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Deep Domain Generalization With Structured
Low-Rank Constraint

Zhengming Ding , Student Member, IEEE, and Yun Fu, Senior Member, IEEE

Abstract— Domain adaptation nowadays attracts increasing
interests in pattern recognition and computer vision field, since it
is an appealing technique in fighting off weakly labeled or even
totally unlabeled target data by leveraging knowledge from
external well-learned sources. Conventional domain adaptation
assumes that target data are still accessible in the training stage.
However, we would always confront such cases in reality that
the target data are totally blind in the training stage. This is
extremely challenging since we have no prior knowledge of the
target. In this paper, we develop a deep domain generalization
framework with structured low-rank constraint to facilitate the
unseen target domain evaluation by capturing consistent knowl-
edge across multiple related source domains. Specifically, multiple
domain-specific deep neural networks are built to capture the
rich information within multiple sources. Meanwhile, a domain-
invariant deep neural network is jointly designed to uncover
most consistent and common knowledge across multiple sources
so that we can generalize it to unseen target domains in the
test stage. Moreover, structured low-rank constraint is exploited
to align multiple domain-specific networks and the domain-
invariant one in order to better transfer knowledge from multiple
sources to boost the learning problem in unseen target domains.
Extensive experiments are conducted on several cross-domain
benchmarks and the experimental results show the superiority
of our algorithm by comparing it with state-of-the-art domain
generalization approaches.

Index Terms— Domain generalization, deep learning, low-rank
constraint.

I. INTRODUCTION

DOMAIN adaptation [1], [2] has already attracted con-
siderable attentions in pattern recognition and computer

vision field, since it well tackles the tasks with no or limited
labeled target data. Generally, domain adaptation borrows
well-established knowledge from source domains to alle-
viate the learning problem in the target domain. Conven-
tional domain adaptation methods [3]–[8] consider seeking
domain-invariant representation of the data or adapting classi-
fiers, or both of them to mitigate the marginal or conditional
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Fig. 1. Illustration of domain generalization problem, where we have multiple
sources (3 sources here) while we are not accessible to the target domain
during the training stage. Note that multiple sources and unseen target share
the same labels. The key is to uncover the consistent information across
multiple sources through deep structure to alleviate the unseen target learning.

distribution differences between source and target domains.
In traditional domain adaptation scenarios, we still assume we
have access to the target data in the training stage. In reality,
however, we usually confront such challenges that the target
data are totally unavailable in the training stage (Fig. 1). Thus,
conventional domain adaptation techniques [3]–[7], [9]–[11]
would fail in such cases, since they all need target data to
guide knowledge transfer during model training.
Fortunately, we could always find some related source

domains to extract valid knowledge to build a classifier for
unseen targets. For example, we desire to evaluate image
classification on VOC2007, and we can have the images
from ImageNet, Caltech-256 and LabelMe databases available
ahead of time. That is, we have multiple sources for training
but without any knowledge about the target so that it is
very difficult to guide the knowledge transfer. Actually, it is
different from multi-source domain adaptation [4], [12]–[15],
which has access to the target data in the training stage. Since
these multiple sources have different distributions with each
other as well as the target, it is very important to mitigate the
domain shift between multiple sources and target by exploring
more consistent information from multiple sources.
Most recently, domain generalization [16]–[23] has been

well exploited to fight off the challenge through capturing
knowledge from multiple source domains and generalizing
to the unseen target domains. Along this line, there are
mainly two strategies: one is domain-invariant feature learning,
while the other is multiple classifiers adaptation. For example,
Xu et al. exploited the low-rank structure from multiple latent
source domains by extending an exemplar-SVM in order to
capture the likelihoods of all positive samples [19]. However,
existing domain generalization research efforts all employ
shallow structures, so it is difficult for them to well uncover the
rich information within the complex data. Therefore, it is easy
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Fig. 2. Framework of our proposed algorithm. (a) multiple domain-specific deep structures Ei (·) tend to be learned to capture the rich information from each
source. (b) A domain-invariant deep structure Ec(·) is built for all the domains, and further generalize to the unseen domain in the test stage with learned
classifier θc(·). (c) To couple the outputs of multiple domain-specific networks and domain-invariant one, low-rank reconstruction is adopted to align two
types of networks in structured low-rank fashion.

