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Detecting outliers or anomalies is a fundamental problem in various machine learning and data mining

applications. Conventional outlier detection algorithms are mainly designed for single-view data. Nowa-

days, data can be easily collected from multiple views, and many learning tasks such as clustering and

classification have benefited from multi-view data. However, outlier detection from multi-view data is still

a very challenging problem, as the data in multiple views usually have more complicated distributions and

exhibit inconsistent behaviors. To address this problem, we propose a multi-view low-rank analysis (MLRA)

framework for outlier detection in this article. MLRA pursuits outliers from a new perspective, robust data

representation. It contains two major components. First, the cross-view low-rank coding is performed to

reveal the intrinsic structures of data. In particular, we formulate a regularized rank-minimization problem,

which is solved by an efficient optimization algorithm. Second, the outliers are identified through an outlier

score estimation procedure. Different from the existing multi-view outlier detection methods, MLRA is

able to detect two different types of outliers from multiple views simultaneously. To this end, we design

a criterion to estimate the outlier scores by analyzing the obtained representation coefficients. Moreover,

we extend MLRA to tackle the multi-view group outlier detection problem. Extensive evaluations on seven

UCI datasets, the MovieLens, the USPS-MNIST, and the WebKB datasets demon strate that our approach

outperforms several state-of-the-art outlier detection methods.
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1 INTRODUCTION

As a fundamental data mining technique, outlier detection (or anomaly detection) identifies the
abnormal samples in a dataset. Many effective outlier detection algorithms have been developed
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during the past decades, and they have been extensively applied to many safety-critical applica-
tions, such as fraud detection, network intrusion identification and system health monitoring [43,
47, 60]. The representative outlier detection methods include the reference-based approach [44],
inductive logic programming based algorithm [2], information-theoretic algorithm [54], and iso-
lation based algorithm [34]. Recently, some outlier detection methods have been developed to deal
with the high-dimensional data. Pham et al. designed an efficient algorithm for angle-based outlier
detection in high-dimensional data [46]. Zimek et al. studied the subsampling problem in statistical
outlier detection, and provided effective solutions [61]. Schubert et al. presented a generalization of
density-based outlier detection methods using kernel density estimation [47]. In general, these ex-
isting methods analyze the distribution or density of a dataset, and identify outliers by using some
well-defined criteria. Moreover, these methods were designed for single-view data like many other
conventional data mining methods.
Nowadays, data are usually collected from diverse domains or obtained from various feature ex-

tractors, and each group of features is regarded as a particular view [57]. Multi-view data provide
plentiful information to characterize the properties of objects. Many algorithms have been de-
signed in the multi-view settings, by considering the complementary information from different
data views. Moreover, some machine learning and data mining problems, such as clustering [52]
and subspace learning [53], have been greatly benefitted from the multi-view data. Nevertheless,
detecting outliers from multi-view data is still a challenging problem for two reasons: (1) the
multi-view data usually have more complicated distributions than the single-view data; (2) the
data points may exhibit inconsistent behaviors in different views. In other words, outliers may be
easily observed as normal data in one or more views.

1.1 Motivation and Contribution

In this article, we tackle the multi-view outlier detection problem from the perspective of data
representation. We would argue that, by leveraging the representation relationship of samples,
the outliers contained in dataset can be correctly identified.
Recently, low-rank matrix recovery has been extensively studied to exploit the intrinsic struc-

ture of data [8, 36]. Many applications have been benefited from such structural information, such
as subspace clustering [39], multi-task learning [9], subspace learning [25], transfer learning [48],
and semi-supervised classification [24]. In low-rank subspace clustering [39], the sample set is
served as bases (or dictionary) to reconstruct itself, which inspires us to explore the representation
relationship of samples. Our intuition is that a normal sample usually serves as a good contributor

in representing the other normal samples, while the outliers do not. Therefore, it is reasonable to
identify outliers from the representation coefficients in low-rank matrix recovery.
Based on the assumptions above, we propose a novel outlier detection framework named Multi-

view Low-Rank Analysis (MLRA). Figure 1 shows the flowchart of our framework. It contains two
successive components: (1) robust data representation by cross-view low-rank analysis, and (2) the
calculation of outlier scores. In particular, two types of outliers are considered in our framework.
The Type 1 outliers are samples that show inconsistent clustering results across different views,
and the Type 2 outliers have abnormal behaviors in each view. For example, an animal dataset
might contain two data views, including the image view and text view. The features extracted
from a horse image might be very similar to these from a deer image, as these two species have
similar limbs. But they have quite different features in text view. Thus, they could be the Type 1
outliers. In addition, if some natural scene images are accidentally included in the animal dataset,
they are considered as Type 2 outliers. To build effective learning systems, it is crucial to identify
such outliers in advance. In Figure 1, the second column in X 1 (marked by red color) is an outlier
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Fig. 1. Flowchart of the proposed MLRA framework. Given a multi-view sample set X = {X 1,X 2, . . . ,XV },
MLRA first performs cross-view low-rank analysis to reveal the reconstruction relationship of samples, and

then calculate outlier scores. Finally, it identifies the outliers contained in data (i.e., the second and sixth

column in data matrix). Zv are representation coefficient matrices with low-rank structures, and Ev are

sparse matrices.

in view 1, but it is a normal sample in other views. So it is a Type 1 outlier. Moreover, if the last
column (marked by blue color) is abnormal in all of the V views, it is a Type 2 outlier.

By far, only a few methods have been proposed to detect outliers in multi-view data. Das et al.
presented a heterogeneous anomaly detection method using multiple kernel learning [11]. Muller
et al. proposed a multi-view outlier ranking algorithm using subspace analysis [42]. Hsiao et al.
utilized the pareto depth analysis to develop a multi-criteria anomaly detection algorithm [16].
The most relevant works to our approach are clustering based multi-view outlier detection meth-
ods, horizontal anomaly detection (HOAD) [14] and anomaly detection using affinity propagation
(AP) [1]. These methods obtained promising results in various applications. They detect outliers
from the perspective of ensemble learning [11] or clustering [14]. Unlike the existing methods, our
approach tackles the multi-view outlier detection problem from a different perspective, i.e., robust
data representation.
Furthermore, although the two types of outliers discussed above exist in many real-world ap-

plications, traditional single-view and multi-view outlier detection methods cannot handle them
simultaneously. For example, the multi-view methods proposed in [14] and [1] are only designed
for the Type 1 outliers. However, our approach can detect both Type 1 and Type 2 outliers.
We formulate the cross-view low-rank analysis in our framework as a constrained rank-

minimization problem, and present an efficient optimization algorithm to solve it. After that, we
devise a criterion to estimate the outlier score for each sample, considering two types of outliers in
multiple views. Moreover, we extend the MLRA framework to a new problem, multi-view group
anomaly detection. Extensive results on ten benchmark datasets are reported.
This article is an extension of our previous work [26, 27]. In summary, the major contributions

of this article are as follows:

—We design a multi-view outlier detection framework, MLRA. To the best of our knowledge,
our work is the first attempt to detect two types of outliers in a joint framework.

