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Marginalized Denoising Dictionary Learning
With Locality Constraint

Shuyang Wang™', Zhengming Ding

Abstract— Learning good representation for images is always
a hot topic in machine learning and pattern recognition fields.
Among the numerous algorithms, dictionary learning is a well-
known strategy for effective feature extraction. Recently, more
discriminative sub-dictionaries have been built by Fisher discrim-
inative dictionary learning with specific class labels. Different
types of constraints, such as sparsity, low rankness, and locality,
are also exploited to make use of global and local information.
On the other hand, as the basic building block of deep structure,
the auto-encoder has demonstrated its promising performance in
extracting new feature representation. To this end, we develop
a unified feature learning framework by incorporating the
marginalized denoising auto-encoder into a locality-constrained
dictionary learning scheme, named marginalized denoising dic-
tionary learning. Overall, we deploy low-rank constraint on
each sub-dictionary and locality constraint instead of sparsity
on coefficients, in order to learn a more concise and pure
feature spaces meanwhile inheriting the discrimination from sub-
dictionary learning. Finally, we evaluate our algorithm on several
face and object data sets. Experimental results have demonstrated
the effectiveness and efficiency of our proposed algorithm by
comparing with several state-of-the-art methods.

Index Terms— Marginalized denoising auto-encoder, locality
constraint, dictionary learning.

I. INTRODUCTION

EARNING discriminative representations is always a

challenging problem in image classification, especially
when images are in the wild, e.g., various illuminations, partial
occlusion and low resolutions. Therefore, it is essential to seek
better representations to handle those challenges. Dictionary
learning and deep learning are two appealing techniques
to learn new effective representations [2], [42]. Specifically,
dictionary learning aims at building a better basis on which a
discriminative coefficient can be achieved with different con-
straints. Whilst deep learning is designed with deep structure

Manuscript received April 11, 2017; revised August 20, 2017 and
October 1, 2017; accepted October 4, 2017. Date of publication October 20,
2017; date of current version November 9, 2017. This work was supported
in part by NSF IIS Award under Grant 1651902, in part by ONR Young
Investigator Award under Grant NOOO14-14-1-0484, and in part by U.S. Army
Research Office Award under Grant W911NF-17-1-0367. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Xudong Jiang. (Corresponding author: Shuyang Wang.)

S. Wang and Z. Ding are with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
shuyangwang @ece.neu.edu; allanding@ece.neu.edu).

Y. Fu is with the Department of Electrical and Computer Engineering and
the College of Computer and Information Science, Northeastern University,
Boston, MA 02115 USA (e-mail: yunfu@ece.neu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2764622

, Student Member, IEEE, and Yun Fu, Senior Member, IEEE

to capture more information from the images [10]. The key for
image classification is to learn more discriminative features by
uncovering the global within-class structure and filtering out
noises.

Sparse dictionary learning has experienced a rapid growth
in both theory and application from recent researches, which
has led to interesting results in image classification [11], [29],
[40], [41], speech denoising [13], and bio-informatics [27] etc.
For each input signal, the key idea is to find a linear com-
bination using atoms from a given over-complete dictionary
as a new representation. Therefore, sparse representation is
capable to reveal the underlying structure of high dimensional
data. However, sparse representation ignores the relationships
of samples during feature learning.

Recently, low-rank dictionary learning [22] aims to uncover
the global structure by grouping similar samples into one clus-
ter, which has been successfully applied to many applications,
e.g. object detection [32], multi-view learning [8], unsu-
pervised subspace segmentation [21], and 3D visual recov-
ery [44]. Moreover, the low-rank dictionary well addresses the
noisy data by adding an error term with different norms, e.g.,
l1-norm, /> 1-norm. Furthermore, supervised information has
been well utilized to seek a more discriminative dictionary
[42], [45]. In this paper, we also adopt the supervised approach
to learn multiple sub-dictionaries so that samples from the
same class are drawn from one low-dimensional subspace.

Most recently, deep learning has attracted lots of interest in
better feature extraction. Among them, auto-encoder [2], [37]
is one of the most popular building blocks to form a deep
learning framework. The auto-encoder has drawn increasing
attention in feature learning area and has been considered as
a simulation of the way that human visual system processes
imagery. The auto-encoder architecture explicitly involves an
encoder module and a decoder one. The encoder outputs a
group of hidden representation units, which is realized by a
linear deterministic mapping with a weight matrix and a non-
linear transformation employs logistic sigmoid. The decoder
reconstructs the input data based on the responded sparse
hidden representation. The aforementioned dictionary learning
model can be formalized as a decoder module.

Moreover, there is a well-known trick of the trade to deal
with noisy data, that is manually injecting noise into the
training samples thereby learning with artificially corrupted
data. Denoising auto-encoders (DAEs) [35], learned with arti-
ficial corrupted data as input, have been successfully applied
to a wide range of machine learning tasks by learning a new
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denoising representation. During the training process, DAEs
reconstruct the input data from partial corruption with a pre-
specified corrupting distribution to its original clean version.
This process learns robust representation which ensures the
toleration to certain distortions in input data. The marginalized
denoising auto-encoder [6] is a linear version of DAEs, which
works efficiently and achieves comparable results with DAEs.

In this work, we develop a feature learning model by

unifying the marginalized denoising auto-encoder and locality-
constrained dictionary learning (MDDL) together to benefit
from both merits. Specifically, dictionary learning manages to
tackle with the corrupted data from the sample space, while
marginalized auto-encoder attempts to address the noisy data
from feature space. Thus, we aim to fight off the corrupted
data both from sample space and feature space by integrating
dictionary learning and auto-encoder into a unified framework.
The main contributions of our paper are listed as follows:

o We desire to seek a transformation matrix to filter out
the noise inside the data with a marginalized denoising
auto-encoder, which avoids forward and backward prop-
agation, thus works both efficiently and effectively.

o Secondly, with the transformed data, we aim to build a
set of supervised sub-dictionaries with locality constraint.
In this way, the sub-dictionaries are discriminative for
each class, which makes the new representation pre-
serve the manifold structure while uncovering the global
structure.

o The marginalized denoising transformation and locality-
constrained dictionary are jointly learned in a unified
framework. In this way, our model can integrate auto-
encoders and dictionary learning to produce features with
denoising ability and discriminative information.