to ignore the useful knowledge shared by multiple sources and
hard to adapt the knowledge to the unseen target domains in
the test stage.
Recently, deep learning [24], [25] has been extensively

explored, since it could capture more effective knowledge
in hierarchical feature extraction structure. That is, more
discriminative and powerful knowledge underlying the data
would be captured through multi-layer non-linear transforma-
tions [26]. Targeting at solving the distribution difference, deep
learning has been well explored in domain adaptation, and
it presents powerful ability in domain-invariant feature learn-
ing [27]–[30]. Specifically, deep domain adaptation technique
manages to uncover common information across different
domains. With deeper structures, the domain shift can be well
mitigated so that the well-learned knowledge in source can
be adapted to alleviate the target learning. In this way, deep
structure learning is promising to uncover more discriminative
features across multiple sources and generalize to the unseen
target in the test stage.
In this paper, we present a Deep Domain Generalization

framework (DDG) through structured low-rank constraint by
leveraging the knowledge between multiple sources and the
unseen target domains (Fig. 2). The core idea of DDG is to
build a domain-invariant end-to-end deep structure by uncov-
ering shared knowledge across multiple source domains so that
the domain-invariant deep structure could well generalize to
unseen target domains in the test stage. To our best knowledge,
this is the first work for deep learning to fight off domain
generalization.

A. Our Contributions

To explore more consistent knowledge across multiple
sources, the idea of deep structure learning has been incorpo-
rated to build an effective end-to-end architecture to facilitate
the unseen target learning. Here we summarize the main
contributions of this work in two folds as follows:

• Multiple domain-specific deep structures and one domain-
invariant deep structure are jointly built to uncover more
useful information from each domain and shared by dif-
ferent domains, respectively. With multi-layer networks,
the rich knowledge within sources can be learned to
facilitate the unseen target learning. Aiming at coupling
two types of networks, we adopt a difference loss to guide
the deep learning.

• To better couple multiple domain-specific structures and
the domain-invariant one, we deploy a structured low-
rank reconstruction scheme to transfer the knowledge
between domain-specific and the domain-invariant one.
Specifically, the output from domain-specific networks
would be only reconstructed by the output from domain-
invariant network with the same class label under low-
rank constraint. To this end, the learned domain-invariant
deep structure can be more effective for the unseen target
domains.

The remaining parts of this paper are presented as follows.
We show a brief discussion of the related works in Section II.
Then we provide our novel deep domain generalization algo-
rithm in Section III, as well as its optimization solution.
Experimental evaluations on several different benchmarks are
reported in Section IV, which is followed with the conclusion
in Section V.

II. RELATED WORK

In this part, we briefly discuss two lines of related work
and further highlight the differences between our proposed
algorithm and the existing works.

A. Domain Adaptation & Generalization

Domain adaption aims to tackle with the problem that the
source distribution is different from the target one [12], [27],
[30], [31]. However, traditional domain adaptation assumes
the target data is accessible during the training procedure.
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In reality, we may confront such cases that we cannot have
any evaluation data available in the training stage.
To address the case where target data cannot be acces-

sible for training, domain generalization [16], [18]–[21] has
recently attracted increasing attentions, since it is promising
to extend the training model from multiple sources to the
unseen target. Multi-source adaptation problem [4], [12] is
similar to domain generalization, since they both manage
to extract the source knowledge and handle the distribution
difference across sources. Therefore, their proposed techniques
have many similar aspects. However, domain generalization is
more challenging as there is no target data achievable in the
training procedure for help.
Along this line, there are mainly two strategies: one is

domain-invariant feature learning and the other is multiple
classifiers adaptation. In the first line, Muandet et al. developed
a kernel-based optimization algorithm to build a domain-
invariant projection by minimizing the divergence across dif-
ferent domains [17]. Fang et al. designed Unbiased Metric
Learning (UML) algorithm through learning to rank frame-
work, which produced a less biased distance metric with better
domain generalization performance in weakly-labeled web
images [18]. Furthermore, Ghifary et al. developed a multi-
task auto-encoder by encoding with a common layer while
decoding with domain-specific layers in order to uncover the
shared information across multiple domains for the unseen
target domains [20]. Along the second line, Khosla et al.
designed a multi-task max-marginal classifier on multiple
source domains, where the learned weights that are shared to
all source domains can be utilized for knowledge generaliza-
tion [16]. Most recently, Niu et al. extended multiple instance
learning and constructed one classifier per class per latent
domain, and hence, multiple classifiers could be effectively
integrated to obtain promising generalization [21].
However, current work on domain generalization ignored

the rich information from the hierarchical structure within the
data. Differently, we develop two types of deep neural net-
works to uncover more effective information across multiple
sources to alleviate the unseen target learning. Furthermore,
we adopt structured low-rank constraint to build a more effec-
tive domain-invariant deep structure for unseen target learning.