—We identify the outliers from the perspective of data representation. To this end, we develop
a cross-view low-rank analysis model, and present an efficient optimization algorithm to
solve it.
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—We extend MLRA to multi-view group outlier detection, by refining the objective function
and devising a criterion for estimating outlier scores.

—We evaluate our approach and related methods on seven UCI datasets, the MovieLens, the
USPS-MNIST, and the WebKB datasets. Extensive results demonstrated the effectiveness of
our approach.

1.2 Organization

The rest of the article is organized as follows. In Section 2, we review the related works and discuss
how they differ from our approach. In Section 3, we introduce the preliminary knowledge of outlier
detection, and defines two types of outliers in the multi-view case. In Section 4, we present the
MLRA framework, including the problem formulation, optimization, and outlier score estimation.
In Section 5, we extendMLRA framework formulti-view group outlier detection. The experimental
results and discussions are reported in Section 6. Section 7 concludes this article.

2 RELATEDWORKS

In general, our work is closely related to the following topics: multi-view learning, outlier detec-
tion, and low-rank learning.

2.1 Multi-View Learning

Multi-view learning has been receiving increasing attention in recent years [57]. One implicit
assumption is that either view alone has sufficient information about the samples, but the com-
plexity of learning problems can be reduced by eliminating hypotheses from each view that tend
not to agree with each other [50]. One of the representative work in multi-view learning is co-
training [6], which learns from the samples that are described by two distinct views. The repre-
sentative multi-view learning algorithms include manifold co-regularization [49], and multi-view
feature learning [40].
The basic idea of thesemethods is to exploit the consistency amongmultiple views to enhance the

learning performance. In ourMLRA framework, however, we exploit the inconsistency information
among different views to identify outliers.

2.2 Outlier Detection

Many single-view outlier detection algorithms have been developed over the past decade, such
as [13, 34, 51, 61]. Tong et al. proposed a non-negative residual matrix factorization (NrMF) method
for anomaly detection in graph data. It estimates outlier scores from the residuals, but it is only
designed for single-view data. Lee et al. designed an anomaly detection algorithm via online over-
sampling PCA [22]. Liu et al. studied a specific scenario when data have imperfect labels [33].
Du et al. presented a discriminative metric learning for outlier detection [12]. Perozzi et al. pro-
posed the focused clustering and outlier detection method in large attributed graphs [45]. Liu et al.
designed the support vector data description (SVDD) based outlier detection method [32].
To date, only a few methods have been developed to handle the multi-view outlier detection

problem [19, 31]. The most relevant multi-view methods to our approach are clustering based
multi-view outlier detection methods, HOAD [14] and anomaly detection using AP [1].

HOAD aims to detect outliers from several different data sources that can be considered asmulti-
view data. In HOAD, the samples that have inconsistent behavior among different data sources are
marked as anomalies. HOAD first constructs a combined similarity graph based on the similarity
matrices in multiple views and computes spectral embeddings for the samples. Then, it calculates
the anomalous score of each sample using the cosine distance between different spectral embed-
dings. However, HOAD is only designed for the outliers that show inconsistent behavior across
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different views (i.e., the Type 1 outlier defined in this article). In addition, the graph constructed
in HOAD will be dramatically expanded for multi-view data, which increases considerable com-
putational cost.
Most recently, Alvarez et al. proposed an AP based multi-view anomaly detection algorithm [1].

This algorithm identifies anomalies by analyzing the neighborhoods of each sample in different
views, and it adopts four different strategies to calculate anomaly scores. Specifically, it performs
clustering in different view separately. The clustering-based affinity vectors are then calculated
for each sample. There are significant differences between our approach and Alvarez’s algorithm.
First, likeHOAD,Alvarez’s algorithm is a clustering basedmethod that analyze clustering results in
different views to detect outliers. However, our approach models the multi-view outlier detection
problem from the perspective of data reconstruction, and performs low-rank analysis to identify
outliers. Second, Alvarez’s algorithmwas only designed for detecting the Type 1 outliers. However,
our approach can detect both Type 1 and Type 2 outliers jointly.
Group anomaly detection is a relatively new topic. Several effective algorithms have been pre-

sented to address this problem [41, 56, 59]. However, these algorithms can only handle the single-
view data. To the best of our knowledge, our work is the first attempt to address the multi-view
group outlier detection problem.

2.3 Low-Rank Learning

Our approach is also related to low-rank matrix learning, which has attracted increasing attention
in recent years [4, 23]. Robust PCA (RPCA) [8] and Low-Rank Representation (LRR) are two rep-
resentative low-rank learning methods. RPCA can recover noisy data from one single space, while
LRR is able to recover multiple subspaces in the presence of noise [35, 39]. The most successful
application of LRR is subspace clustering. It can correctly recover the subspace membership of
samples, even if the samples are heavily corrupted.
In addition, LRR shows promising performance in outlier detection [37, 38]. Liu et al. applied the

LRR model to outlier detection, and achieved promising results [37]. Li et al. incorporated the low-
rank constraint into the SVDD model, and detected outliers from image datasets [28]. However,
these methods can only deal with single-view data.
Different from LRR and its variants, our approach performs MLRA for outlier detection. To the

best of our knowledge, MLRA is the first multi-view low-rank learning approach.

3 PRELIMINARY

Given a single-view sample set X̄ = {x1,x2, . . . ,xn } ∈ Rd×n that contains a small amount of out-
liers, traditional single-view outlier detection methods aim at identifying those outliers automati-
cally. These methods usually utilize the distance or density information from sample set [3], and
identify outliers using decision boundaries or outlier scores. In addition, the notations summarized
in Table 1 will be used throughout this article.

