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Stacked Denoising Tensor Auto-Encoder for Action
Recognition With Spatiotemporal Corruptions
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Abstract— Spatially or temporally corrupted action videos
are impractical for recognition via vision or learning models.
It usually happens when streaming data are captured from
unintended moving cameras, which bring occlusion or camera
vibration and accordingly result in arbitrary loss of spatiotem-
poral information. In reality, it is intractable to deal with both
spatial and temporal corruptions at the same time. In this
paper, we propose a coupled stacked denoising tensor auto-
encoder (CSDTAE) model, which approaches this corruption
problem in a divide-and-conquer fashion by jointing both the
spatial and temporal schemes together. In particular, each scheme
is a SDTAE designed to handle either spatial or temporal cor-
ruption, respectively. SDTAE is composed of several blocks, each
of which is a denoising tensor auto-encoder (DTAE). Therefore,
CSDTAE is designed based on several DTAE building blocks
to solve the spatiotemporal corruption problem simultaneously.
In one DTAE, the video features are represented as a high-order
tensor to preserve the spatiotemporal structure of data, where
the temporal and spatial information are processed separately
in different hidden layers via tensor unfolding. In summary,
DTAE explores the spatial and temporal structure of the tensor
representation, and SDTAE handles different corrupted ratios
progressively to extract more discriminative features. CSDTAE
couples the temporal and spatial corruptions of the same data
through a thorough step-by-step procedure based on canonical
correlation analysis, which integrates the two sub-problems
into one problem. The key point is solving the spatiotemporal
corruption in one model by considering them as noises in either
spatial or temporal direction. Extensive experiments on three
action data sets demonstrate the effectiveness of our model,
especially when large volumes of corruption in the video.
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I. INTRODUCTION

AS RECOGNIZED by the previous research [1], [2], tem-
poral corrupted videos are not qualified for action recog-

nition. Even worse, the corrupted videos cannot be regenerated
under certain circumstances, especially in public surveillance,
e.g., a small section of video may be lost or damaged due
to visual occlusion or vibration of the camera, or the trans-
mission issue of the network infrastructure. Besides, although
promising results have been achieved on a few datasets col-
lected under collaborations, the real-world applications are
far from ideal. A major issue to be addressed is sequential
disorder or missing frames caused by data corruption in a given
video sequence. When analyzing a relatively short video, such
consecutive temporal corruption may be catastrophic. There
are a few pioneering works to make use of residual video parts
to predict actions when temporal corruption occurs [3], [4].
Ryoo [3] gradually increased the length of video sequences,
and subsequently generated different prediction tasks. Their
work focuses on temporal corruption only occurred on the
ending segment. However, in practice, a large portion of
corruption may occur in a sequence, randomly at intervals, e.g.
data may be damaged when being captured or saved, which
is difficult to be re-generated in the case of large datasets.
If we treat the unseen part from the prediction problems as
the corruption, then it can be considered as a special case of
random temporal corruption. In the previous works [3], [5],
different occlusion ratios, locations of corruption, and occlu-
sion of action scenarios have been considered. Cao et al. [5]
cut a video into eight segments with small shifts along the
elapsed time and meanwhile set different occlusion ratios, and
each segment may be lost caused by an arbitrary temporal
corruption. These methods mainly make use of the exist-
ing corrupted data, without trying to recover some missing
information in a model. Additionally, occlusion or Gaussian
noise in spatial space may be induced by occasional camera
vibration, which is another problem accompanying spatial
corruption we aim to address in this paper.
To clarify the problem, we first illustrate the spatial and tem-

poral corruption in Figure 1. For the spatial corruption, we can
see that key poses are occluded by random black squares.
Compared to previous works [5], the spatial corruption may
occur randomly in any segment. For the temporal corruption,
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Fig. 1. Illustration of spatial and temporal corruption from an action video.
It can be seen that temporal corruption can cause the loss of some key frames
which crucial for recognition.

we suppose a large portion of sequential frames missing in
arbitrary locations, which may result in lack of substantial
knowledge. To the best of our knowledge, action recognition
under this scenario has never been considered before. Second,
we show temporal corruptions with unknown ratio problems
in Figure 2, which shows the main problem solved by all of
our solutions. We suppose three corrupted levels here, 20%,
40% and 60%, for concise illustration. For the first situation,
we divide the whole video into five parts without overlapping,
and each training procedure corresponds to each corrupted
part. For the second situation, the adjacent missing parts have
20% overlap. While there 40% overlap between the adjacent
missing parts in the third situation. In this paper, we formally
name our problem as action recognition with spatiotemporal
corruption. In brief, the challenges in action recognition solved
in this paper can be described as:

• Temporal corruption with unknown ratios and locations
• Spatial corruption by object occlusion or Gaussian noise