B. Deep Learning

In the recent years, deep Learning has been well explored
and increased great attention in a lot of real-world applications,
due to its promising ability in different learning tasks, e.g.,
face recognition [32], image super-resolution [25], action
classification [33], [34], feature selection [35], image cluster-
ing [36] and multi-view learning [37]. In general, deep learn-
ing attempts to build hierarchical structures to extract features
with the input of raw data. Most deep learning approaches
assume that deep architecture is able to extract invariant
features which can be transferable across various learning
tasks. However, the domain discrepancy, unfortunately, cannot
be removed, but only alleviated with the deep structure. Thus,
domain mismatch is one of the bottlenecks to the adaptability
of deep architecture.

Most recently, a lot of deep domain adaptation methods are
proposed to address the domain discrepancy based on the deep
structure by making merit of both deep learning and domain
adaptation techniques [27], [29], [30], [38], [39]. The core
idea is to improve the representation adaptability in the higher
layers of the deep structure through explicitly mitigating the
domain distribution mismatch. However, current deep domain
adaptation algorithms all assume the target data are achievable
for model training, that is, none of them are designed for
domain generalization.
In this paper, we are the first to explore the deep structures

to address the domain generalization challenge. To transfer
more effective information from the multiple sources to the
domain-invariant network, which is further extended to the
unseen target domains, we propose a structured constraint to
build a bridge across them under low-rank assumption.

III. THE PROPOSED MODEL

In this part, we will introduce our proposed Deep Domain
Generalization learning algorithm for unseen target domains
by constructing multiple domain-specific and one domain-
invariant deep neural networks from several related sources.
Then, we provide the solution to the proposed algorithm.

A. Preliminaries

Domain can be defined as probability distribution PXY on
X ×Y , in which X and Y represent the data and label spaces,
respectively. For simplicity, we denote PXY as P. Assume D =
{x j ; y j }n

j=1 as an independent and identically distributed (i.i.d.)
sample from a domain. In domain generalization, assume
� = {Ps,1; · · · ; Ps,m} as a combination of m source domains
and Pt /∈ � as a target domain. Assume i -th source domain
Ds,i = {x j

i ; y j
i }ni

j=1 with ni labeled samples. In the test stage,
we aim to evaluate on some unseen domains Dt with the same
categories.
The main difference between multi-source domain adapta-

tion and domain generalization is on the accessibility of the
target data during the training stage. Both manage to seek
a labeling function θ : X → Y that can achieve good per-
formance on the target data. Note that domain generalization
would definitely become to multi-source domain adaptation,
when Pt ∈ �. Although these two are highly related problems,
domain adaptation approaches generally cannot be directly
exploited in domain generalization scenario. Thus, it is sig-
nificantly desirable to propose models efficiently for domain
generalization.

B. Motivation

When dealing with a learning problem that the evaluation
data are only available in the test stage, domain generalization
attracts increasing attentions by exploring more consistent
knowledge across multiple related sources domains, which are
all drawn from different distributions with the unseen target.
Along the line of multi-source domain adaptation [4], [12]
and domain generalization [17], [20], most researchers assume
there is a latent domain-free space, where sources and target
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could align well. Thus, it is very essential to find the latent
space so that multi-source knowledge could be transferred to
the unseen target to boost the learning problem. However, cur-
rent domain generalization [16], [18]–[21] works all adopted
shallow structures to extract domain-invariant features, which
actually cannot uncover enough effective features to facilitate
the target learning.
To this end, we desire to explore deep structure learning in

domain generalization to uncover more effective knowledge
across multiple sources. Considering the distribution diver-
gence among multiple sources, we design multiple domain-
specific deep structures, each for one source domain to
transform multiple sources into the latent space. Specifically,
each domain-specific network can be treated as one task in
multi-task scheme, and Bengio et al. mentioned that good
representation should have such prior as shared factors across
tasks [24]. Therefore, we assume different networks should
have similar activation values given the same class of objects
from different domains, and our domain-invariant network is
designed to capture most shared factors across tasks. Such
domain-invariant deep structure is treated as an approximation
of the specific target domain deep structure when we cannot
have access to any target data during the training procedure.
Finally, we further learn a classifier based on the domain-
invariant deep structure, thus, we can evaluate on the unseen
target data in the test stage.