When data are collected from multiple views, we have X = {X (1),X (2), . . . ,X (V ) }, where V
is the total number of views. For the sample set observed in view v , we also have X (v ) =

{x (v )
1 ,x

(v )
2 , . . . ,x

(v )
n }, where n is the number of samples in each view. Generally, multi-view out-

lier detection is more difficult than single-view outlier detection, as outliers may behave completely
different across multiple views.
In this article, we focus on detecting outliers from multi-view data. In particular, we aim to

identify two types of outliers that are defined below.

Definition 1. Type 1 Outlier is an outlier that exhibit inconsistent characteristics (e.g., cluster
membership) across different views.
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Table 1. Summary of Notations

Notation Description
X Multi-view sample set
X̄ Single-view sample set
n The number of samples in X
V Number of views

X (v ) Sample set in view v
Z (v ) Representation coefficients in view v
D (v ) Dictionary in view v
E (v ) Error matrices in view v
oi Outlier score for the ith sample in X
‖ · ‖∗ Trace norm (i.e., nuclear norm)
‖ · ‖F Frobenius norm
‖ · ‖2,1 l2,1 norm

Fig. 2. Illustration of Type 1 outliers (red triangles) and Type 2 outliers (blue circles) in two-view data.

Figure 2 illustrates two data views, and each view contains three clusters and several outliers.
The red triangle belongs to different clusters in view 1 and view 2. Thus, it is a Type 2 outlier. Note
that the existing multi-view outlier detection algorithms [1, 14] are designed for the Type 1 outlier.

Definition 2. Type 2 Outlier is an outlier that exhibits consistent characteristics across different
views, but it shows abnormal behavior in each view.

In Figure 2, the blue circle is a Type 2 outlier because it does not belong to any cluster in both
views. We also notice that this type of outliers are ignored by existing multi-view outlier detection
methods.

4 MULTI-VIEW LOW-RANK ANALYSIS (MLRA)

In this section, we describe the proposed MLRA framework. Our goal is to detect two types of
outliers simultaneously. As shown in Figure 1, our MLRA framework contains two successive
components, which are cross-view low-rank analysis and the calculation of outlier scores.

4.1 Cross-View Low-Rank Analysis

We formulate the cross-view low-rank analysis as a constrained rank minimization problem, and
then present an optimization algorithm to solve it.
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Problem Formulation

Unlike clustering based methods presented in [1, 14], we tackle the multi-view outlier detection

problem from the perspective of data representation. In particular, for the sample set X (v ) ∈ Rd×n
observed in the vth view, we can represent it as

X (v ) = X (v )Z (v ) + E (v ), (1)

where Z (v ) ∈ Rn×n is a coefficient matrix and E (v ) ∈ Rd×n is a noise matrix.
Like other outlier detection algorithms, we assume that the (normal) samples came from K

clusters. The samples in the same cluster could be drawn from the same subspace. Therefore,

Z (v ) should be a low-rank coefficient matrix that has the block-diagonal structure. The coefficient

vectors in Z (v ) belong to the same cluster tend to have high correlations.
On the other hand, outliers are actually “sample-specific” noises in data matrix. It is reasonable

to use l2,1 norm to measure the noise matrix, as l2,1 norm makes the column of the matrix to be

zero. Moreover, we consider the cross-view relationships between coefficient matrices Z (v ) . Our
intuition is that the representation coefficients should be consistent for normal data in different
views, but should be inconsistent for outliers.
Based on the observations above, we present the objective function as follows:

min
Z (v ),E (v )

V∑
v=1

(
rank(Z (v ) ) + α | |E (v ) | |2,1

)

+ β
V−1∑
v=1

V∑
p=v+1

| |Z (v ) − Z (p ) | |2,1

s.t. X (v ) = X (v )Z (v ) + E (v ), v = 1, 2, . . . ,V ,

(2)

where ‖E‖2,1 denotes the l2,1 norm, and ‖E‖2,1 = ∑n
i=1

√∑d
j=1 ([E]ji )

2, α and β are tradeoff param-

eters to balance different terms.
In (2), the first two terms

∑V
v=1 (rank(Z

(v ) ) + α | |E (v ) | |2,1) represent the low-rank and sparse con-
straints on each view, respectively. The last term

∑V−1
v=1

∑V
p=v+1 | |Z (v ) − Z (p ) | |2,1 indicates the sum-

mation of pairwise error of coefficient matrices Z (v ) . Considering the inconsistency columns in

Z (v ) and Z (p ) , we utilize the l2,1 norm on (Z (v ) − Z (p ) ). This term ensures robust data representa-

tions. If the coefficient matrix in a specific view (e.g., Z (2)) are unreliable or corrupted, it would be
fixed by virtue of the last term.
For the sake of simplicity, we only provide detailed derivations and solutions for the two-

view case. They can be extended easily to multi-view cases. In the two-view case, we have

X = {X (1),X (2) }, and x (v )
i (v = 1, 2) denote the ith sample in view v . Then, we can modify the

object function in (2) for two-views. However, the optimization problem in (2) is hard to solve, as
rank(·) function is neither convex nor continuous. Trace norm is a commonly-used approximation
of the non-convex function rank(·) [8, 20]. Then, (2) for the two-view case is formulated as

min
Z (v ),E (v )

2∑
v=1

(���Z (v )���∗ + α
���E (v )���2,1

)
+ β���Z (1) − Z (2)���2,1

s.t. X (v ) = X (v )Z (v ) + E (v ), v = 1, 2,

(3)

where ‖ · ‖∗ represents the trace norm [8].
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Optimization

To solve (3), we employ an efficient optimization technique, the inexact augmented Lagrange mul-

tiplier (ALM) algorithm [30]. First, we introduce relaxation variables J (v ) and S to (3), and obtain

min
Z (v ), J (v ),E (v ),S

2∑
v=1

(‖ J (v ) ‖∗ + α | |E (v ) | |2,1) + β | |S | |2,1

s.t. X (v ) = X (v )Z (v ) + E (v ),

Z (v ) = J (v ), v = 1, 2,

S = Z (1) − Z (2) .

