
0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Consensus Representation
for Weak Style Classification

Shuhui Jiang, Ming Shao, Member, IEEE , Chengcheng Jia and Yun Fu, Senior Member, IEEE

Abstract—Style classification (e.g., Baroque and Gothic architecture style) is grabbing increasing attention in many fields such as
fashion, architecture, and manga. Most existing methods focus on extracting discriminative features from local patches or patterns.
However, the spread out phenomenon in style classification has not been recognized yet. It means that visually less representative
images in a style class are usually very diverse and easily getting misclassified. We name them weak style images. Another issue
when employing multiple visual features towards effective weak style classification is lack of consensus among different features. That
is, weights for different visual features in the local patch should have been allocated similar values. To address these issues, we
propose a Consensus Style Centralizing Auto-Encoder (CSCAE) for learning robust style features representation, especially for weak
style classification. First, we propose a Style Centralizing Auto-Encoder (SCAE) which centralizes weak style features in a progressive
way. Then, based on SCAE, we propose both the non-linear and linear version CSCAE which adaptively allocate weights for different
features during the progressive centralization process. Consensus constraints are added based on the assumption that the weights of
different features of the same patch should be similar. Specifically, the proposed linear counterpart of CSCAE motivated by the “shared
weights” idea as well as group sparsity improves both efficacy and efficiency. For evaluations, we experiment extensively on fashion,
manga and architecture style classification problems. In addition, we collect a new dataset—Online Shopping, for fashion style
classification, which will be publicly available for vision based fashion style research. Experiments demonstrate the effectiveness of the
SCAE and CSCAE on both public and newly collected datasets when compared with the most recent state-of-the-art works.

Index Terms—Style classification, deep learning, auto-encoder

�

1 INTRODUCTION

STyle classification, such as the architectural style [1],
[2], the manga style [3] and the fashion style [4] at-

tracts increasing attention from researchers in vision and
machine learning fields. Style classification is related, but
essentially different from most existing classification tasks.
A particular clothing type is generally made up of a diverse
set of fashion styles. For example, “suit” may have both
elegant and renascent fashion styles while “dress” may have
both romantic and young fashion styles. Thus, automatically
learning robust and discriminative representation for style
classification becomes a critic research topic.

Most existing style classification methods mainly fo-
cused on extracting discriminative local patches or patterns
from low-level features [2], [3], [4], [5], [6], [7]. However,
none of these style classification works has discussed the
spread out phenomenon—an important observation of style
images. Style images from the same class are usually dif-
fuse since the style is reflected by the high-level abstract
concepts. Figure 1 illustrates the spread out phenomenon.

• S. Jiang, C. Jia are with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
shjiang@ece.neu.edu, cjia@ece.neu.edu)

• M. Shao is with the Department of Computer Information Science,
University of Massachusetts Dartmouth, Dartmouth, MA 02747 USA
(email: mshao@umassd.edu)

• Y. Fu is with the Department of Electrical and Computer Engineer-
ing,College of Engineering, and College of Computer and Information
Science, Northeastern University, Boston, MA 02115 USA (e-mail:
yunfu@ece.neu.edu).

• This work is supported in part by the NSF IIS award 1651902, NSF
CNS award 1314484, ONR award N00014-12-1-1028, ONR Young
Investigator Award N00014-14-1-0484, and U.S. Army Research Office
Young Investigator Award W911NF-14-1-0218.

Take fashion style classification of “Goth” and “Preppy”
as an example. Representative images in the center of each
class are assigned strong style level l3, where we can easily
distinguish “Goth” and “Preppy” images, while less rep-
resentative images distant to the center are assigned lower
style level l1. We name them as weak style images. Weak
style images within one class may be visually diverse, and
images in two different classes may be visually similar
(shown in red frames). Thus, weak style images easily
get mis-classified. To better illustrate this phenomenon, in
Figure 2, we visualize the distributions of two kinds of
feature descriptors of manga images including both shojo
and shonen classes [3]. Note that PCA is employed to reduce
the dimensionality of the descriptors for visualization. In
this figure, strong style data points (in blue) are dense and
well separated while weak style data points (in magenta)
are diffuse with a vague boundary.

Employing multiple visual descriptors for effective rep-
resentations for weak style images is a possible solu-
tion; however, jointly learning weights for different vi-
sual features in representation learning is challenging. The
most common pitfall is failing to consider the “consen-
sus” between different visual descriptors, especially in local
patches. For example, if one patch from the image is critical
for discrimination, we expect higher weights of this patch
for all the features, meaning a consistency of weights across
different feature descriptors. However, such a consensus
constraint is rarely considered in weak style image related
problems.

To address the issues above, in this paper, we propose
a Consensus Style Centralizing Auto-Encoder (CSCAE) for
robust style feature extraction for weak style classifica-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Goth Preppy

l l

l2l2
l2

l2

l

l

l

l
l

l

Shojoo Shonen

l l

l2l2
l2

l2

l

l

l

l
l

l

(a) Fashion Style

(b) Manga Style

Figure 1. Illustration of weak style phenomenon in fashion and manga
style images in (a) and (b) respectively. Images in red frames on the
boundary are weak style images from two different classes, but they
seem visually similar. We denote l1 to l3 as different style levels.

Figure 2. Data visualization of the “spread out” phenomenon in “shoji”
and “shonen” classes of manga style. PCA is conducted to reduce the
dimension of feature descriptors of “line strength” and “included an angle
between lines” into 2D for visualization in (a) and (b) respectively. In both
(a) and (b), five colors, blue, green, red, cyan, and magenta, are used
to present the data points in different style levels from the strongest to
the weakest. We could see that strong style data points are dense and
weak style data points are diffuse.

tion. First, we propose a Style Centralizing Auto-Encoder
(SCAE), which progressively pulls weak style images back
to the class center. The inputs of SCAE are concatenated
low-level features from all the local patches of an image
(e.g., eyes, nose, mouth patches in a face image). As shown
in Figure 3, for each Auto-Encoder (AE), the corresponding
output feature is the same type of feature in the same class
but one style level stronger than the input feature. When
piling all the AEs together, we can progressively “convert”
the weak style features to strong style features, which is
represented by the hidden units of this deep structure as
the smooth transition. In addition, to approach the “lack of
consensus” issue among different kinds of visual features,
we jointly learn weights for them by a novel AE called
the Consensus SCAE (CSCAE). We propose both non-linear
and linear versions of CSCAE, and explore their efficiency
and effectiveness. Most importantly, on the strength of the
proposed Rank-Constrained Group Sparsity Auto-Encoder

(RCGSAE), the linear CSCAE outperforms the non-linear
one in terms of both efficacy and efficiency. We evaluate
our methods based on three applications: fashion style
classification, manga style classification, and architecture
style classification. We also collect a new Online Shopping
dataset and compare our methods with the most recent
state-of-the-art works on it. On both our newly collected and
public datasets, our methods achieve encouraging results.
The novelties of our paper could be summarized as:

• To the best of our knowledge, this is the first time
when weak style classification problem has been
identified in machine learning and vision commu-
nities as a representation learning problem;

• We propose a Style Centralizing Auto-Encoder
(SCAE) to progressively pull weak style images back
to the center of the class to learn robust and discrim-
inative feature representation;

• We propose both non-linear and linear CSCAE to
jointly learn multiple SCAEs for different types of
features under consensus constraints. Specifically,
a novel Rank-Constrained Group Sparsity Auto-
Encoder (RCGSAE) has been designed as the coun-
terpart of the non-linear CSCAE, and its fast solution
yields better performance in terms of both efficacy
and efficiency than its non-linear predecessor.

This paper is an extension of our previous conference
work [8]. There are three major differences compared to
the conference version. First, we propose a linear CSCAE
to reduce the computational cost of the non-linear CSCAE
yet provide a better performance. To that end, we identify
an approximate model Rank-Constrained Group Sparsity
Auto-Encoder (RCGSAE) which shares the motivations of
the non-linear CSCAE, and then find its fast solution to
achieve the acceleration purpose. To our best knowledge,
this is the first time when RCGSAE is invented to approach
weak style images classification in a fast manner. Second,
we add a new application in the experiment—architecture
style classification to extend the range of the application of
our model (Table 4). Third, we add more data visualizations,
discussions, and comparisons to better illustrate and explain
our method (Figure 2,6–15, Table 4–9).

2 RELATED WORK

Style classification such as the architectural style [1], [2],
[5], [9], the music style [6], [7], [10], the photographic style
[11], the manga style [3] and the fashion style [4], [12], [13],
[14] attracts increasing attention recently. In this section, we
mainly introduce the fashion, manga, and architecture style
classification and their most recent state-of-the-art works.

Fashion Style: Fashion style classification essentially ties
to the clothing parsing [15] and clothing recognition [16].
Bossard et al. introduced a system framework to recognize
and classify people by their clothing in natural scenes [12].
They first densely extracted a number of feature descrip-
tors like HOG in the bounding box of the upper body
followed by a bag-of-words model [12]. Hipster Wars is
mostly related to our work [4]. In this work, Kiapour et al.
proposed an online game to collect a fashion dataset and a
new style descriptor. First, a style descriptor was formed by



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

accumulating visual features like color and texture. Then
they applied mean-std pooling and concatenated all the
pooled features as the final style descriptor, followed by a
linear SVM for classification.