C. Deep Domain Generalization Model

To build a deep domain generalization model, we extend
the well-known architectures [38], [40], which are comprised
of several convolutional layers and a few fully-connected
layers. Generally, each fully-connected (fc) layer l learns a
nonlinear transformation hl

i = f l(Wl hl−1
i + bl), in which

hl
i is the l-th layer hidden representation of sample xi (Wl

and bl are the weights and bias for the l-th layer), while
f l(·) is the activation function, for example, rectifier function
f l(x) = max(0, x) for hidden layers or Softmax function
f l(x) = exp(x)/

∑|X |
j=1 exp(x j ) for the output layer.

Current deep domain adaptation approaches [27], [29], [38]
suggest that high-layer features eventually transition from
general to specific along the deep architecture, the feature
adaptability gap increase with the domain mismatch partic-
ularly enlarged. Here we do not focus on how to calculate
the convolutional layers, since we do not enforce distribution-
adaptation constraint in those layers, provided that the con-
volutional layers are able to generate generic features [41].
Define Ei = {Wl

i , bl
i }|L

l=1 as the set of all CNN parameters for
each source-specific network, Ec = {Wl

c, bl
c}|L

l=1 as the set of
all CNN parameters for the domain-invariant network and θc

as the parameter for standard Softmax classifier.
For our model, inference is provided with ȳ = θc(Ec(x)),

in which ȳ is the task-specific label prediction. In this paper,
we attempt to minimize the following loss function with
respect to parameters � = {Ei , Ec, θc}:

L = Lg + γLd + βLr , (1)

which includes three parts, i.e., classification loss Lg , cross-
network difference loss Ld and reconstruction loss Lr .

First of all, the classification loss Lg tends to guide
the model training to assign the output labels. Specifically,
we attempt to minimize the negative log-likelihood of the
ground truth class, provided every labeled source sample:

Lg = −
N∑

j=0
ys, j log(ȳs, j ), (2)

in which N = ∑
i ni , and ys, j is the class label for source

sample xs, j , while ȳs, j is the label prediction as ȳs, j =
θc(Ec(xs, j )).
The cross-network difference loss Ld is also exploited to all

source domains and encourages the domain-invariant networks
to preserve most information across multiple domain-specific
networks. Since multiple sources all share the same categories
but in different distributions, we assume the domain-specific
deep networks share most information in the latent space,
where the knowledge can be extended to the unseen target
domain. Specifically, each domain-specific network can be
treated as one task. It has been suggested in [24] that good rep-
resentations should have such prior as Shared Factors Across
Tasks. Therefore, we assume that different networks should
have similar activation values given the same class of objects
from different domains, and our domain-invariant network is
designed to identify shared factors across tasks, which is an
approximation for unseen target domain. An intuitive strategy
is to couple the weights in each layer between the domain-
specific networks and the domain-invariant one. To this end,
we minimize the following connections across them as:

Ld =
m∑

i=1

L∑
l=1

(
‖Wl

i − Wl
c‖2F + ‖bl

i − bl
c‖22

)
, (3)

In this way, the common domain-invariant network can
uncover shared factors across multiple domain-specific net-
works so that it can be better extended to alleviate the
unseen target learning in the real test stage. The cross-network
constraint (3) aims to uncover more shared knowledge for
domain-invariant deep network from multiple sources.

D. Structured Low-rank Reconstruction

The reconstruction loss Lr is also applied to encourage
the shared and private networks to capture more discrim-
inate information. When the domain distribution difference
is mitigated with deep architecture, we could observe that
the within-class data would gather together although they
are from different domains. That is, each sample would be
highly similar to other samples in the same class. In this
way, the conditional distribution difference could be addressed.
Therefore, we explore the structured low-rank constraint could
help transfer knowledge from domain-specific networks to
domain-invariant networks.
Let Hs,i and Hc,i be matrices whose rows are the domain-

specific representation and domain-invariant representations
Hs,i = Ei (Xs,i ) and Hc,i = Ec(Xs,i ) from samples of i -th
source, respectively. To guide two types of networks learning
and adapt more effective information to the unseen target
data, we adopt low-rank reconstruction to couple the output of
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Fig. 3. Illustration of structure matrix Q for three sources (S1, S2, S3) with
three categories (C1,C2, C3). Q only has positive values at the positions in
which sources share the same labels, otherwise Q is 0.

