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Visual Representation and Classification by

Learning Group Sparse

Jun Li

Abstract— Deep stacking networks (DSNs) have been success-
fully applied in classification tasks. Its architecture builds upon
blocks of simplified neural network modules (SNNM). The hidden
units are assumed to be independent in the SNNM module.
However, this assumption prevents SNNM from learning the local
dependencies between hidden units to better capture the infor-
mation in the input data for the classification task. In addition,
the hidden representations of input data in each class can be
expectantly split into a group in real-world classification appli-
cations. Therefore, we propose two kinds of group sparse SNNM
modules by mixing /{-norm and /;-norm. The first module learns
the local dependencies among hidden units by dividing them into
non-overlapping groups. The second module splits the representa-
tions of samples in different classes into separate groups to cluster
the samples in each class. A group sparse DSN (GS-DSN) is
constructed by stacking the group sparse SNNM modules. Exper-
imental results further verify that our GS-DSN model outper-
forms the relevant classification methods. Particularly, GS-DSN
achieves the state-of-the-art performance (99.1%) on 15-Scene.

Index Terms—Deep learning, stacking network,

representation, image classification.

sparse

I. INTRODUCTION

EEP stacking networks (DSNs) have received an increas-

ing attention over the past five years due to its success
in speech recognition, image classification and information
retrieval [5], [8], [9]. The DSN architecture is built on simpli-
fied neural network modules (SNNM) [6]. SNNM constructs
a non-linear mapping from an input layer to a hidden layer by
using a lower-layer weight matrix W and a sigmoid activation
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function, and the hidden layer is linearly mapped to an output
layer by a upper-layer weight matrix U. Learning U could be
carried out necessarily involving large-batch training since it
can be formulated as a convex optimization problem with a
closed-form solution [6]. This provides a reasonable solution
to handle the insurmountable scalability problem when facing
the fast increasing data [8]. Despite DSN’s success in those
tasks, its framework suffers from several drawbacks.

Firstly, the non-linear operation of the hidden layer in
the traditional SNNM module is implemented by only
using the sigmoid function [9]. Sigmoid has a number of
disadvantages although it has been widely applied into neural
network models [36], [41]. For instance, under the slow
training process with random initialization, the parameter
solution may stay at a bad local solution, which leads to a
poor performance [15]. There are several popular types of
activation functions. One is the hyperbolic tangent, which
has been used in deep neural networks. Unfortunately,
the hyperbolic tangent also suffers from the same problems as
the sigmoid function. The other function is the rectifier linear
unit (ReLU), which can be thought of as an exponential
number of linear models that share parameters since N ReLU
units can create 2V regions on a surface of a hypersphere!
[38]. Moreover, ReLU often trains faster and is quite useful
for image classification and information retrieval [16], [33].
However, ReLU is non-differentiable at zero. To investigate
whether ReLU hurts optimization, a smooth activation
function, soft-plus soft(a) = log(1 + €%), is also considered.

Secondly, sparse representation plays a key role in the
architecture of many neural networks [33]. Sparsity can
typically be obtained by adding sparse regularization to
form the objective function [30]. The sparse regularization
allows the neural networks to be trained on data sets with
limited size without severe over-fitting [12]. Moreover,
Thom et al. [47] proved that in a single hidden layer neural
network, sparse activity (and sparse connectivity) can improve
classification capabilities by using a sparseness-enforcing
projection operator (activation function or transfer function).
Furthermore, there exists a sparse activation phenomenon in
neuroscience because it has more than 90% silent neurons,
which are not activated [42]. However, the conventional
SNNM module does not encourage the sparse representation.

Thirdly, hidden units without any connections in the SNNM
module result in independent hidden representations [21].
However, this is not the case in real-world applications.
For example, the connection weights among hidden units

lSuppose the hypersphere is at least N-dimensional.
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(1) Architecture of basic DSN.

Fig. 1.

(2) Architecture of GS-DSN stacked on GSNM-1.

(3) Architecture of GS-DSN stacked on GSNM-2.