Manga Style: Recently, efforts have been made in manga
style classification. Chu et al. [3] paved the way for manga
style classification which discriminates mangas targeting at
young boys and young girls named “shonen” and “shojo”,
respectively. They designed both explicit (e.g., the density of
line segments) and implicit (e.g., included angles between
lines) features, which are also promising in discriminating
artworks produced by different artists.

Architecture Style: Another good instance of weak style
in vision problems is the architectural style. Goel et al.
mined characteristic features with the semantic utility from
the low-level feature for different architectural styles [9].
These characteristic features are of various scales and pro-
vide an insight into what makes a particular architectural
style category distinct. Van et al. created correspondences
across images by a generalized spatial pyramid matching
scheme [11]. They assumed that images within a category
share a similar style defined by attributes such as colorful-
ness and lighting. Xu et al. adopted Deformable Part-based
Models (DPM) to capture the morphological characteristics
of basic architectural components [1].

In this paper, different from them, we propose a novel
deep representation learning framework towards weak style
image classification and use the three applications above to
demonstrate the generality and superiority of our frame-
work. In addition, we for the first time design a consensus
mechanism to synchronize different visual features in the
deep structure and develop a fast solution for efficiency
while keeping competitive performance in style image clas-
sification. To our knowledge, these have never been dis-
cussed in the previous style image classification research,
as they either targeted at a specific weak style problem or
simply used the visual feature(s) or their concatenations
without considering the correlations among them.

3 STYLE CENTRALIZING AUTO-ENCODER

Deep Auto-Encoders (AEs) have been exploited to learn dis-
criminative feature representation [17], [18], [19]. Conven-
tional AEs [17] include two parts: (1) encoder, (2) decoder.
An encoder attempts to map the input feature to the hidden
layer representation by a linear transform and a successive
nonlinear activation function f(·):

zi = f(xi) = σ(W1 × xi + b1), (1)

where xi ∈ R
D is the input feature, zi ∈ R

d is the hidden
layer representation, W1 ∈ R

d×D is a linear transform,
b1 ∈ R

d is the bias, and σ is the non-linear activation
(e.g., sigmoid function). The decoder g(·) manages to map
the hidden representation zi back to the input feature xi,
namely,

xi = g(zi) = σ(W2 × zi + b2), (2)

whereW2 ∈ R
D×d is a linear transform. b2 ∈ R

D is the bias.

To optimize the model parametersW1, b1,W2 and b2, we
minimize the following least square error:

min
W1,b1
W2,b2

1

2N

N∑
i=1

∥∥xi − g(f(xi))
∥∥2 + λR(W1,W2), (3)

where N is the number of data points, R(W1,W2) =
(‖W1‖2F + ‖W2‖2F ) works as a regularizer, ‖ · ‖2F is the
Frobenius norm, and λ is the weight decay parameter to
suppress arbitrarily large weights.

A Stacked Auto-Encoder (SAE) [20], [21] stacks multiple
AEs to form a deep structure. It feeds the hidden layer of the
k-th AE as the input feature to the (k+1)-th layer. However,
in the weak style classification problem, the performance of
AE or SAE degrades due to the “spread out” phenomenon.
The reason is that the conventional AE or SAE runs in
an unsupervised fashion to learn mid/high-level feature
representation, meaning there is no guidance to lead images
in the same class close and images in the different classes far
away to each other. This is very similar to the conventional
PCA (SAE can be seen as a multi-layer non-linear PCA). In
Figure 2 where data are illustrated after PCA, weak-style
classes represented by cyan and magenta are diffused and
overlap with other classes, from which we can see that the
mid/high-level feature representation by AE or SAE will
suffer from the “spread out” phenomenon. To address these
issues, we propose a novel Style Centralizing Auto-Encoder
(SCAE).

We start from building local visual features as the input
for SCAE. Assume that there are N images from Nc style
classes, and xi(i ∈ {1, ..., N}) is the feature representation
of the ith image. For each image, we first divide it into
several patches (e.g., eyes, nose and mouth patches in a face
image). Then we extract visual features (e.g., HoG, RGB,
Gabor) from each patch. For each feature descriptor (e.g.,
HoG), we concatenate extracted features from all the patches
as one part of input features for SCAE. By concatenating all
different visual features, we obtain the final input features
for SCAE. In addition, each image is assigned a style level
label. Intuitively, representative images of each style are
usually assigned the strong style level, while less represen-
tative images are assigned the weak style level. In this paper,
we use L distinct style levels denoted as {l1, l2, ..., lk, ..., lL}
from the weakest to the strongest.

Different from the conventional AE taking identical in-
put and output features, the input and output of our SCAE
are different. Illustration of the full pipeline of SCAE can
be found in Figure 3. Suppose that we have L = 4 style
levels, and the inputs of the SCAE in the first layer are the
features of images in the ascent order of style level, namely,
X1, X2, X3 and X4. For example, X2 is the set of features
of images in style level l2. In the step k, we seek for the AE
that handles the following mappings:

{Xk, Xk+1, ...Xj , XL} → {Xk+1, Xk+1, ...Xj , XL}, (4)

where only Xk is pulled towards stronger style level k + 1,
and others keep the same style level before and after the
k-th step. In this way, the weak style level will be gradually
pulled towards the strong style level, i.e., centralization,
till k = L − 1. Thus, the L − 1 stacked AEs embody the
proposed stacked SCAE. Note that the mappings between



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

lll

lll l

l

lll l

lll l

l ->l

l ->l

l ->l

encoder f1

encoder f2

encoder f3

Input layer

Output layer

decoder g3

decoder g2

decoder g1

1st hidden layer

2nd hidden layer

3nd hidden layer

ll

Figure 3. Illustration of the Stacked Style Centralizing Auto-Encoder
(SSCAE). Example images of each level l are presented with colored
frames. In the step k, samples in lk are replaced by lk+1 samples’ (red)
nearest neighbors found in lk. Samples in the higher level than lk are
not changed (blue).
Algorithm 1 Stacked Style Centralizing Auto-Encoder
INPUT: Non-linear Style feature X including weak style
feature.
OUTPUT: Style centralizing feature Zk, model parameters:
W

(c)
1,k , W

(c)
2,k , b

(c)
1,k, b

(c)
2,k, k ∈ [1, L− 1], and c ∈ {1, ..., Nc}.

1: Initial Z(0) = X .
2: for k=1,2,...,L-1 do
3: X(k)=Z(k−1).
4: for c = 1,..., Nc do

5: Calculate W (c)
1,k , W

(c)
2,k , b

(c)
1,k, b

(c)
2,k by Eq. (6).

6: Calculate Z(c)
k by Eq. (1).

7: end for
8: Combine all Z(c)

k , c ∈ {1, ..., Nc} into Zk.
9: end for

Xk and Xk+1 are still unclear. To keep the style level
transition smooth, for each output feature x ∈ Xk+1, we
find its nearest neighbor in Xk in the same style class as the
corresponding input to learn SCAE. The whole process is
shown in Figure 3.

Next, we explain how to build the Stacked SCAE (SS-
CAE). Suppose that we have L style levels, in the k-th layer
and style class c, the corresponding input for the output
xi,ξ+1 is given by:

x̃
(c)
i,ξ =

⎧⎨
⎩

x
(c)
j,ξ ∈ u(x

(c)
i,ξ+1), if ξ = k,

x
(c)
i,ξ , if ξ = k+ 1, ...L,

(5)

where u(x(c)i,ξ+1) is the set of nearest neighbors of x(c)i,ξ+1.
As there are Nc style classes, in each layer, we first

separately learn parameters and hidden layer features Z(c)
k

of SCAE of each class, and then combine all theZ(c)
k together

as Zk. Mathematically, SSCAE can be formulated as: the k-th
layer of SCAE for category c can be written as:

min
W

(c)
1,k

,b
(c)
1,k

W
(c)
2,k

,b
(c)
2,k

∑
i,j

x
(c)
j,k

∈u(x
(c)
i,k+1

)

∥∥x(c)i,k+1 − g(f(x
(c)
j,k))

∥∥2+

L∑
ξ=k+1

∑
i

∥∥x(c)i,ξ − g(f(x
(c)
i,ξ ))

∥∥2 + λR(W
(c)
1,k ,W

(c)
2,k).

(6)

  
xi,k+1

  
x j ,k  

q(x j ,k | xi,k+1)

  
g( f (x j ,k ))

x

p(xi,k+1 | x j ,k )

Figure 4. Manifold learning perspective of SCAE with mangas in
“shonen” style.

The problem above can be solved in the similar way as
the conventional AE by back propagation algorithms [22].
Similarly, the deep structure can be built in a layer-wise way,
which is outlined in the Algorithm 1. The visualization of
encoded feature in SSCAE in each progressive step is shown
in Figure 12 in the experimental section.

Geometric Interpretation of SCAE: Recalling the map-
pings presented in Eq. (3), if we consider Xk as a corrupted
version of Xk+1, our SCAE can be recognized as a Denois-
ing Auto-Encoder (DAE) [20] that uses partially corrupted
feature as the input and the clean noise free features as
the output to learn robust representations [20], [23]. Thus,
inspired by the geometric perspective under the manifold
assumption [24], we may offer a geometric interpretation
for the SCAE, analogical to that of DAE [20].