Existing action recognition methods dealing with temporal
corrupted videos rely on artificial preprocessing. Ryoo [3]
calculated integral histograms of action segments for
prediction. Cao et al. [5] used sparse coding of corrupted
videos to calculate the likelihood of an action. Different from
these handcraft features, deep learning methods are widely
used recently for action feature extraction, e.g., Convolutional
Neural Network (CNN) [6]. However, CNN does not perform
well on corrupted videos with a large portion of lost frames
due to the incomplete temporal information. As a robust
representation learning model, Denosing Auto-Encoder
(DAE) [7], [8] is appropriate to handle missing spatial data.
Inspired by this, we use DAE to handle lost frames of a video
in the temporal direction. In addition, the deep structure may
further progressively mitigate the corruptions layer by layer.
In this way, we could handle large portion of missing frames
that can not be addressed by the existing models.
The main purpose of this paper is to solve challenges of both

spatial and temporal corruptions simultaneously for human
action recognition. Existing works only focus on monotonous
problem for visual recognition, e.g., for temporal corruption
of human action videos [3], [5], or for spatial corruption of
videos or images [8]. In order to solve the simultaneous cor-
ruption problem in one uniform model, we consider temporal
corruption as a denoising problem, and therefore we could

Fig. 2. Illustration of different corruption ratios and locations in an action
stream. Take 20% temporal corruption for example, each part (1 ∼ 5) is non-
overlapped with others, and the missing part is lost randomly in our problem.

employ DAE for both temporal and spatial corruptions of the
input videos. Furthermore, we could use two dedicated DAEs,
i.e., one for temporal and the other for spatial corruption,
to progressively handle large portion of corruptions, inspired
by the divide-and-conquer theory. In addition, some robust
action recognition methods and deep learning methods are
introduced and compared, e.g., Ryoo [3], Cao et al. [5],
Chen et al. [8], and C3D network [9]. 3D Convolutional
Networks (C3D) is a deep learning method commonly used
for action recognition recently, as it uses a 3D convolution
filter to preserve the temporal information of input videos.
We employ it in the experiment as a benchmark for the deep
learning methods.
Data representation is crucial for designing a specific

model for our problems. As we know, a direct impact of
the spatiotemporal corruption is the incompleteness of the
visual descriptors. Popular action descriptors, e.g., BoW [10]
with 3D-SIFT [11], dense trajectory [12], HOG-4D [13],
HOF [14], [15], STIP [16], trajectory [12], and tracklet [17],
rely on both local spatial and temporal information. Absence
of either ruins the features, notwithstanding the spatiotemporal
corruption previously discussed here. Recently, the spatiotem-
poral factors in an action video have been modeled as a higher-
order tensor [18], i.e., a multi-dimensional array, where spatial,
temporal or multi-view properties are embedded in different
dimensions (directions) of a tensor [6]. To tackle each factor,
the tensor would need to be unfolded along the corresponding
direction to become a matrix. The tensor representation for
videos not only maintains the spatiotemporal structure, but also
reduces the dimensionality for video descriptors [19], [20].
Our contributions are two-fold. Firstly, we propose a new

problem regarding both spatial-temporal corruptions of human
actions, and propose a solution to how to deal with them
simultaneously. Secondly, to solve the arbitrary spatiotemporal
corruption challenges, we design a joint stacked framework by
combining the existing Auto-Encoder building blocks.

II. PROBLEM STATEMENT

A. Temporal Corruption

The temporal corruption of action videos is illustrated
in Figure 1, as random parts of a video are missing.
To address this challenge, we propose a Denoising Tensor
Auto-Encoder (DTAE) model for temporal corruption.
We consider temporal corruption as noise in the temporal
dimension, and therefore use DAE [21] to mitigate this prob-
lem. In a DAE, the input is usually data with noise, and
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Fig. 3. Schematic of CSDTAE model, which is composed of two SDTAE
models. The left SDTAE is used to deal with temporal corruption, while the
right one is for spatial corruption.

the output is clean data. DAE is suitable for image denois-
ing [22] or video denoising [23]. We convert an action video
to a third-order tensor, and the corresponding model is called
DTAE. Considering a set of tensors as the input, we aim to
extract both the spatial and temporal features from the tensors.
It is natural to formulate a deep structure for DTAE, where the
first/second hidden layers are reserved for spatial features and
the third hidden layer for temporal features. Therefore, in a
deep DTAE model, the spatial and temporal corruption are
handled separately within different hidden layers, and mean-
while the temporal correlation is explored in a closed form
via tensor representation. A progressive strategy [24], [25] is
used here to extract more discriminative features. We design
a stacked scheme [26], [27] to mitigate the corruption
impacts from one DTAE to another. For example, the stacked
DTAE (SDTAE) is composed of three DTAEs. In the first
DTAE, the input is training data with [0%, 60%] (noted
as 60%) temporal corruption, and the output belongs to
[0%, 40%] (noted as 40%) corruption. The intermediate fea-
ture from hidden layer is taken as input of the second DTAE,
whose output belongs to [0%, 20%] (noted as 20%) corruption.
The intermediate of the second DTAE is used as input of
the third DTAE, whose output is with 0% corruption. This
stacked setting aims to mitigate the larger temporal corruptions
progressively, in order to extract more discriminative features.
The illustration of SDTAE is shown in the left side of Figure 3.

