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Abstract—Constrained clustering uses pre-given knowledge to improve the clustering performance. Here we use a new constraint
called partition level side information and propose the Partition Level Constrained Clustering (PLCC) framework, where only a small
proportion of the data is given labels to guide the procedure of clustering. Our goal is to find a partition which captures the intrinsic
structure from the data itself, and also agrees with the partition level side information. Then we derive the algorithm of partition level
side information based on K-means and give its corresponding solution. Further, we extend it to handle multiple side information and
design the algorithm of partition level side information for spectral clustering. Extensive experiments demonstrate the effectiveness and
efficiency of our method compared to pairwise constrained clustering and ensemble clustering methods, even in the inconsistent
cluster number setting, which verifies the superiority of partition level side information to pairwise constraints. Besides, our method has
high robustness to noisy side information, and we also validate the performance of our method with multiple side information. Finally,
the image cosegmentation application based on saliency-guided side information demonstrates the effectiveness of PLCC as a flexible
framework in different domains, even with the unsupervised side information.

Index Terms—Constrained Clustering, Utility Function, Partition Level, Cosegmentation.
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1 INTRODUCTION

CLUSTER analysis is a core technique in machine learning and

artificial intelligence [1], [2], [3], which aims to partition the

objects into different groups that objects in the same group are

more similar to each other than to those in other groups. It has

been widely used in many domains, such as search engines [4],

recommend systems [5] and image segmentation [6]. In light of

this, many algorithms have been proposed to thrive this area, such

as connectivity-based clustering [7], centroid-based clustering [8]

and density-based clustering [9]; however, the results of clustering

still exist large gaps with the results of classification. To further

improve the performance, constrained clustering comes into being,

which incorporates pre-known or side information into the process

of clustering.

Since clustering has the property of non-order, the most com-

mon constraints are pairwise. Specifically, Must-Link and Cannot-

Link constraints represent that two instances should lie in the same

cluster or not [10], [11]. At the first thought, it is easy to decide

Must-Link or Cannot-Link for pairwise comparison. However, in

real-world applications, just given one image of a cat and one

image of a dog (See Fig. 1), it is difficult to answer whether these

two images should be in a cluster or not because no decision rule

can be made based on only two images. Without other objects

as references, it is highly risky to determine whether the data

set is about cat-and-dog or animals-and-non-animals. Besides,

as [12] reported, large disagreements are often observed among

human workers in specifying pairwise constraints; for instance,

more than 80% of the pairwise labels obtained from human

workers are inconsistent with the ground truth for the Scenes data
set [13]. Moreover, it has been widely recognized that the order

of constraints also has great impact on the clustering results [14],

therefore sometimes more constraints even make a detrimental

effect. Although some methods such as soft constraints [15], [16]

are put forward to handle these challenges, the results are still far

from satisfaction.

In response to this, we use partition level side information to

overcome these limitations of pairwise constraints. Partition level

Manuscript received XXX; revised XXX.

(a) One pairwise constraint (b) Multi pairwise constraint(c) Partition level constraint

Fig. 1. The comparison between pairwise constraints and partition level
side information. In (a), we cannot decide a Must-Link or Cannot-link
only based on two instances; compared (b) with (c), it is more natural to
label the instances in well-organised way, such as partition level rather
than pairwise constraint.

side information also called partial labeling means that only a

small portion of data is labeled into different clusters. Compared

with pairwise constraints, partition level side information has the

following benefits: (1) it is more natural to organize the data in a

higher level than pairwise comparisons, (2) when human workers

label one instance, other instances provide enough information

as reference for a good decision, (3) it is immune to the self-

contradiction and the order of pairwise constraints. The concept of

partition level side information was proposed by [17], which aims

to find better initialization centroids and employs the standard

K-means to finish the clustering task; since the partition level

side information is only used to initialize the centroids without

involving it into the process of clustering, this method does not

belong to the constrained clustering area. In this paper, we revisit

partition level side information and involve it into the process of

clustering to obtain the final solution in a one-step framework.

Inspired by the success of ensemble clustering [18], we take

the partition level side information as a whole and calculate the

similarity between the learnt clustering solution and the given

side information. We propose the Partition Level Constrained

Clustering (PLCC) framework, which not only captures the in-

trinsic structure from the data itself, but also agrees with the
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partition level side information as much as possible. Based on

K-means clustering, we derive the objective function and give its

corresponding solution via derivation. Further, the above solution

can be equivalently transformed into a K-means-like optimization

problem with only small modification on the distance function and

update rule for centroids. Thus, a roughly linear time complexity

can be guaranteed. Moreover, we extend it to handle multiple side

information and provide the algorithm of partition level side infor-

mation for spectral clustering. Extensive experiments on several

real-world datasets demonstrate the effectiveness and efficiency of

our method compared to pairwise constrained clustering and en-

semble clustering, even in the inconsistent cluster number setting,

which verifies the superiority of partition level side information for

the clustering task. Besides, our K-means-based method has high

robustness to noisy side information even with 50% noisy side

information. And we validate the performance of our method with

multiple side information, which makes it a promising candidate

for crowdsourcing. Finally, a totally unsupervised framework

called Saliency-Guided Constrained Clustering (SG-PLCC) is put

forward for the image cosegmentation task, which demonstrates

the effectiveness and flexibility of PLCC in different domains.

Our main contributions are highlighted as follows.

• We revisit partition level side information and incorporate

it to guide the process of clustering and propose the

Partition Level Constrained Clustering framework.

• Within the PLCC framework, we propose a K-means-like

algorithm to solve the clustering with partition level side

information in a high efficient way and extend our model

to multiple side information and spectral clustering.

• Extensive experiments demonstrate our algorithm not only

has promising performance compared to the state-of-the-

art methods, but also performs high robustness to noisy

side information.

• A cosegmentation application with saliency prior is em-

ployed to further illustrate the flexibility of PLCC. Al-

though only the raw features are extracted and K-means

clustering is conducted, we still achieve promising results

compared with several cosegmentation algorithms.

This paper is an extension of our conference paper [19] with

the following new contents: (1) The complete basic solution for

the K-means-based PLCC is provided; (2) we extend the PLCC

framework in the multiple partition level side information and

evaluate the performance with noisy prior knowledge; (3) the

spectral-based PLCC is proposed with the corresponding solution

and analysis; (4) two clustering validity metrics and more datasets

are used to fully evaluate the performance of the proposed meth-

ods; (5) we evaluate the performance of PLCC in the inconsistent

cluster number setting and (6) we employ PLCC on cosegmenta-

tion to demonstrate the effectiveness in image domain.

This paper is organized as follows. Section 2 introduces the re-

lated work; then we illustrate the problem definition, derive objec-

tive function and provide the corresponding solutions in Section 3.

Several extensions are given in Section 5. Section 6 demonstrates

our experimental results on several benchmark datasets and the

cosegmentation application is given in Section 7. Finally we draw

the conclusion in Section 8.

2 RELATED WORK

In this part, we summarize the work related to our paper. Al-

though partition level side information can also be used for semi-

supervised classification, it is unfair to compare the clustering

results to classification. Thus, we focus on the clustering scenario.

In the following, the works on constrained clustering and ensemble

clustering are briefly discussed.

2.1 Constrained Clustering
K. Wagstaff and C. Cardie first put forward the concept of con-

strained clustering via incorporating pairwise constraints (Must-

Link and Cannot-Link) into a clustering algorithm and modified

COBWEB to finish the partition [10]. Later, COP-K-means, a

K-means-based algorithm kept all the constraints satisfied and

attempted to assign each instance to its nearest centroid [11].

[20] developed a framework to involve pre-given knowledge into

density estimation with Gaussian Mixture Model and presented

a closed-form EM procedure and generalized EM procedure for

Must-Link and Cannot-Link respectively. These algorithms can be

regarded as hard constrained clustering since they do not allow any

violation of the constraints in the process of clustering. However,

sometimes satisfying all the constraints as well as the order of

constraints make the clustering intractable and no solution often

can be found.

To overcome such limitation, soft constrained clustering al-

gorithms have been developed to minimize the number of vio-

lated constraints. Constrained Vector Quantization Error (CVQE)

considered the cost of violating constraints and optimized the

cost within the objective function of K-means [14]. Further,

LCVQE modified CVQE with different computation of violating

constraints [15]. Metric Pairwise Constrained K-means (MPCK-

means) employed the constraints to learn a best Mahalanobis

distance metric for clustering [16]. Among these K-means-based

constrained clustering, [21] presented a thoroughly comparative

analysis and found that LCVQE presents better accuracy and

violates less constraints than CVQE and MPCK-Means. It is

worthy to note that an NMF-based method also incorporates the

partition level side information for constrained clustering [22],

which requires that the data points sharing the same label have the

same coordinate in the new representation space.