II. RELATED WORKS

In this section, we mainly discuss two lines of related works,
one is dictionary learning and the other is auto-encoder.

A. Dictionary Learning

Recent researches on dictionary learning have demonstrated
that a well-learned dictionary will greatly boost the perfor-
mance by yielding better representation in human action recog-
nition [7], scene categorization [31], image coloration [20]
and transfer learning [9]. In order to learn a compact dic-
tionary with more representation power, several algorithms
and regularizations have been introduced into the dictionary
learning framework. In FDDL, a set of class-specified sub-
dictionary whose atoms correspond to the class labels is
updated iteratively based on the Fisher discrimination crite-
rion to include discriminative information. Jiang et al. [15]
presented a Label Consistent K-SVD (LC-KSVD) algorithm
to make a learned dictionary more discriminative for sparse
coding. These methods shown that a structured dictionary
could dramatically improve the classification performance.
However, the performance of these methods will drop a lot
if the training data is largely corrupted.

However, sparse representation based methods consider
each sample as independent sparse linear combination,

this assumption fails to exploit the spatial consistency between
neighbor samples. Recent research efforts have yielded more
promising results on the task of classification by using the
idea of locality [36]. The method named Local Coordinate
Coding (LCC), which specifically encourages the coding to
rely on local structure, has been presented as a modification
to sparse coding. In [36] the author also theoretically proved
that locality is more essential than sparsity under certain
assumptions.

Most recently, low-rank constraint has been applied
in many areas to deal with noisy data. Liu et al. [22]
proposed that we can convert the task of face image
clustering into a subspace segmentation problem with the
assumption that face images from different individuals lie in
different near independent subspaces. By applying low-rank
regularization into dictionary updating, the DLRD [23]
algorithm achieved impressive results especially when
corruption exists. Jiang and Lai proposed a sparse- and
dense- hybrid representation based on a supervised low-rank
dictionary decomposition to learn a class-specific dictionary
and null out non-class-specific information [14].

Inspired by the above learning techniques, our conference
paper proposed a Locality-Constrained Low-Rank Dictionary
Learning (LC-LRD) to enhance the identification capability by
using the geometric structure information [38], which will be
detailed introduced in Section III since it has close connection
with this paper.

B. Auto-Encoder

As a typical single hidden layer neural network with iden-
tical input and target, auto-encoder [4] aims to discover data’s
intrinsic structure by encouraging the output to be as similar
to the target as possible. Essentially, the neurons in the hidden
layer can be seen as a good representation since they are able
to reconstruct the input data. To encourage structured feature
learning, further constraints has been imposed on parameters
during training. Denoising auto-encoders (DAESs) is proposed
to enforce the hidden layer be capable to discover more
robust features meanwhile prevent it from simply learning the
identity [2], [34]. The DAE:s is trained to have the ability to
reconstruct the input signal from its corrupted version which
artificially added with noise.

On this basis, stacked denoising autoencoders (SDAs) [35]
have been successfully used to learn new representations and
attained record accuracy on standard benchmark for domain
adaptation. However, there are two crucial limitations of
SDAs, 1) high computational cost, and 2) lack of scalability
to high-dimensional features. To address these two problems,
[6] proposed marginalized SDAs (mSDA). Different
with SDAs, mSDA marginalizes noise and thus the
parameters can be computed in closed-form rather than
using stochastic gradient descent or other optimization
algorithms. Consequently, mSDA significantly speeds up
SDAs by two orders of magnitude.

In our conference paper [38], different from previous
locality linear coding works [28], [31], we also imposed
the locality on auto-encoder method to extract feature with
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Ilustration of our methods. The marginalized denoising auto-encoder is adopted in dictionary learning (DL) schemes. The weights in auto-encoder

and sub-dictionaries in DL are trained jointly. Each sub-dictionary is learned of low-rank, which can narrow the negative effect of noise contained in training
samples. For marginalized denoising auto-encoder, the input is manually added with noise.

local information for enhancing the classification ability. The
proposed locality-constrained on auto-encoder (LCAE) can
be trained with the backpropagation algorithm.

Our previous paper [38] explored the effectiveness of
locality constraint on two different types of feature learn-
ing techniques, i.e., dictionary learning and auto-encoder,
respectively. In our journal extension, we jointly learn auto-
encoder and dictionary to benefit from both techniques. Fig. 1
illustrates our framework. To make our model fast, we adopt
a lite version of auto-encoder, i.e., marginalized denoising
auto-encoder [6], which has shown appealing performance and
efficiency. Furthermore, we use several benchmarks to evaluate
our proposed algorithm, and the experimental results show its
better performance comparing state-of-the-arts.

III. MARGINALIZED DENOISING DICTIONARY
LEARNING WITH LOCALITY CONSTRAINT

In this section, we first revisit our locality-constrained
dictionary learning and marginalized denoising auto-encoder.
Then we propose our novel marginalized denoising dictionary
learning with locality constraint. Finally, we develop an effi-
cient solution to optimize our proposed algorithm.

