with a shared coeflicient matrix with
different basis matrices across views (Singh and Gordon 2008). CRSC integrates eigenvectors learnt
from different views via co-regularization with in the spectral clustering framework (Kumar et al.

http://archive.ics.uci.edu/ml/datasets.html.
http://mlg.ucd.ie/datasets.
Shttp://www.webis.de/research/corpora.
4http://www.ccs.neu.edu/home/yzsun/data/four_area.zip.
Shttp://mlg.ucd.ie/datasets.
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2011). MultiNMF achieves the consistency between individual matrix factorizations and the con-
sensus one (Liu et al. 2013). Partial Multi-View Clustering (PVC) deals with incomplete two-view
clustering based on NMF (Li et al. 2014), which learns the common space based on the condition
of missing data in two views. KCC is a kind of late fusion method (Wu et al. 2015), which first
generates basic clustering solution from each view and then fuses them into a consensus one via
k-means. Different utility functions correspond to different k-means distances.

Tools: CMVC is completely developed in MATLAB by the authors. CMVCsqg denotes that we
run k-means with squared Euclidean distance to generate basic partitions for each view and
merge these basic partitions with categorical utility function, and CMVCk, applies KL-divergence
to cluster the data from each view and leverages mutual information as the utility function to
optimize the ensemble process, and CMVC,,s uses cosine similarity as k-means distance and utility
function. KCCygg, KCCxkr, and KCCqos have the similar meanings with different utility functions.
All the comparative methods are provided by the corresponding authors. To achieve best perfor-
mance of KCC, here, we make use of sub-view setting. That means for each view, 10 sub-views
are generated with r; = 50% feature sample rate in order to enrich the diversity. We apply the
sub-view setting for KCC and CMVC, and set A = 0.01 the same as (Liu et al. 2013) and Kumar
et al. (2011). Each algorithm is repeated 10 times and the average results and standard deviations
are reported. We set K for each algorithm to be the true cluster number for fair comparison.

Metric: Due to the availability of label information, we employ the widely used external measure
NMTI and R, for cluster validity (Wu et al. 2009), which have the following formulations:

n-nij

i nijlog =
NMI = i o e : (29)

\/(Zl niy log n_,l;)(zj nj log n_:)

2 () -2 () 2 () ()
S ()2 + 5 ()2 -5 () 2 () 1(3)
where Table 2 contains all the variables of the above equation and helps to better understand the
meaning of NMI and R,,. Note that both of these two metrics are positive measurements with large

values indicating better performance. However, sometimes R,, might take negative values, which
means the cluster result is worse than random guess.

R, =

(30)

7.2 Clustering Results Comparisons

Table 6 shows the clustering performance on six real-world datasets in terms of NMI and Rn,
where the best results are highlighted in bold and “-~” denotes that PCV cannot handle more
than two-view data. Three observations are very clear. First, multi-view clustering methods are
generally better than the methods with concatenated features. However, on 4-Areas and BBCSport
datasets, CRSC and PCV have extremely worse performance, which indicates that these two
methods struggle to handle high-dimensional datasets. CoINMF and MultiNMF also suffer from
high deviations on this data set as well. Second, CMVC and KCC have substantial improvements
than other methods, which demonstrates the benefits of fusing high-level information. Compared
to KCC, which belongs to a single direction fusion, CMVC employs joint fusion to update basic
partitions and the consensus one and gets slightly higher performance than KCC (see Figure 3),
which validates the effectiveness of our proposed method. That means when a high quality
clustering result is obtained, we further make full use of the high-quality partition to guide the
basic ones and improve the performance. Third, CMVC achieves additional merits by providing
a flexible framework that can incorporate various distances and utility functions for different
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Table 6. Clustering Performance on Six Multi-view Datesets via NMI and Rn (%)

Datasets Digit 3-Sources Multilingual 4-Areas Caltech101 BBCSport
NMI

ConKM 7192 £296  41.28£6.19 3238 £ 6.06 8.46 + 0.98 37.28 £ 1.17  48.59 + 21.97
ConNMFConNMF | 62.15 + 2.26 45.36 + 3.07 28.27 £ 147 17.87 +14.17  37.76 £ 1.00 42.56 £ 1.81
CoINMF 67.77 £449  51.95%0.00 3410279 17.86 = 13.54 39.10 £ 0.09  24.77 = 0.00
CRSC 73.02 +£0.62  50.95+0.79  33.67 +£0.97 0.39 +0.02 56.51 £ 0.29 21.60 £ 2.55
MultiNMF 76.63 £ 1.84 4397 £4.13 3146+ 2.16 2145+ 17.60 58.89 + 1.39 20.53 £ 1.41
PCV 66.79 = 0.00 - - 0.73 £ 0.00 5.68 £ 0.00