Another category of constrained clustering is to incorporate

constraints into spectral clustering, which can be roughly gen-

eralized into two groups. The first group directly modifies the

Laplacian graph. Kamvar et al. proposed the spectral learning

method which set the entry to 1 or 0 according to Must-link

and Cannot-link constraints and employed the traditional spectral

clustering to obtain the final solution [23]. Similarly, Xu et al. used

the similar way to modify the graph and applied random walk for

clustering [24]. Lu et al. propagated the constrains in the affinity

matrix [25]. [26] and [27] combined the constraint matrix as a

regularizer to modify the affinity matrix. The second group modi-

fies the eigenspace instead. [28] altered the eigenspace according

to the hard or soft constraints. Li et al. enforced constraints by

regularizing the spectral embedding [29]. Recently, [30] proposed

a flexible constrained spectral clustering to encode the constraints

as part of a constrained optimization problem.

2.2 Ensemble Clustering
Since we employ the utility function in ensemble clustering area

to measure the similarity between the learnt clustering and the

partition side information, in the following we briefly introduce

some key works in this area. A bunch of basic partitions can be

generated by different clustering algorithms or the same algorithm
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with multiple runs or different parameters. Ensemble clustering

aims to fuse these existing basic partitions into a consensus one,

which can be generalized into two categories.

The first category measures the similarity in the instance-level

by transforming the ensemble clustering into the traditional graph

partition. In such kind of methods, the co-association matrix is

used to summarize how many times a pair of instances jointly

occur in the same clustering, which can be regarded as a new

similarity metric in the instance-level. This leads that the tradi-

tional graph partition methods can be directly conducted on the co-

association matrix without modification. [31] transformed the set

of basic partitions into a hypergraph representation and proposed

three graph partition methods CSPA, HGPA and MCLA. [32] used

the agglomerative hierarchical clustering on the co-association

matrix to find the final clustering. Similarly, Liu et al. [18], [33]

employed the spectral clustering on the co-association matrix and

solved it via weighted K-means. Other methods include Locally

Adaptive Cluster based methods [35], Relabeling and Voting [34],

genetic algorithm based methods [36], and still many more.

Another kind of methods employs utility functions to measure

the similarity between the consensus clustering and basic ones

in the partition-level. The consensus partition can be achieved

by maximizing the utility functions. Based on quadratic mutual

information, [37] solved the consensus clustering with a K-means

clustering. And then they extended their work to using the EM

algorithm with a finite mixture of multinomial distributions for

consensus clustering [39]. To further explore the K-means-based

method, Wu et al. gave the sufficient and necessary condition for

KCC utility functions and put forward a theoretic framework for

K-means-based Consensus Clustering (KCC) [40], [41], followed

by text clustering [42], Entropy-based Consensus Clustering [43]

and Infinite Ensemble Clustering [44], [45]. It is worthy to note

that [18] built a bridge between these two kinds of methods and

showed the similarity in the instance-level and partition-level can

be convertible.

Different from the existing work, we consider a new kind

of constraint, called partition level side information, which much

more obeys the way human being makes decision than pairwise

constraints. Besides, partition level side information is not affected

by the order of constraints. In this paper, we incorporate such

constraints into the process of clustering and propose the Partition

Level Constrained Clustering (PLCC) framework. Then several

efficient algorithms based on K-means and spectral clustering are

derived. Through extensive experiments and the cosegmentation

application, PLCC shows significant advantages compared with

several state-of-the-art methods.

3 PROBLEM FORMULATION

In this section, we first give the definition of partition level side

information and uncover the relationship between partition level

side information, pairwise constraints and ground truth labels.

Then based on partition level side information, we give the

problem definition, build the model and derive its corresponding

solution; further an equivalent solution is designed by modified K-

means in an efficient way. Finally, the model is extended to handle

multiple side information.

3.1 Partition Level Side Information
Since clustering is an orderless partition, pairwise constraints are

put forward to further improve the performance of clustering for

long time. Specifically, Must-Link and Cannot-Link constraints

represent that two instances should lie in the same cluster or not.

Although within the framework of pairwise constraints we avoid

to answer the mapping relationship among different clusters and

at the first thought it is easy to make the Must-Link or Cannot-

Link decision for pairwise constraints, such pairwise constraints

are illogic in essence. For example (See Figure 1), given one pair

images of a cat and a dog, it cannot be directly determined whether

these two images are in the same cluster or not without external

information, such as human knowledge or expert suggestion. Here

comes the first question that what is the cluster. The goal of cluster

analysis is to find cluster structure. Only after clustering, we can

summarize the meaning for each cluster. If we already know the

meaning of each cluster, the problem becomes the classification

problem, rather than clustering. Given that we do not know the

meaning of clusters in advance, it is highly risky to make the

pairwise constraints. Someone might argue that experts have their

own pre-defined cluster structure, but the matching between pre-

defined and true cluster structure also begs questions. Take Fig. 1

as an example. For the cat and dog images, users might have

different decision rules based on different pre-defined cluster

structures, such as animal or non-animal, land, water or flying

animal and just cat or dog categories. That is to say, without

seeing other instances as references, the decisions we make based

on two instances suffer from high risk. More importantly, pairwise

constraints disobey the way we make decisions. The data should

be organized in a higher level rather than pairwise comparisons.

Besides, it is tedious to build a pairwise constraint matrix with

only 100 instances. Even though the pairwise constraints matrix

is a symmetric matrix and there exists transitivity for Must-Link

and Cannot-Link constraints, the size of elements of the pairwise

constraints matrix is relatively huge to the number of instances.

To avoid these drawbacks of pairwise constraints, here we

leverage a new constraint for clustering, called partition level side

information as follows.

Definition 1. (Partition Level Side Information) Given a data set
containing n instances, randomly select a small portion p ∈ (0, 1)
of the data to label from 1 to K , which is the user-predefined
cluster number, then the label information for only small portion
of the data is called p−partition level side information.

Different from pairwise constraints, partition level side infor-

mation groups the given np instances as a whole process. Taking

other instances as references, it makes more sense to decide the

group labels than pairwise constraints. Another benefit is that par-

tition level side information has high consistency, while sometimes

pairwise constraints from users might be self-contradictory by

transitivity. That is to say, given a p−partition level side infor-

mation, we can build an np×np pairwise constraints matrix with

containing the same information. On the contrary, a p−partition

level side information cannot be derived by several pairwise con-

straints. In addition, for human beings it is much easier to separate

an amount of instances into different groups, which accords with

the way of labeling. As above mentioned, partition level side

information has obvious advantages over pairwise constraints,

which is also a promising candidate for crowd sourcing labeling.

It is also worth illustrating the difference between partition

level side information and ground truth. The partition level side

information is still an orderless partition. However if we exchange

the labels of ground truth, they become wrong labels. Another

point is that partition level side information coming from users
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TABLE 1
Contingency Matrix

S

C
(S)
1 C

(S)
2 · · · C

(S)
K

∑

C1 n
(S)
11 n

(S)
12 · · · n

(S)
1K n1+

H1 C2 n
(S)
21 n

(S)
22 · · · n

(S)
2K n2+

· · · · · · · ·
CK n

(S)
K1 n

(S)
K2 · · · n

(S)
KK nK+

∑
n
(S)
+1 n

(S)
+2 · · · n

(S)
+K np

might have different cluster numbers, even suffer from noisy and

wrong decision makings. Besides partition level side information

comes from multi-users, which might be different from each other,

while the ground truth is unique. Especially in the labeling task,

the partial labeled data might have the fewer cluster number than

the one of the whole data. In this case, we cannot transform the

constrained clustering problem into the traditional classification

problem.

3.2 Problem Definition

Based on the Definition 1 of partition level side information, we

formalize the problem definition: How to utilize partition level
side information to better conduct clustering?

This problem is totally new to the clustering area. To solve this

problem, we have to handle the following challenges:

• How to fuse partition level side information into the

process of clustering?

• What is the best mapping relationship between partition

level side information and the cluster structure learned

from the data?

• How to handle multi-source partition level side informa-

tion to guide the generation of clustering?

One intuitive way to solve the above problem is to transform

the partition level side information into pairwise constraints, then

any traditional semi-supervised clustering method can be used to

obtain final clustering. However, such solution does not make full

use of the advantages of partition level side information. Inspired

by the huge success of ensemble clustering, we treat the partition

level side information as an integrated one and make the clustering

result agree with the given partition level side information as much

as possible. Specifically, we calculate disagreement between the

clustering result and the given partition level side information

from a utility view. Here we take K-means as the basic clustering

method and give its corresponding objective function for partition

level side information in the following.

