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Abstract Ensemble clustering aims to fuse several diverse basic partitions into a con-
sensus one, which has been widely recognized as a promising tool to discover novel
clusters and deliver robust partitions, while representation learning with deep structure
shows appealing performance in unsupervised feature pre-treatment. In the literature,
it has been empirically found that with the increasing number of basic partitions,
ensemble clustering gets better performance and lower variances, yet the best number
of basic partitions for a given data set is a pending problem. In light of this, we propose
the Infinite Ensemble Clustering (IEC), which incorporates marginalized denoising
auto-encoder with dropout noises to generate the expectation representation for infi-
nite basic partitions. Generally speaking, a set of basic partitions is firstly generated
from the data. Then by converting the basic partitions to the 1-of-K codings, we link
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the marginalized denoising auto-encoder to the infinite basic partition representation.
Finally, we follow the layer-wise training procedure and feed the concatenated deep
features to K-means for final clustering. According to different types of marginal-
ized auto-encoders, the linear and non-linear versions of IEC are proposed. Extensive
experiments on diverse vision data sets with different levels of visual descriptors
demonstrate the superior performance of IEC compared to the state-of-the-art ensem-
ble clustering and deep clustering methods. Moreover, we evaluate the performance of
IEC in the application of pan-omics gene expression analysis application via survival
analysis.

Keywords Ensemble clustering - Denoising auto-encoder - K-means

1 Introduction

Ensemble clustering, also known as consensus clustering, emerges as a promising
way for multi-source, heterogeneous data clustering, and recently attracts increasing
academic attention due to the robust and high-quality partitions. It aims to find a single
partition that mostly agrees with multiple existing basic ones (Strehl and Ghosh 2003).
Itis of recognized benefits in generating robust partitions, discovering novel structures,
handling noisy features, and integrating solutions from multiple sources (Nguyen and
Caruana 2007).

Recently, representation learning attracts substantial research attention, which has
been widely adopted as the unsupervised feature pre-treatment (Bengio et al. 2013).
The layer-wise training and the followed deep structure are able to capture the visual
descriptors from coarse to fine (Bengio et al. 2007; Hinton et al. 2006). Notably, there
are a few deep clustering methods proposed recently, working well with either feature
vectors (Shao et al. 2015) or graph Laplacian (Huang et al. 2014; Li et al. 2014),
towards high-performance generic clustering tasks.

Tremendous efforts have been made in ensemble clustering and deep representation,
which lead us to wonder whether these two powerful tools can be strongly coupled for
the unsolved challenging problems. For example, it has been widely recognized that
with the increasing number of basic partitions, ensemble clustering achieves better
performance and lower variance (Wu et al. 2015; Luo et al. 2011). However, the best
number of basic partitions for a given data set still remains an open problem. Too
few basic partitions cannot exert the capacity of ensemble clustering, while too many
basic partitions lead to unnecessary computational resource waste. Unfortunately, we
cannot foreknow the best number of basic partitions, which leads the problem we
address here to how to fuse infinite basic partitions for ensemble learning.

Here we aim to fuse infinite basic partitions for ensemble clustering. For a set of
basic partitions, we can randomly remove some labels in the basic partitions to generate
the extra incomplete basic partitions. Such process is just the same with denoising
auto-encoder with dropout noises. If we repeat the process infinite times, it leads to
the marginalized denoising auto-encoder. Therefore, our model links the marginalized
denoising auto-encoder to ensemble clustering and leads to a natural integration named
“Infinite Ensemble Clustering” (IEC), which is simple yet effective and efficient. To
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Fig. 1 Framework of IEC. We apply marginalized denoising auto-encoder to generate infinite ensemble
members by adding drop-out noise and fuse them into the consensus one. Then K-means is conducted on
the concatenated hidden representation for infinite ensemble clustering

that end, we first generate a moderate number of basic partitions, as the basis for
the ensemble clustering. Second, we convert the preliminary clustering results from
the basic partitions to 1-of-K codings, which disentangles dependent factors among
data samples. Then the codings are fed into marginalized denoising auto-encoders for
generating the infinite representation. Two different deep representations of IEC are
provided with the linear or non-linear model. Finally, we run K-means on the learned
representations to obtain the final clustering. The framework of IEC is demonstrated in
Fig. 1. The whole process is similar to marginalized denoising auto-encoder (mDAE).
Several basic partitions are fed into the deep structure with drop-out noises in order
to obtain the expectation of the co-association matrix. Extensive results on diverse
vision data sets show that our IEC framework works fairly well with different visual
descriptors, in terms of time efficiency and clustering performance, and moreover some
key impact factors are thoroughly studied as well. The pan-omics gene expression
analysis application shows that IEC is a promising tool for real-world multi-view and
incomplete data clustering. We highlight our contributions as follows.

— We propose a framework called Infinite Ensemble Clustering (IEC) which inte-
grates the deep structure and ensemble clustering. By this means, the complex
ensemble clustering problem can be solved with a stacked marginalized denoising
auto-encoder structure in an efficient way.

— Within the marginalized denoising auto-encoder, we fuse infinite ensemble mem-
bers into a consensus one by adding drop-out noises, which maximizes the capacity
of ensemble clustering. Two versions of IEC are proposed with different deep rep-
resentations.

— Extensive experimental results on numerous real-world data sets with different
levels of features demonstrate IEC has obvious advantages on effectiveness and
efficiency compared with the state-of-the-art deep clustering and ensemble clus-
tering methods, and IEC is a promising tool for large-scale data clustering.

— The pan-omics gene expression analysis application illustrates the effectiveness
of IEC to handle multi-view and incomplete data clustering.

This paper is an extension of our conference paper (Liu et al. 2016). The new
contents include (1) we add more information about the preliminary knowledge on
ensemble clustering and auto-encoder for comprehensive understanding, (2) we pro-
vide the non-linear version of IEC and compare the clustering performance of the linear
and non-linear models, and (3) a thorough application on pan-omics gene expression
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analysis is employed to fully evaluate the performance of IEC via survival analysis and
demonstrate the practicability of IEC with multi-view and incomplete data clustering.

The rest of this paper is organized as follows. In Sect. 2, we introduce the related
work on ensemble clustering and auto-encoder. Then some preliminaries and problem
definition are given in Sect. 3. The framework and details of IEC are demonstrated in
Sect. 4. Extensive experimental results and gene expression analysis are showcased in
Sects. 5 and 6, respectively, followed by the conclusion in Sect. 7.

2 Related work

Here we introduce the related work in terms of ensemble clustering and auto-encoder,
and highlight the differences between existing methods and ours.

2.1 Ensemble clustering

Ensemble clustering aims to fuse various existing basic partitions into a consensus
one, which can be divided into two categories: with or without explicit global objective
functions. In a global objective function, a utility function is employed to measure the
similarity between a basic partition and the consensus one at the partition level. Then
the consensus partition is achieved by maximizing the summarized utility function.
In the inspiring work, Topchy et al. (2003) proposed a Quadratic Mutual Information
based objective function for consensus clustering, further they used the expectation-
maximization algorithm with a finite mixture model for consensus clustering (Topchy
etal. 2004). Wu et al. put forward a theoretic framework for K-means-based Consensus
Clustering (KCC), and gave the sufficient and necessary condition for KCC utility
functions that can be maximized via a K-means-like iterative process (Wu et al. 2015,
2013; Liu et al. 2015b, 2016). In addition, there are some other interesting objective
functions for consensus clustering, such as the ones based on nonnegative matrix
factorization (Li et al. 2007), kernel-based methods (Vega-Pons et al. 2010), simulated
annealing-based method (Lu et al. 2008), etc.