KCCyeg 82.22 £3.26 3418 £2.68  32.89 +3.02 41.24 +£9.42 63.46 + 0.47 85.23 £ 0.88
KCCx1, 7394+ 186 5039 +£3.02 2746 +£3.86  43.89 £5.12 55.56 £ 1.29  81.91 + 4.92
KCCeos 81.41 £ 1.71 69.12 £ 5.59 40.28 + 2.26 50.25 + 9.68 61.50 £ 1.21 88.00 £ 0.22
CMVCyg 84.53 + 1.10  36.81 +4.35  34.03 + 3.03 36.57 £5.54 64.32+1.65 8551+ 0.52
CMVCky, 7501 +233 5310+ 175 27.79+3.99 58.03 £ 5.63 56.32£0.16  85.84 + 3.05
CMVCqos 82.34 £2.28 72.75+4.36 41.08 +2.42 64.08+7.40 62.20+0.83 88.11 + 0.22

Rn

ConKM 58.54 £ 6.16 15.56 + 8.30 12.31 £ 4.12 0.01 +0.11 19.80 £ 1.09  34.04 + 25.89
ConNMF 49.15 + 6.47 27.60 £ 9.40 22.07 = 1.58 1.80 + 5.94 21.61 = 2.24 29.40 £ 1.41
CoINMF 39.14 £ 2.63 2023 +5.23 2191+0.79 11.41+1396 21.90 +2.01 19.26 + 1.33
CRSC 64.44 +3.15  29.66 £ 4.31 24.16 £ 1.23 -0.05 £ 0.02 28.26 + 2.33 11.02 + 2.34
MultiNMF 65.22 + 2.88 21.54 £ 5.79 22.31 = 2.39 0.10 £ 0.10 31.61 + 3.80 12.69 = 0.22
PCV 55.50 £ 0.00 - - 0.60 + 0.00 - 0.50 + 0.00

KCCyeg 77.02 £5.15  60.90 £7.74  27.28 £ 1.53 5257 £1.14  33.16 £ 5.57 86.90 + 0.98
KCCxk1 67.24 475  57.52+5.80  27.62 + 2.32 74.09 £ 6.42 33.28 + 4.67 82.29 +7.92
KCCeos 82.56 £5.29  63.18 £8.63  35.24 + 2.84 75.63 £0.07  31.56 = 2.58 89.51 = 0.19
CMVCyg 7334 £596  65.72+6.98  28.76 + 1.01 53.64 £1.62 35.63 +£5.57 87.17 £0.95
CMVCky, 70.46 £ 2.14  61.13£3.13 2977 £ 142 78.59+£3.05 3516 +4.24  86.83 +3.37
CMVCqos 85.43 +3.91 69.28 +2.44 37.22+0.51 75.65+0.06 33.76 £2.01  89.60 + 0.23

Note: KCC and CMVC are used in sub-view setting.

applications. For instance, CMVC,s gets an excellent result on 3-Source with NMI = 0.73; how-
ever, the clustering results drop sharply to NMI < 0.55 via CMVC,gg and CMVCky.. Although it is
difficult to choose the best objective function of CMVC for a given data set, here, we recommend
the cosine similarity due to its high quality and stability. In the following experiments, we use
CMVC,;s as default to conduct parameter analysis.

7.3 Inside Factors of CMVC

In this subsection, we systematically explore the important impact factors of CMVC for practical
use in terms of the number of sub-view setting, continuous iteration, parameter analysis, and
random feature selection rate.

Performance without sub-views: So far, we demonstrate the performance of CMVC with the sub-
view setting. Someone might argue that the high performance of CMVC results from the random
feature selection and diverse sub-views. Here, we show the performance of CMVC and KCC with-
out sub-views in Figure 2. We can see that CMVC still performs the best among these multi-view
clustering algorithms. As for KCC, it drops dramatically on Digit. Although CMVC and KCC both
contain the same consensus part, the interaction mechanism between basic partitions and con-
sensus one boosts the performance of CMVC, which shows the superiority of CMVC over other
multi-view clustering algorithms.

