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Action recognition is an important research problem of human motion analysis (HMA). In recent years, 3D
observation-based action recognition has been receiving increasing interest in the multimedia and computer
vision communities, due to the recent advent of cost-effective sensors, such as depth camera Kinect. This work
takes this one step further, focusing on early recognition of ongoing 3D human actions, which is beneficial for
a large variety of time-critical applications, e.g., gesture-based human machine interaction, somatosensory
games, and so forth. Our goal is to infer the class label information of 3D human actions with partial obser-
vation of temporally incomplete action executions. By considering 3D action data as multivariate time series
(m.t.s.) synchronized to a shared common clock (frames), we propose a stochastic process called dynamic
marked point process (DMP) to model the 3D action as temporal dynamic patterns, where both timing and
strength information are captured. To achieve even more early and better accuracy of recognition, we also ex-
plore the temporal dependency patterns between feature dimensions. A probabilistic suffix tree is constructed
to represent sequential patterns among features in terms of the variable-order Markov model (VMM). Our
approach and several baselines are evaluated on five 3D human action datasets. Extensive results show that
our approach achieves superior performance for early recognition of 3D human actions.
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1 INTRODUCTION

Human motion analysis (HMA) is a highly interdisciplinary research area that attracts great in-
terest from computer vision, machine learning, image processing, and multimedia research com-
munities, due to the potential applications ranging from health (assistive clinical studies), human-
computer interaction, information technology (content-based video retrieval), security (intelligent
surveillance), and entertainment (special effects in film production and somatosensory games) to
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all aspects of our daily lives (Fu 2015; Li et al. 2015, 2017). Particularly action recognition, as an
important research thread of HMA, builds the basis for all of the above-mentioned applications.

Though action recognition has been well studied in the 2D scenario, 3D action recognition is
quite a new topic for the fields of computer vision and multimedia. Spatial and temporal structures
of 3D actions bring new challenges as well as new opportunities for the research community.
Some 3D action recognition methods have been proposed in recent years (Xia and Aggarwal
2013; Luo et al. 2013; Koppula and Saxena 2013; Liu and Shao 2013; Lin et al. 2016; Mahasseni and
Todorovic 2016; Liu et al. 2016), and most of them are extensions from 2D action recognition, by
either customizing the features to a depth camera or adjusting 2D action recognition algorithms
so that it can handle new features generated by the depth sensor. For instance, Xia and Aggarwal
(2013) extended the classic 2D action feature to the 3D counterpart, Luo et al. (2013) developed
a dictionary learning algorithm by incorporating group sparsity and geometry constraints to
represent 3D joint features, Zhang and Tian (2015) designed a depth descriptor based on the his-
togram of 3D facets for action recognition, and Kong et al. (2015) presented hierarchical 3D kernel
descriptors for action recognition using depth sequences. In addition, a comprehensive review on
3D skeleton-based action classification was provided in Lo Presti and La Cascia (2016). Existing
works usually assume that the full observation of 3D actions is available in the recognition phase.

This work takes it a step further, focusing on early recognition! of ongoing 3D actions (i.e.,
only partial observation available). It will be beneficial for a large variety of time-critical scenar-
ios. For example, in human-computer interaction, people’s intension can be predicted by early
recognition of human actions captured by sensors or depth cameras, which may greatly reduce
the system response time and provide a more natural experience of communication. In many real-
time somatosensory games, early recognition of human actions can reduce the sense of delay and
create richer, more enjoyable gaming experiences.

In this article, we investigate two types of 3D action tracking techniques as our observation. One
is the human motion capture technique where the articulated human 3D structure can be tracked
accurately through a set of markers on the human body. Kinesiologists use motion capture data as
an effective way to produce skeletal animations. The second technique depends on a user-friendly
sensor, the depth camera. Due to the recent advent of cost-effective sensors such as Kinect, depth-
camera-based human action research has become a hot topic in the area. Depth cameras provide
several advantages over typical visible light cameras. First, 3D structural information can be easily
captured, which helps simplify the intraclass motion variation. Second, depth information provides
useful cues for background subtraction and occlusion detection. Third, depth data are generally
not affected by the lighting variations.

In particular, we propose a novel approach to early classify human actions from 3D observation
by modeling two types of temporal patterns: (1) temporal dynamics and (2) temporal depen-
dency. By considering 3D action data as multivariate time series (m.t.s.) observation synchronized
to a shared common clock (frames), as shown in Figure 1, we introduce a stochastic process model,
called dynamic marked point process (DMP), and a variational order Markov model, called pre-
diction of partial match (PPM), to characterize these two key aspects of the prediction problem.
In our previous work (Li et al. 2014), we explored the temporal dynamics and sequential cues in
multivariate time series and designed a multilevel-discretized marked point process model to ad-
dress the early classification problem. In this article, we still make use of the temporal dynamic
information, but focus on the early recognition of 3D human actions.

'In our discussion, we use “early recognition,” “early classification,” or “prediction” interchangeably to refer to the
same learning task: “identifying the class label of 3D human actions with partial observation of temporally incomplete
executions.”
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Fig. 1. Framework of early recognition of 3D human actions. The human actions are considered as multi-
variate time series observations, which can be interpreted as an instantiation of a multivariate marked point
process.

To summarize, the main contributions of this work are summarized as follows:

First, by utilizing the m.t.s. representation for 3D action data, we propose a new dynamic
marked point process model to capture the dynamic nature of human actions in 3D, which is a
time-aware model that makes early recognition becomes possible.

Second, we introduce a prediction by partial matching algorithm, which captures the under-
lying variable-order Markov dependencies among multiple feature variables (human joints) from
the 3D observation. It explores the temporal dependencies among human joints while actions are
performed. The causal relationships between action segments provide important cues for early
recognition.