(4)

Furthermore, the augmented Lagrangian function of (4) is

L =
2∑

v=1

(‖ J (v ) ‖∗ + α | |E (v ) | |2,1) + β | |S | |2,1

+

2∑
v=1

(〈W (v ),X (v ) − X (v )Z (v ) − E (v )〉 + μ

2
| |Z (v ) − J (v ) | |2F

+ 〈P (v ),Z (v ) − J (v )〉 + μ

2 | |X (v ) − X (v )Z (v ) − E (v ) | |2F )
+ 〈Q, S − (Z (1) − Z (2) )〉 + μ

2 | |S − (Z (1) − Z (2) ) | |2F,

(5)

whereW (v ) , P (v ) and Q are Lagrange multipliers, and μ > 0 is a penalty parameter.
The objective function is not jointly convex to all the variables, but it is convex to each of them

when fixing the others. Therefore, we update each variable as follows.

Update J (v )

By ignoring the irrelevant terms w.r.t. J (v ) in (5), we have the objective as follows:

J (v ) = argmin
J (v )

2∑
v=1

�
�
1

μ
���J (v )

���∗ +
1

2

�����
J (v ) −

(
Z (v ) +

P (v )

μ

)�����
2

F

�
�
. (6)

The optimal solution to (6) can be obtained by using the singular value thresholding (SVT)

algorithm [7]. In detail, we have ΔJ = Z (v ) + (P (v )/μ ). The SVD of ΔJ is written as ΔJ = UJ Σ JVJ ,
where Σ J = diag({σi }1≤i≤r ), r denotes the rank, and σi denote the singular values. The solution

is J (v ) = UJΩ(1/μ ) (Σ J )VJ , where Ω(1/μ ) (Σ J ) = diag({σi − (1/μ )}+), and (a)+ indicates the positive
portion of a.

Update Zv

We ignore the terms independent of Z (v ) in (5), and obtain

L (Z (v ) ) =
2∑

v=1

(〈W (v ),X (v ) − X (v )Z (v ) − E (v )〉 + μ

2
| |Z (v ) − J (v ) | |2F

+ 〈P (v ),Z (v ) − J (v )〉 + μ

2 | |X (v ) − X (v )Z (v ) − E (v ) | |2F )
+ 〈Q, S − (Z (1) − Z (2) )〉 + μ

2 | |S − (Z (1) − Z (2) ) | |2F,

(7)

By setting the derivative w.r.t. Z (1) and Z (2) to zero, respectively, we obtain the solutions as
follows:

Z (1) = (2I + X (1)�X (1) )−1 (X (1)� (X (1) − E (1) )

+ J (1) + S + Z (2) +
X (1)�W (1) − P (1) +Q

μ
).

(8)
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Z (2) = (2I + X (2)�X (2) )−1 (X 2� (X (2) − E (2) )

+ J (2) − S + Z (1) +
X (2)�W (2) − P (2) −Q

μ
).

(9)

Update S
By dropping the terms irrelevant to S , Equation (5) is reduced to

S = argmin
S

β

μ
| |S | |2,1

+
1

2

�����
S −
(
Z (1) − Z (2) +

Q

μ

)�����
2

F

.
(10)

Update E (v )

Similarly, after dropping terms independent of E (v ) , we have

E (v ) = argmin
E (v )

2∑
v=1

(
α

μ
| |E (v ) | |2,1

+
1

2

�����
E (v ) −

(
X (v ) − X (v )Z (v ) +

W (v )

μ

)�����
2

F

�
�
.

(11)

The solution to problems like (10) and (11) is discussed in [39]. Take (10) as an example and let

Ψ = Z (1) − Z (2) +
Q
μ
, the ith column of S is

S (:, i ) =
⎧⎨
⎩
‖Ψi ‖−β
‖Ψi ‖ Ψi , i f β < ‖Ψi ‖,

0, otherwise.
(12)

Finally, the complete optimization algorithm for solving (5) is outlined in Algorithm 1. We also
show the initializations for each variable in the algorithm.

Discussion and Complexity Analysis

The Inexact ALM is a mature optimization technique. It usually converges well in practice, al-
though proving the convergence in theory is still an open issue [10]. In the experiments, we will
show the convergence property of our algorithm.
Steps 2–4 are the most time-consuming parts in Algorithm 1. Let n denote the sample size. In

Step 2, the SVD of n × n matrices is required by the SVT operator, which costs O (n3). Steps 3–4
involve the matrix inversion and matrix multiplication, which usually cost O (n3). As a result, the
time complexity of one iteration in Algorithm 1 is O (n3). We will show the running time of our
algorithm and its competitors in the experiments.

4.2 Outlier Score Estimation

With the optimal solutionsZ (v ) and E (v ) , we design a criterion to estimate the outlier score of each
sample. To calculate the outlier score vector o, our criterion (for the two-view case) is formulated
as

o(i ) =
n∑
k=1

(
u (i )
k
Z (1)
ik
Z (2)
ik

)
− λ

n∑
k=1

(
E (1)
ik
E (2)
ik

)
, (13)

where o(i ) denotes the outlier score of the ith sample, u (i ) ∈ Rn×1 is a constant indictor vector. In
detail, the kth element in u (i ) corresponds to the kth sample in X . We consider two settings for

u (i ) . When class labels are available, if samples xi and xk belong to the same class, then u (i )
k
= 1;

otherwise, u (i )
k
= 0. When class labels are unknown, we simply set all u (i ) to 1. λ is a tradeoff

parameter (we set λ = 0.5 in the experiments).
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ALGORITHM 1: Solving (5) using Inexact ALM

Input: dataset X = {X (1) ,X (2) }, parameters α , β ,

Z (v ) = J (v ) = 0, E (v ) = 0,W (v ) = 0, P (v ) = 0,

Q = 0, ρ = 1.2, μ = 0.1, μmax = 1010, ϵ = 10−8
1:while not converged do

2: Fix the others and update J (1) and J (2) using (6).

3: Fix the others and update Z (1) using (8).

4: Fix the others and update Z (2) using (9).

5: Fix the others and update S using (10).

6: Fix the others and update E (v ) using (11).