Performance during iterations: Figure 3 shows the increasing performance of CMVC within it-
erations on Digits with all features, which also verifies CMVC can further improve the consensus
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Fig. 2. Performance without sub-views setting.
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Fig. 3. Performance of CMVC during iterations on Digit.

result by mutual interaction (Figure 6). The high-quality consensus partition derived from basic
partitions further guides the update of basic partitions, which not only uncover the cluster struc-
ture within each view, but also make them consistent with the consensus one as much as possible.
These updated basic partitions are fused into a new consensus one. That is the reason why CMVC
can get better performance than KCC with the iterative fashion.

Impact of random feature selection rate: Next, we explore the percent of random feature selection.
To generate sub-view data, we conduct random feature selection with certain percent varying
from 10% to 90% with 20% as interval. Figure 6 shows the results of CMVC with different feature
selection rates. We can see that by increasing the random feature selection rate, the performance
of CMVC gets subtle improvement on 4-Areas, and on the other datasets the results keep stable.
Besides, on Digit, 3-Sources and 4-Areas, CMVC even achieves satisfactory performance with only
10% features. If we further take the efficiency and space issues into consideration, the 50% strategy
would be more appealing due to enough features to generate good partitions and high diversity
for fusing process.

Impact of the number of sub-views: Finally, the study of the impact of the number of sub-views
is illustrated in Figure 4. If we only generate one partition for each view, CMVC not only produces
bad results but also suffers from huge volatility. With the increasing of the number of sub-views,
the performance of CMVC goes up and the interval of volatility narrows down as well. Therefore,
the number of sub-views is a key factor to control the stability of CMVC. Here, we set the number
to be 10 as default and get satisfactory results.

Impact of A: Here, we study the impact of A on CMVC. In the sub-view setting, we tune A from
107°, 1074, ..., to 10° to see the trend of performance. From Figure 5, we can see that CMVC
achieves stably good performance on all datasets. This indicates that sub-view setting enhances
the robustness of CMVC and makes it insensitive to A.
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7.4 Incomplete Multi-View Clustering

Here, we validate the performance of CMVC on incomplete multi-view data, which mean there
exist missing data in some views. To simulate the incomplete view setting, we randomly select a
fraction of instances from each view as missing data from 5% to 50% with 5% as interval. Among
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Fig. 7. Performance on incomplete multi-view data.

the competitive methods, only PVC can handle incomplete multi-view clustering, therefore, we
only report the results of PVC and CMVC in Figure 7. Note that PVC cannot handle more than
two-view data clustering; therefore, only results on 2-view datasets are reported. From Figure 7,
it can be seen that the performance of CMVC and PVC goes down as the missing rate increases.
Compared with 2-view datasets, CMVC achieves more stable results on 3-view datasets. This is
because 3-view datasets provide more information with the same missing rate on each view. More-
over, CMVC outperforms PVC on all scenarios with different missing rates on Digit and 4-Areas by
alarge margin. Besides, it is obvious that CMVC keeps high stability with a slow decreasing rate on
these four datasets. In summary, CMVC shows its robustness in handling incomplete multi-view
clustering, which validates its effectiveness for real-world applications.

8 CONCLUSIONS

In this article, we proposed the CMVC framework, which incorporated the generation of basic
partitions and fusion of consensus clustering into one integrated framework. Different from the
existing work, the multi-view clustering was achieved in the partition space derived from each in-
dividual view. Moreover, the consensus multi-view partition further guided the updating of basic
ones. By this means, basic partitions and consensus clustering were iteratively updated in a mu-
tually promotional way. Based on this, approximate calculation was employed to solve CMVC by
two iterative k-means optimization problems. Besides, it leaded to the generalization of CMVC and
gave the rich diversity to different applications. Further, we extended CMVC to handle incomplete
multi-view data. Experiments on real-world multi-view datasets demonstrated the effectiveness
of CMVC compared with several state-of-the-art multi-view clustering algorithms. Some impor-
tant impact factors of CMVC were thoroughly explored as well. In the future, we will employ the
proposed method for real-world large-scale multi-view clustering.
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