Third, we address the problem of early recognition of human actions in 3D scenarios, where
two types of 3D action observation, motion capture data and depth camera data, are evaluated.

The rest of this article is organized as follows. We briefly review some related work in Section 2.
We describe the preliminaries in Section 3 and the proposed methodology in Section 4. We then
show extensive experimental results in Section 5. Finally, the conclusion is drawn in Section 6.

2 RELATED WORK

In general, our work is closely related to the following topics: 3D action recognition, action pre-
diction, early classification of time series, and point process models in computer vision.

2.1 3D Action Recognition

A large number of methods have been proposed for recognizing human actions. Here we focus
on methods most related to 3D actions. Readers interested in 2D action can refer to some recent
survey (Aggarwal and Ryoo 2011) on this topic. Most of the existing work (Xia and Aggarwal
2013; Luo et al. 2013; Koppula and Saxena 2013; Liu and Shao 2013; Cai et al. 2015) on 3D action
recognition consists of extensions from the 2D case by either customizing the features to a depth
camera or by adjusting 2D action recognition algorithms so that they can handle new challenges
introduced by the depth sensor. Xia and Aggarwal (2013) extended the classic 2D action feature to
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a 3D counterpart, Depth STIP, which is basically a filtering method to detect interest points from
RGB-D videos with noise reduction. Luo et al. (2013) presented a discriminative dictionary learn-
ing algorithm that incorporates group sparsity and geometry constraints to represent 3D joint
features. Wang et al. (2012, 2014) proposed to represent 3D actions as a set of selected joints that
are considered more relevant and informative to the task. And they use a framework of multiple-
kernel SVM, where each kernel corresponds to an informative joint. Kong et al. (2015) proposed
hierarchical 3D kernel descriptors for action recognition using depth sequences. Vemulapalli
et al. (2014a) represented the 3D skeletons as curves in a Lie group that is a curved manifold.
Vemulapalli et al. (2014b) designed a new skeletal representation that explicitly models the 3D geo-
metric relationships between various body parts for action recognition. Also, for a more standard
and comprehensive evaluation of this particular task, a new dataset was also provided (Hadfield
and Bowden 2013) that developed a 3D kinematics descriptor for low-latency action recognition,

Another relevant topic to our work is low-latency action recognition (Hadfield and Bowden
2013). Ellis et al. (2013) designed a latency-aware learning algorithm to train a logistic regression
classifier for action recognition, and explored the accuracy/latency tradeoft over a varying num-
ber of actions. Both the observational latency and computational latency are considered in this
approach. Ohn-Bar and Trivedi (2013) proposed two descriptors for spatiotemporal feature extrac-
tion from color and depth images, and evaluated the model performance with partial observations.
Devanne et al. (2015) extracted a compact representation of a human action by representing the
3D coordinates of the joints and their change over time as a trajectory in a suitable action space.
Promising results were observed when only processing a small portion of frames of the sequence.

Most recently, deep neural networks have been designed and applied to 3D human action de-
tection and recognition and have achieved promising performance. Du et al. (2015) designed a
recurrent neural network (RNN) to model the long-term contextual information of temporal se-
quences. Each human skeleton was divided into five parts according to human physical structure,
and then separately fed to five subnetworks. Li et al. (2016) proposed a multitask end-to-end joint
classification-regression RNN to explore the action type and temporal localization information. In
particular, by leveraging the merits of the deep long short-term memory (LSTM) subnetwork, this
model could automatically capture the complex long-range temporal dynamics. Liu et al. (2016)
further extended the RNN-based 3D action recognition to the spatiotemporal domain by introduc-
ing a tree-structure-based traversal algorithm. By incorporating an attention module, Song et al.
(2017) designed an end-to-end spatiotemporal model on top of the RNN and LSTM.

Different from the above methods, our work explicitly focuses on the early recognition of 3D
human actions and builds a probabilistic model to achieve this goal.

2.2 Action Prediction

Action prediction is quite a new topic in computer vision (Kong et al. 2014). Only a few existing
works specifically focus on this task. The work of Ryoo (2011) first argued that the goal of activity
prediction is to recognize unfinished single actions from observation of its early stage. Two exten-
sions of the bag-of-words (BoW) paradigm, dynamic BoW and integral BoW, are proposed to han-
dle the sequential nature of human activities. The work of Cao et al. (2013) extended Ryoo (2011)
to recognize human actions from partially observed videos, where an unobserved subsequence
may occur at any time by yielding a temporal gap in the video. The work of Kong et al. (2014)
proposed a discriminative model to enforce the label consistency between segments. The work of
Hoai and De la Torre (2012) proposed a max-margin framework for early event detection, in which
video frames are simulated as sequential event streams. The work of Lan et al. (2014) presented
a hierarchical representation named hierarchical movemes for future action prediction. The new
representation could characterize human movements at multiple levels of granularities, ranging
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from atomic movements (e.g., an open arm) to coarser movements that cover a larger temporal ex-
tent. To implement the idea of action prediction for long-duration, more complex human activities,
Lietal. (2012) and Li and Fu (2014) introduce the concept of actionlets, where the sequential nature
of action units is explored for the purpose of recognizing the activity class as early as possible.
The problem of prediction (or early recognition) of 3D human actions has not been extensively
studied before. Our work is an attempt to develop a prediction model for 3D human actions.