A. LC-LRD Revisit

Given a set of training data X = [X1, X2, ..., Xc] € R¥*",
where d is the feature dimensionality, n is the number of
total training samples, ¢ is the number of classes, and X; €
R4*" is the samples from class i which has n; samples.
The goal of dictionary learning is to learn an m atoms
dictionary D e R*™ which yields sparse representation
matrix A € R™ from X for future classification tasks.
Then we can write X = DA + E, where E is the sparse
noise matrix. Rather than learning the dictionary as a whole
from all the training samples, we learn sub-dictionary D;
for the i-th class separately. Then A and D could be writ-
ten as A [A,As,...,A.] and D [Dy, Dy, ..., D],
where A; is the sub-matrix that denotes the coefficients for
X; over D.

In our conference paper [38], we have proposed the follow-
ing LC-LRD model for each sub-dictionary:
D[I’r;‘i[rlei R(Dj, Aj) + allDill« + Bl Eilh

n;
+/12||li,k OQairll®, st X; = DA; + E;,

k=1

(1

where R(Dj, A;) is the Fisher discriminant regularization
on each sub-dictionary, ||D;|« is nuclear norm to enforce
low-rank properties, and ||/; x © a; k 12 is locality constraint to
replace sparsity on coding coefficient matrix. a;x designates
the k-th column in A;, which means the coefficient for k-th
sample in class i. We will break down this model into the
following modules: discriminative sub-dictionaries, low-rank
regularization term, the locality constraint on the coding
coefficients.

Sub-dictionary D; should be endowed with the discrim-
ination power to well represent samples from i-th class.
Mathematically, the coding coefficients of X; over D can be
written as A; = [A}; Aiz; R Af], where A{ is the coefficient
matrix of X; over D;. The discerning power of D; is produced
by following two aspects: first, it is expected that X; should
be well represented by D; but not by D;, j # i. Therefore,
we will have to minimize ||X; — D; Al — & |3, where & is the
residual. Meanwhile, D; should not be good at representing
samples from other classes, that is each A;., where j # i
should have nearly zero coefficients so that ||D,-A;.||% is as
small as possible. Thus we denote the discriminative fidelity
term for sub-dictionary D; as follows:

. 2 c )
R(Di, A) = 1 Xi=DiAi=ElF+2. _  IDiAjIE. ()

In the task of image classification, the within-class samples
are linearly correlated and lie in a low dimensional manifold.
Therefore, we want to find the dictionary with the most concise
atoms by minimizing the rank of D;, which suggest to be
replaced by || D;||« [5], where ||.||« denotes nuclear norm of a
matrix (i.e., the sum of singular values of the matrix).

In addition, locality constraint is deployed on the coefficient
matrix instead of the sparsity constraint. As suggested by
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LCC [43], locality is more essential than sparsity under
certain assumptions, as locality must lead to sparsity but not
necessary vice versa. Specifically, the locality constraint uses
the following criteria:

. n .
min Zl_zlnli@ai”z, st. 17a; = 1, Vi, (3)

where © denotes the element-wise multiplication, and /; € R™
is the locality adaptor that gives different freedom for each
basis vector proportional to its similarity to the input sam-
ple x;. Specifically, /; = exp(w), where dist(x;, D) =
[dist(x;, d1), dist(x;, d2), . . ., dist(x;, d)]”, and dist(x;, d;) is
the Euclidiean distance between sample x; and j-th dictionary
atom d;. 6 controls the bandwidth of the distribution.

Generally speaking, LC-LRD is based on the following
three observations: 1) Locality is more essential than spar-
sity to ensure obtain the similar representations for similar
samples; 2) Each sub-dictionary should have discerning ability
by introducing the discriminative term; 3) Low-rank is intro-
duced to each sub-dictionary to separate noise from samples
and discover the latent structure.

B. Marginalized Denoising Auto-Encoder (mDA)

Given the vector input x € R?, with d as the dimensionality
of the visual descriptor. There are two important transfor-
mation which can be considered as encoder and decoder
processes involved in the auto-encoder: “input— hidden units”,
and “hidden units— output” as:

h=0c(Wx+by), £=c(W'h+b,), 4)

where /& € R? is the hidden representation unit, and £ € R is
interpreted as a reconstruction of input x. The parameter set
includes a weight matrix W € R* xd , and two offset vectors
b, € R and b, € R? for hidden and output, respectively.
o is a non-linear mapping such as the sigmoid function as
the form o (x) = (1 + ¢ *)~!. In general, auto-encoder is a
single layer hidden neural network, with identical input and
target, meaning the auto-encoder encourages the output to be
as similar to the target as possible, namely,

n
i L) = minws,6, 50 =B, )
where n is the number of images, x; is the target and X; is
the reconstructed input. In this way, the neurons in the hidden
layer can be seen as a good representation for the input, since
they are able to reconstruct the data.

Since auto-encoder deploys non-linear functions, it takes
more time to train the model especially when the dimension
of the data is very high. Recently, marginalized denoising
auto-encoder (mDA) [6] was developed to address the data
reconstruction in a linear fashion and achieved comparable
performance with the original auto-encoder. The general idea
of mDA is to learn a linear transformation matrix W to recon-
struct the data with the transformation matrix by minimizing
the squared reconstruction loss

1 n

5 Dy i = WERI, ©)

where X; is the corrupted version of x;. The above objective
solution is correlated to the randomly corrupted features of
each input. To make the variance lower, marginal denoising
auto-encoder was proposed to minimize the overall squared
loss of ¢ kinds of different corrupted versions

1 t n N
ﬂ Zj:l Zi:l lx; — Wx,-,(j)||2, 7

where X; () denotes the j th corrupted version of the original
input x;. Define X = [x1,---,x,] and its ¢-times repeated
Versi(gl as X =[X,---,X] Evith its ¢ different corrupted ver-
sion X = [X(q), - - ,i(,)], X (i) denotes jth corrupted version
of X. In this way, Eq. (7) can be reformulated as

I vi2
—|IX — WX|3, 8
2mll & (8)

which has the well-known closed-form solution for ordinary
least squares. When t — o0, it can be solved with expectation
with the weak law of large numbers [6].