B. Spatial Corruption

Spatial corruption of videos with Gaussian noise is shown
in Figure 4. This corruption is solved in the same way
as the previous corruption types, i.e., the DTAE deals with
both spatial and temporal corruption simultaneously. However,
it is impractical to extract better features by aligning the
arbitrary corrupted spatial and temporal information in two
directions at the same time. Similar to the multi-view problem
in [28], coupling two different corruptions from the same
data and projecting them to a new subspace is a better
approach to obtaining the common features. Inspired by this,
we designed a divide-and-conquer scheme termed the Coupled
SDTAE (CSDTAE) which handles the spatial and tempo-
ral corruptions separately, then joints two parts together to
maximize their correlations using deep Canonical Correlation

Fig. 4. Spatial corruption with 20%, 40%, and 60% of Gaussian noise,
respectively.

Analysis (CCA), shown in Figure 3. The left side is an
SDTAE introduced to process temporal corruption. The right
side is also an SDTAE model and is applied to deal with the
spatial corruption. The right SDTAE contains three DTAEs.
In each DTAE, the input and output are the same temporal
corrupted data as in the left SDTAE while companying extra
arbitrary spatial corruption. In this way, this SDTAE contains
the same temporal information and only deals with spatial
corruption progressively. Finally, the first/second/third DTAE
of each SDTAE are coupled with deep CCA, which finds the
maximum correlation of different corruptions for the same
data. By this CSDTAE model, we deal with spatiotemporal
corruption problems separately then integrate them in one
model step-by-step, which transforms one intractable problem
into two simple sub-problems.

III. RELATED WORK

A. Action Recognition With Corruption

Given a 3D action video with f frames, we define two
different types of video corruptions: 1) the starting part of
several frames is kept, while the remaining part is missing,
which is also known as action prediction [29], [30]; 2) the
missing section could be located anywhere, such as at the
beginning, middle or ending of the sequence, which is more
flexible and challenging when compared to the first case [5].
In [29] and [30], dynamic BoW is extracted as the features,
while in [5], SIFT+BoW from overlapped segments is used.
When considering spatiotemporal corruption in this paper,
none of the methods above can work well as they only take
handcrafted features, which cannot automatically identify the
representations from the corruption.

B. Tensor Representation

In recent work, action videos are converted to a third-order
tensor, including three directions (modes) standing for differ-
ent factors. The first and second modes indicate the spatial
factor, and the third mode displays the temporal change.
In [31] and [32], tensors are assumed to distribute in a
manifold to find a common subspace by a tangent space
bundle. In [33], a third-order tensor representation is used
for multi-view gait recognition. In [34], a tensor based deep
stacking network is proposed where each layer represents an
unfolding tensor along a different direction. However, none
of the works above considers the corruption in the action
videos, especially the spatiotemporal corruption discussed in
this paper.

C. Auto-Encoder (AE)

In [35] and [36], over-complete features are identified by
a modified Independent Components Analysis (ICA) in a
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TABLE I

ACCURACY OF THE DIFFERENT TEMPORAL CORRUPTIONS ON MSRDAILYACTIVITY3D AND MSRACTIONPAIRS DATASETS BY SVM CLASSIFIER.
IN ALL THE SITUATIONS WITH DIFFERENT CORRUPTED RATIOS (GIVEN 20%, 40% AND 60% FOR INSTANCE) AND LOCATIONS (SHOWN

IN FIGURE 2), WE FOCUS ON THE MOST CHALLENGING CASE TO EVALUATE OUR MODEL, E.G., PART1 IN 20% CASE

sparse AE framework for action recognition. The work in [37]
proposes to use a 3D spatiotemporal patch of an action as
input and output of an AE. In [38], a split AE model is
designed for reconstructing two-view data from a shared view.
Recently, in [39], CCA is introduced into the deep structure
to capture uncorrelated features of two subspaces as comple-
mentary knowledge. A follow-up work in [40] summarizes
the existing deep CCA work with head-to-head comparisons,
and proposes a new variant called deep canonically correlated
Auto-Encoders.

D. Denoising Auto-Encoder (DAE)

In [41], a robust AE is identified by adding random noise to
the input layer, and try to reconstruct clean data as the output.
Later in [7], a two level denoising Auto-Encoder is designed
as stacked DAE to extract better features. In order to speed
up, a marginalized DAE is proposed in [8] by using a linear
transformation to reconstruct the output data.
Different from traditional DAE, the input of our DTAE

model is heavy spatiotemporal damaged data such as the 60%
ratio of temporal corruption, and the output is less damaged
data with the 40% corruption, for instance. DTAE learns
different robust hidden layers with spatiotemporal information
and their correlation. The extended SDTAE is designed to mit-
igate the temporal/spatial corruption in a progressive scheme.
CSDTAE is proposed by coupling the two SDTAEs to make
the same data with different corruptions more close in a new
subspace by deep CCA in the output layer. CSDTAE is based
on the divide-and-conquer idea to deal with different problems
as sub-problems in one framework.

IV. PROPOSED METHOD

In this paper, we design a model for spatiotemporal cor-
rupted action videos with unknown corruption ratios, locations
and complex noises. We propose to use a DTAE to learn
the robust mechanism for spatiotemporal corruption, which
is detailed in Section IV-C. For unknown corruption ratios,
a stacked DTAE (SDTAE) is proposed to avoid overfitting our
model when facing a large damage ratio, which is detailed
in Section IV-D. For unknown corruption locations and com-
plex noises, we design a coupled SDTAE (CSDTAE) model
to align heterogeneous data in each hidden layer, which is
detailed in Section IV-E.