each domain-specific network and the output of the domain-
invariant network in the following:

min
Z
rank(Z), s.t. Hs = Hc Z , (4)

where Hc = [Hc,1, · · · , Hc,m ] and Hs = [Hs,1, · · · , Hs,m].
Z ∈ R

N×N is the reconstruction coefficient matrix and rank(·)
is the rank operator [42]. The rank minimization issue can be
addressed by the trace norm ‖ · ‖∗ as a good surrogate [42].
Actually, low-rank reconstruction matrix Z tends to be

block-diagonal in the ideal case, since only the within-class
data are correlated across two types of deep networks. Similar
ideas were proposed in the literature [31], which adopted
multi-view data to reconstruct each view under linear trans-
formations with low-rank constraint. However, such shallow
structures with linear transformations would fail to represent
complex data. Our algorithm joints deep structure learning
and low-rank constraint into a unified framework in order to
capture more effective information shared by multiple sources.
In this way, the domain shift across multiple sources could be
further mitigated to boost the unseen target learning.
However, previous model (4) works in an unsupervised

way, which still treats the dataset as whole and ignores
the discriminative information during low-rank reconstruction.
In other word, it is hard to recover block-diagonal low-rank
matrices. Motivated by previous structured low-rank learn-
ing [43], [44], we propose to guide the low-rank reconstruction
through structured matrix across two types of deep networks
as follows:

min
Z

‖Z‖∗ + α‖Z − Q‖2F,
s.t. Hs = Hc Z , (5)

where α > 0 is the trade-off parameter and Q is the structured
low-rank matrix (Figure 3), which is defined as follows:

Q[ j, k] =
{
1, if H j

s and Hk
c belong to the same class

0, otherwise

Clearly, Q is a block-diagonal structured matrix, because
it is constructed based on within-class relationship. Such
structured low-rank reconstruction would involve more label
information during the deep structures learning so that the
conditional distribution difference across two types of deep
structures could be reduced. To that end, we develop a
novel loss function for deep domain generalization with the

constraint Hs = Hc Z :

Lr = ‖Z‖∗ + α‖Z − Q‖2F . (6)

E. Model Training

Eq. (1) is challenging to be addressed because of the non-
linearity and non-convexity. Thus, we present an alternating
optimization method to iteratively update two subproblems:
1) optimize the low-rank coefficients; 2) learn two types of
deep structures.

Low-Rank Coefficient Optimization: we propose to update
low-rank coefficients, then provide the deep structure opti-
mization. When the deep structures are fixed, the objective
function in Eq. (1) degenerates to a traditional low-rank mod-
eling problem. Then, we derive the corresponding augmented
Lagrangian function of Eq. (5) w.r.t Z :

L̄r = ‖Z‖∗ + α‖Z − Q‖2F + 〈R, Hs − Hc Z〉
+ μ

2
‖Hs − Hc Z‖2F, (7)

where R is the Lagrange multiplier and μ > 0 is the penalty
parameter. 〈, 〉 denotes the inner product operator of two
matrices. Specifically, we first define L̄r (Z , Q, Rτ , μτ ) =
α‖Z − Q‖2F + 〈Rτ , Hs − Hc Z〉 + μτ

2
‖Hs − Hc Z‖2F, then have

following updating rules of Z variable at time τ :

Z = argmin
Z

‖Z‖∗ + L̄r (Zτ , Q, Rτ , μτ )

= argmin
Z

1

ξμτ
‖Z‖∗ + ‖Z − Zτ + ∇Zτ L̄r‖2F (8)

where ∇Zτ L̄r = ∇Zτ L̄r (Zτ , Q, Rτ , μτ ) = 2α(Zτ − Q) −
Hs

	 Rτ − μτ H	
c (Hs − Hc Zτ ) and ξ = ‖Hc‖2F. Problem (8)

can be effectively addressed with the singular value thresh-
olding (SVT) operator [45]. Suppose UZ 
Z VZ are the SVD
of matrix (Zτ − ∇Zτ L̄r ), in which 
Z = diag({σ }1≤i≤r )
with singular value σ . Thus, we could achieve the optimal
of Z at time τ + 1 as Zτ+1 = UZ�( 1

μτ
)(
Z )VZ , in which

�( 1
μτ

) = diag({σ − 1
μτ

}+), and a+ represents the positive part
of a [45].
The multiplier R and the penalty parameter μ are updated as

Rτ+1 = Rτ +μτ(Hs −Hc Zτ+1) and μτ+1 = min(ρμτ , μmax),
respectively, where ρ = 1.2 and μmax = 106. We obtain the
low-rank coefficient Z until it converges with the condition of
‖Hs − Hc Z‖∞ < ε (ε = 10−6).