Illustrations of deep sacking models. (1) shows the architecture of basic DSN, which forms the input for the higher module by using the original input

and the outputs of all the lower modules [9]. (2) plots the architecture of GS-DSN stacked on GSNM-1, which divides the hidden units into non-overlapping
groups. (3) illustrates the architecture of GS-DSN stacked on GSNM-2, which splits the hidden representations of every class into a group. In fact, (2) and (3)
indicate that GSNM-1 splits the number of hidden nodes into subsets, while GSNM-2 splits the dataset into subsets. The stacking operations of GS-DSN
stacked on GSNM-1 and GSNM-2 are exactly the same as that for the basic DSN.

in neural networks (e.g. deep Boltzmann machines [41] and
recurrent sparse auto-encoders [40]) are used to describe
the dependence among the hidden units; there is also a
function between horizontal connections in the primary visual
cortex (V1) in terms of a prior over natural images [14]. The
resulting states of the hidden units in Boltzmann machines
can exhibit statistical dependencies to better model the input
data [36], [41]. If SNNM directly increases the connections
among the hidden units, then it becomes a recurrent neural
network. But, training the weight parameters in recurrent
neural network is difficult because of the “vanishing/exploding
gradients” phenomenon [3]. Fortunately, promoting local
dependencies among the hidden units without the connections
can be implemented by dividing them into non-overlapping
groups. In the SNNM module, the local dependencies can be
done by using a /1 /l,-norm upon the outputs of hidden units
for classification tasks, also known as Group Sparse SNNM
Module-1 (GSNM-1).

Lastly, there is a desired characteristic that the represen-
tations are similar within-class but diverse between-class for
classification tasks [2], [20], [54]. Unfortunately, it is difficult
to use GSNM-1 to capture this characteristic since it cannot
increase diversity between-class. To learn the representations
with the characteristic in the SNNM module, we use [»
regularization to penalize the representations of images in
the same class, and utilize /; regularization to compete with
representations of images in different classes for increasing
diversity between-class. In the SNNM module, therefore,
the hidden representations of different classes can be split
into different groups [20], [59] by using [; /[ regularization,
called as Group Sparse SNNM Module-2 (GSNM-2).

This paper uses Group Sparse Deep Stacking Networks
(GS-DSN) for image classification. In Fig. 1 (2) and (3),
we illustrate the modular architectures of two kinds of
GS-DSN constructed by stacking three complete blocks. The
two kinds of GS-DSN are obtained by respectively stacking
the GSNM-1 and GSNM-2, which are performed by adding
the group sparse penalty (/1/[» regularization) into the SNNM
modular architecture. In GSNM-1 and GSNM-2, we consider

three activation functions,? the ReLU function, the soft-plus
function, and the sigmoid function. The proposed GS-DSN
has the following advantages:

1) Unlike other sparse coding techniques (e.g. LLC [53]
and LC-KSVD [25]), GSNM-1 and GSNM-2 can
directly learn the projective dictionary matrix, which
results in a quick inference since the sparse represen-
tations are easily computed by only using a matrix
multiplication and a non-linear activation function.

2) Compared with the SNNM Module, the hidden units in
GSNM-1 can capture their the local dependencies by
dividing them into non-overlapping groups. In GSNM-
2, the hidden representations within different classes can
be split into separate groups for learning group sparse
representations of samples in each class. GSNM-1 and
GSNM-2 are used to build GS-DSN, which still retains
the scalable structure of DSN.

We perform several experiments on Extended YaleB, AR,
15-Scene, and Caltech101 datasets to demonstrate the effec-
tiveness of GS-DSN for image classification. Experimental
results further verify that our GS-DSN model achieves better
recognition accuracy than other benchmark and similar meth-
ods. It is important to note that we get a 99.1% classification
result on the 15-Scene dataset.

This paper is a significant extension of our conference pub-
lication [31], which only investigates hidden units divided into
non-overlapping groups, and uses a simply stacking operation,
which forms the input for the higher module by using the
original input and the output of the lower module [7], [21].
In contrast, we consider another stacking scheme, where the
input of higher module combines the raw data with outputs
of all lower modules in Fig. 1. We also study another kind of
group sparse modules in this extension shown in Fig. 1 (3).
It splits the hidden representations of every class into a
group. Extensive experimental results demonstrate in more

2According to the previous discussions in the second paragraph, soft-plus
is used to verify the advantages of ReLU, and tanh suffers from the same
problems (such as quite slow convergence, and poor results) as the sigmoid
function. Thus, we consider ReLU, soft-plus, and sigmoid.
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comparative studies. In addition, we discuss the convergence
of the ReLU activation function in supplementary material (I).