Figure 4 illustrates the manifold learning perspective of
SCAE where images of shonen style mangas are shown as
the examples. Suppose that the higher level (lk+1) mangas
lie close to a low dimensional manifold. The weak style
examples are more likely being far away from the manifold
than the higher level ones. Note that xj,k is the corrupted
version of xi,k+1 by the operator q(Xk|Xk+1), and therefore
lies far away from the manifold. In SCAE, q(Xk|Xk+1)

manages to find the nearest neighbor of x(c)i,k+1 in level lk
to obtain the corrupted the version of x(c)i,k+1 as x(c)j,k. During
the centralizing training, similar to DAE, SCAE learns the
stochastic operator p(Xk+1|Xk) that maps the lower style
level samples Xk back to a higher level. Successful central-
ization implies that the operator p(·) is able to map spread-
out weak style data back to the strong style data which are
close to the manifold.

4 NON-LINEAR CONSENSUS STYLE CENTRALIZ-
ING AUTO-ENCODER

Given multiple low-level visual descriptors (e.g., HOG,
RGB, Gabor), existing methods treat them equally and
concatenate them to formulate the final representation [3],
[4]. Thus, they failed to consider the correlation between
different kinds of features, i.e., consensus.

Intuitively, the weights of two features from the same
patch should be similar, as they encode the same visual
information, but in different ways. Taking face recognition
as an example, the eyes patch should be more important
than the cheek patch, as demonstrated by many face recog-
nition works. Back to our consensus model, taking manga



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

l1l3l4 l2 l1l3l4 l2 l1l3l4 l2

l2l3l4 l2

l3l3l4 l3

l4l4l4 l4

output layer

llllllllllllllllllllll

lllllllllllllllllll

lllll

− =

weight of one patch 
  ||W

(1,2) −W (1,3) ||

consensus constraint 

llll l

l2ll3l4l l2l

column 1 column 2 column 3encoder: decoder:

k=1

k=2

k=3

  W (1,1)   W (1,3)

  W (2,1)

  W (3,1)

  W (2,2)

  W (3,2)   W (3,3)

  W (2,3)

l3 → l4

l2 → l3

  l1 → l2W (1,2)

Figure 5. Illustration of Non-linear Consensus Style Centralizing Auto-Encoder (NCSCAE).

as an example, given different kinds of features used by
different SCAEs, the eyes patches in different SCAEs should
be equally important. To that end, we propose to add a
consensus constraint through minimizing the differences of
weights of the same patch from different feature descriptors.
In this section, following framework of SCAE, we introduce
the Non-linear Consensus Style Centralizing Auto-encoder
(NCSCAE) first, to differentiate the linear version of CSCAE
(LCSCAE) introduced in the later section.

To clarify, each SCAE in the CSCAE is responsible for
one particular visual descriptor. Thus, similar to Section
3, for each image, we first divide it into several patches
(e.g., eyes, nose and mouth patches in a face image). Then
we extract low-level features (e.g., HoG, RGB, Gabor) from
each patch. For each feature descriptor (e.g., HoG), we
concatenate extracted features from all the patches, which
serves as the input for each SCAE. Afterwards, multiple
SCAEs will jointly work to learn CSCAE.

In practice, in the k-th step, we set the dimensions of
hidden layers of all the SCAEs to the same value. Thus,
when k > 1, the dimensionality of weight matrices in
different SCAEs, e.g., W (k,μ) and W (k,ν) are same, where
μ and ν index different visual features. We may expect to
minimize the following value: ‖W (k,μ) −W (k,ν)‖F .

When k = 1, however, since the dimensionality of the
input features may be different, the operation ‖W (1,μ) −
W (1,ν)‖F may not be valid anymore. Thus, we could not
directly conduct the subtraction in Eq. (8). Instead, we
calculate the mean value of the weight of each patch first.
Then, we use the mean weight of each patch and their
concatenation instead of the original weight matrix to mea-
sure the difference between weight matrices of two different
kinds of feature descriptors.

Figure 5 illustrates the framework of NCSCAE. Each
column (red, blue, green) represents one SCAE, as shown
in Figure 3. Different feature channels (columns) are trained
jointly by adding a consensus constraint, which can be
found in the right part of Figure 5. Each cell represents one
patch, and their colors indicate the patch weights. We use
light color for small values while dark color for large values.
Take column 2 and column 3 in step k = 1 as an example,
‖W (1,2) − W (1,3)‖F measures the difference between the
weights of the 2nd column and the 3rd column. Following
the consensus assumption, the matched cells of W (1,2) and
W (1,3) either both have large values, or both have small

values, leading to small values in each cell of the vector
W (1,2) −W (1,3).

To incorporate the constraint above into our SCAE
model, which would be equivalent finding a sparse solution
for W (1,2) −W (1,3), we propose to add a sparse constraint
to the SCAE model. There are several popular ways to
model the “sparsity” in the Auto-Encoder, which have been
comprehensively discussed in [25]. In light of this, we use
the KL-divergence to provide the stable performance by
minimize the following:

KL(ρ̂‖ρ) = ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂
, (7)

where ρ is a model parameter (usually a very small value),
and ρ̂ is the average patch weight difference over SCAEs of
different feature descriptors, calculated as:

ρ̂k =
1

Nf × (Nf − 1)

∑
μ>ν

∥∥W (k,μ) −W (k,ν)
∥∥2
F
, (8)

where Nf is the number of feature channels, and ‖ · ‖F
indicates the matrix Frobenius norm.

The KL-divergence in Eq. (7) essentially measures the
divergence between a Bernoulli random variable with the
mean ρ and a Bernoulli random variable with the mean ρ̂. By
minimizing Eq. (7), we ensure that the weights for different
features (different columns) on the same patch are similar
from statistics perspective.

Thus, the new loss function of NCSCAE in the k-th step
becomes:

J
′
k =

∑Nf

μ=1
Jμ,k + βKL(ρ̂k‖ρ), (9)

where Jμ,k is the loss of the SCAE of the μth feature
descriptor in the k-th progressive step. β is a balance pa-
rameter. Essentially, the left part is the sum of loss function
of different SCAEs in the k-th step illustrated in Eq. (6),
and the right part is the regularizer for column consensus
discussed above.

4.1 Solutions

Here we describe how to solve the objective function pro-
posed in Eq. (9). Although we still use stochastic gradient
descent + back propagation for solutions, we have to jointly
learn multiple SCAEs for different features. Thus, the basic



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

gradient updating rules for model parametersW (k,μ), b(k,μ)

become:

W
(k,μ)
i,j := W

(k,μ)
i,j − ∂

∂W
(k,μ)
i,j

J
′
k(W, b), (10)

b
(k,μ)
i := b

(k,μ)
i − ∂

∂b
(k,μ)
i

J
′
k(W, b), (11)

where j and i index the input and hidden layer nodes of the
k-th layer, respectively. W (k,μ)

i,j and b
(k,μ)
i are the elements

of weight matrix and bias vector.
The key procedure is finding the partial derivatives
∂

∂W
(k,μ)
i,j

J
′
k(W, b) and ∂

∂b
(k,μ)
i

J
′
k(W, b) by the back propaga-

tion algorithm. To facilitate the following derivation, we
introduce an intermediate parameter δ

(k,μ)
i which is the

derivative of the loss function w.r.t. to the output of layer
k. This is straightforward for the layer L, but not for the
layer (k < L). Thus, we use the following formula for the
deduction of the reconstruction loss Jk(W, b):

δ
(k,μ)
i =

(∑
j

W
(k,u)
ji δ

(k+1,μ)
j

)
f ′(z(k,μ)i ). (12)

In NCSCAE, since the consensus constraint KL(ρ̂‖ρ) is
added, we obtain partial derivatives as:

∂

∂W
(k,μ)
i,j

J
′
k(W, b) = a

(k,μ)
j δ

(k+1,μ)
i +

(
−ρ

ρ̂
+
1− ρ

1− ρ̂

)
ρ̂′(W (k,μ)),

(13)
∂

∂b
(k,μ)
i

J
′
k(W, b) = δ

(k+1,μ)
i , (14)

where a
(k,μ)
j = z

(k−1,μ)
j is the j-th input node of μ-th

column of the k-th layer.
We solve the problem above using the MATLAB imple-

mentation of the L-BFGS optimizer [26], [27] since it can
solve the large-scale problems using the limited memory.
As the weights of different kinds of feature descriptors
are learned under the consensus constraints, we do not
manually adjust weights. Afterwards, we use hidden layer
zi as the learned representation for the style features. To
train the deep model in a more efficient way, we employ
the layer-wise training procedure. All hidden layers from
the deep model are stacked to formulate the final style
representation.

5 LINEAR CONSENSUS STYLE CENTRALIZING
AUTO-ENCODER

The downside of NCSCAE is the large computational bur-
den given complex data (e.g., high dimensionality). Re-
cently, the efficient Linear Denoising Auto-Encoder (LDAE)
and its approximation cast a light in real world applications
with competitive performance [28]. This motivates us to
seek for a linear counterpart of our NCSCAE.

However, a direct linear modeling of NCSCAE following
conventional methods such as [23] is infeasible and trivial
due to the introduction of the additional regularizer in Eq.
(7). To that end, we first find a conceptually equivalent
problem for the original NCSCAE which is easy to linearize,
and then find its efficient solutions. We will detail these two
steps in Section 5.1 and 5.2.