A. Tensor Representation for Action Videos

An N-order tensor is an N-directional array represented
as X I1 ...×n In ...×N IN , where In is the dimension of n-th direc-
tion [42]. In this paper, we present a 3D action video as a
third-order tensor X ∈ R

I1×I2×I3 , where I1, I2, I3 indicate the

Fig. 5. Tucker decomposition of third-order tensor X by mode-1,2,3
projection matrices U1, U2, U3, and G is the core tensor.

rows, columns, frames of the action video, respectively. Tucker
decomposition is usually used for dimensionality reduction,
which is defined as

X = G ×1 U1 ×2 U2 ×3 U3, (1)

where Un (n = 1, 2, 3) is the mode-n projection matrix
for dimensional reduction, and G is called the core tensor.
To perform a transformation on each mode, we unfold X
along different modes to get a matrix, i.e., we get mode-n
unfolding matrix X(n) ∈ R

In× (I1·I2...In−1·In+1...IN) by fixing the
n-th direction while flatting others, here n ≤ N , N = 3,
and · is used for scalar product. The Tucker decomposition
is illustrated in Figure 5.

B. Spatiotemporal Corruption Setting

We only consider limited cases in this work which are typi-
cal for spatiotemporal corruption, as there are infinite possible
corruptions for any given sample. Specifically, we assume
three corruption ratios: 20%, 40% and 60%. For locations,
we select those with the least overlap given a fixed corruption
ratio of (20%). In the following sections, we use a fourth-order
tensor X20 ∈ R

r×c× f ×N as a corrupted action video set in ten-
sor representation with a 20% temporal missing levels, where
r, c, f, N indicate the number of rows, columns, frames and
samples respectively. Similarly, X0,X40,X60 stand for data
with 0%, 40%, 60% corruptions. In addition, we use 〈X20,X0〉
to represent the mixture of two datasets with 20% and 0%
corruption ratios respectively. We aim to find the toughest
cases for spatiotemporal corrupted action recognition under
different ratios, and therefore we design several pre-selected
experiments to pick up the worst cases on two datasets.
The results of corrupted action recognition with an SVM

classifier on the MSRDailyActivity3D and MSRActionPairs
datasets are shown in Table I. For the Daily dataset,
we consider the lowest accuracies in different parts (shown
in Figure 2) as the most tough challenges and select them for
the next experiments. In the same way to Pair dataset, and we
can see the 40% and 60% missing information are crucial in
these samples according to the much lower accuracy.
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Fig. 6. DTAE model for spatial and temporal denoising. X(1) and X̂(1) are

made up of mode-1 40% and 20% corrupted data respectively, and W (n)
1 , W (n)

2
are the corresponding mode-n weighted matrices in each layer. The first two
spatial layers are related to mode-1,2 transformations, and the third temporal
layer indicates mode-3 transformation.

C. Denoising Tensor AE (DTAE)

Here we introduce the foundation of a one-layer Auto-
Encoder (AE). Given a dataset X ∈ R

d×N with N samples
where each one is represented as a column with d dimensions.
Two weighted matrices W ∈ R

d×d ′
and WT are used as

encoder and decoder, where d ′ is the transformed dimension.
The aim of AE is to extract features by aligning its input and
output. The objective function is described as follows:

argmin
W,b1,b2

‖σ(WTσ(W X + b1) + b2) − X‖2F , (2)

where σ is an activation function, b1 and b2 are biases. W is
well-tuned in the training phase, and then this AE is used
for new testing samples. In the corresponding AE model,
random noise is added to the hidden layer, and then the recon-
structed data is aligned to the input data to tune the weighted
matrix.
In our tensor based model, a hybrid of n1 corrupted data

〈X40,X20〉 is given as input, which is represented as X ∈
R

r×c× f ×n1 for simplicity, where r, c, f indicate number of
rows, columns, and frames of an action video, respectively.
The output data is noted as X̂ with 20% corrupted ratio.
Leveling up different input and output in a DTAE aims to
reduce the larger corrupted ratio. Here i -th sample Yi ∈
R

r×c× f is a third-order tensor. By this representation, we only
consider three hidden layers including two spatial layers and
one temporal layer in a DTAE, in which we aim to find a
multi-linear transformation in each layer for fast speed [8].
Figure 6 shows DTAE of mode-n encoder and decoder.