C. Our Proposed Model

Previous discussion on mDA gives a brief idea, that with
a linear transformation matrix, mDA can be implemented in
several lines of Matlab code and works very efficiently. The
learned transformation matrix can well reconstruct the data
and dig out the noisy data.

Inspired by this, we aim at jointly learning a dictionary and
a marginalized denoising transformation matrix in a unified
framework. We formulate our objective function as

F(Di, Ai, E) + I1X — WX|I},

min
Dl:Al:El’W
s.t. WX; = DA; + E; )

where F(D;, Aj, Ei) = R(Di, Ai) + allDillx + BillEilli +
AZZ;I ik © a,-,k||2 is our locality-constrained dictionary
learning part in Eq. (1). And R(D;, Aj) = |[WX; — D,-Af —
5,-||% + Z‘j:l,j;ﬁi||D,-A’j||%F is discriminative term in Eq. (2).
a, P1, and A are trade-off parameters.

Discussion: The proposed marginalized denoising regu-
larized dictionary learning (MDDL) aims to learn a more
discriminative dictionary on transformed data. Since the
marginalized denoising regularizer could generate a better
transformation matrix to address the corrupted data, therefore,
the dictionary could be learned on denoised clean data. In our
framework, we unify the marginal denoising auto-encoder and
locality-constrained dictionary learning together. Generally,
dictionary learning seeks a well-represented basis in order
to achieve more discriminative coefficients for original data.
Therefore, dictionary learning can handle noisy data to some
extent. While denoising auto-encoder has been demonstrated
its denoising power in many applications. To this end, our joint
learning scheme can benefit from both marginal denoising
auto-encoder and locality-constrained dictionary learning.

D. Optimization

We consider solving the proposed objective function in
Eq. (9) by dividing it into two sub-problems: First updating
each coefficient A;(i = 1,2,...,c¢) one by one and W by
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fixing dictionary D, all other A;(j # i) and putting together
to get coding coefficient matrix A; Second, updating D; by
fixing others. This two steps are iteratively operated to get
the discriminative low-rank sub-dictionaries D, the marginal
denoising transformation W, and the locality-constrained coef-
ficients A. One problem arises in the second sub-problem,
remember in Eq. (2), the coefficients A§ corresponding to
X; over D; should be updated to meet the condition || X; —
D,-Af — 5,-||%. Therefore, when we update D; in the second
sub-problem the related variance A; is also updated.

1) Sub-Problem I: In the first sub-problem, assume that
the structured dictionary D is given, the coefficients matrix
A;j(i = 1,2,...,¢) is updated one by one, then the original
objective function Eq. (9) reduces to the following locality-
constrained coding problem for each class’s coefficient and W:

n;
min_ -/ ;nli,k O aikl* +AllEil + I1X — WX |7

s.t. WX; = DA; + E; (10)

which can be solved by the following Augmented Lagrange
Multiplier method [3]. We transform Eq. (10) into its Lagrange
function as follows:

c n;
> (2D ik @ aual® + Al Eill

i=1 k=1
+(T1, WX; — DA; — E;) + %uwxi

min
Ai, Ei W, T

— DA = Eil}) +IX - WXIE, (a1

where T is the Lagrange multiplier, and y is a positive penalty
parameter. Different from traditional locality-constrained
linear coding (LLC) [36], we add an error term which could
handle large noise in samples. In the following, we provide
the iterative optimization on A;, E;, and W.

Updating A;:
ni
A = argn/gingnz,- — DA szlnl,-,k O aixl?,
= A; = LLC(Z;, D, 4, 9), - (12)
where Z; = WX, — E + ., and lyx =

exp(dist(z; x, D)/J). Function LLC(-) is locality-constrained
linear coding function! [36].
Updating E;:

. P 1 Ty -
E; = argmin — | E;|l; +  |E; — (WX; — DA; + —) I,
Ei U 2 u
(13)

which can be solved by the shrinkage operator [39].
Updating W:

w

c
. M T ¥ Y2
= arg min ;_1 (EHWXI-—DAi—Ei+7||F)+||X—WX||F
. Hu 2 v T2
arg min EIIWX — Dalg + 11X — WXllg, (14)

Iwe set Z;i, D, A and o as the input of function LLC [36] and the code
can be downloaded from http://www.ifp.illinois.edu/ jyang29/LLC.htm.
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where X [X1,---,X.] and Dy [DA] + E1 —

%, -+ DA+ E.— T/'l’“‘ ]. Eq. (14) has a well-known closed-
form solution as follows:

W= uDsX" +2XX")(uxxT +2XX0H~' (15

where X is ¢-times repeated version of X and X consists of
its 7 kinds of corrupted version. We define P = uD, X" +
2XXT and Q0 = uXXT + 2XXT. And we would like
the repeated number ¢ to be oo, therefore, the denoising
transformation W could be effectively learned from infinitely
many copies of noisy data. Practically we cannot generate X
with infinitely versions of corruption, however fortunately,
the matrices P and Q converge to their expectations when
t becomes very large. In this way, we can derive the expected
values of P and Q, and calculate the corresponding map-
ping W as:

W = E[PIE[Q]"
= E[uDaX" +2X X E[ux X" +2XxX"7!
- (,uDAXT + 2E[Y}?T]) (,uXXT + 2E[§§T])_l (16)

where D4 and p are treated as constant values when optimiz-
ing W. The expectations E[Y?T] and E[)?)?T] are easy to be
computed through mDA [6].