Learning Deep Weights: after Z updated, we could adopt
conventional gradient descent strategy to optimize parameters
of neural networks individually. Specially, we first calculate
the gradient descant of each variable, w.r.t., ∂L/∂�. Then, �
is updated through

� = � + η
∂L
∂�

, (9)

where η is updated with Adagrad Rule [46].
Large-Scale Data Extension: When dealing with large-scale

dataset, our deep domain generalization model with struc-
tured low-rank constraints can still adopt mini-batch stochastic
gradient descent (SGD) strategy. Specifically, we need to do
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some modification on the optimization procedure. For every
random sampling, we randomly select a certain number of
samples per class from different domains, i.e., nr samples
each class. In this way, we can ensure the low-rank property
to be preserved. Thus, in each sampling, we have subset
As = [As,1, · · · , As,m] from m domains, each As,i with nr ×C
samples. For each mini-batch, we could iteratively update
the above two subproblems. Since our structured low-rank
constraint is exploited to transfer more effective knowledge
across two types of networks, hence, for each mini-batch,
we can still achieve this goal if we sample the data with low-
rank property. To this end, we conclude that our model can
be quite scalable to large-scale dataset.

F. Model Comparison

In this part, we will discuss three most related works to
ours.
The first related work in domain generalization is

MTAE [20], which exploits the common encoder to transform
multiple sources to the hidden layer, then adopted domain-
specific decoders. In this way, the common domain-invariant
encoder could be generalized to unseen target domains. Their
reconstructions provide a class-level correspondence, which
constrains the number of samples in one class to be the same
for each domain.
The second related works are DSN [39] and WSDTN [47],

which are both designed for domain adaptation. Specifically,
DSN is designed for domain adaptation by building two
types of networks, i.e., domain-specific and domain-invariant
networks. Furthermore, DSN adopts orthogonal constraints
to enforce source and target with more shared knowledge.
WSDTN proposes two networks for two modalities with
weakly-shared constraint, which is the same to our constraint
in Eq. (3). However, both are developed for traditional domain
adaptation, which assume target data are available during
training.
However, we adopt structured low-rank reconstruction to

adapt the two types of deep networks for domain generaliza-
tion, where test data are totally blind in the training stage.
Our low-rank reconstruction would make the same class data
in two types of networks correlate to mitigate the within-
class variance. Moreover, we explore the similar strategy
to WSDTN to enforce multiple domains with more shared
knowledge.

IV. EXPERIMENTAL RESULTS

In this part, we evaluate our proposed model on sev-
eral cross-domain benchmarks by comparing state-of-the-art
domain generalization algorithms. We also analyze the con-
vergence and each component individually.

A. Datasets & Experimental Setting

In the experiments, we mainly use four cross-domain data-
bases, which are Office-31, Office-10 + Caltech-10 (Fig. 4),
VLCS-5 and MUS-10 (Fig. 5). The statistic of four datasets
are shown in Table I.

Fig. 4. Example images from the Backpack category in Caltech-256 and
Office-31 (i.e., Amazon, DSLR, and Webcam). Specifically, Caltech-256 and
Amazon images are mostly from online merchants, while DSLR (high
resolution) and Webcam (low resolution) images are from offices. (Best
viewed in color).

Fig. 5. Example from cross-domain digit dataset of three subsets,
i.e., MNIST, USPS and SVHN.

Office-31: is a widely-adopted cross-domain benchmark,
which consists of three real-world visual object datasets,
i.e., Amazon (images downloaded online), DSLR (high-
resolution images collected with a digital SLR camera) and
Webcam (low-resolution images captured with a web camera).
In total, there are 4,652 images from 31 categories.

Office-10 + Caltech-10: dataset contains Office-31 and
Caltech-256, which is a standard benchmark for visual object
classification.1 There are 10 common categories shared with
them. Generally, each category has 8 to 151 samples, and
in total it includes 2,533 samples. Here we build different
evaluation cases by selecting sources and targets.

VLCS-5: is another cross-domain object benchmark,
which contains the images from PASCAL VOC2007 (V),
LabelMe (L), Caltech-101 (C), and SUN09 (S), with each
as a domain. Specifically, V, L, and S are scene-centric
datasets, while C is an object-centric dataset. There are five
shared object categories, i.e., “car”, “bird”, “chair”, “dog”, and
“person”. We follow the setting in [20] to divide each domain
of VLCS into a training set (70%) and a test set (30%) through
random selection.

MUS-10: digit dataset includes three subsets,
i.e., MNIST (M), USPS (U) and SVHN (S). Each dataset

1http://www-scf.usc.edu/ boqinggo/domainadaptation.html
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TABLE I

STATISTICS OF THE THREE BENCHMARK DATASETS

contains digits belonging to 10 classes (0-9), each captured
under different conditions. Specifically, MNIST and USPS are
large datasets of handwritten digits captured under constrained
conditions. Both these domains are visually very similar and
this makes adaptation relatively easy. SVHN has significant
variations (See Fig. 5) in many aspects, which makes it quite
different from MNIST and USPS.
In this section, we mainly evaluate our proposed approach

with the following 8 comparisons:

• DCNN: We directly apply labeled sources to only train
one deep convolutional neural network (DCNN), then
exploit to predict the labels of unseen targets.