7: Update the multipliersW (v ) , P (v ) and Q

W (v ) =W (v ) + μ (X (v ) − X (v )Z (v ) − E (v ) ),
P (v ) = P (v ) + μ (Z (v ) − J (v ) ),

Q = Q + μ (S − (Z (1) − Z (2) )).
8: Update the penalty parameter μ by

μ = min(μmax, ρμ )
9: Examine the conditions for convergence

| |X (v ) − X (v )Z (v ) − E (v ) | |∞ < ϵ and

| |Z (v ) − J (v ) | |∞ < ϵ and

| |S − (Z (1) − Z (2) ) | |∞ < ϵ
10: end while

Output: Z (v ) ,E (v )

As discussed above, our objective function in (2) considers both view-specific reconstruction and
the cross-view consistency, which enables us to discover both of the Type 1 and Type 2 outliers
by analyzing the learned representation coefficients and noise matrices. In particular, the criterion
(13) could detect two types of outliers simultaneously. The first term in (13) measures the incon-
sistency of the ith sample across two views. From the perspective of data reconstruction, a sample
is mainly represented by those samples came from the same cluster. Therefore, we evaluate the

inner-class representation coefficients by virtue of u (i ) . For instance, if the ith sample is a normal

sample in both views, the coefficients in Z (1)
i and Z (2)

i should be consistent. As a result, the value

of
∑n
k=1 (u

(i )
k
Z (1)
ik
Z (2)
ik

) should be relatively large. On the contrary, if the ith sample is an outlier that

exhibits diverse characteristics in different views, the inconsistent coefficients Z (1)
i and Z (2)

i would
lead to a small value. Therefore, this term is suitable for detecting the Type 1 outliers. The second

term in (13) contributes to identifying the Type 2 outliers. Each column in E (1) and E (2) corresponds
to the reconstruction error vectors in view 1 and view 2, respectively. If the ith sample is normal

in at least one of the views, the value of
∑n
k=1 (E

(1)
ik
E (2)
ik
) tends to be zero, and then this term would

not affect the outlier score o(i ) too much. However, if the ith sample is a Type 2 outlier, which
shows abnormal behavior in both views, the summation in the second term will be increased, and
then the outlier score o(i ) will be further decreased. Therefore, the proposed criterion (13) is able
to detect both Type 1 outliers and Type 2 outliers.
Further, a general criterion for the V -view case is

o(i ) =
V−1∑
p=1

V∑
q=p+1

�
�

n∑
k=1

(
u (i )
k
Z
(p )
ik

Z
(q )
ik

)
− λ

n∑
k=1

(
E
(p )
ik

E
(q )
ik

)�
�
, (14)
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ALGORITHM 2: MLRA for Outlier Detection

Input:Multi-view sample set X , threshold γ

1: Normalize each sample x
(v )
i ,

x
(v )
i = x

(v )
i /| |x (v )i | |.

2: Solve objective (5) using Algorithm 1 and obtain

optimal solution Zv , Ev .
3: Calculate outlier score for each sample using (14).
4: Generate binary label vector L

If o(i ) < γ , L(i ) = 1; otherwise, L(i ) = 0.

Output: Binary outlier label vector L

After calculating the outlier scores for all the samples, the sample xi is marked as an outlier if
the score o(i ) is smaller than the threshold γ . The complete MLRA algorithm is summarized in
Algorithm 2.

5 MLRA FOR MULTI-VIEW GROUP OUTLIER DETECTION

In this section, we extend the MLRA framework to a novel application, multi-view group outlier
detection. Different from original outlier detection tasks that identify individual abnormal data
points, we aim to detect a group of abnormal data points across different views.

5.1 Motivation

In practice, outlier may not only appear as an individual point, but also as a group. For example,
a group of people collude to create false product reviews in social media websites [59]. The most
challenging part in group anomaly detection is that the outliers appear to be normal at the individ-
ual level. Existing works on group anomaly detection mainly deal with the single-view data [41,
56, 59]. In this article, we propose a new problem, multi-view group outlier detection.

The group outlier detection problem becomes more complicated in the multi-view settings. Our
assumption is that the dataset contains several groups, and each group is considered as a cluster.
In other words, we can observe several clusters in each view. Ideally, the cluster structure in all the
views should be consistent. In the multi-view group outlier detection problem, one cluster might
be identified as an outlier group, if it exhibits inconsistent behavior in different views.
Formally, an outlier group in the multi-view setting is defined as follows.

Definition 3. An Outlier Group is a set of data points that form as a cluster in each view, but
show inconsistent behavior across different views.

The group outlier is actually a special case of Type 1 outlier we defined in Section 3. Our goal
is to identify such outlier groups from the perspective of data representation.

5.2 Formulation and Algorithm

We extend ourMLRA framework for themulti-view group outlier detection problem. As before, we
provide detailed derivations and solutions for the two-view case. As the individual outlier points
are not considered in this problem, we can simplify (3) as

min
Z (v )

2∑
v=1

(‖Z (v ) ‖∗ + α | |X (v ) − X (v )Z (v ) | |F)
+ β | |Z (1) − Z (2) | |2,1.

(15)
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In (15), we drop the l2,1 constraints on the reconstruction errors, and utilize the Frobenius norm.
The reason is thatwe assume the data only contain group outliers. The group outliers are the Type 1
outliers, which show inconsistent behavior across different views. As discussed in Section 4, the
l2,1 norm is very suitable to detect the Type 2 outliers. Therefore, it is not very necessary to use l2,1
norm in this scenario. However, if the data contain both individual-level outliers and group-level
outliers, we suggest using the l2,1 norm to model reconstruction errors. The problem (15) can be
solved using the same optimization technique described in Section 4.

Using the optimal solutions Z (v ) , we design a criterion to calculate the outlier score vector oд .
The criterion for group outlier detection is formulated as

oд (i ) =
n∑
k=1

−







�
�
U ◦ (Z (1)�Z (1) )

‖Z (1) ‖2F
− U ◦ (Z (2)�Z (2) )

‖Z (2) ‖2F
�
�ik








, (16)

where U ∈ Rn×n is a pairwise cluster membership indicator matrix. If two samples are from the
sample cluster, the corresponding element in U will be 1. |a | denotes the absolute value of a, and
A ◦ B denotes the element-wise product of matrices A and B.