2) Sub-Problem II: For the procedure of updating sub-
dictionary, we have the same method with [23]. Considering
the second sub-problem, when A; is fixed, sub-dictionary
Di(i = 1,2,...,c) is updated one by one. The objective
function Eq. (9) is converted to the following problem:

C

min > DAL} +allDillk + B21IE I
D,‘,g,',Al» s 1 s
i j=1j#
n
o
+AD N @ al 1P
k=1

st. WX; = DAl + & (7

where af’k is the k-th column in Ai which means the coeffi-
cient for k-th sample in class i over D;. Problem Eq. (17)
can be solved using the Augmented Lagrange Multiplier
method [3] by introducing a relaxing variable J:

c

n
DN @al*+ D DAL + all ]
k=1 j=1,j#i

+ BallEilli+ (T2, WX; — D; AL — &) +(T3, Di—J)
+ %(nwx,- — DAl — &3 +IDi—J1I3), (18)

min
D;, &, A

1

where 7> and T3 are Lagrange multipliers, and x is a positive
penalty parameter. In the following, we provide the iterative
optimization on D; and A}.

_Updating Aj: Similar as Eq. (12), we have the solution for
A; as follow:

i )
Al =LLC(WX; — & + ;),Dis/l,é)» (19)

where function LLC(-) is locality-constrained linear coding
function [36].



WANG et al.: MARGINALIZED DENOISING DICTIONARY LEARNING WITH LOCALITY CONSTRAINT 505

Algorithm 1 Optimization for MDDL

Input: Training data X = [X71, ..., X.], Parameters o, A, 9, B1, B2
Output: W, A=[A;, Az, ..., Acl, D=[D1,D2...,D.]

1 Initialize: W = I, PCA initialized D, E; = &; =0,T1 =0, T> =0,
T3 =0, phrnaz = 1030, p=11€e= 108, maziter = 10*

2 repeat

3 iter =0, p=10"6

4 $Solving Eq. (11) via ALM

5 while not converge and iter < maxiter do

6 Fix others and update A; with Eq. (12)

7 Fix others and update E; with Eq. (13)

8 Fix others and update W with Eq. (16)

9 Update multipliers 77 by:

10 Ty =T +puWX; —DA; — Ez)

11 Update parameter g by:

12 p = min(pp, kmaz)

13 Check the convergence conditions:

14 ||WX1 7DAZ'7E»;||OO <€

15 end

16 iter =0, p = 106

17 $Solving Eq. (17) via ALM

18 while not converge and iter < maxiter do

19 Fix others and update Aﬁ with Eq. (19)

20 Fix others and update J and D; with Eq. (20) and Eq. (21)
21 Fix others and update &; with Eq. (22)

22 Update multipliers 7% and 73 by:

23 Ty =T + /J,(WXZ‘ — DZAi — 51)

24 T3:T3+,LL(D7;—J)

25 Update parameter 1 by: p = min(pp, imax)
26 Check convergence: ||[WX; — DAL — Eif|oo < €
27 end

28 until The sub-dictionary converges or the maximal iteration is reached;

Updating J and D;: Here we convert the Eq.(18) to related
with J and D; as:

C
> IDALG + all T |«
j=Lj#
+(Th, WX; — D;A; — &) + (T3, D — J)
M .
+ (1D — JI% +IWX; — DAL — &%), (20)

min

i

where J = argmina||J |l + (T3, Di = J) + 5(IDi = JI7),
and the solution for D; is:
iT iT iT
Di = (J+WX;A; — &AL + (DA, —T3)/w)
x (I +AlAT 4 vy,

Py — o
where V=2 3 Alal” 1)
Ko
Updating &;:

& = argmin S| Eill + (T2, WX; = DiAj = &)

+§||wx,- — DA - &3, (22)

which can be solved by the shrinkage operator [39]. The
detail of the Optimization Solution for proposed model can
be referred to Algorithm 1.

E. Classification Based on Our Model

We use a linear classifier for classification. After the
dictionary is learned, the locality-constrained coefficients A
of training data X and A of test data Xy are calculated.
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Fig. 2. The recognition rates of six DL based methods versus the number of
dictionary atoms with 20 training samples per class on Extend YaleB dataset.

The representation a; for test sample i is the i-th column
vector in Ags. We use the multivariate ridge regression
model [46] to obtain a linear classifier P:

P = argmin|| L — PAJF + 7 | P (23)
where L is the class label matrix. This yields P =
LAT(AAT +y1)~!. When testing points Ag comes in, we
first compute P Aest. Then label for sample i is assigned by
the position corresponding to the largest value in the label
vector, that is: label = arg}nl%(ﬁa,-).

abe

IV. EXPERIMENTS

To verify the effectiveness and generality of the proposed
MDDL, we conduct experiments on various visual classi-
fication applications. The method is tested on six datasets
including four face datasets: ORL [30], Extend YaleB [18],
AR [24], CMU PIE [33], one object categorization dataset
COIL-100 [26], and digits recognition dataset MNIST [17].

We conduct the experiments in comparison with LDA [1],
linear regression classification (LRC) [25] and several
latest dictionary learning based classification methods, i.e.,
FDDL [42], DLRD [23], D’L?R? [19], DPL [12] and also our
conference paper LC-LRD [38]. What’s more, for verifying the
advantage of joint learning, we proposed a simple combination
framework as a baseline, named as AE+DL, which first uses
a traditional SAE to learn a new representation, then feeds in
our conference paper’s dictionary learning framework.