X(1) ∈ R
r× (c f n1) and X̂(1) ∈ R

r× (c f n1) are mode-1 input
and output, and each red node indicates one dimension of
data. W (1)

1 ∈ R
r×r1 and W (1)

2 ∈ R
r1×r are mode-1 encoder and

decoder weight matrices, and W (2)
1 ∈ R

c×c1 and W (2)
2 ∈ R

c1×c

are mode-2 encoder and decoder weight matrices. Here both
mode-1, 2 matrices are used for spatial information processing.
W (3)
1 ∈ R

f × f1 and W (3)
2 ∈ R

f1× f are mode-3 encoder
and decoder weight matrices used for dealing with temporal
information. X̂(2) is mode-2 output, and X̂(3) is mode-3 output.
In DTAE model, the input X and the output X̂ have

different ratios of corruptions, and we need to align them via
DTAE. Intuitively, we hope DTAE can reduce the corruption
rate from 40% to 20%. In the meanwhile, we could learn

Fig. 7. The visualization of SDTAE model, which is composed of three
DTAE models here. Each DTAE aims denoising with different input and
output corrupted data. SDTAE is designed to reduce the spatial or temporal
noises in a progressive manner.

all the mode-n weight matrices and find the tensor subspace
for recognition. This model is inspired by marginal Stacked
Denoising Autoencoder (mSDA) [8], in order to train a tensor
model to reduce the temporal or spatial corrupted ratio. DTAE
objective function is:

argmin
W

‖X − WX̂‖2F , (3)

where W ∈ R
r×c× f is weight tensor composed of mode-n

matrix, presented as W = (W (1)
1 W (1)

2 ) ⊗ (W (2)
1 W (2)

2 ) ⊗
(W (3)

1 W (3)
2 ), ⊗ is Kronecker product of two matrices. The

solution of mode-n weight matrix W (n)
1 or W (n)

2 (n = 1, 2, 3)
is calculated from the derivation of Eq. (3):

W (n)
1 W (n)

2 = [X(n) X̂T(n)][X̂(n) X̂T(n)]−1, (4)

here we set W (n)
2 = [W (n)

1 ]T, therefore a Gram matrix is
defined as G = W (n)

1 [W (n)
1 ]T, and we could get all the mode-n

weight matrices by calculating the eigenvectors of G.
Time Complexity: We analyze and compare the time com-

plexity of DTAE and mSDA [8]. Suppose D ∈ R
d×m is a

training set with m samples, each of which is a d-dimensional
vector, we present this dataset as an (N + 1)-order tensor
D ∈ R

N√d×...× N√d×m . mSDA is proposed for denoising by
a linear transformation, and it takes O(d2). The main step of
DTAE is also a linear transformation, and in tensor framework
its time complexity is O(Nd

2
N ). We can see that our method

spends less time especially when the dimension d is large.
In DTAE, we could deal with the spatiotemporal corruption

in each layer, instead of mixing them together in traditional
AEs regardless of the different affect of factors. However,
DTAE can handle only one level of corruption (40%→ 20%
corruption). Furthermore, we generate an improved model for
different levels, which is called Stacked DTAE model and is
described in the following section.

D. Stacked DTAE (SDTAE)

We take the temporal SDTAE for example. SDTAE is
composed of three DTAE models to extract discriminative
features processively, which is shown in Figure 7. In each
DTAE, the first two hidden layers of which indicate spatial
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information and the third hidden layer indicates the temporal
information. For the first DTAE, the input X (1) and output
are all made up of temporal corrupted data, but the input data
with 60% corruption ratio is aligned to the 40% corrupted
output data set. Similarly in the second DTAE, the input data
X (2) with 40% corruption ratio is aligned to 20% corrupted
output data set. In the third DTAE, the input data X (3) with
20% corruption ratio is aligned to 0% corrupted output dataset.
This setting extracts discriminative features procedurally in the
stacked scheme, and is generative to any corrupted data in the
test phase.
We assume the weight tensorW is the same in three DTAEs,

regarding to the temporal corrupted test data with unknown
ratios. SDTAE objective function is:

argmin
W

3∑
k=1

‖X (k) − WX̂ (k)‖2F , (5)

where k DTAEs in one SDTAE, and X (k) and X̂ (k) are
the input and output of k-th DTAE. The solution of
W (n)
1 or W (n)

2 (n = 1, 2, 3) is calculated from the derivation
of Eq (5):

W (n)
1 W (n)

2 = [
3∑

k=1
X (k)

(n)(X̂ (k)
(n))

T][
3∑

k=1
X̂ (k)

(n)(X̂ (k)
(n))

T]−1. (6)

SDTAE addresses temporal corruption with unknown ratios
processively, meanwhile deals with spatial corruption by
denoising step-by-step. In order to fill the gap between het-
erogeneous corruptions, we couple the corrupted data through
deep CCA in output layers processively, which divides the
whole problem into two simple sub-problems.

E. Coupled SDTAE (CSDTAE)

Although SDTAE is designed to solve spatiotemporal cor-
ruptions simultaneously, we need to integrate two SDTAEs
into one uniform model, by maximizing their correlation
step-by-step. Here CSDTAE is designed to couple two
SDTAEs with temporal and spatial corruptions procedurally,
which eases the heterogeneous (spatiotemporal) corruptions
problem by dividing them into two sub-problems. In Figure 8,
the input X (1)

T and output of the first temporal DTAE are
the same data, but 60% corrupted input is aligned to 40%
corrupted output. In the second temporal DTAE X (2)

T , the 40%
corrupted input is aligned to 20% corrupted output. In the
first/second spatial DTAE X (1)