In (16), (Z (v )�Z (v ) ) ∈ Rn×n is actually an affinity matrix derived from the LRRs, which can be
considered a robust estimation of the cluster structure in viewv . Particularly, each element in this
affinity matrix is the inner product of two LRR vectors. The benefits of employing such an affinity

measurement has also been discussed in [24] and [17].U ◦ (Z (v )�Z (v ) ) means that we only count
the block diagonal parts in coefficients matrices Z (v ) . In practice,U can be obtained by performing

spectral clustering onZ (v ) . We normalize the estimations in each view, andmeasure the differences

in two views. For instance, if each view contains two groups, andU ◦ (Z (v )�Z (v ) ) should have two
clear block diagonals. If one group is an outlier group, the corresponding block diagonal part in

|U ◦(Z (1)�Z (1) )
‖Z (1) ‖2F

− U ◦(Z (2)�Z (2) )
‖Z (2) ‖2F

| should be enlarged, as this group has inconsistent characteristics in

two views.
The sample xi is marked as a member of the outlier group if the score oд (i ) is smaller than the

threshold γ . The MLRA based group outlier detection algorithm is summarized in Algorithm 3.

ALGORITHM 3: MLRA for Group Outlier Detection

Input:Multi-view sample set X , threshold γ

1: Normalize each sample x
(v )
i ,

x
(v )
i = x

(v )
i /| |x (v )i | |.

2: Solve objective (15) and obtain optimal solutions Zv .
3: Calculate outlier score for each sample using (16).
4: Generate binary label vector L

If o(i ) < γ , L(i ) = 1; otherwise, L(i ) = 0.

Output: Binary outlier label vector Lд

6 EXPERIMENTS

The performance of our MLRA framework is evaluated on seven UCI datasets [5], MovieLens-1M
dataset,1 the USPS-MNIST dataset [18, 21], and the WebKB dataset [6].2

1http://grouplens.org/datasets/movielens/.
2http://lig-membres.imag.fr/grimal/data.html.
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6.1 Baselines and Evaluation Metrics

Our approach is compared with several state-of-the-art single-view and multi-view outlier detec-
tion methods in the presence of two types of outliers. The compared methods are listed as follows:

—Low-Rank Representations (LRR) [37]. LRR is a representative outlier detection method for
single-view data. Thus, we testify its performance on two views separately.

—Direct Robust Matrix Factorization (DRMF) [55]. DRMF formulates robust factorization as
a matrix approximation problem with constraints on the cardinality of the outlier set.

—Outlier Pursuit (OP) [58]. OP is able to recover the optimal low-dimensional space and
identifies outliers. It is also a single-view method.

—HOrizontal Anomaly Detection (HOAD) [14]. HOAD is a clustering-based multi-view out-
lier detection method. Two parametersm and k in HOAD have been fine tuned to obtain
its best performance.

—Anomaly detection using AP [1]. AP is the state-of-the-art multi-view outlier detection
method. The authors employed two affinity measurements and four anomaly score calcu-
lation strategies. In this article, we use the L-2 distance and Hilbert-Schmidt Independence
Criterion (HSIC), as they usually yield better performance than others.

As suggested in [1, 14], we adopt the receiver operating characteristic (ROC) curves as the
evaluation metric, which represents the tradeoff between detection rate and false alarm rate. We
also report the area under ROC curve (AUC). The false positive rate (FPR) and true positive rate
(TPR) used for generating ROC curves are defined as follows:

FPR =
FP

FP +TN
, TPR =

TP

TP + FN
, (17)

where FP , TN , FN , and TP represent the false positives, true negatives, false negatives, and true
positives, respectively.

6.2 Synthetic Multi-View Settings on Real Data

UCI Datasets

We employ seven benchmark datasets, namely “Iris,” “Letter,” “Waveform,” “Zoo,” “Ionosphere,”
“Pima,” and “Wdbc” from the UCI machine learning repository [5]. To conduct fair comparisons,
we follow the sample settings in [1]. Since all the seven datasets are not multi-view datasets, we
simulate two views as suggested in [14]. In particular, the feature representations of each dataset
are divided into two subsets, where each subset is considered as one view of the data. In order
to generate a Type 1 outlier, we take two objects from two different classes and swap the subsets
in one view but not in the other. To generate a Type 2 outlier, we randomly select a sample, and
replace its features in two views as random values. In total, 15% data are preprocessed and labeled
as outliers. Table 2 summarizes the detailed information of all the UCI datasets used in this article.

To illustrate the convergence property of our algorithm, we show in Figure 4(a) the relative er-

ror on the Iris dataset. The relative error in each iteration is calculated by max( | |X (1) − X (1)Z (1) −
E (1) ‖F/| |X (1) | |F, | |X (2) − X (2)Z (2) − E (2) ‖F/| |X (2) | |F). Figure 4(a) shows that our algorithms con-
verges quickly, which ensures the less computational cost of our approach.
As for the parameter selection, we adopted a coarse-to-fine strategy to find the proper range for

parameters. There are two major parameters in our approach, α and β . We tuned their values in
the range of {10−2, 10−1, . . . , 102}. Figure 4(b) shows the AUC of our approach on the Pima dataset,
varying the values of α and β . Note that we obtained similar results on other datasets. We can
observe from Figure 4(b) that, as the dataset contain “sample-specific” noise, the two parameters
usually tend to be small values around 0.04. Also, as we chose ROC and AUC as the evaluation
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Table 2. Summary of Seven UCI Datasets

(n = Number of Samples,m1 = Number of

Type 1 Outliers,m2 = Number of Type 2

Outliers, d = Number of Dimensions)

Datasets n m1 m2 d
Iris 150 16 8 4
Letter 1300 130 65 16
Ionosphere 351 36 18 34
Zoo 101 10 5 16
Waveform 1200 120 60 21
Pima 768 76 38 8
Wdbc 569 56 28 30

Table 3. Average AUC Values (±Standard Deviations) on Seven UCI Datasets
with only Type 1 Outliers

Single-View Methods Multi-View Methods

Datasets OP DRMF LRR HOAD AP Ours

Iris 0.42±0.08 0.46±0.07 0.50±0.08 0.83±0.06 0.96±0.03 0.84±0.02
Letter 0.39±0.05 0.43±0.03 0.49±0.02 0.53±0.04 0.85±0.01 0.88±0.02
Ionosphere 0.41±0.06 0.42±0.03 0.46±0.05 0.50±0.06 0.94±0.03 0.87±0.03
Zoo 0.49±0.08 0.53±0.08 0.60±0.09 0.55±0.10 0.91±0.05 0.90±0.05
Waveform 0.40±0.04 0.45±0.03 0.51±0.03 0.75±0.04 0.62±0.02 0.77±0.02
Pima 0.45±0.03 0.48±0.04 0.51±0.04 0.56±0.03 0.67±0.04 0.74±0.03
Wdbc 0.47±0.04 0.50±0.05 0.54±0.04 0.45±0.06 0.92±0.03 0.93±0.01