A. Parameter Selection

The number of atoms in every sub-dictionary, which
denoted as m;, is one of the most important parameters in
most of dictionary learning algorithms. We conduct the exper-
iment on Extended YaleB with different number of dictionary
atomsm; and analyze its effect on the performance of our
proposed new model and other competitors. Fig. 2 shows
that all comparisons obtain an increasing performance with
larger dictionary size. In the experiments, we fix the dictionary
columns of each class as training size for ORL, Extend YaleB,
AR and COIL-100 datasets, while fix as 30 for CMU PIE and
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BLE I

AVERAGE RECOGNITION RATE(%) OF DIFFERENT ALGORITHMS ON EXTENDED YALEB DATASET WITH DIFFERENT NUMBER OF TRAINING
SAMPLES PER CLASS. RED DENOTES THE BEST RESULTS WHILE THE BLUE MEANS THE SECOND BEST RESULTS

Training LDA [1] LRC [25] FDDL [42] DLRD [23] D?L°R? [19] DPL [12] LC-LRD [38] AE+DL MDDL [ours]

5 74.12+£1.52  60.24+2.02  77.75£1.34  76.17£1.16 75.96£1.20 75.17+1.86 78.62+£1.20 78.64+1.12  79.11+1.16

10 86.67£0.90  82.98+0.82  91.16+0.85  89.94+0.89 89.60£0.89 89.31+0.62 92.07£0.89 92.10+0.88  92.19+0.80

20 90.64£1.07 91.80+0.97 96.15£0.66  96.03+0.85 96.02+0.91 95.69+0.90 97.86£0.91 96.56+0.89  98.77+0.67

30 86.84+£0.92  94.60+£0.60  97.86+£0.35  97.90£0.47 97.87£0.42 97.80£0.36 99.23+0.47 98.64£0.47  99.354+0.20

40 95.27£0.79  96.10+0.58  98.84+0.46  98.80+0.37 98.09+0.39 98.67+0.43 99.54+0.44 99.23+0.39  99.78+0.16
TABLE II

AVERAGE RECOGNITION RATE(%) OF DIFFERENT ALGORITHMS ON EXTENDED YALEB DATASET WITH VARIOUS CORRUPTION PERCENTAGE(%).
RED DENOTES THE BEST RESULTS WHILE THE BLUE MEANS THE SECOND BEST RESULTS

Corruption LDA [1] LRC [25] FDDL [42] DLRD [23] D?L?R? [19] DPL [12] LC-LRD [38] AE+DL MDDL [ours]
0 86.84+0.92  94.60+0.60 97.86+0.35  97.90+0.47 97.87£0.42 97.80£0.36 99.23+0.47 98.64£0.47  99.35+0.20
5 29.03£0.82  80.49£1.10  63.55+£0.87 91.84+1.07 91.90£1.14 78.27+1.22 93.31+0.69 93.15£0.66  93.64+0.44
10 18.53£1.15  67.61£1.33  44.65£1.22 85.82+1.54 85.71£1.51 64.58+1.09 86.97+0.86 87.05+£0.89  87.5440.76
15 13.63£0.53  56.81+1.24  32.76+1.03  80.89+1.37 80.46+1.64 53.77+0.86 81.7140.81 81.55+£0.86  82.1040.64
20 11.30+£0.46  47.23£1.59 25.26+£0.42  73.56£1.63 73.59+1.54 44.95+1.38 74.14+1.01 74.18+£1.60  76.33+1.45

MNIST datasets. All the dictionaries are initialized with PCA
on input data.

There are five parameters in Algorithm 1: a, 4, J along
with f1, p» as two error term parameters respectively for
updating dictionary and coefficients. These five are associated
with dictionary learning part in our new model and are chosen
by 5-fold cross validation. Experiments show that £ and >
play more important roles than the other parameters, therefore
we set a = 1, A =1 and 0 = 1 in this paper. For Extended
YaleB, 1 = 15, p» = 100; for ORL, f; = 5, p» = 50; for
AR, B = 5, f» = 100; for CMU PIE, f; = 5, 2 = 1.5;
for COIL-100, g = 3, f>» = 150; for MNIST, 2.5,
pr=2.5.

B. Extended YaleB Dataset

The Extended Yale Face Database B contains 2414 frontal-
face images from 38 human subjects captured under var-
ious laboratory-controlled illumination conditions. The size
of image is cropped to 32 x 32. Two experiments are
deployed on this dataset. First, we choose random subsets with
p(=5,10,...,40) images per individual taken with labels to
form the training set, and the rest of the dataset was considered
to be the testing set. For each given p, there are 10 randomly
splits; Second, we replace a certain percentage of randomly
selected pixels from the images with pixel value of 255 (show
in Fig. 3 (c)). Then randomly take 30 images as training
samples, with the rest as testing and the experiment is also
repeated ten times. These two experimental results are given
in Table I and Table II, respectively.

We can observe from Table I that with different training
sizes setting our three methods (including conference model)
archive the top accuracy, and the proposed MDDL performs
all the best. Our method’s robustness to noise is demonstrated
in Table II, along with the percentage of corruption increases
our algorithms still produce best recognition results. The
performance of LDA as well as LRC, FDDL and DPL drops
rapidly under larger corruption, while our methods (LC-LRD,
MDDL), D2?L2R? and DLRD can still get much better

Fig. 3.

Example images from three datasets. (a) images with 30db, 20db,
10db 5db, 1db SNR addition white gaussian noise from MNIST digit dataset;
(b) ORL with 10%, 20%, 30% block occlution; (c) Extended YaleB with 10%,
15%, 20%, 25% random pixel corruption.

recognition accuracies. This demonstrates the effectiveness of
low-rank regularization and the error term when noise exists.
Our conference model and simply AE+DL equally matched
in different situations, while MDDL performs best constantly.

C. ORL Face Database

The ORL dataset consists 400 images of 40 individuals,
such that there are 10 images for each subject with varying
pose and illumination. The subjects of the images are in frontal
and upright posture while the background is dark and uniform.
The images are resized to 32 x 32, converted to gray scale,
normalized and the pixels are concatenated to form a vector.
Each image is manually corrupted by an random located and
unrelated block image. Fig. 3 (b) shows four examples of
images with increasing block corruptions. For each subject,
we select 5 samples for training and the rest as testing and
repeat the experiment on 10 random splits for evaluation.
Furthermore, SIFT and Gabor filter features are extracted to
evaluate our methods generality.