3.3 Objective Function

Let X be the data matrix with n instances and m features and

S be a np × K side information matrix containing np instances

and K clusters, where each row only has one element with value

1 representing the label information and others are all zeros. The

objective function of our model is as follows:

min
H,C,G

||X −HC||2F − λUc(H ⊗ S, S)

s.t. Hik ∈ {0, 1},
K∑

k=1

Hik = 1, 1 ≤ i ≤ n.
(1)

TABLE 2
Notations

Notation Domain Decription

n R Number of instances

m R Number of features

K R Number of clusters

p R Percentage of labeled data

X Rn×m Data matrix

S {0, 1}np×K′
Partition level side information

H {0, 1}n×K Indicator matrix

C RK×m Centroid matrix

G RK×K′
Alignment matrix

W Rn×n Affinity matrix

D Rn×n Diagonal summation matrix

U Rn×K Scaled indicator matrix

whereH is the indicator matrix, C is the centroids matrix,H⊗S
is part of H where the instances are also in the side information

S, Uc is the well-known categorical utility function [38], λ is a

tradeoff parameter to present the confidence degree of the side

information and the constraints make the final solution a hard

partition, which means one instance only belongs to one cluster.

The objective function consists of two parts. One is the

standard K-means with squared Euclidean distance, the other is

a term measuring the disagreement between part of H and the

side information S. We aim to find a solution H , which not

only captures the intrinsic structural information from the original

data, but also has as little disagreement as possible with the side

information S.
To solve the optimization problem in Eq. 1, we separate the

data X and indicator matrix H into two parts, X1 and X2, H1

and H2, according to side information S. Therefore, the objective
function can be written as:

min
H1,H2

||X1 −H1C||2F + ||X2 −H2C||2F − λUc(H1, S). (2)

To better understand the last term in Eq. 2, we introduce

the contingency table. In Table 1, given two partitions S and

H1 containing both K clusters (In practice, the partition level

side information might have different cluster number from the

true cluster number). Let n
(S)
kj denote the number of data objects

belonging to both cluster C
(S)
j in S and cluster Ck in H1,

nk+ =
∑K

j=1 n
(S)
kj , and n

(S)
+j =

∑K
k=1 n

(S)
kj , 1 ≤ j ≤ K ,

1 ≤ k ≤ K . Let p
(S)
kj = n

(S)
kj /np, pk+ = nk+/np, and

p
(S)
+j = n

(S)
+j /np. We then have a normalized contingency matrix

(NCM), based on which a wide range of utility functions can be

accordingly defined. For instance, the widely used category utility

function [38] can be computed as follows:

Uc(H1, S) =
K∑

k=1

pk+

K∑
j=1

(
p
(S)
kj

pk+
)2 −

K∑
j=1

(p
(S)
+j )

2. (3)

The category utility function measures the similarity of two

partitions in partition level, which means that two partitions share

more similarity with a higher Uc value. Note that the last term in

Eq. 3 is a constant when the side information S is given. Back

to our problem, the last term in Eq. 2 has the opposite function

to measure the dissimilarity of two partitions in a utility way.

We have the following Lemma 1 to illustrate this kind equivalent

relationship.
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Lemma 1. Given one partition S, a cluster indicator matrix both
containing np instances, we have

max
H1

Uc(H1, S) ⇔ min
H1

||S −H1G||2F, (4)

where Gk = (
p
(S)
k1

pk+
, · · · , p

(S)
kK

pk+
) is the k−th row of G, ∀k.

The proof of Lemma 1 can be found in our previous work [40],

[41]. Actually the equivalent relationship between ||S −H1G||2F
and Uc(H1, S) holds not only for the optimal H1, but also holds

for any H1, since ||S − H1G||2F + Uc(H1, S) = constant with

given S. Lemma 1 introduces one extra variables G to capture the

mapping relationship between S to H1. After aligning S to H1

with G, the Frobenius norm is to calculate for the dissimilarity

between S and H1 in an efficient way. This gives us a new insight

of the objective function in Eq. 1 as follows.

min
H1,H2,C,G

||X1−H1C||2F+||X2−H2C||2F+||S−H1G||2F. (5)

4 SOLUTIONS

In this part, we give the corresponding solution to Eq. 2 by

derivation, then equivalently transfer the problem into a K-means-

like optimization problem in an efficient way.

4.1 Algorithm Derivation

To derive the algorithm solving Eq. 2, we rewrite Eq. 2 as

J = min
H1,H2,C,G

tr((X1 −H1C)(X1 −H1C)�

+ (X2 −H2C)(X2 −H2C)�

+ λ(S −H1G)(S −H1G)�),

(6)

where tr(·) means the trace of a matrix. By this means, we can

update H1, H2, C and G in an iterative update procedure.

Fixing H1, H2, G, Update C . Let J1 = ||X1 −H1C||2F +
||X2 −H2C||2F, we have
J1 = tr((X1−H1C)(X1−H1C)�+(X2−H2C)(X2−H2C)�).

(7)

Then taking derivative of C and setting it as 0, we get

∂J1
∂C

= −2H�
1 X1 + 2H�

1 H1C − 2H�
2 X2 + 2H�

2 H2C = 0.

(8)

Therefore, we can update C as follows:

C = (H�
1 H1 +H�

2 H2)
−1(H�

1 X1 +H�
2 X2). (9)

Fixing H1, H2, C , Update G. The term related to G is ||S−
H1G||2F, then minimize J2 = ||S −H1G||2F over G, we have

J2 = tr((S −H1G)(S −H1G)�). (10)

Next we take the derivative of J2 over G, and have

∂J2
∂G

= −2H�
1 S + 2H�

1 H1G = 0. (11)

The solution leads to the update rule of G as follows

G = (H�
1 H1)

−1H�
1 S. (12)

Fixing H2, G, C , Update H1. The rule of updating H1

is a little different from the above rules, since H1 is not a

continues variable. Here we use an exhaustive search for the

optimal assignment to find the solution of H1

k = argmin
j

||X1,i − Cj ||22 + λ||zj −H1,iG||22, (13)

where X1,i and H1,i denote the i-th row in X1 and H1, Cj is the

j-th centroid and zj is a 1 × K vector with j-th position 1 and

others 0.

Fixing H1, G, C , Update H2. Similar to the update rule of

H1, we use the same way to update H2 as follows.

k = argmin
j

||X2,i − Cj ||22. (14)

By the above four steps, we alternatively update C , G, H1 and

H2 and repeat the process until the objective function converges.

Here we decompose the problem into 4 subproblems and each of

them is a convex problem with one variable. Therefore, by solving

the subproblems alternatively, our method will find a solution with

the guarantee of convergence.

4.2 K-means-like optimization
Although the above solution is suitable for the clustering with

partition level side information, it is not efficient due to some

matrix multiplication and inverse. Besides if we have multiple side

information, the data is separated to too many fractured pieces,

which is hard to operate in real-world applications. This inspires

us whether we can solve the above problem in a neat mathemat-

ical way with high efficiency. In the following, we equivalently

transform the problem into a K-means-like optimization problem

via just concatenating the partition level side information with the

original data.

First, we introduce the concatenated matrix D as follows,

D =

⎡
⎣X1 S

X2 0

⎤
⎦ .

Further we decomposed D into two parts D = [D1 D2], where
D1 = X and D2 = [S 0]�. Here we can see that D is exactly

a concatenated matrix with the original data X and partition level

side information S, di consists of two parts, one is the original

features d
(1)
i = (di,1, · · · , di,m), i.e., the first m columns; the

other last K columns d
(2)
i = (di,m+1, · · · , dk,m+K) denote the

side information; for those instances with side information, we

just put the side information behind the original features, and for

those instances without side information, zeros are used to filled

up.

If we directly apply K-means on the matrix D, it might

cause some problems. Since we make the partition level side

information guide the clustering process in a utility way, those

all zeros values should not provide any utility to measure the

similarity of two partitions. That is to say, the centroids of

K-means is no longer the mean of the data instances belong-

ing to a certain cluster. Let mk = (m
(1)
k ,m

(2)
k ) be the k-th

centroid of K-means, which m
(1)
k = (mk,1, · · · ,mk,m) and

m
(2)
k = (mk,m+1, · · · ,mk,m+K). We modify the computation

of the centroids as follows,

m
(1)
k =

∑
xi∈Ck

xi

|Ck| , m
(2)
k =

∑
xi∈Ck

⋂
S xi

|Ck

⋂
S| . (15)

Recall that within the standard K-means, the centroids are

computed by arithmetic means, whose denominator represents
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Algorithm 1 The algorithm of PLCC with K-means

Input: X: data matrix, n×m;

K: number of clusters;

S: p−partition level side information, pn×K;

λ: trade-off parameter.