2.3 Early Classification of Time Series

While there is a vast amount of literature on classification of time series (see reviews (Fu 2011;
Keogh and Kasetty 2002) and recent work (Zhang et al. 2012; Ye and Keogh 2009; Wei and Keogh
2006; Xi et al. 2006; Eruhimov et al. 2007; Katagiri et al. 2012; He et al. 2013, 2015; Li et al. 2016)),
early classification of ongoing time series has been ignored until quite recently (Xing et al. 2009;
Ghalwash and Obradovic 2012; Xing et al. 2011; Dachraoui et al. 2015; Lin et al. 2015). The unique
and nontrivial challenge here is that either features or distance metrics formulated in previous
work for classification of time series might not be robust, when whole time series are not avail-
able. Additionally, early classification always makes stricter demands on time efficiency, because
the algorithm will lose its merit if it unintentionally forces us to wait till the end of the time series.
To the best of our knowledge, the work of Xing et al. (2009) first explicitly proposed a solution
of early classification of time series to the community, though similar concepts have been raised
in other two works (Bregén et al. 2006; Rodriguez et al. 2001). They developed the ECTS (Early
Classification on Time Series) algorithm, which is an extension of the 1NN classification method.
ECTS evaluates neighbors both in full observation and as prefixes of time series. But their algo-
rithm is limited only to univariate time series (u.t.s.) data and assumes that all time series samples
have the same length.

Following the spirit of the classic work (Ye and Keogh 2009) on discovering interpretable time
series shapelets, Ghalwash and Obradovic (2012) and Xing et al. (2011) extend it to the early clas-
sification scenarios. However, all three methods are distance-based approaches, and the inherent
efficiency problem is not considered for earliness. Dachraoui et al. (2015) modeled the early clas-
sification of time series as a sequential decision-making problem and achieved promising results.
In our previous work (Li et al. 2014), we designed a multilevel-discretized marked point process
model to address the early classification of time-series data.

2.4 Point Process Models

As a special type of stochastic process, point process has gained a lot of attention recently in the
statistical learning community because of its powerful capability of modeling and analyzing rich
dynamical phenomena (Jansen and Niyogi 2009; Ge and Collins 2009; Gunawardana et al. 2011;
Utasi and Benedek 2011; Kim et al. 2012; Prabhakar et al. 2010). Adopting a point process represen-
tation of random events in time opens up pattern recognition to a large class of statistical models
that have seen wide applications in many fields. Jansen and Niyogi (2009) applied the point process
model in the context of speech recognition, especially for obstruent super-segment decoding. But
a general framework for other domains was not considered. Gunawardana et al. (2011) proposed
a variant of MPP model, named the Piecewise-Constant Conditional Intensity Model (PCIM), for
learning temporal dependencies in event streams. Their algorithm is evaluated on two real-world
applications. The first one is modeling supercomputer event logs, and the second one is forecast-
ing future interests of web search users. Although rich temporal structure information has been
encoded, they do not consider any classification possibility from that point.

Recently, Prabhakar et al. (2010) used MPP as a representation for visual events and tried to
identify temporal patterns of human interactions by applying a pairwise test for Granger causality.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 14, No. 1s, Article 20. Publication date: March 2018.



20:6 S. Li et al.

Table 1. Abbreviations and Symbols

Abbr. Description
u.t.s univariate time series

m.t.s multivariate time series

1NN one nearest neighbor

DTW dynamic time warping
MPP marked point process
MD-MPP | multilevel-discretized marked point-process
PST probabilistic suffix tree
VMM variable-order Markov model
HMM hidden Markov model

Symbol Description
X observation of time series with full length
XY’ ongoing time series
X4 set of d-dimensional m.t.s.
D time series training dataset
T time (index set)
C set of class labels
|X| length of time series
7 classifier
N multivariate point process
N multivariate marked point process
S number of segments by factoring timeline
A trained MD-MPP model
E set of events
Dy set of sampled discrete event streams from model A
Dy set of sampled discrete event streams from testing Y’
ai; discrete event stream

They come from an interpretation point of view, rather than a recognition point of view. Also, Kim
et al. (2012) investigated the problem of web image prediction by developing a predictive frame-
work based on MPP. They focus on predicting future event rather than early classification of m.t.s..
Although many algorithms based on the point process model have been successfully developed
to address many real-world problems, it has not been applied to predicting human actions.

3 PRELIMINARIES

3.1 Problem Definition

In the following discussion, we first provide the definition of multivariate time series and then
formally define the m.t.s. classification and m.t.s. early recognition problems. Table 1 summarizes
the symbols used throughout the article.

Definition 1 (Multivariate Time Series). A multivariate time series X = {x, : t € T} is an ordered
set of real-valued observations, where T is the index set consisting of all possible timestamps. If
x; € R? where d > 1, for instance, x; = (x}, x?, ... ,xf), then X is called a d-dimensional m.t.s..

We use m.t.s. to represent 3D action observation, which essentially is a multivariate time series
synchronized to a shared common clock (each frame is a sampling timestamp). We use lowercase
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letters to represent scalar values and lowercase bold letters to represent vectors. We use uppercase
letters to represent time series and uppercase bold letters to represent sets.

Definition 2 (Classification of m.t.s.). An m.t.s. X = {x; : t € T} may globally carry a class label.
Given C as a set of class labels, and a training set D = {(X;,C;) : C; € C,i = 1,...,n}, the task of
classification of m.t.s. is to learn a classifier, which is a function F : X¢ — C, where X< is the set
of d-dimensional m.t.s..

Definition 3 (Early Recognition of m.t.s.). GivenatrainingsetD = {(X;,C;):C; € C,j=1,...,n}
with n m.t.s. samples, X = {x; : t € T}, where T is the index set consisting of all possible times-
tamps (frame index of 3D action observation). The task of early recognition of m.t.s. is to learn a
classifier, which is a function F : X" — C, where X’ is the set of ongoing m.t.s..