We illustrate the recognition rates under different percent-
ages of occlusions in Table III. From the table, we can observe
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TABLE III
AVERAGE RECOGNITION RATE(%) OF DIFFERENT ALGORITHMS ON ORL DATASET WITH VARIOUS OCCLUSION PERCENTAGE(%).
RED DENOTES THE BEST RESULTS WHILE THE BLUE MEANS THE SECOND BEST RESULTS
Occlusion LDA [1] LRC [25] FDDL [42] DLRD [23] D?L“R? [19] DPL [12] LC-LRD [38] AE+DL MDDL [ours]
0 92.504+1.81  91.75£1.60 96.00£1.24  93.5041.52 93.904+1.81 94.10+1.77 96.7041.42 96.254+1.22 96.75+1.25
0 (SIFT) 95.754+1.27  92.85+£2.06 95.20£1.34  93.654+1.33 93.854+1.49 95.254+1.43 93.504-2.60 96.0041.25 96.25+1.40
0 (Gabor)  88.95+3.27 93.40+1.74 96.00+1.31  96.30+1.31 96.60+1.25 97.00+1.36 94.60+1.80 96.70+1.06 97.40+1.15
10 71.654+3.23  82.20+2.15 86.60£1.90 91.2541.87 91.00+1.86 84.5042.73 92.25+1.25 91.454+1.23 92.004+1.38
20 54.2542.01  71.30+£2.80 75.25£3.39  82.8042.97 82.80+3.32 71.15+1.70 83.95+2.31 83.55£1.76 84.254+2.19
30 40.45+3.69  63.65£3.06 63.754+2.67  78.90+3.11 78.80+3.28 59.8043.85 80.154+-2.94 78.9042.86 78.00+2.44
40 25.654+2.46  48.00+3.04  48.05£2.40 67.3043.24 67.401+3.42 43.001+2.94 67.954+3.01 67.3042.60 67.504+3.21
50 20.654+3.02  40.85+3.71 36.70£1.24  58.6543.10 58.7043.27 32.2043.52 58.854-3.47 58.6543.24 58.5043.01

0.915

0.785
0.905

betal

Fig. 4. Our method’s performance (a)-(c) under increasing percentage of corrupted pixels versus different parameters. As more occlusion applied, the best
result appears when the parameter £ is smaller, which means the error term plays more important role when noise exists.

two phenomenons: first, our methods achieve the top results
all the settings; second, the new model performs best when the
data is clean, however, along with the percentage of occlusions
increases MDDL drop behind with our conference paper. That
makes sense because in this experiment we add occlusion
on to the images, while the denoising auto-encoder module
in our methods are introduced to tackle with gaussian noise.
In conclusion: first, our method can achieve top results in no
occlusion situation, because of the locality term; second, in
larger occlusion situation, low-rank term outweighs DAEs.

The effects from two parameters of the error term £ and f>
are demonstrated in Fig. 4. From the three sub-figures under
increasing percentage of corrupted pixels, the parameter [
in the coefficients updating procedure makes larger different.
As more occlusion applied, the best result appears when the
parameter f; is smaller, which means the error term plays
more important role when noise exists.

The results show that our methods have significant improve-
ment on some datasets, and for some other datasets, the
significance increases along with the noise level in the input.

D. AR Dataset

The AR dataset consists of over 4,000 frontal-face images of
126 individuals, that is, there are 26 pictures for each subject
taken in two separated sessions. We follow the experimental
setting in [42], for fair comparison, to choose a subset con-
sisting of 50 male subjects and 50 female subjects. For each
subject, the 13 images with with different facial expressions,
illumination conditions, and occlusions from session 1 were
used for training, and the other 13 images with the same

|-LRC I LDA [ FDDL [ DLRD [F0]DDLLRR [ |DPL Wl LC-LRDMMAE+DL -MDDLl

100

95 1

90F

85

80

75

Recognition rate (%)

70]

65

60

feature 1 feature 2 feature 3 SIFT Gabor

Fig. 5. Average recognition rate(%) of different algorithms on AR dataset
with five different features. Feature 1: row pixel 60 x 43; feature 2: row pixel
27 x 20; feature 3: feature provided by [16].

TABLE IV
CLASSIFICATION ERROR RATES(%) ON CMU PIE DATASET

Methods CMU (near frontal poses) CMU (all poses)
LRC [25] 4.12 9.65
FDDL [42] 3.30 11.20
DLRD [23] 333 10.64

D?L2R2 [19] 3.29 10.14
DPL [12] 3.47 9.30
LC-LRD [38][ours] 3.01 8.98
MDDL [ours] 2.74 7.64

condition from session 2 were used for testing. We do exper-
iments on different features: original 60 x 43 images, resized
27 x 20 images, SIFT, Gabor and the feature provided by [16].
We illustrate the recognition rates under different features
in Fig. 5. From the figure, we can observe that our proposed
method achieves the best results on most the features.
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TABLE V

AVERAGE RECOGNITION RATE(%) WITH STANDARD DEVIATIONS OF DIFFERENT ALGORITHMS ON COIL-100 DATASET WITH DIFFERENT
NUMBER OF CLASSES. RED DENOTES THE BEST RESULTS WHILE THE BLUE MEANS THE SECOND BEST RESULTS