Output: optimal H∗;
1: Build the concatincating matrix D, n× (m+K);
2: Randomly select K instances as centroids;

3: repeat
4: Assign each instance to its closest centroid by the distance

function in Eq. 17;

5: Update centroids by Eq. 15;

6: until the objective value in Eq. 2 remains unchanged.

the number of instances in its corresponding cluster. Here in

Eq. 15, our centroids have two parts m
(1)
k and m

(2)
k . For m

(1)
k ,

the denominator is also |Ck|; but for m(2)
k , the denominator is

|Ck ∩ S|. After modifying the computation of centroids, we have

the following Theorem 1.

Theorem 1. Given the data matrix X , side information S and
augmented matrix D = {di}1≤i≤n, we have

min
H,C,G

||X −HC||2F + λ||S − (H ⊗ S)G||2F

⇔ min
K∑

k=1

∑
di∈Ck

f(di,mk),
(16)

where mk is the k-th centroid calculated by Eq. 15 and the
distance function f can be computed by

f(di,mk) = ||d(1)i −m
(1)
k ||22 + λ1(di ∈ S)||d(2)i −m

(2)
k ||22.

(17)

where 1(di ∈ S) = 1 means the side information contains xi,
and 0 otherwise.

Proof. We start from the objective function of K-means.

K∑
k=1

∑
di∈Ck

f(di,mk)

=
K∑

k=1

∑
di∈Ck∩S

(||d(1)i −m
(1)
k ||22 + λ||d(2)i −m

(2)
k ||22)

+
K∑

k=1

∑

di∈Ck∩S

||d(1)i −m
(1)
k ||22

= ||X1 −H1C||2F + λ||S −H1G||2F + ||X2 −H2C||2F.

(18)

According to the definition of the augmented matrix D and Eq. 2,

we finish the proof.

Remark 1. Theorem 1 exactly maps the problem in Eq. 1 into a
K-means clustering problem with modified distance function and
centroid updating rules, which has a neat mathematical way and
can be solved with high efficiency. Taking a close look at the
concatenated matrix D, the side information can be regarded as
new features with more weights, which is controlled by λ. Besides,
Theorem 1 provides a way to clustering with both numeric and
categorical features together, which means we calculate the differ-
ence between the numeric and categorical part of two instances
respectively and add them together.

By Theorem 1, we transfer the problem into a K-means-like

clustering problem. Since the updating rule and distance function

have changed, it is necessary to verify the convergency of the

K-means-like algorithm.

Theorem 2. For the objective function in Theorem 1, the opti-
mization problem is guaranteed to converge in finite two-phase
iterations of K-means clustering.

The proof of Theorem 2 is to show that centroid updating rules

in Eq. 15 are optimal, which is similar to the proof of Theorem 6

in Ref [44]. Due to the limited space, we omit the proof here. We

summarize the proposed algorithm in Algorithm 1. We can see that

the proposed algorithm has the similar structure with the standard

K-means, and it also enjoys the almost same time complexity with

K-means, O(tKn(m + K)), where t is the iteration number,

K is the cluster number, n and m are the numbers of instance

and feature, respectively. Usually K � n and m � n, so the

algorithm is roughly linear to the instance number. This indicates

that K-means-based PLCC is suitable for large-scale datasets.

5 DISCUSSION

In this part, we discuss the extensions of our model. One is to

handle multiple partition level side information, the other is to

apply spectral clustering with partition level side information.

5.1 Handling Multiple Side Information

In real-world application, like crowd sourcing, the side informa-

tion comes from multi-sources. Thus, how to conduct clustering

with multiple side information is common in most scenarios. Next,

we modify the objective function to extend our method to handle

multiple side information.

min
H,C,Gj

||X −HC||2F +
r∑

j=1

λj ||Sj − (H ⊗ Sj)Gj ||2F

s.t. Hik ∈ {0, 1},
K∑

k=1

Hik = 1, 1 ≤ i ≤ n.

(19)

where S = {S1, S2, · · · , Sr} is the set of side information and

λi is the weight of each side information. If we still apply the

first solution, the data is separated into so many pieces that it is

difficult to handle in practice. Thanks to the K-means-like solution,

we concatenate all the side information after the original features

and then employ K-means to find the final solution. The centroids

consist of r parts, with mk = (m
(1)
k ,m

(2)
k , · · · ,m(r+1)

k ), which

m
(j)
k , 2 ≤ j ≤ r + 1 represents the part of centroids for r side

information, and the update rule of centroids and the distance

function can be computed as

m
(j+1)
k =

∑
xi∈Ck

⋂
Sj

xi

|Ck

⋂
Sj | , (20)

f(di,mk) = ||d(1)i −m
(1)
k ||22,

+
r∑

j=1

λj1(di ∈ Sj)||d(j+1)
i −m

(j+1)
k ||22.

(21)
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Algorithm 2 The algorithm of PLCC with spectral clustering

Input: X: data matrix, n×m;

K: number of clusters;

S: p−partition level side information, pn×K;

λ: trade-off parameter.

Output: optimal H∗;
1: Build the similarity matrix W ;

2: Calculate the largest K engienvectors of (D−1/2WD−1/2 +
λ[S 0]�[S 0]);

3: Run K-means to obtain the final clustering.

5.2 PLCC with Spectral Clustering
K-means and spectral clustering are two widely used clustering

methods, which handle the record data and graph data, respec-

tively. Here we also want to incorporate the partition level side

information into spectral clustering for broad use. Here we first

give a brief introduction to spectral clustering and extend it to

handle partition level side information. Let W be a symmetric

matrix of given data, where wij represents a measure of the

similarity between xi and xj . The objective function of normal-

ized cuts spectral clustering is the following trace maximization

problem [46]:

max
U

tr(U�D−1/2WD−1/2U)

s.t. U�U = I,
(22)

where D is the diagonal matrix whose diagonal entry is the sum

of rows of W and U is the scaled cluster membership matrix such

that

Uij =

⎧⎨
⎩

1/
√
nj , if xi ∈ Cj

0, otherwise
.

We can easily get U = H(H�H)−1/2 and U�U = I . The solu-
tion is to calculate the largest k eigenvalues of D−1/2WD−1/2,

and run K-means to get the final partition [46].

Similar to the trick we use for K-means, we also separate

U into two parts U1 and U2 according to side information. Let

U1 denote the scaled cluster membership matrix for the instances

with side information, and U2 represent the the scaled cluster

membership matrix for the instances without side information.

Then we can add the side information part and rewrite Eq. 22 as

follow.

max
U1,U2

tr(

⎡
⎣U1

U2

⎤
⎦
�

D−1/2WD−1/2

⎡
⎣U1

U2

⎤
⎦)− λ||S −H1G||2F.

(23)

For the second term, through some derivations we can obtain

the following equation [47],

||S −H1G||2F = ||S||2F − tr(U�
1 SS�U1). (24)

Since ||S||2F is a constant, finally we derive the objective function

for spectral clustering with partition level side information.

max
U1,U2

tr(

⎡
⎣U1

U2

⎤
⎦
�

(D−1/2WD−1/2 + λ

⎡
⎣S
0

⎤
⎦
⎡
⎣S
0

⎤
⎦
�

)

⎡
⎣U1

U2

⎤
⎦)

⇔ max
U

tr(U�(D−1/2WD−1/2 + λ

⎡
⎣S
0

⎤
⎦
⎡
⎣S
0

⎤
⎦
�

)U).

(25)

TABLE 3
Experimental Data Sets

Data set #Instances #Features #Classes CV

breast 699 9 2 0.4390
ecoli∗ 332 7 6 0.8986
glass 214 9 6 0.8339
iris 150 4 3 0.0000

pendigits 10992 16 10 0.0422
satimage 4435 36 6 0.4255

wine+ 178 13 3 0.1939
Dogs 20580 2048 120 0.1354
AWA 30475 4096 50 1.3499
Pascal 12695 4096 20 4.6192
MNIST 70000 160 10 0.0570
∗: two clusters containing only two objects are deleted as noise.
+: the last attribute is normalized by a scaling factor 1000.

To solve the above optimization problem, we have the follow-

ing theorem.