We use |X| to represent the length of time series, namely, X = {x;,Xy,, ..., Xy, }. By default, X
is considered as the full-length observed time series, while a corresponding ongoing time series of
X is denoted as X' = {x},x},....x; ), where x; =x;, fori=1,...,|X"|,and tjx/| < t)x. The

ratio p = |X’|/|X| is called the progress level of X”.It’s obvious that the progress level of full-length
observed time series is always 1. We use X, to indicate an ongoing time series with progress level p.

Specifically, we can do classification along the progress of action execution and pre-
dict the class label at different progress levels of X, generating a bunch of decisions,
{F (X)), F(Xp,), .., F(X])}. In this article, we use 5% of the full action duration as an inter-
val of generating a new prediction result, which result in 20 rounds of classification for different
action progress levels. Our goal is to construct early classification function 7 (Y’) by using the
knowledge learned from a temporal dynamics model Pr(Y’|A) and a temporal dependency model
Pr(Y’|D).

3.2 Multivariate Marked Point Process

In probability theory, a stochastic process is a sequence of random variables indexed by a totally
ordered set T (“time”). Point process is a special type of stochastic process that is frequently used as
a model for a firing pattern of random events in time. Specifically, the process counts the number
of events and records the time that these events occur in a given observation time interval.

Definition 4. A d-dimensional multivariate point process is described by N =(N!,N% ... N9,
where N* = {t],1},...,t},} is a univariate point process, and t, indicates the timestamps on which
a particular “event” or “property” x; has been detected. N(t) is the total number of observed
events x; in the interval (0, t], for instance, Ni(t]i) = k. Then, N(t + At) — N(t) represents the
number of detections in the small region At. Similarly, ﬁ(t) = (N'(t), N%(t),...,N(¢)).

By letting At — 0, we can have the intensity function A(t) = {A'(t)}, which indicates the ex-
pected occurrence rate of the event x! at time t: A'(t) = limp; o N'(t + At) — N'(t) (Daley and
Vere-Jones 2003). This is the key to identifying a point process.

In many real-world applications, the time landmarks of events arise not as the only object of
study but as a component of a more complex model, where each landmark is associated with other
random elements M! = {x{,xé, .. .,xfn}, called marks, containing further information about the
events. Each (t;;, xl’c) is a marked point, and the sequence {(¢!, x,i)} of marked points is referred to
as a marked point processes.

2In this article, the concepts “variable,” “property,” or “event” are interchangeably used to refer to a certain dimension of
m.t.s.
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Definition 5. A d-dimensional multivariate marked point process is described as follows:
N = ((N', M}, (N% M2, (N M), (1)

where {N/, M'} = {(t!, x,i)} on R* X R is a univariate marked point process.

4 METHODOLOGY

In this section, we first introduce our DMP model by considering the temporal dynamics in 3D
human actions. After that, we incorporate the temporal dependency information and present the
model DMP with prediction by partial matching (DMP+PPM).

4.1 Temporal Dynamics

We aim to build a DMP model to characterize the timing and strength information of each feature
(human joint).

Given a d-dimensional m.ts., X = {X, Xy, ... s Xt x }, where x; = (x}, xf, . ,xfl), and t =
t1,ta, . .., t|x|. We consider each dimension xiasa noisy detector of certain human joints. Those
detectors generate continuous values, which indicate the angle or moving speed of human joints.
We call these continuous value marks. Then the corresponding marked point process representa-
tion of X is )

Nx = ({Nx, My}, {Nx, Mg} {Nx Mg ), 2)
where {Nx, M)i(} = {(tk,xgk)} and k = 1,...,|X|. We can see that different variables share a com-
mon clock Nx.

For a discrete feature detector only generating 0 or 1, the marked point process {Nx, M ;'(} can be
simplified to a point process Ni = {tf, tzi, e, t,"n}. Based on the discussions in Section 3.2, a basic
representation model for m.t.s. can be descried as a stationary point process:

|X| (AiAt)lNi(tk) aiAr

r Ini(e)!

= AA)™ AT,

Pr(N?) = 3)

But in our case, intensity parameter A will depend on both time and mark. For modeling time, we
evenly divide the timeline into S pieces of equal-length segments. Inside each segment, the point
process is assumed stationary. At = [|X]/S] is the segment length in terms of number of frames,
so the progress level at the end of the sth segment is p = (sAtAt)/(|X|At) = sAt/|X]|. Then, the
representation model becomes

S i i

) AL(s)AtAT)™s i

Pr(N') = | |—( (s)mi’ D i, @)
s=1 s*

For the modeling mark, we assume all feature dimensions have been normalized to [0, 1], re-
spectively, which results in the mark space within [0, 1]. We build a multilevel discretization of the
mark space by splitting it into L levels. Then the point process factors into L levels of independent
processes operating in each level of the mark space for a particular feature. Finally, we build a
representation model as follows:

Pr({Nx, My }) (5)

L S . i
_ l_[ 1—[ (A'(s, )AtAT) st oAt (s. AT
=1 s=1

i
mg !
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where mi is the number of landmarks of feature x' in the sample’s sth segment and Ith level of

l
mark space.

Given a training m.t.s. dataset D and multivariate marked point process representation N, the
data likelihood can be computed as

Pr(N|D) = [ Teran'. m'}D) 6)

d L S ; i
_ l_l ]—[ l_l (A'(s, 1, D)_AtAT)mS” oA (s.LD)AZAT

L
ms’l.

where the intensity function Al(s,[,D) depends on the feature (human joint), the segment (ac-
tion progress level), the mark-space level (observation value), and the training data. Now, we can
formalize two key steps in early classification.