Another kind of methods do not set explicit global objective functions, which trans-
forms it into graph partition problem. In one pioneer work, Strehl and Ghosh (2003)
(GCC) developed three graph-based algorithms for consensus clustering. More meth-
ods, however, employ co-association matrix to calculate how many times two instances
jointly belong to the same cluster. By this means, some traditional graph partitioning
methods can be called to find the consensus partition. Fred and Jain (2005) (HCC) is
the most representative one in the link-based methods, which applied the agglomera-
tive hierarchical clustering on the co-association matrix to find the consensus partition,
while SEC applies the spectral clustering on the co-association matrix with a weighted
K-means solution (Liu et al. 2015a, 2017a). Other methods include Relabeling and
Voting (Ayad and Kamel 2008), Locally Adaptive Cluster based methods Domeni-
coni and Al-Razgan (2009), Robust Spectral Ensemble Clustering (Tao et al. 2016) and
Simultaneous Clustering and Ensemble (Tao et al. 2017), etc. There are still many other
algorithms for ensemble clustering. Readers with interests can refer to some survey
papers for more comprehensive understanding (Vega-Pons and Ruiz-Shulcloper 2011).
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2.2 Auto-encoder

Auto-encoder is a building block of deep structure that learns hidden and compressed
representations (i.e., codings) from data (Bengio 2009), which has been widely used
in numerous applications. Denoising auto-encoder (DAE) and stacked DAE are two
representitive variants of auto-encoder, which learn effective representations by recon-
structing input data from artificial corruptions (Vincent et al. 2008). Marginalized
denoising auto-encoder (mDAE) approximately marginalizes out the corruptions dur-
ing training, taking into account infinitely many corrupted copies of training data (Chen
et al. 2014, 2012). Due to the flexibility and impressive learning capability, auto-
encoder and its variants have been successfully applied to many scenarios, such as
face recognition (Meina et al. 2014), domain adaptation (Chen et al. 2012; Ding et al.
2015), and image classification (Xie et al. 2015).

Most recently, a few auto-encoder based methods have been proposed for graph
clustering. Song et al. (2013) augmented the loss function of auto-encoder by incor-
porating a constraint of the distance between samples and centroids. Huang et al.
(2014) built a deep embedding network using auto-encoder, and incorporated locality-
preserving and group sparsity constraints to the loss function of deep network for
clustering-oriented representations. Tian et al. (2014) revealed the similarity between
auto-encoder and spectral clustering, and presented a GraphEncoder method based on
sparse auto-encoder. Shao et al. (2015) proposed a deep linear coding approach, which
jointly learns feature transforms and discriminative codings for fast graph clustering.
However, the connection between auto-encoder and ensemble clustering has not been
explored.

In this paper, we aim to build the connection between ensemble clustering and
auto-encoder for unsolved challenged problems, and apply marginalized denoising
auto-encoder to fuse infinite basic partitions for ensemble clustering.

3 Preliminaries and problem definition

In this section, we introduce the preliminary knowledge in terms of ensemble clustering
and marginalized denoising auto-encoder, and then formulate the research problem.

3.1 Ensemble clustering

The goal of ensemble clustering is to find a single partition which agrees with existing
basic partitions as much as possible. Different from the traditional clustering methods,
which aim to separate a bunch of data instances into different groups that the instances
in the same group are more similar to each other, ensemble clustering fuses several
different partitions into a consensus one. The input of traditional clustering methods is
the data matrix, while the input of ensemble clustering is a set of basic partitions. Here
basic partitions might be generated by the same clustering algorithm with different
parameters, or by the same clustering algorithm with different features or even by
several different clustering algorithms. In essence, ensemble clustering is a fusion
problem, rather than a clustering problem.
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Given a set of r basic partitions of the data matrix X: H = {HV, H®, ... H"}
with the number of clusters in H®) to be K;, the goal is to fuse all the basic partitions
into a consensus partition H*. Generally speaking, ensemble clustering can be roughly
divided into two categories in terms of measuring the similarity in different levels.

The first category designs the utility function to measure the similarity between the
final consensus partition and basic ones. Usually the following formulation is used to
solve ensemble clustering.

rHH) =) UM HY), (1)
i=1

is maximized with respect to H*, where I" : N"*K x N"*K7 5 R is a consensus
function, and U : N"*K s N"K\s R is a utility function, i = 1,2,...,r

Here utility function plays a role in measuring the similarity of two partitions.
Therefore, the choice of the utility function is critical for the success of a consensus
clustering. In the literature, many external measures originally proposed for cluster
validity have been adopted as the utility functions for consensus clustering, such as
Normalized Mutual Information (Strehl and Ghosh 2003), Category Utility Func-
tion (Mirkin 2001), Quadratic Mutual Information (Topchy et al. 2003), and Rand
Index (Lu et al. 2008). These utility functions, together with the consensus function,
largely determine the quality of consensus clustering.

For better understanding of utility function, a contingency matrix is often employed
for computing the difference of two partitions. In Table 1, n,((’j) denotes the number of

data objects shared by both cluster C (.i) in H® and cluster Cy in H*, njy. = Zf_l n,(clj),

and n(l) Zf 1n(l) 1 <k<K,1<j <K, Let p(') = nk])/n P+ =

ngy/n, and p(l) (’) / n, we then have the normalized contingency matrix for utility
computation. For 1nstance, the well-known Category Utility Function (Mirkin 2001)

can be computed as follows:
K K;
U HO) =" g Y (p I pi)” — Z(p(” 2)
k=1 j=1 Jj=

Note that a larger U, indicates a higher similarity.

Table 1 The contingency
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Another category of ensemble clustering is to employ a co-association matrix to
summarize r basic partitions as follows:

| , ,
Sx.y) == sHYx), HY(y), 3)

i=1

where §(-) denotes the Kronecker delta function, which returns 1 with two identical
input values and returns 0 with different input values. We can regard S as a similarity
matrix between a pair of instances, which simply counts the co-occurrence number in
the same cluster in each basic partition. By this means, ensemble clustering problem
is redefined as a classical graph partition problem, so that based on the co-association
matrix S, some clustering rules or loss functions can be derived in order to obtain the
final consensus clustering.

Although ensemble clustering can be roughly generalized into two categories, based
on co-association matrix or utility function, Liu et al. (2015a) built a connection
between the methods based on co-association matrix and utility functions and pointed
out the co-association matrix plays a determinative role in the success of ensemble
clustering. Thus, here we focus on the methods based on co-association matrix. Next,
we introduce the impact of the number of basic partitions by the following theorem.

Theorem 1 (Stableness Luo et al. (2011)) For any € > 0, there exists a matrix S,
such that

lim P(||S — Sol|2 > €) =0,
r— 00

where || - ||% denotes the squared Frobenius norm with ||A| |I2: = trace(4AT).