• LRCS [31]: a multi-view common subspace learning
algorithm, which seeks a shared low-rank subspace for
view-unknown test data.

• Undo-Bias [16]: a multi-task SVM-based model to
address the dataset bias.

• UML [18]: a structural metric learning-based approach,
targeting at building a domain-invariant distance metric
for target learning.

• DICA [17]: a kernel-based learning approach that seeks
an domain-invariant projection by minimizing the dis-
crepancy across domains.

• LRE-SVM [19]: a non-linear exemplar-SVM algorithm
with a low-rank constraint on the likelihood matrix.

• MTAE [20]: multi-task auto-encoder seeks to convert
the raw data into analogs in multiple related sources.
It thereby extracts new representations robust to domain
mismatch.

• DSN [39]: a deep domain adaptation model by learning
a shared encoding network.

• SCA [23]: a linear subspace approach by maximizing the
discriminability of classes and minimizing the mismatch
between domains.

The first two, DCNN and LRCS, are two baselines while
the middle five algorithms are the state-of-the-art domain
generalization approaches. DSN is previously designed for
unsupervised domain adaptation, since it also attempts to seek
a common deep structure shared by different two domains.
Applying it to domain generalization, we do some modification
that the classifier is learned on all the labeled sources. Specif-
ically, we adopt the MMD as the similarity loss. We evaluate
on two-source domain generalization challenges, thus, we can
still use the DSN code easily.
Throughout the experiments, we implement CNN topologies

based on the deep structures [29], [38], [39]. Detailedly, for
Office-31, Office-10 + Caltech-10 and VLCS-5, we exploit

Fig. 6. The cross-domain recognition accuracy % of 7 algorithms on the
MUS-10 dataset.

the AlexNet structure [40]. Since these three datasets are rather
small-scale and the size of available training data is essential
to build a powerful deep model, hence we opted for the fine-
tuning of the CNN pre-trained on the ImageNet (AlexNet with
the Caffe toolbox [48]) [27], [29], [38]. For cross-domain digit
dataset (MUS-10), we use the CNN structure [49].
Besides, for shallow learning algorithms, we adopt

the DeCAF6 features extracted from the first three
datasets (Office-31, Office-10 + Caltech-10 and VLCS-5) as
inputs to the methods. These representations have dimension-
ality of 4,096 and are public to download. Office-31 is publicly
available,2 Office-10 + Caltech-10 can be downloaded from
the website.3 VLCS-5 features are available on the website.4

While for the last digit dataset, we extract the features with
the structure [49].
In the experiments, we report the model performance in

terms of the classification accuracy (%) [19]. Here, we tune
the hyper-parameters for each model through 10-fold cross-
validation on labeled sources, since we have no labeled
target data available for training. Note that “{Webcam, DSLR,
Amazon}→ Caltech” represents that the sources are Webcam,
DSLR and Amazon, while the unseen target is Caltech.

B. Domain Generalization Results

We testify the domain generalization performance of each
algorithm, and the results are shown in Tables II, III, IV and
Fig. 6.
Generally, we observe that our proposed algorithm could

outperform all the other comparisons in all cases, since our
proposed algorithm deploys two types of deeper structures
and incorporates structured low-rank reconstruction fashion.
Therefore, more discriminative knowledge could be transferred
to facilitate the learning problem to unseen target domains.
Besides, domain generalization algorithms could achieve better
results than others in most cases. That shows domain gen-
eralization techniques definitely facilitate the unseen target

2http://vc.sce.ntu.edu.sg/transfer_learning_domain_adaptation/
3https://people.eecs.berkeley.edu/ jhoffman/domainadapt/#datasets_code
4http://www.cs.dartmouth.edu/ chenfang/proj_page/FXR_iccv13/index.php
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TABLE II

THE CROSS-RECOGNITION ACCURACY % OF 9 ALGORITHMS ON THE OFFICE-31 DATASET. RED COLOR DENOTES THE
BEST RECOGNITION RATES. BLUE COLOR DENOTES THE SECOND BEST

TABLE III

THE CROSS-RECOGNITION ACCURACY % OF 9 ALGORITHMS ON THE OFFICE-10+ CALTECH-10 DATASET. RED COLOR
DENOTES THE BEST RECOGNITION RATES. BLUE COLOR DENOTES THE SECOND BEST