= x

= x

 W X   X

 W   V '  S

Low-rank Sparse

One sample
eye – 
feature1

eye- 
feature 2

cheek – 
feature 1

cheek – 
feature 2

nose – 
feature 1

nose – 
feature 2

……

(a) Low-level feature (b) Matrix Factorization Illustration

Figure 6. Illustration of the Linear Consensus Style Centralizing Auto-
Encoder (LCSCAE). The illustration of the low-rank group sparsity struc-
ture of low-level features is shown in (a). The illustration of the matrix
factorization in the solution of the model is shown in (b).

5.1 NCSCAE Reframing

5.1.1 Low-rank Constraint for Consensus
In CSCAE, we expect similar weights across different feature
descriptors for the same patch. This will give rise to an
interesting phenomenon: if we concatenate all the weight
matrices of different feature descriptors together denoted as
W , the rank of W should be low. The main reason is the
similar values across different columns in W . Thus, instead
of enforcing the consensus constraint directly on the weight
matrices, we can pursue this through a low-rank matrix
constraint on the concatenated weight matrix W .

To that end, we propose a Rank-Constrained Auto-
Encoder model to pursue the low-rankness of the weight
matrix W in the following formula:

min
W,E

‖W‖∗ + λ‖E‖2,1, s.t., X = WX̃ + E, (15)

where X̃ is the input feature and X is the output feature of
AE, similar to SCAE. ‖ · ‖∗ is the nuclear norm of a matrix
used as the convex surrogate of the original rank constraint,
‖E‖2,1 is the matrix 
2,1 norm for characterizing the sparse
noise E, and λ is a balancing parameter. Intuitively, the
residual term E encourages sparsity, as both W and WX̃
are low-rank matrices. This is also well explored by many
low-rank recover/representation works [29], [30]. The Eq.
(15) can also be considered as a special form of the work
[29] by only considering features in the column space.

Figure 6 (a) illustrates this phenomenon. Each row rep-
resents a specific feature of one patch, and different colors
indicate different kinds of features. In addition, each column
represents all features of one sample. It can be seen that
the concatenated features for one sample is formulated by
first stacking different features of the same patch, and then
stacking different patches. Note that for simplicity, we use
one cell to represent one kind of features of one patch.
In brief, based on the definition of the matrix rank, the
consensus constraint among different features induces the
low-rank structure of matrix W identified in Figure 6 (a).
And we may employ Eq. (15) as a conceptually equivalent
problem for NCSCAE.

5.1.2 Group Sparsity Constraint for Consensus
To further consider the regularizers introduced in Eq. (3)
under the new Rank Constraint Auto-Encoder framework,



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

we introduce an additional group sparsity constraint on
W . The reasons are three-fold. First, like conventional reg-
ularizers in neural networks, it helps avoid the arbitrarily
large magnitude in W . Second, it enforces the row-wise
selection on W to ensure a better consensus effect together
with the low-rank constraint. Third, it helps find the most
discriminative representation.

Mathematically, we can achieve this by adding a matrix

2,1 norm ‖W‖2,1 =

∑D
i=1 ‖W (i)‖2 which is equal to the

sum of the Euclidean norms of all columns of W . The 
2
norm constraint is applied to each group separately (i.e.,
each column of W ). It ensures that all elements in the same
column are either approaching zero or nonzero at the same
time. The 
1 norm guarantees that only a few columns are
nonzero. Figure 6 (a) also illustrates how the group sparsity
works. If the entry in the j-th row and i-th column of X
indicates an unimportant patch, all the entries from the j-
th row are also less important, and vice-versa. As discussed
above, these patches should have been assigned very low or
zero weights to suppress the noise.

5.1.3 Rank-Constrained Group Sparsity Auto-Encoder
Considering both rank and group sparsity constraints,
we finally formulate the objective function of the Rank-
Constrained Group Sparsity Auto-Encoder (RCGSAE) as:

Ŵr = argmin
rank(W )≤r

{||X −WX̃||2F + 2λ‖W‖2,1}, (16)

where λ is the balancing parameter. Note that we skip
the sparse error term in Eq. (15) for simplicity. Clearly,
for r = D, we have no rank constraint in Eq. (16) which
degrades to a group sparsity problem, while for λ = 0,
we obtain the reduced-rank regression estimator. Thus, an
appropriate rank r and λ will balance the two parts to yield
better performance.

In summary, the equivalent problem above can be con-
sidered as the linear counterpart of the NCSCAE as we
do not include the non-linear activation and the back-
propagation process anymore. Thus, we name it as the Lin-
ear Consensus Style Centralizing Auto-Encoder (LCSCAE)
and use this term for the following sections.

5.2 Efficient Solutions
It should be noted that the problem defined in Eq. (16) is
non-convex and has no close form solutions for W . Thus,
we propose to use an iterative algorithm to solve this in a
fast manner. As shown in Figure 6 (b), we first factorize W
into W = V

′
S, where V is a r × D orthogonal matrix and

S is a r × D matrix with the group sparse constraint [31].
Then the optimization problem of W in Eq. (16) turns out to
be:

(Ŝ, V̂ ) = argmin
S∈Rr×D,V ∈Rr×D

{||X−V ′SX̃||2F+2λ||S||2,1}. (17)

The details of the algorithm are outlined in Algorithm 2.
In addition, the following theorem presents a convergence
analysis for Algorithm 2 and ensures that the algorithm
converges well regardless of the initial points.

Theorem 1. Given λ and an arbitrary starting point V (0)
r,λ ∈

O
r×D , let (S

(j)
r,λ, V

(j)
r,λ ) (j = 1, 2, . . .) be the sequence

Algorithm 2 Solutions for LCSCAE

INPUT: Original style feature X , corrupted style feature X̃ ,
1 ≤ r ≤ N ∧D, λ ≥ 0, V (0)

r,λ ∈ O
n×r , j ← 0, converged ←

FALSE
OUTPUT: Model parameters: W .

1: while not converged do

2: (a) S
(j+1)
r,λ ← argminS∈Rp×r

1
2 ||V (j)

r,λX − SX̃||2F +
λ||S||2,1.

3: (b) Let Q ← S
(j+1)
r,λ X̃X ′ ∈ R

n×r and perform SVD:
Q = UwDwV

′
w.

4: (c) V (j+1)
r,λ ← UmV

′
w.

5: (d) W (j+1)
r,λ ← (V

(j+1)
r,λ )′S(j+1)

r,λ .

6: (e) converged ← |F (W
(j+1)
r,λ ;λ)− F (W

(j)
r,λ ;λ)| < ε

7: (f) j ← j + 1
8: end while
9: Ŵr,λ = W

(j+1)
r,λ , Ŝr,λ = S

(j+1)
r,λ , V̂r,λ = V

(j+1)
r,λ .

of iterates generated by Algorithm 2. Then, any ac-
cumulation point of ((S(j)

r,λ, V
(j)
r,λ ) is a coordinatewise

minimum point (and a stationary point) of F and
F (S

(j)
r,λ, V

(j)
r,λ ) converges monotonically to F (S∗

r,λ, V
∗
r,λ)

for some coordinate-wise minimum point (S∗
r,λ, V

∗
r,λ).

The proof can be referred to Appendix A.7 of [31].
Discussions. To show the intuitions behind the new

LCSCAE, we summarize the connections and differences
between the proposed LCSCAE and NCSCAE: (1) Although
LCSCAE and NCSCAE are not mathematically equivalent,
they share similar motivations, and thus may achieve simi-
lar performance for weak-style classification tasks. Similar
thoughts can be extended to other vision problems. (2)
The group sparsity introduced in the LCSCAE dose work
well and helps find out the most discriminative features by
penalizing irrelevant features in group, which accounts for
the better performance over NCSCAE in the experimental
section. (3) The Linear Denoising Auto-Encoder (LDAE) [28]
which constitutes the building block of LCSCAE, as well
as the novel solution to the low-rank and group sparsity
problem can approach the original problem in an efficient
manner, as shown in Table 8. A more robust AE model
and efficient solution in the future may further benefit our
conversion. (4) Our linear model to achieve the “consensus”
constraint as in NCSCAE is reasonable and functionally cor-
rect, and achieves very competitive (or better) performance
in most cases in the experimental section.

5.3 Progressive LCSCAE
For the progressive LCSCAE, in the k-th step, it will increase
the style level of X̃ from k to k + 1, and meanwhile keep
the consensus of different features. As shown in Algorithm
3, the input of the LCSCAE is the style feature X . The
output of the algorithm is the encoded feature h(k) and the
projection matrix W (k), k ∈ [1, L− 1].

To initialize, we set h(0) = X . For the step k, the
encoded feature h(k−1) is regarded as the input. First, we
calculate the output forX(k) as described in Eq. (5). Second,
we optimize W by the proposed LCSCAE as Algorithm



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Algorithm 3 Progressive LCSCAE
INPUT: Original style feature X . The number of style level
L.
OUTPUT: Style centralizing feature h(k), projection matri-
ces: W (k), k ∈ [1, L− 1].