Theorem 3. The optimal solution U∗ is composed by the largest

K eigenvectors of (D−1/2WD−1/2 + λ

⎡
⎣S
0

⎤
⎦
⎡
⎣S
0

⎤
⎦
�

).

The proof is similar to the one of spectral clustering, we omit

it here due to the limited page. And the algorithm is summarized

in Alg. 2.

Remark 2. Similar to Theorem 1, Theorem 3 transforms the
spectral clustering with partition level side information into a new
spectral clustering problem. So a modified similarity matrix is
calculated and followed by the standard spectral clustering. We
can see that partition level side information enhances coherence
within clusters.

6 EXPERIMENTAL RESULTS

In this section, we present the experimental results of PLCC nested

K-means and spectral clustering compared to pairwise constrained

clustering and ensemble clustering methods. Generally speaking,

we first demonstrate the advantages of our method in terms of

effectiveness and efficiency. Next, we add noises with different

ratios to analyse the robustness and finally the experiments with

multiple side information and inconsistent cluster number illus-

trate the validation of our method in real-world application.

6.1 Experimental Setup
Experimental data. We use a testbed consisting of seven data sets

obtained from UCI repositories1 and four image data sets with

deep features2 3 4 5. Table 3 shows some important characteristics

of these datasets, where CV is the Coefficient of Variation statistic

that characterizes the degree of class imbalance. A higher CV

value indicates a more severe class imbalance.

Tools. We choose four methods as competitive methods. L-

CVEQ [15] is a K-means-based pairwise constraint clustering

method; KCC is an ensemble clustering methoud [40], which first

generates one basic partition alone from the data and then fuse

this partition with incomplete partition level side information;

FSC [30] is a spectral-based clustering method with pairwise

1. https://archive.ics.uci.edu/ml/datasets.html

2. http://vision.stanford.edu/aditya86/ImageNetDogs/

3. http://attributes.kyb.tuebingen.mpg.de/

4. https://www.ecse.rpi.edu/homepages/cvrl/database/AttributeDataset.htm

5. http://yann.lecun.com/exdb/mnist/
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TABLE 4
Clustering performance on seven real datasets by NMI

Data Sets percent Ours(K-means) CNMF LCVQE KCC K-means Ours(SC) FSC SC

breast

10% 0.7591±0.0137 0.7242±0.0262 0.7588±0.0138 0.7574±0.0122

0.7361±0.0000

0.7884±0.0188 0.1618±0.1368

0.7563±0.0000
20% 0.7820±0.0185 0.7430±0.0204 0.7815±0.0186 0.7759±0.0148 0.8116±0.0213 0.1645±0.0537
30% 0.8071±0.0214 0.7691±0.0248 0.8059±0.0212 0.8001±0.0198 0.8446±0.0229 0.2109±0.0778
40% 0.8320±0.0196 0.7973±0.0278 0.8156±0.1129 0.8246±0.0186 0.8712±0.0219 0.2899±0.0602
50% 0.8538±0.0186 0.8375±0.0217 0.8196±0.1656 0.8458±0.0182 0.8892±0.0251 0.3298±0.0922

ecoli

10% 0.6416±0.0231 0.6184±0.0508 0.6087±0.0332 0.5957±0.0522

0.6053±0.0253

0.4184±0.1391 0.4902±0.0490

0.5575±0.0086
20% 0.6820±0.0298 0.6537±0.0430 0.6324±0.0471 0.6056±0.0511 0.4388±0.0954 0.4677±0.0606
30% 0.7321±0.0274 0.6772±0.0363 0.6782±0.0456 0.6289±0.0621 0.4487±0.0863 0.4834±0.0728
40% 0.7692±0.0284 0.7119±0.0390 0.7046±0.0454 0.6504±0.0484 0.4634±0.0696 0.4993±0.0466
50% 0.8084±0.0272 0.7410±0.0392 0.7283±0.0533 0.6957±0.0611 0.4990±0.0177 0.5336±0.0332

glass

10% 0.3749±0.0292 0.1908±0.0887 0.3744±0.0347 0.3872±0.0333

0.3846±0.0361

0.3570±0.0724 0.2466±0.0706

0.4070±0.0042
20% 0.3973±0.0270 0.1908±0.0993 0.3595±0.0373 0.3842±0.0314 0.4096±0.0636 0.2950±0.0562
30% 0.4251±0.0296 0.2182±0.1006 0.3466±0.0457 0.3905±0.0306 0.4591±0.0383 0.3208±0.0439
40% 0.4716±0.0337 0.2534±0.0994 0.3405±0.0345 0.3861±0.0324 0.5064±0.0275 0.3833±0.0416
50% 0.5201±0.0282 0.2770±0.1036 0.3208±0.0527 0.3816±0.0415 0.5550±0.0234 0.4258±0.0504

iris

10% 0.7653±0.0177 0.7135±0.1016 0.7597±0.0341 0.7258±0.0929

0.7244±0.0682

0.7339±0.0678 0.2662±0.2339

0.7313±0.0290
20% 0.7846±0.0241 0.7298±0.0974 0.7829±0.0271 0.7217±0.1165 0.7036±0.0540 0.2915±0.1911
30% 0.8105±0.0279 0.7846±0.1037 0.8096±0.0347 0.7637±0.0961 0.7077±0.0489 0.3562±0.1846
40% 0.8366±0.0283 0.7855±0.0984 0.8303±0.0608 0.7993±0.0727 0.6949±0.1139 0.4571±0.1840
50% 0.8541±0.0303 0.8067±0.1058 0.8502±0.0388 0.8178±0.0670 0.7128±0.1104 0.5943±0.1677

pendigits

10% 0.6920±0.0149 0.6801±0.0128 0.6672±0.0120 0.6531±0.0261

0.6822±0.0148

0.5242±0.0441 0.4183±0.0978

0.6522±0.0191
20% 0.7101±0.0188 0.6961±0.0082 0.6313±0.0231 0.6673±0.0392 0.4611±0.0454 0.3916±0.0617
30% 0.7289±0.0327 0.7031±0.0304 0.5984±0.0251 0.6858±0.0164 0.4631±0.0542 0.4239±0.0561
40% 0.7645±0.0186 0.7469±0.0151 0.5786±0.0216 0.7535±0.0306 0.4690±0.0542 0.4595±0.0392
50% 0.8054±0.0129 0.7601±0.0132 0.5406±0.0242 0.7882±0.0306 0.4986±0.0470 0.5249±0.0372

satimage

10% 0.6140±0.0005 0.2318±0.0318 0.5456±0.0515 0.5484±0.0724

0.5752±0.0588

0.4456±0.0304 0.3310±0.0754

0.5198±0.0306
20% 0.6143±0.0006 0.2541±0.0264 0.5263±0.0886 0.6028±0.0498 0.4466±0.0367 0.3261±0.0470
30% 0.6149±0.0005 0.3000±0.0223 0.5133±0.1065 0.5807±0.0679 0.4801±0.0280 0.3364±0.0297
40% 0.6153±0.0004 0.3413±0.0184 0.4446±0.1025 0.6430±0.0447 0.4921±0.0316 0.4056±0.0210
50% 0.6161±0.0008 0.4231±0.0346 0.4505±0.1193 0.6896±0.0521 0.5155±0.0665 0.4570±0.0287

wine

10% 0.2944±0.0532 0.2426±0.1050 0.2697±0.0592 0.2727±0.0552

0.1307±0.0087

0.4325±0.0771 0.1865±0.1262

0.4007±0.0271
20% 0.3463±0.0505 0.2321±0.1105 0.2554±0.0771 0.2993±0.0565 0.4749±0.0574 0.2470±0.0962
30% 0.3774±0.0482 0.2711±0.0980 0.2339±0.0828 0.3362±0.0527 0.5069±0.0751 0.3137±0.0910
40% 0.4310±0.0345 0.2887±0.1331 0.1981±0.1076 0.3715±0.0532 0.5305±0.0762 0.4019±0.0677
50% 0.4636±0.0355 0.3267±0.1215 0.1960±0.1334 0.4360±0.0531 0.5760±0.0690 0.4904±0.0447
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Fig. 2. Impact of λ on satimage and pendigits.

constraint; CNMF [22] is an NMF-based constrained clustering

method, which also employs the partition level side information

as input. In our method, there is only one parameter λ, here
we empirically set it to 100, and we also set the weight of side

information as 100 in KCC. In the experiments, we randomly

select certain percent partition level side information from the

ground truth for our method and KCC, then transfer the parti-

tion level side information into pairwise constraints for LCVQE

and FSC. Although there exist many K-means-based constrained

clustering methods, Ref [21] thoroughly studied the K-Means-

based algorithms for constrained clustering and recommended

LCVQE [15], which presents better performance and violates less

constraint than CVQE [14] and MPCK-Means [16]. Therefore, we

choose LCVQE as the pairwise constraint comparative algorithm.