Step One: Learning DMP. Given n training samples, the maximum log-likelihood estimation
(MLE) (Bishop 2006) is utilized to solve the problem. We follow the standard procedures in MLE
and skip the details here. The estimated model parameters can be written as

n i
ZjM 51

A (s,,D) = —— 222
Z;tzlAtATj

(7)

where m;. ,.; is the number of landmarks of event x! in the jth training sample’s sth time division
and Ith level of mark space.

Step Two: Early Recognition. Given an ongoing testing m.t.s Y’ and a trained model, A =
{Ais.1|L, S, D} (for simplicity, we use A; s ; to represent A (s, 1,D)). First, we construct a structure
of Y’ by factoring it over timeline and mark space in the same way as the trained model, so that
dynamics can be matched. Finally, the likelihood of Y’ can be written as

[p*S1

d L .
Pr(Y/|A) o l_[ l_l (Ai’s’lAT*)m;le—ﬂi,s,lAT*’ (8)

i=1 ]=1 s=1

»

where p* = |Y’|/(Ar*S) is the progress level of Y.

Since the length of m.t.s. can be different, given an ongoing testing m.t.s., we may not know
when it will be finished. Therefore, we need to “guess” the “right” progress level of it first. Then
we can apply our model appropriately. This is an important merit of our approach. Algorithm 1
shows the detail of how we compute p*. At the beginning, we need to identify the possible range
of Az. After that, we estimate the minimum number of segments for the testing m.t.s. Y’. Finally,
we evaluate the likelihood and provide the estimation of Az*.

Discussions: We notice that many existing techniques such as the hidden Markov model
(HMM) could also be adapted to the 3D action recognition problem with partial observations.
However, compared to the existing methods, the proposed DMP model has the following advan-
tages: First, the marked point process has been shown as a good fit for characterizing the discrete
multivariate time-series data such as 3D human actions, which will be further validated in the
experiments. Second, different from HMM, which is a generative model and trains one model for
each class, the proposed DMP model could learn a discriminative classifier that is more suitable
for the recognition tasks.
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ALGORITHM 1: Guess the Progress Level p*

(1) Find the possible range from training set: Let Aty = min{|X;|/S:j € {1,...,n}}, Atpax =
max{|X;|/S:j€{1,...,n}, Then, tp = [ATmin, ATmax].

(2) Determine the minimum number of segments: S’ = min{[|Y’|/A7r] : At € 7p}, which ensures that
different guesses of At will be evaluated with the same number of segments, so that the likelihoods
computed in step 3 will be comparable.

(3) Evaluate the likelihood:

d L S, IAT) s, l AT)
Ar* = Ais. .
=g [ ]]500—
(4) Estimate the progress level: p* = |Y'|/(AT*S).

ALGORITHM 2: Temporal Dependency Model Pr(Y’|®), Prediction of Partial Matching

—Assume Markov model of order k. Let the input discrete event stream be sequence x.
—For each symbol x; that is in sequence x on place i:
—Update probability of sequence y, y = [x;_g . .. x;].
—Let y be a symbol in the target alphabet.
—Update all relevant structures in DMP.
—Perform the rest of the needed steps required in DMP.
—Output x; uncoded and skip to the next symbol.
—Add shortened symbol to the alphabet.

The DMP model is very efficient for two reasons. First, the parameter estimation of DMP mainly
depends on the maximum log-likelihood estimation, which could be solved efficiently. The time
complexity is about O(dLN), where d is the dimension of the sample, L is the number of levels, and
N is the sample size. Second, the representation of the DMP model is very simple and compact. In
this way, the high-dimensional 3D human action sequences could be represented as a very compact
and low-dimensional representation, which leads to efficient testing speed in practice.

4.2 Temporal Dependency

For 3D human actions, the corresponding m.t.s. observation always has strong correlations among
features (human joints). For instance, in the execution of a particular human action, a few joints
will change their angles immediately after another few joints rotate to some degree according
to the underlying cognitive “recipe” of that action. The identification of temporal dependencies
among features allows us to utilize these causal patterns for early recognition, which improves
the reasoning capability of our model. As a complement to the proposed temporal dynamic model,
we introduce the temporal dependency component to DPM and propose the DMP+PPM model.

To implement the notion of temporal dependency, we first generate representative discrete fea-
ture sequences from continuous m.t.s. observations by sampling the feature ID according to the
rate of occurrence (intensity function) of features at different time divisions (segments), which
results in a discrete feature sequence. After sampling a significant number of discrete feature se-
quences, the temporal dependency relationship among features will be well preserved in the sam-
pling set. Then the task of finding temporal dependencies becomes a problem of mining sequential
patterns.
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Specifically, let E = {e’ : i = 1,...,d x L} be the set of features.> And Dy = {ay, ..., ad,} consists
of v times sampling according to A. For instance, d, = {eg}le, ref{l,...,v}is a sampled feature
sequence, which means at the jth segment, we sampled one feature e] € E. We can easily notice
that a; € E*, |a;| = S. Specific sampling probability of each feature at a particular time division

(segment) can be computed according to
Ae,s

Ze’eE Ae’,s .