1: Initial h(0) = X .
2: for k=1,2,...,L-1 do
3: X(k)=h(k−1).
4: Calculate X̃(k) as Eq. (5).
5: Calculate W (k) by Algorithm 2.
6: Calculate encode feature by h(k) = tanh(W (k)X(k)).
7: end for

2. The learned W achieves the properties of both group
sparsity and low-rankness. Afterwards, we calculate the
new features WX̃ followed by a non-linear function for
normalization. In this work, following the suggestion in [28]
we use tanh(·) to achieve the nonlinearity performance. The
encoded feature h(k) is regarded as the input in the next
step k + 1. After (L − 1) steps, we obtain (L − 1) sets of
weight matrices and corresponding encoded features.

6 EXPERIMENT

In this section, we focus on a series of weak style image clas-
sification problems. While existing methods only target at
one specific application [1], [3], [4], our methods can handle
a wide range of applications with competitive performance.

6.1 Dataset Processing

6.1.1 Fashion Style Classification Dataset

Hipster Wars [4]. Kiapour et al. collected a fashion style
dataset [4] including 1,893 images of 5 fashion styles, as
shown in Figure 7. They also launched an online style
comparison game to collect human judgments.
Online Shopping (Our collected). We collected an Online
Shopping dataset for fashion classification on daily dresses.
It is collected from online shopping websites (e.g., “Nord-
strom.com”, “barneys.com”) with more than 30,000 images.
We invited 7 professionals to manually label each image to
one of 12 classes according to the category definition by
the fashion magazine [32]. Example images are shown in
Figure 8 and the distributions of 12 classes are shown in the
supplementary materials.

We also provide the style level of each image based on
the human judgments. For image i, we calculate how many
people labeled this image to the category j, j ∈ {1, ..., 12},
denoted by φ

(j)
i . We choose the j∗-th category, where j∗ =

argmaxj φ
(j)
i , as the ground truth and φ

(j∗)
i is regarded

as style level for image i. To conduct the experiments for
SCAE, we follow the assumption that images with higher
φ are more centralized than images with lower φ. This
is reasonable as a consistent labeling usually indicates a
representative style image.

We summarize the low-level descriptor extraction
pipeline of the Hipster Wars dataset and the Online Shop-
ping dataset:

    (a)             (b)               (c)             (d)              (e)

Figure 7. Examples for 5 categories in the Hipster Wars dataset: (a)
bohemian, (b) hipster, (c) goth (d) pinup, (e) preppy.

   (g)             (h)               (i)               (j)              (k)              (l)

      (a)             (b)              (c)              (d)             (e)              (f)       

Figure 8. Examples for 12 categories in the Online Shopping dataset: (a)
avant-garde, (b) elegant, (c) folk, (d) leisurely, (e) modern, (f) neutral, (g)
renascent, (h) romantic, (i) sexy, (j) splendid, (k) technology, (l) young.

1) Pose estimation is applied to extract key boxes of the
human body [33]. Note that for Hipster Wars we use
the full body bounding box, while for Online Shop-
ping, we only use the upper body bounding box
(Online Shopping images are upper body centered);

2) We extract 7 dense features for each box: RGB color
value, LAB color value, HSI color value, Gabor,
MR8 texture response [34], HOG descriptor, and the
probability of pixels belonging to skin categories1.
For the missing bounding boxes, we refer to the
neighbor bounding boxes for compensation;

3) Finally, we split each box into 4 patches (2×2)
and extract features with mean-std pooling. Then
we concatenate all the pooled features from 4×26
patches as the whole body style descriptor and
those from 4×18 patches as the upper body style
descriptor. The dimension of the full body style
descriptors of a single image is 17,264 and that of
the upper body is 11,952.

6.1.2 Manga Style Classification Dataset
Chu et al. collected a shonen (boy targeting) and shojo
(girl targeting) Manga dataset including 240 panels [3]. Six
computational features: including angle between lines, line
orientation, density of line segments, orientation of nearby
lines, number of nearby lines with similar orientation and
line strength, are calculated. Example shojo and shonen style
panels are shown in Figure 9.

Since Manga dataset does not provide manually labeled
style level information, we automatically calculate it. First,
we apply a mean-shift clustering algorithm to find the peak

1. http://kr.mathworks.com/matlabcentral/fileexchange/
28565-skin-detection



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Figure 9. Examples for shojo style and shonen style in the Manga
dataset. The first row is shoji style and the second row is shonen style.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Examples for 10 categories in the Architecture Style dataset:
(a) American craftsman, (b) Baroque architecture, (c) Chicago school ar-
chitecture, (d) Colonial architecture, (e) Georgian architecture, (f) Gothic
architecture, (g) Greek Revival architecture, (h) Queen Anne architec-
ture, (i) Romanesque architecture, (j) Russian Revival architecture.

of the density of the images for each style based on the line
strength feature. Line strength feature is most discriminative
among 6 features measured by p-values. Images at the peak
of the density are regarded the most representative ones.
Then we rank the images according to the distances between
the most centralized images. We denote p as the percentage
of top ranked data to present the style level for each image
by following [4].

6.1.3 Architecture Style Classification Dataset
Xu et al. collected an architecture style dataset containing
5,000 images [1]. It is the largest publicly available dataset
for architectural style classification. The category definition
is according to “Architecture by style” of Wikimedia2. Ex-
ample images of ten classes are shown in Figure 10. As there
is no manually labeled style level information, we apply the
similar strategy used in Manga dataset to generate the style
level information.

6.2 Comparison Methods
In this section, we first introduce the comparison methods
including the-state-of-art works of fashion [4], [12], [13],
manga [3], and architecture style classification [1]. Since
there are few works for general style classification, we
also investigate several general style classification methods
through deep learning.

6.2.1 Fashion Style Classification
Kiapour et al. [4]: It applied mean-std pooling for 7 dense
low-level features, and then concatenated them as the input
of the classifier and named the concatenated features as the
style descriptor.
Yamaguchi et al. [13]: It approached clothing parsing via

2. https://commons.wikimedia.org/wiki/Category:Architecture
by style

retrieval, and considered robust style feature for retrieving
similar style. They concatenated the pooling features similar
to [4], followed by PCA for dimension reduction.
Bossard et al. [12]: This work focused on apparel classi-
fication with style. For style feature representation, they
first learned a codebook through k-means clustering based
on low-level features. Then the bag-of-words features were
further processed by spatial pyramids and max-pooling.

6.2.2 Manga Style Classification
LineBased [3]: Chu and Chao designed 6 computational
features derived from line segments to describe drawing
styles (as described in the Dataset Section). Then they con-
catenated 6 features with equal weights.

6.2.3 Architecture Style Classification
Xu et al. [1]: Xu et al. adopted the Deformable Part-based
Models (DPM) to capture the morphological characteristics
of basic architectural components, where DPM describes an
image by a multi-scale HOG feature pyramid.
MultiFea: The baseline in [1] only employed the HOG
feature, but our CSCAE employed multiple features. Thus,
we generate another baseline using multiple features for fair
comparisons. We choose 6 low-level features according to
SUN dataset 3, including: HoG, GIST, DSIFT, LAB, LBP and
tinny image. First, we apply PCA on each feature. Then, we
concatenate the normalized features together.

6.2.4 Deep General Style Classification
We detailed various of baseline methods:
AE: The conventional Auto-Encoder (AE) [17] is applied for
learning mid/high-level features. The inputs of AE are the
concatenated low-level features.
DAE: We conduct internal comparisons between SCAE and
Denoising Auto-encoder (DAE) since both SCAE and DAE
share the spirit of “noise”. We apply the marginalized
Stacked Denoising Auto-encoder (mSDA) [28], a widely
applied version of DAE for evaluation. The inputs of the
DAE are corrupted image features. As in [19], [23] and [28],
we use the dropout noise whose corruption rate is learned
by cross validation. Other settings such as the number of
stacked layers and the layer size are the same as SCAE.
SCAE: We apply the proposed Style Centralizing Auto-
Encoder (SCAE) for learning mid/high-level features. The
inputs of SCAE are the concatenated various kinds of low-
level feature descriptors, i.e., an early fusion for SCAE.
MC-SCAE: The multi-column SCAE. This is different from
the proposed CSCAE as it did not consider the consensus
constraint. Instead, it trains multiple SCAEs independently,
one feature at a time. Then a late fusion is applied as [35].
LCAE: To demonstrate the roles of “progressive” in LC-
SCAE, we generate a Linear Consensus Auto-Encoder
(LCAE) as another baseline. LCAE is similar to LCSCAE
except that in each progressive step, the input and output
features are exactly the same.
NCSCAE [8]: It contains the full pipeline of the proposed
NCSCAE in Section 4, which is our previous work in [8].
LCSCAE: This method contains the full pipeline of the
proposed LCSCAE in Section 5.

3. http://vision.cs.princeton.edu/projects/2010/SUN/



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Table 1
Performances of fashion style classification of 10 methods on Hipster

Wars dataset.

Performance p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
Kiapour et al. [4]: 77.73 62.86 53.34 37.74 34.61
Yamaguchi et al. [13]: 75.75 62.42 50.53 35.36 33.36
Bossard et al. [12]: 76.36 62.43 52.68 34.64 33.42
AE 83.76 75.73 60.33 44.42 39.62
DAE 83.89 73.58 58.83 46.87 38.33
SCAE 84.37 72.15 59.47 48.32 38.41
MC-SCAE 87.42 77.00 62.42 51.68 41.54
LCAE 87.55 76.34 63.55 50.06 41.33
NCSCAE [8] (Ours1) 89.21 75.32 64.55 52.88 43.77
LCSCAE (Ours2) 90.31 78.42 64.35 54.72 45.31

Table 2
Performance (%) of fashion style classification of 10 methods on Online

Shopping dataset.