Note that the number of clusters for three algorithms is set to the

number of true clusters.

Validation measure. Since class labels are provided for each

data set, Normalized Mutual Information (NMI) and Normalized

Rand Index (Rn) are used to measure the clustering performance.

Normalized Mutual Information (NMI), measures the mutual

information between resulted cluster labels and ground truth

labels, followed by a normalization operation to assure NMI

ranges from 0 to 1. Mathematically, it is defined as:

NMI =

∑
i,j nij log

n·nij

ni+·n+j√
(
∑

i ni+ log ni+

n )(
∑

j nj+ log
n+j

n )
. (26)

Normalized Rand Index, denoted as Rn measures the similar-

ity between two partitions in a statistical way, which is defined

as:

Rn =

∑
i,j

(nij

2

)−∑
i

(ni+

2

) ·∑j

(n+j

2

)
/
(n
2

)
∑

i

(ni+

2

)
/2 +

∑
j

(n+j

2

)
/2−∑

i

(ni+

2

) ·∑j

(n+j

2

)
/
(n
2

) .
(27)

All the variables in Eq. 26 and 27 can be found in Table 1.

Note that both NMI and Rn are positive measurements, i.e, a

better partition has a larger NMI or Rn value.

Environment. All the experiments were run on a Ubuntu 14.04

platform with Intel Core i7-6900K @ 3.2GHz and 64 GB RAM.

6.2 Effectiveness and Efficiency

Table 4 and 5 show the clustering performance of different algo-

rithms on all the seven data sets with side information of different

ratios measured by NMI and Rn, respectively. In each scenario,
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TABLE 5
Clustering performance on seven real datasets by Rn

Data Sets percent Ours(K-means) CNMF LCVQE KCC K-means Ours(SC) FSC SC

breast

10% 0.8564±0.0103 0.8271±0.0222 0.8562±0.0104 0.8551±0.0090

0.8391±0.0000

0.8778±0.0125 0.1112±0.2094

0.8552±0.0000
20% 0.8735±0.0136 0.8420±0.0176 0.8732±0.0137 0.8690±0.0109 0.8941±0.0139 0.0687±0.1096
30% 0.8912±0.0150 0.8622±0.0204 0.8904±0.0150 0.8862±0.0139 0.9155±0.0140 0.1137±0.1337
40% 0.9081±0.0131 0.8827±0.0205 0.8906±0.1212 0.9031±0.0122 0.9318±0.0129 0.1555±0.1502
50% 0.9228±0.0118 0.9113±0.0145 0.8870±0.1745 0.9174±0.0117 0.9424±0.0149 0.2474±0.1589

ecoli

10% 0.5377±0.0587 0.5783±0.1127 0.5093±0.0849 0.4639±0.0880

0.4732±0.0772

0.3570±0.1570 0.4198±0.0770

0.4434±0.0489
20% 0.6460±0.0831 0.6200±0.1080 0.5780±0.0884 0.5056±0.1126 0.2996±0.1250 0.3651±0.0808
30% 0.7351±0.0793 0.6486±0.0894 0.6488±0.0910 0.5336±0.1248 0.3259±0.1043 0.3882±0.1102
40% 0.7957±0.0581 0.7153±0.0785 0.6901±0.0883 0.5630±0.0992 0.2261±0.1080 0.3194±0.1068
50% 0.8458±0.0258 0.7479±0.0739 0.7304±0.0877 0.6412±0.1042 0.2326±0.0288 0.3386±0.0902

glass

10% 0.2397±0.0338 0.0969±0.0597 0.2360±0.0284 0.2442±0.0307

0.2552±0.0289

0.1879±0.0650 0.1036 ±0.0847

0.2463±0.0059
20% 0.2619±0.0368 0.1072±0.0651 0.2218±0.0287 0.2426±0.0312 0.1912±0.0691 0.1184±0.0737
30% 0.2795±0.0393 0.1345±0.0728 0.2084±0.0355 0.2510±0.0313 0.2133±0.0465 0.0975±0.0652
40% 0.3310±0.0375 0.1696±0.0817 0.1990±0.0230 0.2436±0.0326 0.2586±0.0344 0.1683±0.0595
50% 0.4019±0.0332 0.1965±0.0804 0.1897±0.0434 0.2377±0.0335 0.3214±0.0280 0.2244±0.0705

iris

10% 0.7454±0.0229 0.6627±0.1534 0.7387±0.0443 0.6801±0.1373

0.6690±0.1237

0.6380±0.1300 0.1437±0.2247

0.6835±0.0898
20% 0.7755±0.0325 0.6802±0.1491 0.7743±0.0349 0.6770±0.1666 0.5814±0.0984 0.1371±0.2025
30% 0.8131±0.0371 0.7664±0.1462 0.8128±0.0442 0.7358±0.1388 0.5918±0.0817 0.1847±0.1976
40% 0.8423±0.0347 0.7578±0.1517 0.8357±0.0726 0.7813±0.1057 0.5875±0.1462 0.2888±0.2154
50% 0.8673±0.0358 0.7680±0.1776 0.8642±0.0434 0.8079±0.0994 0.6096±0.1582 0.4552±0.2038

pendigits

10% 0.5874±0.0387 0.5288±0.0317 0.5749±0.0239 0.5204±0.0448

0.5611±0.0385

0.3136±0.0627 0.1964±0.1036

0.5431±0.0272
20% 0.6186±0.0405 0.5708±0.0110 0.5305±0.0493 0.5375±0.0655 0.1902±0.0650 0.1197±0.0661
30% 0.6475±0.0684 0.5650±0.0620 0.4884±0.0506 0.5586±0.0237 0.1659±0.0808 0.1216±0.0826
40% 0.6978±0.0419 0.6406±0.0391 0.4621±0.0355 0.6702±0.0516 0.1353±0.0807 0.1161±0.0729
50% 0.7674±0.0237 0.6411±0.0273 0.3998±0.0328 0.7207±0.0642 0.1558±0.0782 0.1992±0.0772

satimage

10% 0.5347±0.0006 0.1458±0.0327 0.4603±0.0754 0.4600±0.0894

0.4804±0.0826

0.2994±0.0407 0.1807±0.0963

0.5198±0.0306
20% 0.5348±0.0007 0.1553±0.0326 0.4573±0.1214 0.5315±0.0798 0.2664±0.0258 0.1021±0.0809
30% 0.5355±0.0003 0.2159±0.0196 0.4498±0.1369 0.4931±0.0941 0.2599±0.0535 0.0601±0.0280
40% 0.5356±0.0005 0.2583±0.0371 0.3603±0.1398 0.5777±0.0694 0.2223±0.0910 0.1034±0.0331
50% 0.5364±0.0007 0.3515±0.0446 0.3431±0.1586 0.6419±0.0768 0.2542±0.1075 0.1538±0.0353

wine

10% 0.2273±0.0434 0.2117±0.0930 0.2029±0.0603 0.1947±0.0463

0.1275±0.0042

0.3649±0.1044 0.0717±0.1385

0.3064±0.0329
20% 0.2749±0.0438 0.1926±0.1086 0.1897±0.0697 0.2161±0.0510 0.3722±0.0669 0.0880±0.1370
30% 0.3068±0.0406 0.2203±0.1055 0.1793±0.0786 0.2465±0.0561 0.4016±0.1004 0.1269±0.1268
40% 0.3559±0.0308 0.2551±0.1275 0.1524±0.1027 0.2844±0.0458 0.4223±0.1090 0.2089±0.0900
50% 0.3847±0.0266 0.2946±0.1167 0.1534±0.1240 0.3332±0.0528 0.4637±0.0949 0.3210±0.0620
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Fig. 3. Improvement of constrained clustering on glass and wine com-
pared with K-means.

50 runs with different random initializations are conducted and the

average performance as well as the standard deviation are reported.

In the K-means-based scenario, our method achieves the best

performance in most cases except on glass, pendigits and satimage
with 10%, 40% and 50% percent side information (We will tune

λ to get better performance on pendigits and satimage later). If

we take a close look at Table 4 and 5, our method and KCC

keep consistently increasing performance as the percent of side

information. LCVQE gets reasonable results on the well separated

data sets breast and iris; however, it is surprising that LCVQE

gets much worse results with more guidance on glass, pendigits,
satimage and wine than the basic K-means without any guidance.