The assumptions behind Theorem 1 lie in (1) all the basic partitions come from
the same data set, (2) the basic partitions are independently generated from the same
strategy (for example, K-means with different cluster numbers), (3) p.y is the proba-
bility of a pair of instances x and y belonging to the same cluster, p,y, ~ Ber(pxy),
where Ber(pyy) is the Bernoulli distribution with the probability p.,. We can see
that these assumptions are reasonable for real-world applications. From the above
theorem, we have the conclusion that although basic partitions might be greatly dif-
ferent from each other, the normalized co-association matrix becomes stable with
the increase of the number of basic partitions r. From our previous experimental
results (Liu et al. 2015b) in Fig. 2, it is easy to observe that with the increasing num-
ber of basic partitions, the performance of ensemble clustering goes up and becomes
stable. However, the best number of basic partitions for a given data set is difficult to
set. Too few basic partitions can not exert the capacity of ensemble clustering, while
too many basic partitions lead to unnecessary computational resource waste. There-
fore, fusing infinite basic partition is addressed in this paper, instead of answering
the best number of basic partitions for a given data set. According to Theorem 1,
we expect to fuse infinite basic partitions to maximize the capacity of ensemble
clustering. Since we cannot generate infinite basic partitions, how to obtain a sta-
ble co-association matrix S and calculate H* in an efficient way is highly needed,
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Fig. 2 Performance of different numbers of basic partitions via KCC on mm and reviews data sets. X-axis
is the number of basic partitions. With increasing numbers of basic partitions, the performance goes up and
the variance becomes narrow. Y-axis denotes the performance of KCC via Normalized Mutual Information
(NMI). a mm. b reviews

which is also one of our motivations. In Sect. 4, we employ mDAE to equivalently
obtain the “infinite” basic partitions and achieve the expectation of co-association
matrix.

3.2 Marginalized denoising auto-encoder

An auto-encoder (Bengio 2009) is an artificial neural network used for unsupervised
learning of efficient codings. The aim of an auto-encoder is to learn a representation
(encoding) for a set of data, typically for the purpose of dimensionality reduction.
Internally, it has a hidden layer that describes a code used to represent the input. The
network may be viewed as consisting of two parts: an encoder function g and a decoder
function 4 that produces a reconstruction.

To obtain a robust representation, denoising auto-encoders (DAEs) have been suc-
cessfully used for a wide range of machine learning tasks (Ghifary et al. 2015;
Carreira-Perpinn and Raziperchikolaei 2015). Usually DAE is implemented as a
single-hidden-layer neural network where the input is the corrupted data by certain
noises and the output is the clean data. The goal of DAE is to make the output to be
as close as possible to the clean data x after learning. Usually a loss function £(X, y)
is employed to measure the reconstruction error as follows:

—Z Zaxl, F&)), )

1—1

where n is the number of data points, m is the times of corrupted data, x; is the ith
clean data point and x is the ith data point in j-th corruption, and f (x ) =goh(X;) i
is the output of xl. , where g and & are the encoder and decoder, respectively.
According to the linear or non-linear function of g and i, DAE can be roughly
divided into the linear or non-linear version. For example, let W be the mapping
function between the corrupted inputs X and the clean data x. Then we have the
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following the squared reconstruction loss:

ﬁZani—Wi{Hz. )

j=1i=1

After getting the one-layer hidden representation z = /(X), we can continue to use
this strategy by using z as the input to obtain deep representation for feature generation,
which is called stacked denoising auto-encoder.

The disadvantage of DAE is to explicitly corrupt x by m times to get multiple X,
which enlarges the training samples and increases the computational cost. Recently,
Chen et al. (2014, 2012) proposed the marginalized denoising auto-encoder (mDAE)
to overcome this challenge with m — oo by taking use of the expected average loss
as follows,

1 n
—~ > Epw 6%, f G- (6)
i=1
For a long time, auto-encoder and its variants are regarded as a powerful feature
generation tool. Actually it can also be used as an optimization tool. In the following,
we will give another interpretation of auto-encoder.

3.3 Problem definition

Deep structure and clustering techniques are powerful tools for computer vision and
data mining applications. Especially, ensemble clustering attracts a lot of attention
due to its appealing performance. However, these two powerful tools are usually used
separately. Notice that the performance of ensemble clustering heavily depends on the
basic partitions. As mentioned before, co-association matrix S is the key factor for
the ensemble clustering and with the increase of basic partitions, the co-association
matrix becomes stable. According to Theorem 1, the capability of ensemble clustering
goes to the upper bound with the number of basic partitions »r — oo, Then we aim to
seamlessly integrate deep concept and ensemble clustering in a one-step framework:
Can we fuse infinite basic partitions for ensemble clustering in a deep structure?

4 Infinite ensemble clustering
Here we first uncover the connection between ensemble clustering and auto-encoder.
Next, marginalized denoising auto-encoder is applied for the expectation of co-

association matrix, and finally we propose our method and give the corresponding
analysis.

4.1 From ensemble clustering to auto-encoder

It seems that there exists no explicit relationship between ensemble clustering and
auto-encoder due to their respective tasks. The aim of ensemble clustering is to find
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a cluster structure based on basic partitions, while auto-encoder is usually used for
better feature generation. However, by taking a close look at the objective function in
Egs. 4 and 6, we find that auto-encoder can be regarded as an optimization method for
minimizing the loss function.

Recalling that the goal of ensemble clustering is to find a single partition which
agrees the basic ones as much as possible, we can understand it in the opposite way that
the consensus partition has the minimum loss to present all the basic ones. After we
summarize all the basic partitions into the co-association matrix S, spectral clustering
or some other graph partition algorithms can be conducted on the co-association matrix
to obtain the final consensus result. Taking spectral clustering as an example, we aim
to find an n x K low-dimensional space to represent the original input. Each column
of low-dimensional matrix is a base for spanning the space. Then K-means can be
run on that for the final partition. Similarly, the function of auto-encoder is also to
learn a hidden representation of d dimensions by “carrying” as much as possible
information of the input, where d is a user pre-defined parameter. Therefore, to some
extent, spectral clustering and auto-encoder have the similar function to learn new
representations according to minimizing certain objective function; the difference is
that in spectral clustering, the dimension of new representation is K, while auto-
encoder produces d dimensions. From this view, auto-encoder is more flexible than
spectral clustering.

Therefore, we have another interpretation of auto-encoder, which not only can
generate robust features, but also can be regarded as an optimization method for
minimizing the loss function. By this means, we can feed the co-association matrix
into auto-encoder to get the new representation, which has the similar function with
spectral clustering, and run K-means on that to obtain the consensus clustering. For the
efficiency issue, it is not a good choice to use auto-encoder on the ensemble clustering
task due to the large space complexity of co-association matrix O (n2). We will address
this issue in the next subsection.

4.2 The expectation of co-association matrix

According to Theorem 1, with the number of basic partitions going to infinity, the co-
association matrix becomes stable. Before answering how to generate infinite ensemble
members, we first solve how to increase the number of basic partitions given the limited
ones. The naive way is to apply some generation strategy on the original data to produce
more ensemble members. The disadvantages lie in two folds: (1) time consuming, (2)
sometimes we only have the basic partitions, and the original data are not accessible.
Therefore, without the original data, producing more basic partitions with the limited
one is like a clone problem. However, simply duplicating the ensemble members does
not work. Here we make several copies of basic partitions and corrupt them with
erasing some labels in basic partitions to get new ones. By this means, we have extra
incomplete basic partitions and Theorem 1 also holds for incomplete basic partitions
(Liu et al. 2017a).