S /X (2)
S , the input and output are

the same 60%/40% temporal corrupted data with arbitrary
spatial noises, including Gaussian noise or block occlusion.
Deep CCA is used to couple the output layers of each pair
of DTAEs from the temporal and spatial scheme, to ease the
diversity of temporal and spatial corruptions in different scales.
CSDATE model is described in Eq (7):

argmin
W,U ,V

{
‖X (k)

T − WX (k)
T ‖2F + ‖X (k)

S − SX (k)
S ‖2F

− tr
(

U (k)
n
TWX (k)

T (SX (k)
S )TV (k)

n

)}
,

s.t. ‖U (k)
n
TWX (k)

T ‖2F = 1, ‖V (k)
n

TSX (k)
S ‖2F = 1, (7)

Fig. 8. CSDTAE joints the temporal and spatial schematics together,
while each is a stacked scheme composed by two units (DTAEs). Left is
temporal stacked scheme, which reduces the diversity of corruption ratios
in a processive manner, e.g. input is 40% corrupted data and output is
20% corrupted data. Right is spatial stacked scheme, which deals with only
Gaussian noise while no temporal corruption. The left and right are connected
in two steps, each of which is coupled by deep CCA, making heterogeneous
corrupted data closer in a common subspace.

where k = 1, 2 indicates the first and second DTAE, X (k)
T/S

indicates the input in k DTAE, W and S are used for
projections in temporal and spatial stacked scheme, and U (k)

n ,

V (k)
n (n = 1, 2, 3) are used for deep CCA by projecting

X (k)
T and X (k)

S to one common tensor subspace. In brief,
the first and second terms indicate the temporal and spatial
SDATE models, respectively, and the third term aims to
calculate the spatiotemporal correlation in the k-th step. The
two constraints aim to ensure temporal and spatial data in
orthogonal subspaces, respectively. The solution refers to [40],
i.e., deep CCA is performed on the output layer of each pair
of DTAEs, to make data with spatial and temporal corruptions
closer in a common subspace.
We use the Augmented Lagrange Method to calculate the

variables in Eq. (7) by

L = ‖X (k)
T − WX (k)

T ‖2F + ‖X (k)
S − SX (k)

S ‖2F
− tr

(
U (k)

n
TWX (k)

T (SX (k)
S )TV (k)

n

)

+ tr [Y (k)
1
T
(U (k)

n
T
(WX (k)

T )(WX (k)
T )TU (k)

n ) − 1]
+ tr [Y (k)

2
T
(V (k)

n
T
(SX (k)

S )(SX (k)
S )TV (k)

n ) − 1]
+ μ

2
[‖U (k)

n
T
(WX (k)

T )(WX (k)
T )TU (k)

n − 1‖2F
+ ‖V (k)

n
T
(SX (k)

S )(SX (k)
S )TV (k)

n − 1‖2F], (8)

where Y (k)
1 , Y (k)

2 are auxiliary matrices, and μ is the penalty
factor. The weighted tensor W can be calculated by Eq. (3),
in which each matrix W (k) is updated by

W (k) = (X (k)
T X (k)

T

T
)(X̂ (k)

T X (k)
T

T
)−1. (9)

The correlation matrices U (k)
n and V (k)

n are updated by

PU U (k)
n + U (k)

n (
Y1
μ

− I) + QU = 0,

PV V (k)
n + V (k)

n (
Y2
μ

− I) + QV = 0, (10)

where QU = − 1
μ [(SX (k)

S )(WX (k)
T )−1]TV (k)

n is considered

as a constant, so does PU = (WX (k)
T )(WX (k)

T )T . Besides,
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QV = − 1
μ [(WX (k)

T )(SX (k)
S )−1]TU (k)

n is also considered as a

constant, so does PU = (SX (k)
S )(SX (k)

S )T .

V. EXPERIMENT
A. Dataset and Data Representation

1) MSR Daily Activity 3D Dataset: It contains 16 different
of depth actions performed by 10 subjects, each performs
every action twice. In total, there are 320 RGB and 320 depth
samples. In this dataset, the first five people are used for
training, and the rest for testing.

2) MSR Action Pairs Dataset: There are six pairs of depth
actions performed by 10 people, with three trials each. There
are a total of 360 RGB samples and 360 depth action samples.
There is the same setting of training and testing samples as
MSRDailyActivity3D dataset.

3) UT-Interaction#1 Dataset: This RGB dataset contains
six classes, each of which has 10 sets, and each set has
100 frames. 10-fold Cross-Validation (CV) is used for testing.
The-state-of-the-art methods take one frame as a sample, while
in our model, all the 100 frames in one set are considered to
compose one 3D sample. In other words, there are 54 samples
for training and six for testing in each fold of CV.

Action representation: Each RGB/depth action video
sizes 480 × 640 × f , where f ∈ [50, 200] is the number
of frames. We sample each video to uniform the length of
50 frames by generating linearly space, each is resized to be
96× 128 and cropped to be 48× 42, therefore each video is
represented to be a third-order tensor of size 48 × 42 × 50.
Here we extract HOG [13] with features of size 720×50 from
each video, where 720 is the dimension of HOG.