This might result from the great impact of the order of pairwise

constraints, which leads to the deformity of clustering structure.

In addition, our method enjoys better stability than LCVQE and

KCC. For instance, LCVQE has up to 17.5% standard deviation

on breast with 50% side information and the volatility of KCC

on iris with 20% side information goes up to 16.7%. Fig. 3

shows the improvement of constrained clustering algorithms over

the baseline methods on glass and wine. It can be seen that for

TABLE 6
Comparison of Execution Time (in seconds)

Data Sets Ours(K-means) CNMF LCVQE KCC Ours(SC) FSC

breast 0.0014 0.4235 0.0461 0.2638 0.5429 4.4632
ecoli 0.0117 0.1939 0.0318 0.2175 0.1591 1.0187
glass 0.0052 0.1936 0.0256 0.1263 0.1067 0.3323
iris 0.0019 0.1259 0.0097 0.0673 0.0874 0.1373

pendigits 0.4538 195.3840 76.7346 4.9807 651.7113 >4.5hr
satimage 0.1887 13.8217 11.5499 1.7020 56.7173 1304.2479

wine 0.0094 0.0535 0.0126 0.1030 0.0718 0.1934

most scenarios, the performance of our method shows a positive

relevance with the percentage of side information, which demon-

strates the effectiveness of partition level side information. CNMF

and our method both take the partition level side information as

input. Our method consistently outperforms CNMF, especially

on glass and satimages, which demonstrates the utility function

helps to preserve the structure from side information. Although

we equivalently transfer the partition level side information into

pairwise constraints, our clustering method utilizes the consistency

within the side information and achieves better results. In the

spectral clustering scenario, our method has also consistent better

performance than FSC on all datasets but ecoli. Generally speak-

ing, our K-means-based method achieves better performance than

the basic K-means, while sometimes our spectral-based method

and FSC cannot beat the single spectral clustering.

Next, we evaluate six algorithms in terms of efficiency. Table 6

shows the average of execution time of different algorithms with

10% side information. From the table, we can see that our

method shows obvious advantages than other three algorithms.

On pendigits, our K-means-based method is 10 times faster than

KCC, nearly 170 times than LCVQE, 430 times faster than CNMF

and our spectral clustering based method run 20 times faster than
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(a) breast by NMI (b) breast by Rn (c) pendigits by NMI (d) pendigits by Rn

Fig. 4. Impact of noisy side information on breast and pendigits.

FSC on large datesets. Taking the effectiveness and efficiency into

account, our K-means-based method not only achieves satisfactory

result, but also has high efficiency, which verifies that it is suitable

for large data set clustering with partition level side information.

In the following, we use our K-means-based method as default to

further explore its characteristics.

So far, we use a fixed λ to evaluate the clustering performance

for fair comparisons due to the unsupervised fashion, and on

pendigits and satimage with 50% side information, our method

has a large gap with KCC. In the following, we explore the impact

of λ on these two data sets. As can be seen in Fig. 2 with λ
varying from 1e+ 2 to 1e+ 6, KCC keeps stable results with the

change of λ, but suffers from heavy volatility. The performance

of our method consistently goes up with the increasing of λ with

high robustness; besides, our method achieves stability when λ
is larger than a threshold, like 1e + 4. Recall that λ plays a key

role in controlling the degree that how the learnt partition achieves

close to the side information. From this view, λ should be set as

large as possible when the given side information is confidence.

However, when it comes to noisy side information, we should set

λ in an appropriate range (See the application in Section 7).

6.3 Handling Side Information with Noises
In real-world application, the part of side information might be

noisy and misleading, thus we validate our method with noisy

side information. Here fixing 10% side information, we randomly

select certain instances from the side information and randomly

label them as noises.

In Fig. 4, we can see that the performance of CNMF, LCVQE

and KCC drops sharply with the increasing of noise ratio; even

10% noise ratio does great harm to LCVQE on breast. Misleading

pairwise constraints and large weight of the noisy side information

lead to corrupted results. On the contrary, our method performs

high robustness even when the noise ratio is up to 50%. It

demonstrates that we do not need exact side information from the

specialists, instead a rough good partition level side information is

good enough (This point can also be verified in Section 7), which

validates the effectiveness of our method in practice with noisy

side information.

6.4 Handling Multiple Side Information
In crowd sourcing, the side information comes from multi-sources

and multi-agents. In the following we show our method handles

multiple side information. Here each agent randomly selects

10% instances and provides its corresponding partition level side

information. Fig. 5 shows the performance of our method with

different numbers of side information. With the increasing of the

number of side information, the performance on all data sets goes
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Fig. 5. Impact of the number of side information.

up with a great improvement, even for the not well-separated data

sets, such as glass and wine. This reveals that our method can

easily be applied to crowd sourcing and significantly improve the

clustering result with multiple side information.

6.5 Inconsistent Cluster Number

Here we continue to evaluate our proposed method in the scenario

that the side information contains inconsistent cluster number with

the final cluster number. This obeys the nature of cluster analysis,

which aims to uncover the new clusters and cannot be solved by

the traditional classification task. Moreover, it is quite suitable

for labeling task with only partial data labeled. To simulate such

scenario, we label 50% data instances from the first 50% classes

on Dogs, AWA, Pascal and MNIST as the side information, and

then conduct the clustering methods with the true cluster number.

Figure 6 shows the performance of different clustering meth-

ods in the setting of inconsistent cluster number. Note that CNMF

and LCVQE fail to deliver the partitions on MNIST due to the

negative input and out-of-memory, respectively. On these four

datasets, our method achieves the best performance over other

rivals, which demonstrates the effectiveness of our method in

real-world applications. Moreover, our method does not need to

store cannot-link or must-link constraints, instead employs the

partition-level side information. Taking the efficiency and memory

into consideration, our method is suitable for large-scale data

clustering.

So far the ground truth is employed as the partition level side

information for clustering; however, we hardly obtain precious

pre-knowledge in practice. In the next section, we illustrate the

effectiveness of PLCC in a real-world application. A totally

unsupervised saliency-guided side information, which contains

noisy and missing labels is incorporated as the side information

for the cosegmentation task.

7 APPLICATION TO IMAGE COSEGMENTATION

Image clustering, which provides a disjoint image-region parti-

tion, has been widely used for the computer vision community,
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Fig. 6. Performance with inconsistent cluster number on four large scale
data sets.

especially the multi-image scenario, such as co-saliency detection

[48] and cosegmentation [49], [50], [51]. Here, based on our PLCC

method, we propose a Saliency-Guided Constraint Clustering (SG-

PLCC) model for the task of image cosegmentation, to show PLC-

C as an efficient and flexible image clustering tool. In details, we

employ saliency prior to obtain the partition level side information,

and directly use PLCC to cluster image elements (i.e., superpixels)
into two classes. In the rest of this section, a brief introduction

to the related work comes first, followed by our saliency-guided

model, and finally the experimental result is given.

7.1 Cosegmentation

Rother et al. [52] first introduced cosegmentation as to extract

the similar objects from an image pair with different background,

by minimizing the histogram matching in a Markov Random

Filed (MRF). The other two early works could be found in [53]

and [54], which also focused on the situation of an image pair

sharing with same object. After that, cosegmentation is extended

for the multi-image scenario. For example, Joulin et al. [49]

employed discriminative clustering to simultaneously segment the

foreground from a set of images. For another example, Batra et

al. [55] developed an interactive algorithm, intelligently guided by

the user scribble information, to achieve cosegmentation for multi-

images. Multiple foreground cosegmentation was first proposed

by Kim et al. [56] as to jointly segment K different foregrounds

from a set of input images. In their work, an iterative optimiza-

tion process was performed for foreground modeling and region

assignment under a greedy manner. Jolin et al. [50] also provided

an energy-based model that combines spectral and discriminate

clustering to handle multiple foreground and images, and opti-

mized it with Expectation-Minimization (EM) method. Although

all theses methods above have achieved significant performance,

they may suffer from the requirement of user interaction to guide

the cosegmentation [55], or the high computing cost of solving an

energy optimization [49], [50], [52], [53].

Compared with these works above, the contributions of us-

ing PLCC for cosegmentation are threefold: (1) We provide an

alternative cosegmentation approach (SG-PLCC), which is simple

yet efficient; (2) Our cosegmentation method could be regarded

as a rapid preprocessing for other application, benefiting from the

linear optimization in PLCC; (3) We provide a flexible framework

to integrate various information, such as user scribble, face detec-

tion, and saliency prior, which all can be used as the multiple side

information for PLCC.