By this strategy, we just amply the size of ensemble members, which is still far
from the infinity. To solve this challenge we use the expectation of co-association
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matrix instead. Actually, Sp is just the expectation of S, which means if we obtain
the expectation of co-association matrix as an input for auto-encoder, our goal can
be achieved. Since the expectation of co-association matrix cannot be obtained in
advance, we intend to calculate it during the optimization.

Inspired by the marginalized Denoising auto-encoder (Chen et al. 2012), which
involves the expectation of certain noises during the training, we corrupt the basic
partitions and marginalize them for the expectation. We aim to fuse infinite incomplete
basic partitions for ensemble clustering. Here the incomplete basic partitions can be
obtained by removing labels from the complete ones, regarding as the partitions on
subsets of the data set. For a set of basic partitions, we can randomly remove some
labels in the basic partitions to generate the extra incomplete basic partitions. Such
process is just the same as denoising auto-encoder with dropout noises. If we repeat the
process infinite times, it leads to the marginalized denoising auto-encoder. If we take
a look at Eq. 6, the function f can be linear or non-linear. In this paper, for efficiency
issue we use the linear version of mDAE (Chen et al. 2012) since it has a closed-form
formulation. By this means, our model links the marginalized denoising auto-encoder
to ensemble clustering and leads to a natural integration.

4.3 Linear version of IEC

So far, we solve the infinite ensemble clustering problem with marginalized denois-
ing auto-encoder. Before conducting experiments, we notice that the input of mDAE
should be the instances with independent and identical distribution; however, the co-
association matrix can be regarded as a graph, which disobeys this assumption. To
solve this problem, we introduce a binary matrix B.

Let B be a binary n x d matrix, where d equals Y :_, K; and each row b(x)
represents one data point as follows:

b(@) = (b1, ... b)), b)i = (b1, ... b)iK,),
L i HO@) =
b(x)ij = {0, otherwise

We can see that the binary matrix B concatenates all the basic partitions with 1-of-
K; coding, where K; is the number of clusters in H". With the binary matrix B, we
have BBT = 8. It indicates that the binary matrix B has the same information with
the co-association matrix S. Since B obeys the independent and identical distribution
with respect to data points, we can put the binary matrix as input for marginalized
denoising auto-encoder.

For linear version of IEC, the corresponding mapping for W between input and
hidden representations is in closed-form (Chen et al. 2012):

W = E[P]E[Q] ', (7)

where P = BBT = rS and Q = BTB = X. We add the constant 1 at the last column
of B and corrupt it with p level drop-out noise. Letq = [1—p, ..., 1—p, 1] € RA+L,
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Algorithm 1 The algorithm of Infinite Ensemble Clustering

Input: HD ... H" : r basic partitions;
[: number of layers for mDAE;
p: noise level;
K: number of clusters.
Output: optimal H*;
1: Build the binary matrix B;
2: Apply [ layers stacked linear or non-linear mDAE with p noise level to get the mapping matrix W;
3: Run K-means on BWT (o get H*.

we have E[P];; = Zijqj and E[Q];; = X;;q;T(, j, qj). Here (i, j, qj) returns 1
with 7 = j, and returns q; with i # j. After getting the mapping matrix, BWT is
used as the new representation. By this means, we can recursively apply marginalized
denoising auto-encoder to obtain deep hidden representations. Finally, K-means is
called to run on the hidden representations for the consensus partition. Since only r
elements are non-zeros in each row of B, it is very efficient to calculate X. Moreover,
E[P] and E[Q] are both (d + 1) x (d + 1) matrics. Finally, K-means is conducted on all
the hidden representations. Therefore, our total time complexity is O (Id> + I Knld),
where [ is the number of layers of mDAE, [ is the iteration number in K-means, K
is the number of clusters, and d = Y ._; K; < n. This indicates our algorithm is
linear to n, which can be applied for large-scale clustering. Since K-means is the core
technique in IEC, the convergence is guaranteed according to the objective function
value.

4.4 Non-linear version of IEC

For the non-linear version IEC, we follow the non-linear mDAE with second-order
expansion and approximation (Chen et al. 2014) and have the following objective

function:
D Dy o2 2
1 0°¢ (0dzy
X f(u)) +5 Y 08> — (T) : ®)
2d=1 =1 BZh 3Xd
where [ is the loss function in Eq. 5, ux = x is the mean of x, 0)?[1 = xzp/(l -

p) is the variance of x in dth dimension with the noise level p, f is the sigmoid
function, D and D), are the dimensions of the input and hidden layers, respectively.
The detailed understanding about the non-linear objective function can be found in
Chen et al. (2014). A well-known framework Theano' is applied for the non-linear
mDAE optimization.

Similarity, we feed the binary matrix B into the non-linear version of mDAE for the
mapping function W and calculate the new presentation for clustering. The algorithm
is summarized in Algorithm 1. Compared the two versions of IEC, the linear version
has a closed-form expression with low computational cost, while the non-linear version
is an approximation and the GPU is a must for the expensive computation.

1 http://deeplearning.net/software/theano/.

@ Springer


http://deeplearning.net/software/theano/

Infinite ensemble clustering 397

5 Experimental results

In this section, we first introduce the experimental settings, then showcase the effec-
tiveness and efficiency of IEC compared with the state-of-the-art deep clustering and
ensemble clustering methods. Finally, some impact factors of IEC are thoroughly
explored.

5.1 Experimental settings

Data Sets Thirteen real-world image data sets with true cluster labels are used for
experiments. Table 2 shows their important characteristics, where #MinClass, #Max-
Class, CV and Density denote the instance number of the smallest and biggest clusters,
coefficient of variation statistic that characterizes the degree of class imbalance, and
the ratio of non-zeros elements, respectively. In order to demonstrate the effectiveness
of our IEC, we select the data sets with different levels of features, such as pixel,
SURF and deep learning features. The first two are characters and digits data sets,”
the middle ones are the objects and digits data sets>>* and the last four data sets are
with the deep learning features.? In addition, these data sets contain different types of
images, such as digits, characters, objects. Figure 3 shows some samples of these data
sets.

Comparative algorithms To validate the effectiveness of the IEC, we compare it
with several state-of-the-art methods in terms of deep clustering methods and ensemble
clustering methods.

— K-means is the baseline method.

— MAEC (Chen et al. 2012) applies mDAE to get new representations and runs
K-means on it to get the partition. Here MAEC] uses the orginal features as the
input, and MAEC?2 uses the Laplace graph as the input.

— GEncoder (Tian et al. 2014) is short for GraphEncoder, which feeds the Laplace
graph into the sparse auto-encoder to get new representations.

— DLC (Shao et al. 2015) jointly learns the feature transform function and discrim-
inative codings in a deep mDAE structure.

— GCC (Strehl and Ghosh 2003) is a general concept of three benchmark ensemble
clustering algorithms based on graph: CSPA, HGPA and MCLA, and returns the
best result.