B. Experiment Setting
In this part we introduce the details of experimental setting.

As the action videos are corrupted in different ratios and
uncertain locations, it leads us to find the most challenging
case to evaluate our model. Therefore, we permute different
corruption parts for testing as baseline, in order to select the
intractable cases for training and testing. Tensor representation
for action videos can help preserve spatiotemporal structure.
Accordingly, we employ our one DTAE model to extract
different features from each layer. Meanwhile, this tensor
structure could handle both spatial and temporal corruptions
of a video.
The ideal solution to our problem is to handle any corrupted

ratios in a video, while exploring the reasonable correlations
between different ratios. According to this, we design a stacked
DTAE (SDTAE) model to leverage different ratios step-by-
step. In order to deal with the complex noises, we generate a
coupled SDTAE (CSDTAE) model, which couples data with
heterogeneous noise, certain corrupted ratio but in uncertain
locations. Consequently, a common subspace is found for
testing corrupted data with all the complex noises. We also
compare the result of coupling different ratios with that of
coupling complex noises, to see which model can be well
generalized to unknown test data.

C. Compared Methods

Here we briefly introduce the proposed method, as well
as the-state-of-art AE methods for RGB-D data from the

MSRDailyActivity3D and MSRActionPairs datasets, and
existing compared methods for temporal corruption on the
UT-interaction#1 dataset.

1) Methods for RGB-D Data:

• SVM: The baseline of the experiments, which uses HOG
and linear SVM for evaluations.

• mSDA: A marginal Stacked Auto-Encoder (mSDA) [8] is
proposed for denoising and uses a linear transformation
as activation function to speed up.

• TAE (Ours): A basic tensor Auto-Encoder (TAE) for
comparison with three hidden layers, where the first
and second layers use a linear transformation on spatial
feature, and the third layer performs on the temporal
feature.

• DTAE (Ours): A denoising version of TAE. The input is
the corrupted data, while the output is clean data or less
corrupted data. We add Gaussian noises in the videos,
which simulates the spatiotemporal corruption. Therefore,
we could evaluate the robustness of the proposed method.

• SDTAE (Ours): It stacks a few DTAEs, which is able to
progressively mitigate the corruption ratios between input
and output layers. It can deal with unknown corruption
ratios of the test data.

• CSDTAE (Ours): Coupled SDTAE, which is composed
of SDTAE of two different corruption ratios followed by
a deep CCA AE. Deep CCA (DCCA) for hidden layers
enables to couple features from different TAEs to work
collaboratively to recover corruption.

• C3D network [9]: C3D is a Convolution Neural Network
model, which uses a 3D convolution filter on the input
videos, and generates a 3D volume as output, therefore
preserving temporal information of the input videos.

2) Methods for RGB Data:

• Ryoo-nondynamic: Ryoo [3] proposed a probabilistic
method by calculating integral histograms for human
action prediction.

• Ryoo-dynamic: Ryoo [3] used the previous likelihood to
update the entire likelihood.

• SC: Cao et al. [5] employed sparse coding (SC) on each
segmentation of a video to derive likelihood of activity.

• MSSC: Cao et al. [5] proposed a mixture of segments
with different temporal lengths (MSSC) to deal with intra-
class variations.

• Baseline: A baseline sparse coding method which takes
one segment of a video as a row in the basis matrix [5].

• KNN-nondynamic: K-nearest neighbor method uses inte-
gral histograms as features.

• KNN-dynamic: K-nearest neighbor method uses previous
likelihood to update the entire likelihood.

D. Experimental Results

1) DTAE and SDTAE Results: Figure 9(a) shows the results
of temporal corruption, and we can see that SVM performs
better without corruption of data. However, it does not work
well encountering corruption at high levels. In mSDA, we use
three layers as well as others, and do not add noise in
the layers with a size value of 8000. The TAE, DTAE and
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Fig. 9. Accuracy of compared methods on MSRDailyActivity3D dataset
under (a) different temporal corruption ratios and (b) spatiotemporal corrup-
tion ratios. (a) Temporal corrupted. (b) Spatiotemporal corrupted.

SDTAE obtain higher accuracies on larger corrupted levels,
which means our tensor-based AE models are robust enough
to handle severe corruption. SVM gets higher accuracy than
SDTAE without corruption, but its performance decreases
as the level of data corruption increases. Besides, SDTAE
performs better than TAE and DTAE when encountering larger
corruption ratios (such as 20%, 40%, 60%). We use a pre-
trained C3D model and non-corrupted MSRdaily data for fine-
tuning, i.e., we replace the last layer with our own output,
including the number of categories. C3D network performs
better on non-corrupted testing data, as the C3D model is
fine-tuned by non-corrupted training data. Also, the pre-
trained model includes many other training data, which is
not employed by our methods. However, the accuracy goes
down dramatically given larger corruptions. In the last setting
with 60% corruption rate, it performs worse than our SDTAE
model. It indicates that C3D does not perform well when there
are lots of missing frames in one video. The reason is that C3D
filter works on every 16 frames, and if the missing frames of
the data are more than 16, there will be less reliable features
extracted for recognition. In other words, C3D is literally
affected by the quality of a video, and not robust against the
corruptions in the videos.
The spatiotemporal corrupted situation (in hidden layers)

is shown in Figure 9(b), and we can see that SVM and
mSDA perform worse than the results of temporal corruption,
which is reasonable in common sense. Besides, we add 20%,
40% and 60% noise in the hidden layers of mSDA. We can
see that SVM reduces 2 ∼ 5% encountering spatial noise,
however, our TAE, DTAE and SDTAE models perform better
even encountering higher spatiotemporal corruption, which