Note: The bold fonts denote the best results on each dataset.

metrics, we do not need to specify the threshold γ in Algorithm 2. In fact, different values of γ
were employed to generate the ROC curves.
For each dataset, we repeat the random outlier generation procedures for 50 times, evaluate

the performance of each compared method on those 50 sets, and report the average results. We
conduct two settings for each method: (1) Type 1 outliers only; (2) Type 1 and Type 2 outliers. In
this way, we can observe the strengths and limitations of different methods.
Table 3 reports the average AUC values (with standard deviations) on seven datasets with Type 1

outliers. From Table 3, we have the following observations. First, the results of single-viewmethod
like LRR are much lower than the multi-view methods. Second, the multi-view method AP per-
forms better than single-viewmethods and HOAD inmost cases, and it achieves the best results on
the Iris, Ionosphere, and Zoo datasets. Third, our approach outperforms the other compared meth-
ods on four datasets, and also obtains competitive results on the Zoo dataset. In all, it shows that
AP and our approach work very well in detecting the Type 1 outliers, and our approach obtains
the best results in most cases.
Figure 3 shows the detailed ROC curves of compared methods on UCI datasets. It shows that our

approach obtains the best performance in most cases. Table 4 shows the average AUC values on
seven datasets with both Type 1 and Type 2 outliers.We can observe fromTable 4 that our approach
significantly outperforms other competitors in all the cases. In addition, AP still performs better
than HOAD in most datasets except waveform. The results demonstrate that our approach can
detect two types of outliers simultaneously.
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Fig. 3. ROC curves of outlier detection on seven UCI datasets.

Table 4. Average AUC Values (±Standard Deviations) on Seven UCI Datasets
with Type 1 and Type 2 Outliers

Single-View Methods Multi-View Methods

Datasets OP DRMF LRR HOAD AP Ours

Iris 0.36±0.05 0.38±0.04 0.39±0.06 0.37±0.04 0.70±0.02 0.84±0.05
Letter 0.32±0.02 0.34±0.02 0.34±0.01 0.34±0.01 0.67±0.01 0.78±0.01
Ionosphere 0.39±0.03 0.46±0.03 0.43±0.04 0.50±0.05 0.76±0.02 0.79±0.03
Zoo 0.35±0.06 0.37±0.04 0.41±0.06 0.58±0.07 0.77±0.07 0.85±0.04
Waveform 0.40±0.02 0.43±0.03 0.42±0.02 0.77±0.03 0.42±0.01 0.83±0.02
Pima 0.32±0.03 0.35±0.02 0.34±0.02 0.37±0.02 0.46±0.02 0.77±0.03
Wdbc 0.31±0.02 0.33±0.02 0.33±0.03 0.33±0.07 0.48±0.03 0.79±0.01

Note: The bold fonts denote the best results on each dataset.

Fig. 4. (a) Convergence curve of our algorithm on Iris dataset. (b) AUC of our approach on Pima dataset by

varying the values of α and β .
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Fig. 5. ROC Curves of all compared methods on two-view USPS dataset.

Table 5. Average AUC Values with Standard

Deviations of Compared Methods on two-View

USPS Dataset

Method AUC (±Standard Deviation)

OP [58] 0.4892±0.0746
DRMF [55] 0.6412±0.0673
LRR [37] 0.5960±0.0461
HOAD [14] 0.5193±0.0429
AP [1] 0.6745±0.0848
Ours 0.7381±0.0702

Note: The bold fonts denote the best results on each

dataset.

USPS Digit Dataset

We construct a two-view dataset by using the USPS dataset [18], which contains 9,298 handwritten
digit images. We extract two types of features from each image as two data views, including pixel
values and Fourier coefficients.
In the experiments, we randomly select 50 images per digit from each dataset. Thus, there are

500 samples in each view. We employed the same strategies as in the UCI datasets to generate 5%
Type 1 outliers and 5% Type 2 outliers. This process was repeated 20 times, and we evaluated the
performance of each method on these 20 sample sets.
Figure 5 shows the ROC curves, and Table 5 lists the average AUC values with standard de-

viations. For single-view outlier detection methods OP, DRMF, and LRR, we simply concatenate
the features from two views together as inputs. From Figure 5 and Table 5, we observe that the
single-view methods DRMF and LRR attain even better performance than the multi-view method
HOAD. Since DRMF and LRR are low-rank based methods, they are capable of detecting the Type 2
outliers. Moreover, as our approach can detect two types of outliers effectively, it outperforms all
of the single-view and multi-view outlier detection baselines.
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Table 6. Average AUC Values with Standard

Deviations of Compared Methods

on WebKB Dataset

Method AUC (±Standard Deviation)

OP [58] 0.4219±0.0611
DRMF [55] 0.4624±0.0603
LRR [37] 0.4805±0.0530
HOAD [14] 0.5027±0.0643
AP [1] 0.4965±0.0655
Ours 0.5532±0.0475

Note: The bold fonts denote the best results on each

dataset.

6.3 Real-World Multi-View Data with Synthetic Outliers

The WebKB dataset [6] has been widely used for evaluating multi-view learning algorithms [15,
29]. It contains webpages collected from four universities, including Cornell, Texas, Washington,

and Wisconsin. The webpages can be categorized into five classes: student, course, project, faculty,
and staff. Each webpage is described by two views, the content view and the citation view. In the
content view, each webpage is represented by a word vector of length 1,703. The citation view
characterizes the number of citation links across pages. In our experiments, we use the Cornell

subset, which contains 195 webpages. We follow the procedures described in Section 6.2 to gen-
erate two types of outliers, and evaluate the performance of our approach and baselines. Table 6
shows the average AUC with standard deviations of all compared methods on the WebKB dataset.
In addition, the improvement of our approach is not very significant. We can observe that the TPR
of all compared methods are very low, as it is a challenging task in real world. In addition, the im-
provement of our approach is not very significant. Clearly, our MLRA approach achieves higher
AUC than its competitors.