7.2 Salincy-Guided Model

Existing saliency models mainly focus on detecting the most

attractive object within an image [57], whose output is always a

probability distribution map (i.e., saliency map) to the foreground.

(a) Image sets

(b) Saliency priors

(c) Superpixels (e) Lab color space

(d) Partition level side information

(f) Cosegmentation
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Fig. 7. Illustration of the proposed SG-PLCC model.

Thus, it could be seen as a “soft” binary segmentation for an

image. Moreover, co-saliency detection [48], [58] aims to extract

the common salient objects from multiple images, making it

as an appropriate prior for cosegmeantion. Generally speaking,

there are two main advantages of using saliency prior: 1) most

saliency/co-saliency methods are bottom-up and biology inspired,

which means they may detect candidate foreground objects in an

unsupervised and rapid way; 2) highlighting the salient objects

suppresses the common background across images.

However, there still exists two main problems for directly

employing saliency prior as the partition level information. First,

saliency detection method only provides the probability of each

pixel belonging to the foreground, thus we may need to compute

the certain label information based on it. Second, one may note

that, the “label” we get from saliency is actually a kind of pseudo

label, leading to the fact that our method may suffer from the

incorrect label information from the saliency prior.

To solve above challenges, we employ a partial observation
strategy. Given N input images, each of which is represented as

a set of superpixels Xi = {xj}nj=1 by using [59], 1 ≤ i ≤ N ,

and assigned a saliency prior by performed any saliency detection

algorithm on it. Without loss of generality, we denote n as the

number of superpixels and M the saliency map for each image.

For ∀x ∈ Xi, let M(x) ∈ [0, 1] be its saliency prior, which is

computed as the average saliency value of all the pixels within x.
Then, the side information S is defined as:

S(x) =

⎧⎪⎨
⎪⎩

2: foreground, M(x) ≥ Tf

1: background, M(x) ≤ Tb

0: missing, otherwise

, (28)

where Tf is a threshold for foreground and Tb for background.

As suggested by [60], Tf = μ+ δ, where μ and δ are calculated

as the mean and standard deviation of M , respectively. Instead

of assigning background to the remainder directly, Tb = μ is

introduced as a background threshold, that is, we assume the

superpixels lower than the average saliency value should belong

to the background. By using Eq. 28, we remain the uncertainty of

saliency prior as missing observation, to avoid wrongly labeling

the true foreground. On the other hand, some error detections may

exist in the saliency prior. We explain these missing labels and pos-

sible errors as the noises in side information S. As we mentioned

in Section 6.3 before, PLCC can handle the side information with

noises, thus, it alleviates the deficiency of saliency detection.

More details of SG-PLCC are shown by Fig. 7. To exploit the

corresponding information among input images (a), we perform

the co-saliency model proposed by [58] to achieve the saliency

prior. After obtaining co-saliency maps (b) and superpixels (c),

the side information (d) is computed by Eq. 28. We then simply

extract the mean Lab feature for each superpixel in (e). Finally,

the cosegmentaion (f) is achieved by performing PLCC for each
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TABLE 7
Clustering performance of our method and different priors on iCoseg

dataset

Criteria K-means
Saliency Prior

SG-PLCC
[61] [62] [63] [58]

Rn 0.4311 0.5561 0.5378 0.5215 0.5803 0.6199
NMI 0.3916 0.4810 0.4762 0.4587 0.5187 0.5534

TABLE 8
Comparison of segmentation accuracy on iCoseg dataset

Object class image subset [49] [64] [65] SG-PLCC
Alaskan Bear 9/19 74.8 90.0 86.4 87.2
Hot Balloon 8/24 85.2 90.1 89.0 93.8
Baseball 8/25 73.0 90.1 90.5 92.7
Bear 5/5 74.0 95.3 80.4 82.3

Elephant 7/15 70.1 43.1 75.0 90.0
Ferrari 11/11 85.0 89.9 84.3 90.0

Gymnastics 6/6 90.9 91.7 87.1 96.9
Kite 8/18 87.0 90.3 89.8 97.8

Kite panda 7/7 73.2 90.2 78.3 81.2
Liverpool 9/33 76.4 87.5 82.6 91.1
Panda 8/25 84.0 92.7 60.0 80.0
Skating 7/11 82.1 77.5 76.8 82.2
Statue 10/41 90.6 93.8 91.6 95.7
Stone 5/5 56.6 63.3 87.3 82.0
Stone 2 9/18 86.0 88.8 88.4 80.0

Taj Mahai 5/5 73.7 91.1 88.7 83.2
Average 78.9 85.4 83.5 87.9

image, which jointly combines the feature and label information.

It worthy to note that, most missing observations in (d) are

segmented as foreground successfully, showing the capability of

PLCC to handle the noise in side information.

7.3 Experimental Result
Here, we test the effectiveness of the proposed clustering approach

PLCC for a real application task (i.e., image cosegmentation). We

perform our cosegmentation model SG-PLCC on the widely used

iCoseg dataset [55], which consists of 643 images with 38 object

groups and focuses on the foreground/background segmentation.

Implementation Details. The saliency prior is obtained by con-
ducting the co-saliency model in [58], which combines the results

of three efficient saliency detection methods [61], [62], [63]. For

simplicity, our SG-PLCC approach employs the LAB features

on a superpixel level, i.e., the mean LAB color values (three-

dimensional vector) of a superpixel. Three baseline methods [49],

[64], [65] are used to compare with our SG-PLCC, where we

directly report the results provided in their papers.

Clustering Performance. As shown by Table 7, we fist validate
our result as a K = 2 clustering task, under two criteria Rn

and NMI, respectively. A classic K-means algorithm is directly

employed with Lab color feature on image superpixels as a base-

line. However, it cannot explore the clustering structure effectively.

On the other side, we divide each saliency map [58] (including

three elementary methods [61], [62], [63]) into 2 classes with

Tf thresholding, to demonstrate the effectiveness of our saliency

prior. Interestingly, though the discriminative of feature is limited,

our SG-PLCC model still improves the performance of saliency

prior S by around 4%, showing that the PLCC can combine the

feature and side information effectively.

Cosegmentation Performance. Table 8 shows the quantitative

comparison between SG-PLCC and other methods by segmenta-

tion accuracy (i.e., the percentage of correctly classified pixels to

the total). We follow the same experiment setting as [64], where
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Fig. 8. Cosegmentation results of SG-PLCC on six image groups.
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Fig. 9. Some challenging examples for our SG-PLCC model.

all the methods are tested on a subset of each image group from

16 selected object classes in the iCoseg dataset. For fairness, we

average the performance of SG-PLCC over 20 random image

subset for each object. It can be seen that, SG-PLCC outperforms

others in general, and improves the average accuracy of 2.5% to

the second best. Moreover, our method achieves 95.7%, 96.9%
and 97.8%, nearly one hundred percentage, on the classes of S-
tatue, Gymnastics, and Kite, respectively, without high computing

optimization and label information, which significantly shows the

success of using PLCC for real application.

Visually, some examples of our results are shown in Fig. 8,

where the foreground is segmented with yellow line while the

background darkened for a better view. For these cases, pretty

fine segmentations are provided by SG-PLCC. However, our per-

formance may degrade for some more challenging scenarios. As

shown by Fig. 9, we fail to segment out the entire foreground, and

suffer from the cluttered background. To solve these problems, we

could feed the SG-PLCC results into some conventional segmen-

tation frameworks to improve the performance of cosegmenation,
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and employ more discriminative feature rather than the raw Lab.

In addition, the SG-PLCC model can be easily extended for the

multi-class cosegmentation with the increase of clustering number.

To sum up, the proposed SG-PLCC model provides an suc-

cessful example of using PLCC in the real application task.

Although SG-PLCC is directly performed with raw features, and

only guided by unsupervised saliency prior, we still achieve a

promising result for image cosegmeatation, which demonstrates

the power of our PLCC method.

8 CONCLUSION

In this paper, we proposed a novel framework for clustering

with partition level side information, called PLCC. Different from

pairwise constraints, partition level side information accords with

the labeling from human being with other instances as references.

Within the PLCC framework, we formulated the problem via

conducting clustering and making the structure agree as much as

possible with side information. Then we gave its corresponding

solution, equivalently transformed it into K-means clustering and

extended it to handle multiple side information and spectral

clustering. Extensive experiments demonstrated the effectiveness

and efficiency of our method compared to three state-of-the-art

algorithms. Besides, our method had high robustness when it

comes to noisy side information and finally we validated the

performance of our method with multiple side information and in-

consistent cluster number setting. The cosegmentation application

demonstrated the effectiveness of PLCC as a flexible framework

in the image domain.
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