— HCC (Fred and Jain 2005) is an agglomerative hierarchical clustering algorithm
based on the co-association matrix.

— KCC (Wu et al. 2015) is a K-means-based consensus clustering which transfers
the ensemble clustering into a K-means optimization problem.

— SEC (Liu et al. 2017a) employs spectral clustering on co-association matrix and
solves it by weighted K-means.

2 http://archive.ics.uci.edu/ml.
3 https://www.eecs.berkeley.edu/~jhoffman/domainadapt.
4 http://www.cad.zju.edu.cn/home/dengcai.

5 http://www.cs.dartmouth.edu/~chenfang.
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(a) (b)

ENEEEES

Fig. 3 Sample images. a MNIST is a 0-9 digits data sets in grey level, b COIL100 is an object data set

with 100 categories, ¢ ORL contains faces of 40 people with different poses and d Sun09 is an object data
set with different types of cars

In the ensemble clustering framework, we employ Random Parameter Selection (RPS)
strategy to generate basic partitions. Generally speaking, k-means is conducted on all
features with different numbers of clusters, varying from K to 2K . 100 basic partitions
via RPS are produced to feed into the comparative methods. Note that we set 5 layers
in our linear model and 1 layer for the non-linear model, and set the dimension of the
hidden layers as the same with the one of input layer. For all clustering methods, we
set K to be the true number of clusters and use the default parameter setting of each
algorithm for a fair comparison. In the non-linear IEC, we set the learning rate to be
0.1, training iterations to be 300 suggested by Chen et al. (2014).

Validation metric Since the label information is available to these data sets, here
we use two external metrics accuracy and Normalized Mutual Information (NMI) to
measure the performance.

Accuracy is the average performance of label matching results between resulted
labels and ground truth labels. Since clustering is an unsupervised process, we need
to map the label order as a permutation operation and maximize this fraction as the
final clustering accuracy. Given an instance X;, let r; and s; be the obtained cluster
label and the label provided by the ground truth, respectively. The accuracy is defined

as follows: " s
accurary = 2=t 06 mapr) ©)
n

where §(x, y) denotes the Kronecker delta function that equals one if x = y and
equals zeros otherwise, and map(r;) is the permutation mapping function that maps
each cluster label r; to the ground truth s;. The best mapping is applied by the Kuhn—
Munkres algorithms.

Normalized Mutual Information measures the mutual information entropy between
resulted cluster labels and ground truth labels, followed by a normalization operation
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which guarantees that NMI ranges from O to 1. Here we use the variables in Table 1
to give the formulation of mutual information for two partitions H* and H®.

MIE HD) = Y pPiog —H (10)
ckeH*,CjeH(i) pk+p+j

In our experiments, the normalized mutual information NMI is used for evaluating the
clustering performance, as follows:

MI1H*, HD)
max(H (H*), HH®))’

NMIH*, HY) = (11)

where H (H*) and H (H") are the entropies of H*, H®) respectively.

Note that accuracy and NMI are both positive measurements, which means the
larger, the better.

Environment All the experiments except the non-linear IEC were run on a Windows
standard platform of 64-bit edition, which has two Intel Core i7 3.4GHz CPUs and
32GB RAM. The non-linear IEC was conducted on a Ubuntu 14.04 of 64-bit edition
with a NVIDA TITAN X GPU.

5.2 Clustering performance

Tables 3 and 4 show the clustering performance of different algorithms in terms of
accuracy and NMI. The best results are highlighted in bold font. “N/A” denotes that
there is no result due to out of memory. As can be seen from the tables, three obser-
vations are very clear. (1) In the deep clustering method, MAEC]1 performs the best
and the worst on Amazon and COIL100, respectively; on the contrary, MAEC2 gets
reasonable result on COILI00 but low quality on Amazon. Since we focus on the
unsupervised clustering task, the default setting should be conducted for practical use.
However, GEncoder suffers from the worst performance in all the comparative meth-
ods, even worse than K-means, although we try our best to tune the number of neurons
in the hidden layers in a large range. The high computational cost prohibits MAEC2
and GEncoder from handling large-scale data sets. Since clustering belongs to the
unsupervised learning, only relying on deep structure makes little effect to improve
the performance. Instead DLC jointly learns the feature transform function and dis-
criminative codings in a deep structure, which has the satisfactory results. (2) In most
cases, ensemble clustering is superior to the baseline method, even better than deep
clustering methods. The improvement is obvious when applying ensemble clustering
methods on the data sets with high-level features, since high-level features have more
structural information. However, ensemble methods do not work well on SUN09. One
of the reasons might be the unbalanced class structure, which prevents the basic clus-
tering algorithm K-means from uncovering the true structure and further harms the
performance of ensemble methods. (3) Our method IEC gets the best results on most
of 13 data sets. It is worthy to note that the improvements are over nearly 8%, 8% or
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Table 5 Execution time of different ensemble clustering methods by second

Data sets GCC HCC KCC SEC IEC (5 layers)
Letter 383.89 1717.88 11.39 8.35 55.46
MNIST 112.44 19,937.69 11.98 3.79 51.55
COIL100 21.27 170.02 4.99 3.09 14.93
Amazon 3.93 1.61 0.17 0.08 1.21
Caltech 3.55 2.12 0.23 0.11 1.43
Dslr 2.27 0.09 0.04 0.06 0.70
Webcam 2.09 0.14 0.04 0.05 0.90
ORL 6.81 0.04 0.21 0.21 14.11
USPS 7.66 160.41 1.73 0.53 5.48
Caltech101 1.21 1.68 0.15 0.09 0.53
ImageNet 3.83 52.47 1.40 0.32 1.76
Sun09 2.36 10.01 0.33 0.13 0.82
VOC2007 2.05 10.97 0.32 0.16 0.82

22% on Dslr, USPS and Caltechl01, respectively, which are rare in clustering field.
Usually the performance of ensemble clustering goes up with the increasing number
of basic partitions. In order to show the best performance of the comparative ensemble
clustering methods, we use 100 basic partitions. Here we can see that there still exists
large space to improve via infinite ensemble members.

For efficiency, to make fair comparisons here we only report the execution time of
ensemble clustering methods. Although additional time is needed for generating basic
partitions, k-means and parallel computation make it quite efficient. Table 5 shows
the average time of ten runs via these methods. GCC runs three methods on small
data sets but runs two methods on large data sets, and HCC runs fast on data sets
containing few instances but struggles as the number of instances increases due to its
O (n?) time complexity. KCC, SEC and IEC are all K-means-based methods, which
are much faster than other ensemble methods. Since our method only applies mDAE
on basic partitions which has the closed-form solution and then runs K-means on the
new representations, therefore IEC is suitable for large-scale image clustering.

In the end of this subsection, we compare the clustering performance of linear and
non-linear IEC in Fig. 4. Here we employ 5-layer linear model and one-layer non-linear
model. From Fig. 4, we can see that the non-linear model has 2—-6% improvements on
Webcam and ORL over the linear one in terms of accuracy. However, the non-linear
model is an approximate calculation while linear model has closed-form representa-
tion. Besides, the non-linear model spends longer time to train even with the GPU
accelerator. Taking the effectiveness and efficiency into comprehensive consideration,
we choose the linear version of IEC as our default model for further analysis.