6.4 Real-World Multi-View Data with Real Outliers

We employ the popular MovieLens-1M dataset, which contains 1 million ratings for 3,883 movies
by 6,040 users. We consider the movies as samples, and exploit two perspectives of movies:
(1) Genre. There are 18 genres in this dataset, such as Action, Comedy, and Horror. Eachmovie was
classified as one or more of these 18 genres, which can be converted as a binary vector. (2) User’s
feedback. Each movie was rated by one or more users, which can also be represented as binary
vectors (across all users). As the ground truth information of outliers in this real-world dataset
are unknown, we mainly perform qualitative analysis to show the performance of our approach
in detecting outliers.
We sample 500 movies and 600 users from the dataset, and perform our MLRA approach to

assign an outlier score to each movie. Table 7 shows some movies with high outlier scores and
low outlier scores. The movie “Quiz Show” belongs to the “Drama” genre. It was considered as an
outlier as it receives much more ratings than other movies in the “Drama” genre. In other words,
this movie exhibits inconsistent behavior in the genre view and the rating view. On the other hand,
the movies “Toy Story” and “Jumanji” are categorized to three different genres, and they share the
same genre of “Children’s.” Meanwhile, both of them received a large number of ratings, as many
other movies belonging to the same genre. Therefore, they have very low outlier scores, and can
be labeled as normal samples. In a word, the qualitative analysis on the MovieLens-1M shows that
our approach is able to produce meaningful outlier detection results on real-world data.
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Table 7. Movies with High and Low Outlier Scores Calculated

by the Proposed Approach

Movie Title Score Movie Title Score

Quiz Show 0.98 Wings of Courage 0.15
Dumb & Dumber 0.96 Balto 0.13
Forget Paris 0.95 GoldenEye 0.09
While You Were Sleeping 0.95 Jumanji 0.07
Speed 0.93 Toy Story 0.02

Fig. 6. ROC curves of group outlier detection on seven UCI datasets.

6.5 Group Outlier Detection

In this experiment, we evaluate the performance of ourmethod on detecting group outliers.We use
seven UCI datasets and the USPS digit dataset in the experiments. First, as described in previous
sections, the feature vectors of each dataset are divided into two subsets to construct the multi-
view dataset. Each subset is considered as one view of the data. In order to generate an outlier
group, we randomly select a class and a view, remove the data in this class and the specific view,
and fill in random vectors drawn from a multivariate standard normal distribution. We generate
one outlier group for each dataset. In this way, we can ensure that the outlier group has a cluster
structure, but they are quite different from the normal samples.
Asmulti-viewmethods usually perform better than the single-view ones, we compare ourMLRA

framework with two multi-view outlier detection methods, HOAD and AP, in this section. In ad-
dition to the group outlier detection model named as MLRA-Group, we also evaluate the perfor-
mance of our individual-level outlier detection model (as described in Section 4), which is named
as MLRA-Individual. Figure 6 shows the ROC curves on seven UCI datasets, and Table 8 shows the
average AUC results. We can observe that (1) AP performs better than HOAD on the Iris, Letter
and Ionosphere datasets, but HOAD performs much better than AP on the rest datasets; (2) both
of our MLRA-Individual and MLRA-Group methods outperform HOAD and AP on all the datasets.
As MLRA-Individual does not consider the group prior information, it obtains lower AUC values
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Table 8. Average AUC Values on UCI and USPS Datasets

with Group Outliers

Datasets HOAD AP MLRA-Individual MLRA-Group

Iris 0.5324 0.5720 0.6832 0.7372

Letter 0.6749 0.7247 0.7582 0.9963

Ionosphere 0.7563 0.9127 0.9235 0.9606

Zoo 0.8400 0.5271 0.8522 0.9047

Waveform 0.7568 0.3979 0.7629 0.7846

Pima 0.8274 0.5231 0.8732 0.9934

Wdbc 0.8864 0.4096 0.9129 0.9870

USPS 0.5422 0.7653 0.9015 0.9244

Note: The bold fonts denote the best results on each dataset.

Fig. 7. CPU time (seconds) of all compared methods on UCI-Letter dataset.

than MLRA-Group. In particular, the AUC of MLRA-Group is quite close to 1.0 on the Letter, Pima
and Wdbc datasets, which demonstrates the strength of our framework.3

6.6 Discussions

We evaluate the computational cost of different methods on the Letter dataset. The machine used
in our experiments installs 24GB RAM and Intel Xeon W3350 CPU. Figure 7 shows the average
running time over 50 runs of each compared method. We can observe that AP took much more
computing time than other methods, due to its AP procedure. LRR, HOAD, and our approach
have similar computational costs, as they are all matrix factorization based methods with similar
time complexities.
To perform an in-depth analysis of the outlier detection results, Figure 8 shows the number

of detected outliers for each type on the USPS-MNIST dataset, when the FPR is equal to 0.8. It
shows that two multi-view methods, HOAD and AP, are only capable of detecting Type 1 outliers.
However, our approach is able to detect two types of outliers effectively.

3AUC=1.0 implies that the outlier detector is perfect.
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Fig. 8. Number of detected outliers (two types) when FPR = 0.8 on USPS-MINST dataset.

7 CONCLUSIONS

We have proposed a MLRA framework in this article for outlier detection. Our framework
performed cross-view low-rank analysis, and employed a well designed criterion to calculate the
outlier score for each sample. We formulated it as a rank-minimization problem, and adopted
the Inexact ALM algorithm to solve it. By analyzing the representation coefficients in different
views, our framework was able to detect two different types of outliers simultaneously. Moreover,
MLRA has been extended to multi-view group outlier detection. Experimental results on seven
UCI datasets, USPS-MNIST, MovieLens, and WebKB datasets showed that the proposed approach
outperforms the state-of-the-art single-view and multi-view outlier detection methods under
various settings. Especially when the datasets contain both Type 1 and Type 2 outliers, our
approach can significantly boost the performance of outlier detection.
In our future work, we will apply MLRA framework to more outlier detection applications, and

we would also like to develop a divide-and-conquer version of MLRA to make it more suitable for
large scale datasets and further improve its performance.
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