Class No. LDA [1] LRC [25] FDDL [42] DLRD [23] DZL?R? [19] DPL [12] LC-LRD [38] AE+DL MDDL[ours]
20 81.94+1.21 90.744+0.71  85.74+0.77  88.6140.95 90.9840.38 87.554+1.32 92.154+0.34 91.2640.45 91.5740.41
40 76.73£0.30  89.00+0.46  82.05£0.40  86.39+0.54 88.2740.38 85.054+0.21 89.86+0.49 89.0940.66 92.234+0.26
60 66.16+0.97  86.57+£0.37  77.224+0.74  83.4640.15 86.36+0.53 81.2240.21 87.12+0.66 87.234+0.29 88.0540.30
80 59.19+0.73  85.094+0.34  74.81£0.55  81.50+0.47 84.69+0.45 78.78+0.85 85.40+0.61 85.0640.47 86.154+0.31
100 52.48+0.53  83.164+0.64  73.55+0.63  79.91+0.59 83.0640.37 76.284+0.94 84.15+0.39 84.1240.39 85.31+0.33
E. CMU PIE Dataset TABLE VI
The CMU PIE dataset contains 41.368 face images from AVERAGE RECOGNITION RATE(%) & RUNNING TIME(second) ON MNIST
’ DATASET
68 identities, each with 13 different poses, 4 different expres-
sions, and 43 different lighting conditions. We deploy two Methods Accuracy  Training time  Tesling time
experiments on two subsets of CMU PIE respectively. First ]51{)(?‘[[215]] ;;‘7‘3 2371?;'2 0.545
of all, we select ﬁ'Ve near. fronFal Poses (CO05, CO?, CO09, FDDL [42] 3535 240116 97.841
C27, C29) under different illuminations and expressions as DLRD [23] 86.05 156.575 48.373
a first subset (11,554 samples in total). Thus, there are about DQ&;}FE%Q gjgg 2(1)37-3;5 4&%“
179 images for each person. We select 60 images per person as LC-LRD [38] 88.25 80.581 48.970
training. Secondly, we choose more poses to build a relatively AE+DL 87.95 176.525 49.230
large-scale dataset, which contains totally 24,245 samples. MDDL [ours] _ 89.75 81.042 49.781
In total, there are around 360 images for each person. Each
image is normalized to the size of 32 x 32 pixels for both . o7
experiments. The training set is constructed by randomly PO ATV T Y gy Ty vy

selected 200 images per person, while the rest is used for
evaluation. Table IV shows that our method outperforms the
compared methods.

F. COIL-100 Dataset

In this section, we evaluate our approach on object cate-
gorization by using the COIL-100 dataset. The training set
is constructed by randomly selected 10 images per object,
and the testing set contains the rest of the images. We repeat
this random selection ten times, and report the average results
of all the compared methods. To evaluate the scalability of
different methods, we separately utilize images of 20, 40, 60,
80 and 100 objects from the dataset. Table V shows the average
recognition rates with standard deviations of all compared
methods. The results show our algorithm could not only work
on face recognition but also on object categorization.

G. MNIST Dataset

We test our algorithm on a subset of MNIST handwritten
digit dataset, which includes first 2000 training images and
first 2000 test images with the size of each digit image is
16 x 16. This experimental setting follows [19], and we get
consistent results. Table VI summarizes the recognition rates
and traing/testing time by different algorithms. Our algorithm
achieves the highest accuracy than its competitors. Compared
with our conference method LC-LRD, our MDDL costs only
slightly more computational time thanks to the easy updating
of marginalized auto-encoder.

Another experiment setting is conducted on this dataset
to evaluate the effect from denoising auto-encoders. All the
training and testing images in MNIST are added with addi-
tive white Gaussian noise corresponding with signal-to-noise
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Fig. 6. The performance on MNIST datsets with different snr noise. As snr
goes lower, the best result appears when the noise on reconstruction process
is larger, which means the DAEs plays more important role when noise goes
heavier on MNIST dataset.

ratio (snr) from 50dB to 1dB (show in Fig. 3 (a)). Fig 6
illustrates the recognition rate curves on 8 noised version of
datasets. X-axis verses the noise ratio used in input reconstruc-
tion process in DAEs, close to 1 means more noise added,
0 means no DAEs evolved. From the figure, we can observe
that, with the increasing noise added in the datasets (50dB
to 1dB), the highest recognition rate appears when the noise
parameter goes larger (from nearly 0.004 for 50dB to nearly
0.1 for 1dB). In another word, denoising auto-encoders plays
more important role when the datasets carries heavier noise.
To verify if our improvement is statistically significant,
we further conduct a significance test (t-test) for the results
shown in Fig. 7. A significance level of 0.05 was used, that
is to say, when p-value is less than 0.05, the performance
difference of two methods is statistically significant. The
p-values of our method and other competitors are listed in
Fig. 7 lists. Since we do —log(p) processing, the comparison
shows that our method outperforms others significantly if the
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Fig. 7. p-value of t-test between our method and others on Extended YaleB
(upper figure, with 0% to 20% corruption) and COIL-100 (lower figure, with
20-100 classes) datasets. We do pre-processing using —log(p) so that the
larger value shown in the figure means the more significance of our algorithm
compared with others.

values are greater than —1og(0.05). The results show that our
methods have significant improvement on COIL-100 dataset,
and for Extended YaleB dataset, the significance increases
along with the noise level in the input data.

V. CONCLUSION

In this paper, we developed an efficient marginalized denois-
ing dictionary learning (MDDL) framework with locality
constraint. Our proposed algorithm was designed to take
advantage of two feature learning schemes, dictionary learning
and auto-encoder. Specifically, we adopted a lite version
of auto-encoder to seek a denoising transformation matrix.
Then, dictionary learning with locality constraint was built
on the transformed data. These two strategies were iteratively
optimized so that a marginalized denoising transformation
and a locality-constrained dictionary were jointly learned.
Experiments on several image datasets, e.g., face, object,
digits, demonstrated the superiority of our proposed algorithm
by comparing other existing dictionary algorithms.
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