5.3 Inside IEC: factor exploration

Next we thoroughly explore the impact factors of IEC in terms of the number of layers,
the generation strategy of basic partitions, the number of basic partitions, and the noise
level, respectively.
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Fig. 4 Performance of linear and non-linear IEC on 13 data sets. a Accuracy. b NMI
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Fig. 5 Performance of IEC with different layers

Number of layers Since stacked mDEA is used to fuse infinite ensemble members,
here we explore the impact of the number of layers. As can be seen in Fig. 5, the
performance of IEC goes slightly up or keeps still with the increase of layers. Except
that the second layer has large improvements over the first layer on Caltech101, IEC
demonstrates the stable results on different layers, because only one-layer marginalized
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Fig. 6 Impact of basic partition generation strategies

denoising auto-encoder calculates the expectation of co-association matrix. The stable
performance might result from the fully connected network structure in mDAE. Here
the default value of the number of layers is set to be 5.

Generation strategy of basic partitions So far we rely solely on Random Parameter
Selection (RPS) to generate basic partitions, with the number of clusters varying
in [K,2K]. In the following, we demonstrate whether the generation strategy will
impact the performance of IEC. Here Random Feature Selection (RFS) is proposed as
acomparison, which still uses k-means as the basic clustering algorithm with randomly
selecting 50% original features to obtain 100 basic partitions. Figure 6 demonstrates
the performance of KCC and IEC via RPS and RFS on 5 data sets. As we can see
that, IEC exceeds KCC in most cases of RPS and RFS. When we take a close look,
the performance of IEC via RPS and RFS is almost the same, while KCC produces
large gaps between RPS and RFS on Caltech101 and Sun09 (See the ellipses). This
indicates that although the generation of basic partitions is of high importance to the
success of ensemble clustering, IEC helps to alleviate the impact.

Number of basic partitions The key problem of this paper is to use limited basic
partitions to achieve the goal of fusing infinite ensemble members. Here we discuss
the impact of the number of basic partitions to ensemble clustering. Figure 7 shows the
performance of 4 ensemble clustering methods on four data sets. Generally speaking,
the performance of HCC, KCC and GCC goes up with the increase of the number of
basic partitions and becomes stable when enough basic partitions are given, which is
consistent with Theorem 1. It is worthy to note that for large-scale data sets, generating
basic partition suffers from high time complexity even with ensemble process. Thus,
it is appealing that IEC achieves the high performance with limited basic partitions
and is suitable for large-scale data clustering.

Noise level The core idea of this paper is to obtain the expectation of co-association
matrix via adding the drop-out noise. Figure 8 shows the results of IEC with different
noise levels on four data sets. As can be seen, the drop-out noise probability does affect
the results even after marginalization. IEC gains the improvements with increasing
noise levels; when the noise level is large enough, i.e., 0.1, IEC becomes stable. Note
that if we set the noise level to zero, IEC would equivalently degrade into KCC.
Thus, the dropout noise plays a key part in IEC, which is necessary and crucial to the
improvement over KCC.
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Table 6 Some key characteristics of 13 data sets from TCGA

Database #Class Protein (190) miRNA (1046) mRNA (20531) SCNA (24952)

#Instance #Instance #Instance #Instance
BLCA 4 127 328 326 330
BRCA 4 742 728 1065 1067
COAD 4 330 242 292 450
HNSC 4 212 471 502 508
KIRC 4 454 247 523 524
LGG 3 258 441 445 443
LUAD 3 237 441 496 502
LUSC 4 195 317 476 479
ov 4 408 474 262 575
PRAD 7 161 414 418 418
SCKM 4 206 416 436 438
THCA 5 370 503 502 503
UCEC 4 394 393 162 527

The numbers of clusters are obtained from the original papers which publish the data sets

6 Application on pan-omics gene expression analysis

With the rapid development of techniques, it becomes much more easier to collect
diverse and rich molecular data types from genome to transcriptome, proteome, and
epigenome (Uhlen etal. 2016; Zhu et al. 2015). The pan-omics gene expressions, which
is also known as multi-view data, provide great opportunities to characterize human
pathologies and disease subtypes, identify driver genes and pathways, and nominate
drug targets for precision medicine (Biankin et al. 2015; Bolouri et al. 2016; Liu et al.
2017b). Clustering, an unsupervised exploratory analysis, has been widely used for
patient stratification or disease subtyping (Chen et al. 2013; Chang et al. 2005). To
fully demonstrate the effectiveness of IEC in real-world applications, here we employ
IEC for pan-omics gene analysis and compare it with several widely used clustering
methods in the biological domain. In the following, we introduce the gene expression
data sets and the experimental setting, evaluate the performance of different clustering
methods by survival analyses and finally apply IEC for the missing pan-omics gene
expression analysis.

6.1 Experimental setting

Data sets Thirteen pan-omics gene expression data sets with survival information
from TCGA® are used for evaluating the performance of patient stratification. These
data sets denote the gene expression of the patients with 13 major cancer types and
each data set contains 4 different types of molecular data, including protein expres-

6 https://cancergenome.nih.gov/.
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Fig. 9 Survival analysis of different clustering methods in the one-omics setting. X-axis denotes different
clustering methods, and Y-axis denotes different data sets. The color represents the — log(p value) of the
survival analysis. The larger value indicates the more significant difference among different subgourps
according to the partition by different clustering methods. For better visualization, we set the white color to
be —10g(0.05) so that the warm colors mean the pass of hypothesis test and the cold colors mean the failure
of hypothesis test. The detailed numbers of p value can be found in Tables 7, 8, 9 and 10 in “Appendix”,
where the p value is in bold with passed survival hypothesis test. a protein. b miRNA. ¢ mRNA. d SCNA
(Color figure online)

sion, microRNA (miRNA) expression, mRNA expression (RNA-seq V2) and somatic
copy number alterations (SCNAs). These cancer types include bladder urothelial car-
cinoma (BLCA), breast cancer carcinoma (BRCA), colon adenocarcinoma (COAD),
head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma
(KIRC), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian serous cys-
tadenocarcinoma (OV), prostate adenocarcinoma (PRAD), skin cutaneous melanoma
(SKCM), thyroid carcinoma (THCA), and uterine corpus endometrial carcinoma
(UCEC). Table 6 shows some key characteristic of 13 data sets from TCGA. These four
types of molecular data have different dimensions. For example, the protein expression
has 190 dimensions, miRNA expression has 1046 dimensions, mRNA expression has
20,531 dimensions and SCNA has 24,952 dimensions. It is also worthy to note that
the numbers of subjects on different molecular types on each data set are different due
to the missing data or device failure.
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Fig. 11 Execution time in logarithm scale of different ensemble clustering methods on 13 cancer data sets

with 4 different molecular types

Comparative algorithms Since we focus on the gene expression analysis, some
widely used clustering methods in biological domain are chosen for comparison in
terms of traditional clustering and ensemble clustering methods.

— Agglomerative hierarchical clustering, K-means (KM) and spectral clustering (SC)
are baseline methods. Here agglomerative hierarchical clustering with the group-

linkage, single-linkage and complete-linkage denotes as AL, SL and CL.

— LCE (Iam-on et al. 2010) is a link-based cluster ensemble method, which accesses
the similarity between two clusters, builds refined co-association matrix, and
applies spectral clustering for the final partition.