Performance φ=7 φ=6 φ=5 φ=4 φ=3
Kiapour et al. [4]: 60.92 58.52 54.57 48.63 42.40
Yamaguchi et al. [13]: 55.00 53.96 51.73 45.38 37.91
Bossard et al. [12]: 54.58 59.43 52.47 41.39 35.42
AE 66.32 60.32 57.58 50.03 44.07
DAE 68.44 61.48 58.44 50.06 45.69
SCAE 74.33 61.93 60.72 54.54 48.89
MC-SCAE 66.15 62.53 62.54 53.28 49.52
LCAE 72.11 66.45 63.33 53.27 48.73
NCSCAE [8] (Ours1) 70.41 68.42 63.84 51.18 50.31
LCSCAE (Ours2) 75.02 71.43 64.24 54.43 49.41

In all the classification tasks, we apply cross-validation
and a 9:1 training to test ratio. SVM classifier is applied in
Hipster Wars and Manga datasets by following the settings
in [3], [4], while Nearest Neighbor classifier (NN) is applied
on Online Shopping and Architecture datasets. For all deep
learning baselines, we use the same number of layers as our
methods.

6.3 Experimental Results
6.3.1 Results on Hipster Wars Dataset (Public)
In order to show the effectiveness of different methods
on weak style classification, we conduct experiments on 5
different settings. First, we rank all the images in the dataset
according to the style level scores from high to low. The
style level scores are provided in [4] by reliable human
judgments. Following [4], we denote p as the percentage
of top ranked images used to generate the sub-dataset
for experiments. The default number of stacked layers are
L = 4 with the layer size as 400. In NCSCAE, we set ρ=0.05,
λ = 10−5 and β = 10−2, while in LCSCAE, we set λ=100,
and rank r=40, based on cross-validation.

Table 1 shows the accuracy (%) of comparison methods
and our methods under different style levels p = 0.1, ..., 0.5.
First, from Table 1 we can see that results of the proposed
7 deep style representation learning methods in general
performs better compared to the existing works [4], [12],
[13]. Notably, the proposed SCAE is already better than
Kiapour et al. [4] by 6.64%, 9.09%, 6.13%, 10.58% and 3.80%
under p from 0.1 to 0.5. Second, when comparing DAE

Table 3
Performance (%) of manga style classification of 8 methods on Manga

dataset.

Performance p=0.2 p=0.4 p=0.6 p=0.8 p=1.0
LineBased [3] 83.21 71.35 68.62 64.79 60.07
AE 83.61 72.52 69.32 65.18 61.28
DAE 83.67 72.75 69.32 65.86 62.86
SCAE 83.75 73.43 69.32 65.42 63.60
MC-SCAE 85.38 72.93 71.48 69.58 65.48
LCAE 85.35 76.45 72.57 67.85 65.79
NCSCAE [8] (Ours1) 86.23 76.93 73.28 68.63 67.35
LCSCAE (Ours2) 90.70 80.96 77.97 77.63 79.90

with SCAE, we could see the effectiveness of the style
centralizing strategy. Third, when comparing MC-SCAE
with NCSCAE, we find that NCSCAE outperforms MC-
SCAE under 4 settings which demonstrates the importance
of column consensus constraints. Fourth, when comparing
LSCAE with LCAE, we see that LSCAE outperforms LCAE
in all the settings. The only difference between LSCAE with
LCAE is the style centralizing learning strategy. Fifth, we
can see that LCSCAE achieves the best performance under
p=0.1, 0.2, 0.4 and 0.5.

In addition, we conduct t-test to evaluate the significance
of improvements by our methods in the settings: LCSCAE
vs. NCSCAE, SCAE vs. DAE, NCSCAE vs. MC-SCAE and
LCSCAE vs. LCAE in Table 5. The lower the significance
level is (i.e., p value), the more confident the difference
between two methods will be. Table 5 presents p values of
t-test under the setting of the rightmost column in Table 1-4
which demonstrates the significance of the improvements
(i.e., p<0.05).

6.3.2 Results on Online Shopping Dataset (Collected)

Similar to Hipster Wars dataset, we conduct experiments
under 5 different settings: φ = 7, 6, 5, 4, 3, where φ presents
the maximum style level in the sub-dataset (described in the
dataset processing section). Table 2 shows the accuracy (%)
of 10 methods. We use NN classifier and empirically set the
number of neighbors to 5. Other settings are the same as
Table 1.

From these results, we can observe that the proposed
NCSCAE and LCSCAE achieve the best and second best
performance. NCSCAE performs better than [4] by 9.49%,
10.10%, 8.74%, 2.55% and 7.19% under φ from 7 to 3. And
LCSCAE even outperforms NCSCAE under φ from 7 to 4
by 4.61%, 3.01%, 0.40% and 3.25%, showing the superiority
of our methods on Online Shopping dataset. In addition,
the comparisons between SCAE with DAE, NCSCAE with
MC-SCAE, and LCSCAE with LCAE, demonstrate the ef-
fectiveness of the centralizing strategy and the consensus
constraint.

Figure 11 visualizes the correct and incorrect classifi-
cation results on Online Shopping dataset at three style
centralized degrees: φ=6, φ=4 and φ=2. In the left sub-figure
for incorrect classification results, we show the ground truth
labels in blue and the estimated labels in red. The visualiza-
tion reveals that even in the challenging task with weak style
level φ=2, our method can still achieve reasonable results.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Elegant Young Neutral Tech. 
Splendid 
Modern 

Neutral 
Leisurely 

Modern 
Elegant 

Fork 
Young 

Romantic 
Young 

Correct Classification Incorrect Classification

Avant 

Level

Leisurely 
Leisurely 
Neutral 

Elegant Young Neutral 

φ = 6

Tech. 
Splendid 
Leisurely 

Young 
Avant 

Modern 
Avant 

Fork 
Leisurely 

Romantic 
Fork Avant Leisurely 

Leisurely 
Modern 

 φ = 4

Elegant Young Neutral Tech. 
Splendid 
Modern 

Young 
Leisurely 

Renascent 
Fork 

Fork 
Avant 

Romantic 
Fork Avant Leisurely 

Leisurely 
Modern 

 φ = 2

Figure 11. Visualization of the correct (left part) and incorrect (right) classification results on Online Shopping dataset under different style levels φ.
Below images, the correct category labels (ground truth) are marked in blue (first row) and the incorrect are marked in red (second line). From both
the correct and incorrect examples, we could see when φ decreases, it becomes difficult to distinguish a fashion style by human. For example, in the
correct classification results, it is easier to recognize the “Avant” style in φ=6 (higher style level), but more difficult to recognize the “Avant” style in
φ=2. For the incorrect examples, we could see that although the estimated results are not the same with the ground truth, they are still reasonable
upon common sense. For example, in the first column in incorrect classification in φ = 6, the ground truth is “Splendid”, and our estimation is
“Modern”. The red box on the image means the estimate result is neither the same as the ground truth, nor acceptable by the human sense.

Table 4
Performance (%) of architecture style classification on 10-class

Architecture dataset by NN classifier. The best and second best results
under each p are shown in bold font and underline.

Performance p=0.2 p=0.4 p=0.6 p=0.8 p=1.0
Xu et al. [3] 40.32 35.96 32.65 33.32 31.34
MultiFea 52.78 53.00 50.29 49.93 46.79
AE 58.72 56.32 52.32 52.32 48.31
DAE 58.55 56.99 53.34 52.39 50.33
SCAE 59.61 57.00 53.27 54.28 51.76
MC-SCAE 58.16 57.93 54.27 53.21 51.23
LCAE 59.54 58.66 54.55 53.46 51.88
NCSCAE [8] (Ours1) 60.48 58.85 55.37 54.97 52.84
LCSCAE (Ours2) 60.37 59.41 55.12 54.74 54.68

6.3.3 Results of Manga Style Classification

Table 3 shows the accuracy (%) of the proposed 7 deep
learning based methods and the state-of-the-art method
LineBased [3] under p = 0.2, 0.4, 0.6, 1.0. From these results,
we can observe that the performance of our methods are
better than the state-of-the-arts.

NCSCAE outperforms LineBased [3] by 3.02%, 5.58%,
4.26%, 3.84% and 7.28% under p from 0.2 to 1.0. LCSCAE
largely outperforms NCSCAE by 4.47%, 4.03%, 4.69%, 9.00%
and 8.55%. Compared with other applications, LCSCAE
achieves the largest improvement over NCSCAE on manga
style classification. Compared to fashion and architecture
images, LCSCAE works especially well for the face images.
We believe that the face structure and different weights of

Table 5
p values of t-test of on four weak style datasets (with the same setting

as the rightmost column in Table 1-4).

Performance hipster shopping manga arch
LCSCAE vs. NCSCAE 0.0054 0.0033 2.7×10−5 0.044
SCAE vs. DAE 0.037 0.0036 0.012 0.026
NCSCAE vs. MC-SCAE 0.0068 0.013 0.0067 0.0094
LCSCAE vs. LCAE 0.0028 0.035 4.5×10−5 0.0011

patches work well with the low-rankness and group sparsity
assumptions.