Fig. 10. Accuracy of compared methods on MSRActionPairs dataset
under (a) different temporal corruption ratios and (b) spatiotemporal corrup-
tion ratios. (a) Temporal corrupted. (b) Spatiotemporal corrupted.

also indicates the robustness of our tensor-based AE models.
In Figure 10(a), we can see that SVM gets decreasing accura-
cies encountering larger corruptions, while our tensor-based
models perform better at higher levels of corruption.
Figure 10(b) also shows that our models are robust enough
to handle high levels of spatiotemporal corruption.

2) CSDTAE Results: For the 20% corrupted data, we want
to verify whether the multi-location and complex noises affect
the recognition. For this task, we use deep CCA to find two
subspaces by U1 and U5 for Part1 and Part5 respectively. Here
we design two groups of setting: 1) U1 and U5 are CCA
directions to project Part1 and Part5 respectively; 2) U1 and U5
project Part5 and Part1 reversely. The settings aim to verify
whether CCA projections work well for the testing data with
unknown corrupted locations and complex noises. Table II
shows the results of pair-wise locations. We can see that the
performance will be degenerated by exchanging U1 and U5,
which means that coupling pairwise parts may not work well
encountering test data with uncertain corrupted locations and
complex noises. The training time of CSDTAE with 20%
corruption on 180 videos is 57 seconds, meaning 3 seconds
for one video with 50 frames on average. The processing
rate is 17 fps.
Focusing on the corrupted data with unknown locations of

temporal corruption and complex noises, we design the model
to couple the 20% data with all the corrupted locations and
heterogeneous noises of the 0% corrupted data for training,
with the aim to level up the irregular locations and noises,
and obtain the common projection designated hybrid U .
In Table III, the first two rows show the results of each part
with U1 and U5 projection by different training parts, and
the last two rows give the results with hybrid U with all
parts for training, where T and ST mean the temporal and
spatiotemporal corruption, respectively. We can see that U
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TABLE II

ACCURACY OF 20% CORRUPTION ON MSRACTIONPAIRS DATASET.
IN ORDER TO VERIFY WHETHER THE DIFFERENT CORRUPTED
LOCATIONS AND COMPLEX NOISES HAVE AN EFFECT ON
THE PERFORMANCE, WE USE PART1 AND PART5 FOR

TRAINING, AND PROJECT THEM TO THE
CORRESPONDING SUBSPACES BY

U1 AND U5 FOR TESTING

TABLE III

ACCURACY OF 20% CORRUPTION WITH DIFFERENT LOCATIONS ON
MSRACTIONPAIRS DATASET. THE FIRST TWO ROWS SHOW THE

RESULTS FOR WHEN WE COUPLED ONLY PART1 AND PART5
FOR TRAINING, AND THE LAST TWO ROWS DISPLAY
THE RESULTS FOR WHEN WE COUPLED ALL THE
PARTS WITH COMPLETE DATA FOR TRAINING.
THE BLUE FONT INDICTS LOWER ACCURACIES

Fig. 11. Temporal corrupted action recognition on UT-interaction#1 dataset.
We can see that the proposed DTAE model is competitive while CSDTAE
model performs better than others under certain levels of corruption.

performs better than U1 and U5 in terms of accuracy for most
cases. This indicates that using all the hybrid parts for training
works well on the unknown test datasets as compared with the
pair-wise training (lower accuracies in blue font). Therefore
CSDTAE is robust by the proper setting for training.
Figure 11 shows the results of our two models 1) DTAE

and 2) CSDTAE on the UT-interaction#1 dataset for temporal
corrupted action recognition compared with the-state-of-the-
art methods detailed in [5]. The data are corrupted with
Gaussian noise and block occlusion for coupling. DTAE gets
the competitive results with others, while CSDTAE obtains
better results than all the others at different corrupted levels,
which means the coupled model is robust and can handle data
with a higher ratio of data corruptions.

VI. CONCLUSION

We proposed a CSDTAE model, which joints the tem-
poral and spatial SDTAEs to ease spatiotemporal corrupted

problem in a divide-and-conquer scheme. For spatial/temporal
corrupted action videos with different ratios, we generated
an SDTAE model in a stacked mechanism to reduce the
diversity processively and to mitigate the affect of corruption.
To handle temporal corruption, each DTAE in SDTAE dealt
with different corruption ratios. For spatial corruption, each
DTAE contained the same temporal corruption ratio but dif-
ferent spatial noise. The two SDTAEs were considered as sub-
problems and integrated into one framework by coupling the
output layers using deep CCA in each DTAE. Experiments
on three action datasets demonstrated the effectiveness of
our models, especially for large volumes of spatiotemporal
corruption in the videos.
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