TABLE IV

THE CROSS-RECOGNITION ACCURACY % OF 9 ALGORITHMS ON THE VLCS DATASET. RED COLOR DENOTES THE BEST
RECOGNITION RATES. BLUE COLOR DENOTES THE SECOND BEST

learning by borrowing the knowledge from related multiple
sources.
Secondly, compared with DCNN, our model builds two

types of networks, thus our model can have a better flexibility
in dealing with unseen target domains. DCNN can only capture
the knowledge from sources while cannot well uncover the
shared knowledge across sources for unseen targets. LRCS
also adopts the low-rank reconstruction to further learn a
view-invariant linear projection, however, it is an unsupervised
and shallow model so that it cannot well adapt the source
knowledge from sources to unseen target. For other domain
generalization methods, most of them can achieve better
performance based on deep features, compared with DCNN.
This indicates that deep structure learning is not enough
to handle the unseen domain challenge, and they cannot
build a transferable network. However, domain generalization
approaches still can improve the performance.
Thirdly, 1) from the classification performance

in Tables II, III and IV, we could observe deep learning
features, i.e., DeCAF6 features, could help the unseen target
learning. The reason is that all the domains are extracted
features through a common deep structure, which is trained
on large-scale dataset, so that the domain mismatch across
sources and target could be mitigated to some extent. We can
also notice that all the algorithms work worse on {D, W}
→ A than other two cases, since A has a larger distribution
difference with W and D. In handcrafted features, domain

generalization techniques cannot help a lot for this challenge
case. 2) from the results in Table III, A and C have higher
similarity while D and W share higher similarity, therefore,
we can witness that the first four cases achieve better results,
especially {A, C, D} → W. However, domain generalization
methods can still improve the performance a little bit. 3) For
VLCS-5, the object-centric dataset, Caltech-101, appears
to show the best performance, as scene-centric datasets
usually tend to have a good generalization over object-centric
datasets [50]. 4) For MUS-10, MNIST and USPS have similar
distributions, thus, we can achieve better performance when
unseen target is MNIST or USPS. However, when SVHN is
the unseen target, the performance is worse since SVHN is
much different from MNIST and USPS.

C. Empirical Analysis

In this part, we mainly testify some properties of the
proposed model.
First of all, we evaluate several variants of our model to to

understand our model deeply.

• DDG_l: we remove the structured term, i.e., ‖Z − Q‖2F
(set α = 0).

• DDG_p: we further remove the low-rank reconstruc-
tion based on DDG_l by replacing pair-wise reconstruc-
tion (set β = 0). That is, Z = IN , where IN is the identity
matrix with size of N × N .
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Fig. 7. Convergence curves of our model on three cases, i.e., {A, D} → W ,
{V, L , C} → S and {U, S} → M.

TABLE V

RECOGNITION RATE OF 4 ALGORITHMS ON DIFFERENT
EVALUATION CASES

• DDG_s: we further remove the shared factor constraint,
i.e., (3), from DDG_p (set γ = 0).

From the results, we notice that our model outperforms
other variants, which indicates that each component con-
tributes to domain generalization. Since we remove each term
step by step, we could have a clear view that each component
has an improvement.
Secondly, we testify the convergence of our proposed model.

Actually, our model has two subproblems, one is traditional
deep convolution neural networks, the other is low-rank mod-
eling. In fact, for each subproblem, researchers has well shown
their convergence. However, it is still hard to theoretically
prove the convergence of deep learning models, especially for
our model with two subproblems. Thus, researchers usually
empirically testify the convergence of the deep structure.
We found our model converges well for all the cases. Here we
adopt the test cases {A, D} → W of Office-31, {V , L, C} → S
of VLCS, and {U, S} → M of cross-domain digit dataset,
respectively. The convergence curves are shown in Fig. 7,
where we could observe that our model converges well.

V. CONCLUSION

In this paper, we developed a deep domain generalization
framework with structured low-rank constraint, which aimed
to seek most shared discriminative knowledge within multiple
sources to facilitate the unseen target learning. Specifically,
we built two types of deep structures, domain-specific and

domain-invariant, to capture most common discriminative
information shared by multiple sources so that the knowl-
edge could be transferred to the unseen target domains. The
structured low-rank reconstructions were adopted to mitigate
the gap between domain-specific and domain-invariant struc-
ture. Experimental evaluation on several popular cross-domain
benchmarks verified the superiority of our proposed model,
by comparing with the state-of-the-art domain generalization
methods.
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