— ARSR (Galdi et al. 2014) is short for Approximated Sim-Rank Similarity (ASRS)
matrix, which is based on a bipartite graph representation of the cluster ensemble
in which vertices represent both clusters and data points and edges connect data
points to the clusters to which they belong.

Similar to the setting in Sect. 5, we still use Random Parameter Selection (RPS) strategy
with the number of clusters varying from K to 2K to generate 100 basic partitions for
the ensemble clustering methods LCE, ARSR and IEC. And for all clustering methods,
we set K to be the true number of clusters for fair comparisons.

@ Springer



410 H. Liu et al.

Fig. 12 Survival analysis of IEC —p-0.05
IEC in the pan-omics setting.
The value denotes the — log(p 88 LCA
value) of the survival analysis. UCEC BRCA
The detailed numbers of p value 6
can be found in Table 11 in THCA 4 COAD
“Appendix” N
SCKM O HNSC
PRAD KIRC
ov LGG
LUsC LUAD

Validation metric For these 13 molecular data without label information, we employ
survival analyses to evaluate the performance of different clustering methods. Survival
analysis considers the expected duration of time until one or more events happen, such
as death, disease occurrence, or other experience of interest (Miller and Rupert 2011).
Based on the partition obtained by different clustering methods, we divide the objects
or patients into several different groups. Then survival analyses are conducted to
calculate whether these groups have significant differences by log-rank test.

The log-rank test is a hypothesis test to compare the survival distributions of two
or more groups. The null hypothesis that every group has the same or similar survival
function. The expected number of subjects surviving at each time point in each group
is adjusted for the number of subjects at risk in the groups at each event time. The log-
rank test determines if the observed number of events in each group is significantly
different from the expected number. The log-rank statistic has an asymptotic chi-
squared distribution with one degree of freedom, and the p value is calculated using the
chi-squared distribution. When the p value is smaller than 0.05, it typically indicates
that those groups differ significantly in survival times. Here survival library in R
package’ is used for the log-rank test.

Environment All the experiments were run on a Windows standard platform of
64-bit edition, which has two Intel Core i7 3.4GHz CPUs and 32GB RAM.

6.2 One-omics gene expression evaluation

Since these 13 data sets have different numbers of instances within four different types,
we first evaluate these widely used clustering methods in biological domain and IEC
in the one-omics setting. That means that we treat these 13 data sets with four modular
types as 52 independent data sets, and then run clustering methods and evaluate the
performance of survival analysis by p value. For the ensemble methods, LCE, ARSR
and IEC, RPS strategy is employed to generate 100 basic partitions.

Figure 9 shows the survival analysis performance of different clustering methods
on one-omics setting, where colors denote the — log(p value) of the survival analysis.

7 https://cran.r-project.org/web/packages/survival/index.html.
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Fig. 13 Survival curves of four cancer data sets by IEC. a BLCA. b COAD. ¢ PRAD. d THCA

For better comparison, we set —1og(0.05) as the white color so that the warm colors
(yellow, orange and red) mean the pass of hypothesis test and the cold colors (blue)
mean the failure of hypothesis test. From this figure, we have three observations. (1)
Generally speaking, traditional clustering methods, such as agglomerative hierarchical
clustering, K-means and spectral clustering deliver poor performance, especially AL
has no pass on the miRNA modular data. Compared with these traditional clustering
methods, ensemble methods fuse several diverse basic partitions and enjoy more passes
on these data sets. (2) IEC shows the obvious advantages over other competitive
methods with more bright area and more passes of hypothesis tests. On KIRC data set
with protein expression, BLCA and UCEC data sets with miRNA expression, BLCA,
OV, SCKM and THCA data sets with SCNA, only IEC passes the hypothesis tests.
Figure 10 shows the number of passed hypothesis tests of these clustering methods
on four different modular types. On these 52 independent data sets, [EC has 38 passes
hypothesis tests with the passing rate over 73.0%, while the second best method only
has the 32.7% passing rate. Such evidence gives the strong support that IEC is a
promising tool for gene expression analysis over rivals. The benefits of IEC lie in
two aspects. One is that IEC is an ensemble clustering method, which incorporates
several basic partitions in a high-level fusion fashion; the other is that the latent infinite
partitions make the results resist to noises. (3) Different types of molecular data have
different capacities to uncover the cluster structure for survival analysis. For example,
most of methods pass the hypothesis tests on mRNA, while few of them pass the
hypothesis tests on SCNA. For a certain data set or cancer, we cannot pre-know what
is the best molecular data type for passing the hypothesis test of survival analysis. This
leads to the pan-omics gene expression evaluation in the next subsection.

Figure 11 shows the execution time in logarithm scale of LCE, ASRS and IEC on
13 cancer data sets with 4 different molecular types. Since IEC enjoys the roughly
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linear time complexity to the number of instance, IEC has significant advantages over
LCE and ASRS in terms of efficiency. For example, IEC is 2—4 times faster than LCE
and 20-66 times faster than ASRS. This indicates that IEC is a suitable ensemble
clustering tool for real-world applications in large-scale.

6.3 Pan-omics gene expression evaluation

In this subsection, we continue to evaluate the performance of IEC with missing
values. In the pan-omics application, it is quite normal to collect the data with missing
values or missing instances. For example, these 13 cancer data sets in Table 6 have
different numbers of instances in different types. To handle the missing data, a naive
way is to remove the instances with missing values so that a smaller complete data
set can be achieved. However, this way is a kind of waster since collecting data is
very expensive especially in biology domain. Although there exist missing values in
the pan-omics gene expression in Table 6, we can still employ the IEC to finish the
partition.

To achieve this, we generate 25 incomplete basic partitions for each one-omics gene
expression by running K-means on incomplete data sets and the missing instances are
labelled as zeros. Then IEC is applied to fuse 100 incomplete basic partitions into the
consensus one. Figure 12 shows the survival analysis of IEC on 13 pan-omics data
sets. We can see that by integrating pan-omics gene expression, IEC passes all the
hypothesis tests on 13 cancer data sets. Recall that in the one-omics setting, IEC fails
the hypothesis tests on some data sets. This indicates that even incomplete pan-omics
gene expression is conductive to uncover the meaningful structure. Figure 13 shows
the survival curves of four cancer data sets by IEC.

7 Conclusion

In this paper, we proposed a novel ensemble clustering algorithm Infinite Ensem-
ble Clustering (IEC) to fuse infinite basic partitions. Generally speaking, we built a
connection between ensemble clustering and auto-encoder, and applied marginalized
denoising auto-encoder to fuse infinite incomplete basic partitions. The linear and
non-linear versions of IEC were provided. Extensive experiments on 13 data sets with
different levels of features demonstrated our method IEC had promising performance
over the state-of-the-art deep clustering and ensemble clustering methods; besides,
we thoroughly explored the impact factors of IEC in terms of the number of layers,
the generation strategy of basic partitions, the number of basic partitions, and the
noise level to show the robustness of our method. Finally, we employed 13 pan-omics
gene expression cancer data sets to illustrate the effectiveness of IEC in the real-world
applications.
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Appendix

See Tables 7, 8,9, 10 and 11.