Given the sampled feature sequence set, now the goal is to learn a model ® = {¢(e|h) : h €
E*, e € E}, which associates a history h with the next possible feature e. We call function ¢(e|h) the
next event probability function. If we define the history at the jth time segment of feature sequence
a' as the subsequence h;j(a’) = {e}’: lj < S}, then the log-likelihood of feature sequence @', given a
temporal dependency model @, can be written as

©)

Proample (event = e[segment = s) =

S
Pr(a'|®) = Zlogqﬁ(e;ﬁmj_l(ai)). (10)
j=1
Given an ongoing testing m.t.s. Y’ anga trained model, ® = {¢(e|h) [DA}. We can sample feature
sequence set from Y’ in the same way, Dy, = {bi,...,by,). Then, the likelihood of Y is
Pr(Y'|®) < ) Pr(b;|®)). (11)
i=1

In terms of specific implementation, we adopt the variable-order Markov model (VMM) (Be-
gleiter et al. 2004), which is a category of algorithms for prediction of discrete sequences. It can
capture both large- and small-order Markov dependencies. Therefore, it can encode richer and
more flexible temporal dependencies. This can be done efficiently by the prediction by partial
matching algorithm (Cleary and Witten 1984), which is an adaptive statistical data compression
technique that uses a set of previous symbols in the uncompressed symbol stream to predict the
next symbol in the stream. Algorithm 2 shows the details of this process. It basically shows the
standard procedures of the conventional PPM algorithm, which was originally used for natural
language text data compression. In our scenario, the alphabet means the set of events, and the
basis algorithm is actually the proposed DMP model described in Section 4.1. We use DMP+PPM
to denote our approach with a temporal dependency module.

5 EXPERIMENTAL STUDIES

In this section, we present a comprehensive evaluation of our methods (DMP and DMP+PPM) on
five 3D action datasets.

5.1 Datasets

We utilized five real-world datasets: CMU Human Motion Capture dataset (CMU), MSR Action 3D
dataset, MSR 3D Action Pair dataset (Li et al. 2010), UT Kinect-Action dataset (Xia et al. 2012),
and NTU RGB+D dataset (Shahroudy et al. 2016). The following details the collection and pre-
processing of the five datasets. To evaluate the performance of our method on 3D human action
recognition by using different types of raw features, we employ the body angle features for the
CMU Motion Capture dataset and 3D body joint positions for the other datasets.

SWith multilevel-discretized representation, the total number of features becomes d x L. The DMP model can be rewritten
asA = {A¢ sle €E s € {1,...,S}} for convenience.
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(a) CMU Motion Capture dataset

MSR Daily Activity Dataset

Raw video

MSR Action Pair Dataset

Raw video Pickup/Put Down Push/Pull Wear/Take off Stick/Remove
(b) MSR Action/Action-Pair 3D dataset

Walk Stand up Sit down Pick up Carry
(¢) UT Kinect-Action Dataset

Fig. 2. Evaluation datasets.

The CMU Motion Capture dataset was composed of dozens of actions performed by over 100
subjects. In our experiment, we choose the MoCa data of nine common action classes performed by
a diverse number of subjects, which consists of 10 samples per class on average (total 91 samples)
with an average duration of 839 frames. The nine action classes include walk, run, jump, pick up,
sitting on a motorcycle, cartwheel, boxing, chicken dance, and golf swing. The human body is defined
by a full body model of 34 bones with hierarchical structures. The action is specified by m.t.s.
observations on motion angles of body bones, which describe the dynamic relationships between
bones, as well as the global motion of the full body. See Figure 2(a) for the visualized body model
and the definition of hierarchical structure. The original full-body degrees of freedom (DOFs) are
62. However, to reduce the computational burden, we discard some unimportant joint angles, such
as fingers, thumbs, toes, and so forth, in the experiments. Finally, we select 19 body angles, which
cover the DoFs of the humerus, radius, femur, tibia, and upper back. We evaluate the classification
accuracy by using the “leave one out” strategy on this dataset.
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The MSR-Action 3D dataset (Li et al. 2010) is a 3D action dataset of depth information col-
lected from a depth camera. This dataset contains 20 actions: high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap, two hand
wave, sideboxing, bend, forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick
up, and throw. Ten subjects perform each action three times. The frame rate is 15 frames/second
and resolution is 640 X 480. The dataset in total has 567 action samples. Some examples of the
depth images are shown in Figure 2(b) in the first row. Three channels are recorded: depth maps,
skeleton joint positions, and RGB video. In our experiments, we use skeleton joints as features,
since our approach prefers features with strong semantic meaning so that correlations between
variables are more distinctive for classification. The first five subjects are selected for training, and
the other five subjects are used for testing.

The MSR-3D Action Pair dataset (Li et al. 2010) contains depth sequences of human-object
interactions. The dataset contains six different pairs of actions: pick up a box/put down a box, lift
a box/place a box, push a chair/pull a chair, wear a hat/take off a hat, put on a backpack/take off a
backpack, and stick a poster/remove a poster, and in total has 370 videos. As in MSR Action 3D, each
action is performed by 10 different subjects 3 times. Videos of five subjects are used for testing, and
the other five subjects are used for training. Example frames are displayed in Figure 2(b) in the sec-
ond row. As with the MSR-Action 3D dataset, we also use the skeleton joint as time-series features.

The UT Kinect-Action dataset (Xia et al. 2012) contains 10 different types of human actions
in indoor settings: walk, sit down, stand up, pick up, carry, throw, push, pull, wave, and clap hands. A
single stationary Kinect is used to capture both RGB images and depth maps. Ten subjects perform
each action 2 times, resulting in a total 200 action samples in this dataset. Example frames, RGB
images, and depth maps are displayed in Figure 2(c). The skeleton joints of each action video are
employed as features. One hundred action samples are used for training, and the rest of the samples
are used for testing.

The NTU RGB+D dataset (NTU) (Shahroudy et al. 2016) is currently the largest action recog-
nition dataset with high-quality skeletons. It contains 56,880 sequences (with 4 million frames)
of 60 classes, including cross-subject and cross-view settings. In this article, we only consider the
cross-subject setting. Each person has 25 joints. We apply a similar normalization preprocessing
step to have position and view invariance (Shahroudy et al. 2016). Since several baselines are very
time consuming, it is impractical to compare the performance on the full dataset. In our experi-
ments, we randomly select 1,200 sequences (i.e., 20 sequences per class) to create the dataset for
training and testing,.