6.3.4 Results of Architecture Style Classification
Table 4 shows the classification accuracy on the architecture
style dataset of 9 methods under style level p=0.2, 0.4, 0.6, 0.8
and 1.0. First, comparing the method in [3] with MultiFea,
we can learn that the additional low-level features do con-
tribute to the performance. Second, all the proposed deep
learning methods achieve better performance than low-
level features based methods. Our NCSCAE and LCSCAE
achieve the best and second best under all the style levels.

6.4 Discussion on NCSCAE and LCSCAE
6.4.1 Discussion on Progressive Steps
In this section, we compare the progressive manner (SSCAE)
with One-Step SCAE (OSCAE). OSCAE means we skip the
progressive procedure and centralize all data in different
style levels to the highest level in one step, which gives



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

( ) k=1

( ) k=2

( ) k=3

Figure 12. Visualization of the encoded features in SCAE in progressive
step k = 1, 2, 3 on the Manga dataset. Meanings of different colors for
different style levels are: Blue: level 5; Green: level 4; Red: level 3; Cyan:
level 2; Magenta: level 1. Note that we apply PCA for dimensionality
reduction before visualization.

Table 6
Performance (%) of OSCAE and SSCAE on Hipster Wars dataset. The
best and second best results under each p are shown in bold font and

underline.

Performance p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
SSCAE1 88.84 74.23 59.50 51.72 42.47
SSCAE2 89.21 75.00 62.42 52.88 43.87
SSCAE3 89.42 75.00 59.63 51.09 43.58
SSCAE4 89.21 75.32 64.55 52.82 43.77
OSCAE 90.10 74.71 61.24 50.50 42.40

rise to a basic supervised auto-encoder with style level as
the label information. We show the performance of the non-
linear version model in this section as an example.

Table 6 and Table 7 show the performance of SSCAE
and OSCAE on Hipster Wars and Online Shopping datasets.
For SSCAE, we show the classification results under step
k =1,2,3,4 as SSCAE1 to SSCAE4. We could see that under
all the style levels on two datasets, except p=0.1 in Table
6, SSCAE methods achieve the best (in bold font) and the
second best (with underline) performance. It demonstrates
the effectiveness of the progressive stacked SCAE. Among
SSCAE1 to SSCAE4, SSCAE4 achieves two best and two
second best performance on both datasets, slightly higher
than SSCAE2 and SSCAE3. For OSCAE, under p=0.4, 0.5 in
Table 6 and φ=6, 5, 4 in Table 7, it performs even worse than
SSCAE1. It shows that directly mapping weak style images
to the highest level by AE does not work well.

Visualization of encoded feature in SCAE: Figure 12
shows the visualization of encoded features in the progres-
sive step k = 1, 2, 3 in manga style classification. Similar to

Table 7
Performance (%) of OSCAE and SSCAE on Online Shopping dataset.

Performance φ=7 φ=6 φ=5 φ=4 φ=3
SSCAE1 69.25 67.72 63.34 51.35 49.72
SSCAE2 69.75 68.93 63.72 51.63 49.60
SSCAE3 69.63 68.32 63.48 51.36 50.48
SSCAE4 70.41 68.42 63.84 51.18 50.31
OSCAE 70.00 66.52 62.46 51.31 50.16

Table 8
Comparison of training time of NCSCAE and LCSCAE (hour)

Performance Hipster Shopping Manga Architecture
NCSCAE 17.15 10.26 6.52 8.82
LCSCAE 7.45 5.65 3.16 4.73

Figure 2, PCA is employed to reduce the dimensionality of
the descriptors. The input low-level feature is “density of
line segments” proposed in [3]. In all the sub-figures, a dot
represents a sample. In the right sub-figures, colors are used
to distinguish different styles, while in left sub-figures, colors
are used to distinguish different style levels.

From Figure 12, we could see that at step k = 1, in the
right sub-figures, the “shoji” samples (in red) and “shonen”
samples (in blue) have overlaps. In the left sub-figures,
samples in the strong style level (in blue) are separated from
each other. However, samples in weak style levels overlap
with each other. For example, it is hard to separate the
samples in cyan in two styles. During progressive steps,
samples in different styles gradually separate due to the
style centralization. At progressive step k = 2, 3, in the right
sub-figures we could see the samples in red and blue grad-
ually become separable. In the left sub-figures, we could
see that during style centralizing, the weak style samples,
shown in green, red, cyan and magenta move closely to
the locations of blue samples in two different styles. Since
the blue samples represent the strong style level and could
easily be separated, the centralization process makes the
weak style samples more distinguishable.

6.4.2 Discussion on Computational Cost
In this section, we discuss the computational cost of NC-
SCAE and LCSCAE. Table 8 shows the computational cost
(hour) of training NCSCAE and LCSCAE on four datasets.
The experiments are based on a cluster of 256G memory and
3.50 GHz Intel Xeon CPU.

NCSCAE suffers a high computational cost especially
when the feature dimension is high. The computational cost
of Hipster Wars dataset and Online Shopping dataset are
the highest. LCSCAE uses nearly half of the running time of
NCSCAE on 4 datasets. On Hipster Wars dataset, LCSCAE
only spends 43% running time of NCSCAE’s.

6.4.3 Discussion on LCSCAE
In this part, we discuss the impacts of rank r and the
balancing parameter λ in Eq. (16) for LCSCAE.

In Figure 13 (left), we set r to 40 and discuss the impacts
of λ. We could see that when λ < 80, the performance
increases sharply from 0.25 to 0.52. When λ ≥ 80, the



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0 100 200 300 400 500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

λ

A
c
c
u

ra
c
y
 o

f 
c
la

s
s
if
ic

a
it
o

n

0 0 50 100 150 200 250 300
0.44

0.46

0.48

0.5

0.52

0.54

0.56

rank r

A
c
c
u
ra

c
y
 o

f 
c
la

s
s
if
ic

a
it
o
n

 

 

λ=400
λ=100

Figure 13. Discussion of LCSCAE. The left figure shows the accuracy
curve on LCSCAE with λ from 10 to 500 at intervals of 10. The rank r is
fixed as 40. The right figure shows accuracy curves with rank r from 10
to 300 at intervals of 10.

0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

p

A
cc

ur
ac

y 
of

 c
la

ss
ifi

ca
tio

n

 

 

[3000, 2000, 1000, 500]
[2000, 1000, 500, 300]
[4000, 3000, 2000, 1000]
[4000, 2000, 1000, 500]

Figure 14. Accuracy on different layer sizes of NCSCAE across style
levels p=0.2 to 1.0. We stack the encoded features on four hidden layers
together. Different settings of layer sizes are shown in different colors.
For example, [3000, 2000, 1000, 500] indicates the number of neurons
of four layers as 3000, 2000, 1000 and 500 respectively.

performance is round 0.5 to 0.55. We believe a small λ will
not sufficiently suppress the group sparsity term in Eq. (16),
and thus fails to select the right features, and implement the
consensus constraint.

In Figure 13 (right), we discuss the impacts of different
settings of rank r. We could see that under both λ = 400
and λ = 100, the performance increases sharply from 0.44
to 0.52 when r increases from 10 to 40. It shows that if r is
small, the majority of useful information is removed, which
ruins the performance. On the other hand, if r is large,
the performance is unstable given different λ. For λ=100,
the performance drops when r ≥ 50, while for λ=400, the
performance degrades when r ≥ 250. We believe that a
higher rank will not implement the consensus constraint
well, and thus lead to an unpredictable overall performance.

6.4.4 Discussion on Layer Size of Auto-Encoder

In this part, we discuss the impacts of the layer size of
CSCAE where NCSCAE is employed as an example. Figure
14 shows the accuracy on four different settings of layer
sizes. We can see that the difference of the accuracies under
4 different settings of layer size is within 2%. Although there
might be infinite layer size settings, we can easily identify
robust settings of the layer size for NCSCAE, as shown
in Figure 14. Among four settings, [3000, 2000, 1000, 500]
achieves the highest performance in average among all the
style levels, and achieves the highest performance under the
style level p=0.4, 0.8 and 1.0.

Table 9
Performances (%) of manga style classification of 4 style level label

settings of LCSCAE.

Performance p=0.2 p=0.4 p=0.6 p=0.8 p=1.0
Setting 0 90.70 80.96 77.97 77.63 79.90
Setting 1 81.54 71.54 66.85 66.77 63.55
Setting 2 84.57 76.54 69.32 67.18 65.28
Setting 3 86.46 76.74 72.86 71.86 70.86

6.4.5 Discussion on Style Level Label Generation

In this section, we discuss the style level label genera-
tion since style level labels are the learning targets of our
framework. We show that the style level labels could be
either human labeled (in Hipster Wars dataset and Online
Shopping dataset) or automatically assigned (in Manga and
Architecture datasets). For the human labeling way, with the
recent developed crowd-sourcing Internet marketplace such
as Amazon Mechanical Turk (MTurk), both the time and the
cost become affordable. In Manga and Architecture datasets,
we show that automatically assigning labels is also a feasible
way to generate styles, although the human labeling way is
more recommended.

In addition, we analyze our algorithm’s sensitivity to
incorrect ratings. Table 9 shows results of the classification
accuracy of Manga dataset under 4 different settings of style
labels, namely, Setting 0: the same setting as Table 3; Setting
1: randomly assigning style level labels for each image;
Setting 2: randomly assigning the style level labels for half
of the images while the other half are the same as Table 3;
Setting 3: randomly increasing or reducing one or two style
levels for each image.