Table 7 Survival analysis of different clustering algorithms on protein expression data

Data set AL SL CL KM SC LCE ASRS IEC
BLCA 0.8400 0.6230 0.3210 0.0241  0.0005 0.0881 0.1030 0.0008
BRCA 0.2660 0.0008 0.0988 0.0997 0.1130 0.3060 0.1460 0.0092
COAD 0.8750 0.9530 0.8430 0.0157 0.0738 1.20E—8 4.82E—5 1.50E—8
HNSC 0.7540 0.0050 0.5520 0.7340 0.5110 0.9840 0.5960 0.1340
KIRC 0.7640 0.9140 0.2460 0.4120 0.6560 0.1680 0.7590 0.0003
LGG 0.0182 0.0305 0.0002 0.0563 0.0198  0.0094 0.1780 0.0004
LUAD 0.3730 0.8350 0.3220 0.4790  0.3990 0.0293 0.5070 0.0267
LUSC 0.9050 0.9290 0.9340 0.6670  0.6050 0.6550 0.5420 0.0982
ov 0.8090 0.5450 0.1900 0.0275 0.0446 0.0485 0.0327 0.0026
PRAD 1.19E—6 9.78E—7 3.16E—6 0.0011 0.0918 0.8140 0.0124 0.0041
SKCM 0.0848 0.2860 0.0100 0.0929 0.0411 0.0381 0.0059 3.00E—4
THCA 0.2380 0.0255 0.3470 0.1910 0.1480 0.0799 0.1370 0.0187
UCEC 0.4530 3.00E—-8 0.9860 0.9860 0.4550 0.8450 0.3700 0.2930
#Significance 2 6 3 4 3 5 4 10

The values in the table represent the p value of log-rank test

Table 8 Survival analysis of different clustering algorithms on miRNA expression data

Data set AL SL CL KM SC LCE ASRS IEC
BLCA 0.2780  0.5880 0.5940 0.0616 0.5620  0.3410 0.2400 0.0490
BRCA 03110 0.6350 0.5410 1.53E-5 0.0717 397E—6 1.12E-7 5.15E-7
COAD 0.3290  0.6430  0.2070  0.2290 0.1960 8.88E—4  0.0246 0.0002
HNSC 0.8900 0.8820 0.7650  0.5760 0.6770  0.0605 445E-5 0.0048
KIRC 0.7970  0.6420  0.0692  0.2180 0.0093  0.0180 0.1090 0.0140
LGG 0.8820 0.9640 0.8940 0.9850 0.9000  0.7450 0.0640 0.0550
LUAD 0.8350  0.1200 0.7410  0.2870 0.3580  0.0038 0.8260 0.0020
LUSC 0.1060  0.3450  0.0565  0.0152 0.0394 0.1310 0.3120 0.0136
ov 0.5540  0.0007 0.2410  0.6290 0.4190  0.2340 0.2340 0.0125
PRAD 0.4570  0.4250 0.6500 0.3330 0.3200  0.8720 0.6270 0.0519
SKCM 0.0619  0.6870  0.4920 0.6390 0.6940  0.0663 0.0575 0.0440
THCA 0.4660  0.0064 0.0053 0.0892 0.1100  0.0119 0.0157 2.95E-5
UCEC 0.5280 0.4570 0.6290  0.6870 0.6080  0.5530 0.3520 0.0258
#Significance 0 2 1 2 2 5 4 11

The values in the table represent the p value of log-rank test

@ Springer



414 H. Liu et al.
Table 9 Survival analysis of different clustering algorithms on mRNA expression data

Data set AL SL CL KM SC LCE ASRS IEC
BLCA 1.06E—7 8.88E—8 1.06E—7 0.0258 0.6860  0.1280 0.0938 5.53E—6
BRCA 5.35E—-3 0.1740 0.0401 0.1760 0.0840  0.5980 0.0155 0.0002
COAD 0.8930  0.8960 0.8720  0.0163 0.0296  0.0048 0.0743 0.0028
HNSC 0.2950  8.53E—5 0.1350  0.7470 0.5440  0.6290 0.1440 0.0392
KIRC 0.0025 0.0012 0.0036  0.0612 0.1450  0.2420 0.1550 0.0038
LGG 0.0156  0.0156 0.0155 0.1270 0.1230  0.2650 0.0023 0.0055
LUAD 0.0109 0.8290 0.3190  0.0429 0.0034  0.0189 0.0157 0.0165
LUSC 0.0990  0.2100 0.0241 0.0355 04740  0.0769 0.1360 0.0371
oV 0.2210  4.92E—10 0.1700  0.6360 0.3780  0.8720 0.7660 0.4530
PRAD 429E-9 4.49E-9 588E—9 7.29E—11 4.10E-9 0.0070 6.7SE—13 0.0001
SKCM 0.0012 0.0012 0.0015 0.5230 0.0006 0.1350 5.91E—10 0.0204
THCA 0.0147 0.5650 0.0713 0.0244 0.0561 0.2380 0.0710 0.0048
UCEC 0.5790  0.0594 0.1930  0.1850 0.2460  0.3670 0.4890 0.0437
#Significance 8 7 7 6 4 3 5 10

The values in the table represent the p value of log-rank test

Table 10 Survival analysis of different clustering algorithms on SCNA data

Data set AL SL CL KM SC LCE ASRS IEC
BLCA 0.3710  0.3710 0.3810  0.6340  0.3580 0.4340 0.3800  0.0120
BRCA 0.6540  0.6540 0.1160  0.0090 0.4790 0.0798  0.3520  0.0073
COAD 0.9320  0.9320 0.9010  0.1600  0.7920  0.7670  0.4660  0.3900
HNSC 0.0003  0.0003 0.0380  0.5280  0.5730  0.8280  0.7710  0.2940
KIRC 0.6580  0.7510 0.0929 04390 0.1060 0.2690 0.3710 0.2210
LGG 0.8800  0.9950 0.6430 0.5710 0.6130  0.8750 09740  0.4930
LUAD 0.5420  0.5420 0.5880 0.0763  0.2390  0.0121  0.0080  0.0456
LUSC 0.8900  0.8190 0.3870  0.3560  0.3810  0.1710  0.5540  0.1290
ov 0.7500  0.7500 0.1270  0.1710  0.0904  0.1730  0.1380  1.08E—7
PRAD 0.8410 2.40E-7  0.5060 0.2640  0.0008 0.0160  0.0046  0.0003
SKCM 0.8730  0.8140 0.6790  0.5660  0.1970  0.2210  0.2040  0.0444
THCA 0.1530  0.5180 0.1440  0.2670  0.1960  0.1360  0.5440  0.0496
UCEC 0.1100  0.1100 0.2310  0.0484 0.0673  0.4860 0.3450  0.1210
#Significance 1 2 1 2 1 2 2 7

The values in the table represent the p value of log-rank test

Table 11 Survival analysis of IEC on pan-omics gene expression

BLCA  0.0041 BLCA 0.0327 COAD 1.92E—8 HNSC 0.0423 KIRC 0.0054
LGG 0.0054 LUAD 0.0160 LUSC  0.0040 oV 0.0163 PRAD 1.58E—4

SKCM 4.14E—4 THCA 2.57E-5 UCEC 0.0178

The values in the table represent the p value of log-rank test
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