5.2 Performance Comparison

We compare our algorithms of m.t.s. early recognition (DMP and DMP+PPM) with existing alter-
natives that we discussed in Section 2, including 1NN with DTW (INN+DTW) as in Keogh (2002),
the ECTS algorithm as in Xing et al. (2009), multivariate shapelets detection (MSD) as in Ghalwash
and Obradovic (2012), and HMM (Ghalwash et al. 2012). Table 2 summarizes the four baselines used
in the experiments.

Different from traditional classification tasks, for early recognition, we focus on the predictive
power of each method. An early classifier should use an observation ratio as small as possible to
make an accurate prediction. To evaluate this, we do classification along the progress of time series,
and predict the class label at different progress levels (observation ratio) of time series. Specifically,
we use 5% of full m.t.s. duration as an interval of generating a new prediction result.

Model Construction. For the CMU Motion Capture Data, we construct a DMP model by split-
ting mark space into 10 levels (L = 10) and dividing the timeline into 20 pieces of equal-length
segments (S = 20). To construct a DMP+PPM model, we train an order-3-bounded PPM (O = 3)
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Table 2. Summary of the Four Baselines Used for Quantitative Comparison with Our Algorithm

| Methods | Rationale | Description
One-nearest- The state-of-the-art The dynamic time warping (DTW)-based
neighbor DTW | time-series distance measurements between test and
(INN+DTW) classification algorithm | training time series are computed for use in
the INN classifier. For the m.t.s., the overall
distance is measured as the average of the
u.t.s. distances for all components.
Early An extension of INN The MPL (Minimum Prediction Length) for

Classification on
Time Series

classifier to achieve
early classification

a cluster of similar time series are computed
first. At the testing phase, the learned MPLs

pattern recognition

(ECTS) are used to select the nearest neighbor from
only “qualified” candidates in terms of MPL.
For the m.t.s., the overall distance is
measured as the average of the u.t.s.
distances for all components.
Multivariate An extension of Multivariate shapelets are extracted using a
Shapelets time-series shapelets to | sliding-window-based strategy. These
Detection (MSD) | achieve early shapelets are then pruned according to the
classification weighted information gain.
Hidden Markov | An effective statistical | The HMM is selected as a representative of
Model (HMM) model for temporal generative-model-based methods. A model

is trained for each class. Decisions are based
on likelihood ranking.
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Fig. 3. Performance comparisons on three datasets (see text for detailed discussions). In each figure, the
vertical axis is the classification accuracy averaged over all classes, and the horizontal axis is the observation
ratio, which can be viewed as the normalized timeline ((0,T] — (0, 1]).

first, then do 100 times sampling (w = 100) of feature sequences for each m.t.s. at the testing phase.
For the MSR Action 3D and 3D Action Pair datasets, we set L = 12, S = 20, O = 3, and w = 100.
For the UT Kinect-Action dataset, we set L = 8, S = 20, O = 2, and w = 100.

Results. Figure 3 summarizes the quantitative comparison between our methods and four base-
lines. These graphs help us make the following observations:

(1) Our algorithms significantly outperform all the compared methods in most cases and
achieve high prediction accuracy over different levels of observation ratios. In terms of
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(3)

Table 3. Performance Comparisons on MSR 3D Action Pair
Dataset (Percentage as Observation Ratios)

Methods 20% | 40% | 60% | 80% | 100%
MSD 0.17 | 035 | 0.44 | 0.56 | 0.62
INN+DTW 0.21 | 0.38 | 0.48 | 0.62 | 0.74
HMM 0.31 | 036 | 0.59 | 0.72 | 0.76
ECTS 0.27 | 044 | 0.62 | 0.65 | 0.77
DMP (Ours) 0.38 | 049 | 0.67 | 0.72 | 0.82
DMP+PPM (Ours) | 0.34 | 0.52 | 0.67 | 0.71 | 0.79

Bold font denotes the highest prediction accuracy in each setting.

Table 4. Performance Comparisons on NTU RGB+D Dataset
(Percentage as Observation Ratios)

20:15

Methods 20% | 40% | 60% | 80% | 100%
MSD 0.18 | 0.25 | 032 | 0.39 | 0.46
INN+DTW 0.21 | 0.29 | 0.42 | 0.52 | 0.58
HMM 0.20 | 0.26 | 0.43 | 0.56 | 0.61
ECTS 0.25 | 0.30 | 0.45 | 0.53 | 0.65
DMP (Ours) 0.29 | 037 | 0.50 | 0.63 | 0.70
DMP+PPM (Ours) | 0.31 | 0.38 | 0.54 | 0.60 | 0.72

Bold font denotes the highest prediction accuracy in each setting.

full-length classification (at observation ratio 100%), INN-DTW is the most comparable
one to ours, which demonstrates its robustness as the state-of-the-art method for time-
series classification. At early stages of observation (<30%), MSD and ECTS can outperform
INN-DTW to accomplish better early classification due to their designs on utilizing early
cues. As a latent state model, HMM is relatively less dependent on full-length observation.
Table 3 and Table 4 show detailed comparisons of six methods on the MSR 3D Action Pair
dataset and the NTU RGB+D dataset. DMP and DMP+PPM achieve better results than
other baselines.