From Table 9, we could see the influence of incorrect
style labels to the algorithm. In Setting 1, with randomly as-
signed style labels, the performance decreases by 10% to 15
%, and sometimes even lower than the conventional AE. The
incorrect style labels may enforce the strong style images
towards the weak style ones by mistake. The performance
of setting 2 is between 1 and 3. In setting 3, the performance
degrades by 5% in most cases, similar to that of NCSCAE. It
shows that with slightly perturbed labels, we could still get
acceptable results.

7 CONCLUSION

In this paper, we proposed a Consensus Style Centraliz-
ing Auto-Encoder (CSCAE) to extract robust style feature
presentation for weak style classification. The Style Central-
izing Auto-Encoder (SCAE) progressively drew weak style
images to the class center to increase the feature discrimina-
tion. In both non-linear and linear versions of CSCAE, the
consensus constraints automatically allocated the weights
for different features. Specifically, in the Linear CSCAE, we
proposed a novel Rank-Constrained Group Sparsity Auto-
Encoder, and a corresponding fast solution to achieve com-
petitive performance but saving half of the training time.
Extensive experimental results on fashion, manga and archi-
tecture style classification demonstrated that the proposed
SCAE, NCSCAE and LCSCAE were effective for these tasks.



0162-8828 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2771766, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

REFERENCES

[1] Z. Xu, D. Tao, Y. Zhang, J. Wu, and A. C. Tsoi, “Architectural
style classification using multinomial latent logistic regression,”
in European Conference on Computer Vision. Springer, 2014, pp.
600–615.

[2] S. Lee, N. Maisonneuve, D. Crandall, A. A. Efros, and J. Sivic,
“Linking past to present: Discovering style in two centuries of
architecture,” in IEEE International Conference on Computational
Photography, 2015.

[3] W.-T. Chu and Y.-C. Chao, “Line-based drawing style description
for manga classification,” in ACM International Conference on Mul-
timedia. ACM, 2014, pp. 781–784.

[4] M. H. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg, “Hipster
wars: Discovering elements of fashion styles,” in European Confer-
ence on Computer Vision. Springer, 2014, pp. 472–488.

[5] G. Shalunts, “Architectural style classification of building facade
towers,” in Advances in Visual Computing. Springer, 2015, pp. 285–
294.

[6] C. Weiss and M. Muller, “Tonal complexity features for style
classification of classical music,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 688–692.

[7] M.-J. Wu and J.-S. R. Jang, “Combining acoustic and multilevel
visual features for music genre classification,” ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
vol. 12, no. 1, p. 10, 2015.

[8] S. Jiang, M. Shao, C. Jia, and Y. Fu, “Consensus style centralizing
auto-encoder for weak style classification,” in Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence. AAAI, 2016.

[9] A. Goel, M. Juneja, and C. Jawahar, “Are buildings only instances?:
exploration in architectural style categories,” in Indian Conference
on Computer Vision, Graphics and Image Processing. ACM, 2012.

[10] W. Herlands, R. Der, Y. Greenberg, and S. Levin, “A machine
learning approach to musically meaningful homogeneous style
classification,” in AAAI Conference on Artificial Intelligence, 2014,
pp. 276–282.

[11] J. C. Van Gemert, “Exploiting photographic style for category-level
image classification by generalizing the spatial pyramid,” in ACM
International Conference on Multimedia Retrieval. ACM, 2011, pp.
1–8.

[12] L. Bossard, M. Dantone, C. Leistner, C. Wengert, T. Quack, and
L. Van Gool, “Apparel classification with style,” inAsian Conference
on Computer Vision. Springer, 2013, pp. 321–335.

[13] K. Yamaguchi, M. H. Kiapour, and T. L. Berg, “Paper doll parsing:
Retrieving similar styles to parse clothing items,” in IEEE Interna-
tional Conference on Computer Vision. IEEE, 2013, pp. 3519–3526.

[14] X. Chao, M. J. Huiskes, T. Gritti, and C. Ciuhu, “A framework for
robust feature selection for real-time fashion style recommenda-
tion,” in International workshop on Interactive multimedia for consumer
electronics. ACM, 2009, pp. 35–42.

[15] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, “Parsing
clothing in fashion photographs,” in IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2012, pp. 3570–3577.

[16] S. Liu, Z. Song, G. Liu, C. Xu, H. Lu, and S. Yan, “Street-to-shop:
Cross-scenario clothing retrieval via parts alignment and auxiliary
set,” in IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2012, pp. 3330–3337.

[17] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[18] Z. Ding, M. Shao, and Y. Fu, “Deep low-rank coding for transfer
learning,” in International Joint Conference on Artificial Intelligence,
2015, pp. 3453–3459.

[19] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,”
in Proceedings of the 25th international conference on Machine learning.
ACM, 2008, pp. 1096–1103.

[20] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” The Journal of
Machine Learning Research, vol. 11, pp. 3371–3408, 2010.

[21] M. Kan, S. Shan, H. Chang, and X. Chen, “Stacked progressive
auto-encoders (spae) for face recognition across poses,” in IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2014,
pp. 1883–1890.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive modeling,
vol. 5, pp. 696–699, 1988.

[23] M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha, “Marginalized
stacked denoising autoencoders,” in Learning Workshop, 2012.

[24] O. Chapelle, B. Schölkopf, A. Zien et al., “Semi-supervised learn-
ing,” 2006.

[25] L. Zhang and Y. Lu, “Comparison of auto-encoders with different
sparsity regularizers,” in International Joint Conference on Neural
Networks. IEEE, 2015, pp. 1–5.

[26] J. Nocedal, “Updating quasi-newton matrices with limited stor-
age,”Mathematics of computation, vol. 35, no. 151, pp. 773–782, 1980.

[27] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y.
Ng, “On optimization methods for deep learning,” in International
Conference on Machine Learning, 2011, pp. 265–272.

[28] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized
denoising autoencoders for domain adaptation,” arXiv preprint
arXiv:1206.4683, 2012.

[29] G. Liu and S. Yan, “Latent low-rank representation for subspace
segmentation and feature extraction,” in 2011 International Confer-
ence on Computer Vision. IEEE, 2011, pp. 1615–1622.

[30] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp.
171–184, 2013.

[31] F. Bunea, Y. She, M. H. Wegkamp et al., “Joint variable and
rank selection for parsimonious estimation of high-dimensional
matrices,” The Annals of Statistics, vol. 40, no. 5, pp. 2359–2388,
2012.

[32] Y.-C. Chang, M.-C. Chuang, S.-H. Hung, S.-J. C. Shen, and B. Chu,
“A kansei study on the style image of fashion design,” in the 6th
Asian Design Conference, 2003.

[33] Y. Yang and D. Ramanan, “Articulated pose estimation with
flexible mixtures-of-parts,” in IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2011, pp. 1385–1392.

[34] M. Varma and A. Zisserman, “A statistical approach to texture
classification from single images,” International Journal of Computer
Vision, vol. 62, no. 1-2, pp. 61–81, 2005.

[35] F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multi-
column deep neural networks with application to robust image
denoising,” in Advances in Neural Information Processing Systems,
2013, pp. 1493–1501.

Shuhui Jiang received the B.S. and M.S. de-
grees in Xi’an Jiaotong University, Xi’an, China,
in 2007 and 2011, respectively. She is now pur-
suing her PHD degree in School of Electrical
and Computer Engineering, Northeastern Uni-
versity (Boston, USA). She was the recipient of
the Dean’s Fellowship of Northeastern University
from 2014. She is interested in machine learn-
ing, multimedia and computer vision. She has
served as the reviewers for IEEE journals: IEEE
TNNLS etc.

Yun Fu (S’07-M’08-SM’11) received the B.Eng.
degree in information engineering and the
M.Eng. degree in pattern recognition and in-
telligence systems from Xi’an Jiaotong Univer-
sity, China, respectively, and the M.S. degree
in statistics and the Ph.D. degree in electrical
and computer engineering from the University of
Illinois at Urbana-Champaign, respectively. He
is an interdisciplinary faculty member affiliated
with College of Engineering and the College of
Computer and Information Science at Northeast-

ern University since 2012. His research interests are Machine Learn-
ing, Computational Intelligence, Big Data Mining, Computer Vision,
Pattern Recognition, and Cyber-Physical Systems. He has extensive
publications in leading journals, books/book chapters and international
conferences/workshops. He serves as associate editor, chairs, PC
member and reviewer of many top journals and international confer-
ences/workshops. He received seven Prestigious Young Investigator
Awards from NAE, ONR, ARO, IEEE, INNS, UIUC, Grainger Foundation;
seven Best Paper Awards from IEEE, IAPR, SPIE, SIAM; three major
Industrial Research Awards from Google, Samsung, and Adobe, etc. He
is currently an Associate Editor of the IEEE Transactions on Neural Net-
works and Leaning Systems (TNNLS). He is fellow of IAPR, a Lifetime
Senior Member of ACM and SPIE, Lifetime Member of AAAI, OSA, and
Institute of Mathematical Statistics, member of Global Young Academy
(GYA), INNS and Beckman Graduate Fellow during 2007-2008.