Each type of 3D action data has different predictability, which means the discriminative
segments of m.t.s. may appear at different stages of time series. As illustrated in Figure 3,
we achieved near-optimal classification accuracy at the observation ratio of 40% in the
CMU motion capture data, and 60% in the MSR 3D action data. Figure 4(a) shows the
corresponding detailed results in a confusion matrix in CMU motion capture data when
the observation ration is 40%. Figures 4(b) and 4(c) show the confusion matrices on the
MSR 3D Action Pair dataset and the UT Kinect-Action dataset, when the observation ra-
tios are 60% and 50%, respectively. We can observe that in these cases, our method clearly
achieves good performance with certain earliness. In addition, better earliness and recog-
nition accuracy are observed on the Motion Capture dataset, and the reason might be that
this dataset is relatively cleaner than depth camera data, where each feature dimension
exactly corresponds to a particular joint in the human body model shown in Figure 2.
We have a few interesting observations that are reasonably in accordance with our do-
main knowledge. In Figure 5(a), we present detailed performance of our approach over
nine different action classes in the CMU Motion dataset. The action “pick up” is difficult
to be recognized at early stages, because it is executed by first walking to the object, then
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Fig. 5. Detailed results (a) and model parameter analysis (b and ¢) on CMU Motion Capture dataset.

picking it up. The component subaction “walking to object” makes it confusing with the
class “walk.” Another component subaction, “crouching to pick up object,” makes it con-
fusing with the class “jump.” In the UT Kinect-Action action, we also observed several
failure cases that involved the confusion of “pick up” and “pull.” One possible reason is
that the DMP model only uses L levels to characterize the complex actions, while L is a
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relatively small number. As a result, some detailed information might be lost after such a
compression. However, lots of details might be necessary to distinguish some actions that
appear similar at the early stage.

(4) Temporal dependency among variables is important for early stages of recognition, by
comparing the performance of DMP and DMP+PPM from Table 3. On the CMU Motion
dataset, two algorithms achieve comparable performance. On the MSR Action 3D dataset,
DMP+PPM performs better than DMP in most cases. Notably, when the observation ra-
tio is 20% or 40% (i.e., very early recognition), DMP+PPM improves the accuracy of DMP
by over 6%. It demonstrates that PPM helps incorporate the temporal dependency infor-
mation for effective early recognition. On the MSR 3D Action Pair dataset, DMP+PPM
achieves higher accuracy than DMP when the observation ratio is 40%, but lower accu-
racy when the ratio is 20%. This might be due to the complexity of actions in the 3D Action
Pair dataset. In other words, a very short observation might not be sufficient for predicting
the complex actions in this scenario.

(5) Inaddition, we also compare our algorithm with the Moving Pose (MP) (Zanfir et al. 2013),
which is a fast nonparametric model for early recognition. On the MSR Action 3D dataset,
MP achieves accuracies of 43% and 74% when the observation ratios are 20% and 40%,
respectively, while our algorithm DMP+PPM achieves 54% and 69% in these two cases, as
shown in Table 3. Compared with MP, our algorithm is more suitable for recognizing 3D
human actions at the very early stage.

5.3 Model Parameters

To show the impact of model parameters on the results, we present Figure 5(b) and Figure 5(c) as
illustrations of two key parameters in our approach: one is the number of mark-space levels L;
the other is the sampled event stream number w. Figure 5(b) shows the trend of performance im-
provement with increasing number of mark-space levels, which suggests that this dataset prefers
a more detailed discretization of mark space.

Figure 5(c) proved our claim that a “sufficient” number of sampling of discrete event streams will
preserve most of the sequential pattern information. Also, the “sufficient” time is not necessarily a
very big number. As shown in the figure, a relatively small number (100) of samplings can achieve
near-optimal performance on the CMU Motion Capture dataset.

5.4 Time Efficiency

Since our goal is to identify the 3D actions quickly before we observe the full length of actions,
the algorithm efficiency becomes very important. All previous work (Xing et al. 2009, 2011;
Ghalwash and Obradovic 2012) consists of extensions of traditional distance-based approaches,
which are computationally too demanding. However, in many cases, the practical merit of early
recognition methods lies in a quick and accurate recognition. Thus, another important advantage
of our algorithms is the time efficiency compared to other alternatives.

Figure 6 shows the runtime comparison (per 100 samples) at the testing phase of each algorithm.
All methods are tested on a 2.4GHz four-cores workstation with 24.0GB memory. Both of our
algorithms achieve better time efficiency and are more than one order of magnitude faster.

6 CONCLUSION

Action recognition is an important research study of human motion analysis. In recent years,
3D observation-based action recognition has been receiving increasing interest in the multimedia
and computer vision community due to the recent advent of cost-effective sensors, such as depth
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Fig. 6. Time efficiency comparison. Since the time expenses of different methods are not in the same order
of magnitude, we use logarithmic scale to make them visible at the same time.

camera Kinect. This work goes one step further, focusing on early recognition of ongoing 3D
actions, which is beneficial for a large variety of time-critical applications.

In this article, we propose a novel approach for early recognition of 3D action data by mod-
eling two types of temporal patterns: temporal dynamics and temporal dependency. The major
contributions include a dynamic marked point process model for representing m.t.s. and a time-
dependency model prediction by partial matching to characterize the temporal dependency re-
lationships among multiple feature dimensions. We have empirically shown that our approach is
superior in the early recognition task for 3D actions in terms of prediction accuracy. Our approach
does not assume that all the action samples have the same length of duration, but it relies on the
segments of different progress levels to be roughly matched among samples in the same class.

In our future work, we would like to consider both the spatial and temporal information when
modeling the 3D human actions with marked point process. In addition, we will extend this model
to more general cases, where more complex intensity functions can be applied to capture the
structure of data within different domains.
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