The rest of this paper is organized as follows: Section II
reviews the sparse representation and its applications in image
classification. In Section III we review the Deep Stacking
Network. We study two kinds of group sparse modules, which
are then stacked into GS-DSN in Section IV. Experiments are
presented in Section V to demonstrate the effectiveness of the
proposed method for image classification. Finally, we conclude
this paper in Section VI.

II. RELATED WORK

In this section, we will review deep learning and sparse rep-
resentation since they have been successfully and extensively
used in image classification tasks.

Deep learning methods [12] aim to learn feature hier-
archies with features from higher levels composed from
lower level features (e.g. deep convolutional neural net-
work [29], deep belief networks [18], stacked denoising
autoencoders [37], [49] and DSN [7]). In particular, the con-
volutional neural network [27] and the deep convolutional
activation feature (DeCAF) [10] have achieved competition-
winning numbers on large benchmark datasets, such as
ImageNet. Recently, Hybrid-convolutional neural network
(Hybrid-CNN) [57] was used to learn deep features for scene
recognition tasks by combining the training set of a new scene-
centric dataset (with over 7 million labeled pictures of scenes)
and the training set of ImageNet. In this paper, we focus on
another deep model-DSN, which stacks many layers of the
SNNM modules [7].

The DSN architecture was inspired by a stacking
scheme [51] that worked by learning a high-level classifier
to combine the predictions (outputs) of multiple base-level
classifiers. Sigletos et al. [43] saw that the stacking scheme
was consistently effective in the context of information extrac-
tion, performing better than the best base-level classifiers.
The success of the stacking scheme arose from its ability to
harness the diversity in the predictions of base-level classifiers.
DSN was previously called as a Deep Convex Network or
DCN [7] to highlight its convex nature in the principal learning
algorithm for learning the deep networks. Recently, DSN has
also been extended to a tensor formation named Tensor-DSN
(T-DSN) [21] to capture the higher-order relationships among
the pixels in the image data. However, DSN and T-DSN cannot
learn group representations from natural images.

Besides deep networks, many sparse coding methods are
applied to image classification. Sparse coding represents an
input signal image by a sparse linear combination of elemen-
tary atoms from an over-complete dictionary [11]. By employ-
ing the entire set of training samples as the dictionary,
Wright et al. [52] exploited discriminative sparse coding for
face recognition. By incorporating label information, the label
consistent K-SVD (LC-KSVD) [25] and the discriminative,
structured low-rank sparse representations (DSLRR) [56] were
proposed to learn an image representation for natural image
classification. However, in many real-world problems, dictio-
nary elements (or representation coefficients) are related in
some complex manner. For example, in order to use the same
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dictionary words to encode all images of the same class,
Bengio et al. [2] proposed group sparse coding by using
l1/lp-norm regularization allowing the representation coeffi-
cients of images in the different classes to be naturally desig-
nated between different groups [20], [59]. Learning structured
dictionaries was implemented by employing a tree-structured
sparse regularization to exploit possible relationships among
dictionary atoms [22]. Kim et al. [26] proposed tree-guided
group representation coefficients for estimating such structured
sparsity under multi-response regression, and Szlam ef al. [46]
presented a group structured sparse coding (GSSC) that used
a tree structure for inference in an object recognition system.
Moreover, Chen et al. [4] proposed graph-guided representa-
tion coefficients for structured multi-task regression.

The conventional sparse coding models often spend expen-
sive computation time in the inference process (e.g. calculating
the sparse representation coefficients), even if they employ the
labels to optimize discriminative and compact dictionaries [1],
[25], [56]. In contrast, our GSNM-1 and GSNM-2 (the basic
modules of GS-DSN) can learn group sparse representations
and quickly calculate the hidden representation by only using
a matrix multiplication and a non-linear activation function.
In Section V, we will show that our model outperforms
relevant classification methods.

III. DEEP STACKING NETWORK

The architecture of DSN was firstly proposed in the litera-
ture [7], and shown in Fig. 1 (1). It was constructed by stacking
the basic SNNM modules. We mathematically describe the
DSN architecture as follows.

Let a target matrix be denoted as T = [t,---,
ti,---,ty] € RCXN, where t; = [f1;,---,tji, -, tCl‘]T,
C is the number of classes (labels), and N is the num-
ber of the training samples. Let an input data matrix be
denoted as X = [X{, -+, Xi, - ,Xy] € RP*N where x; =
[x1i, -~ ,xpil¥, D is the dimensionality of input
vector. In the basic SNNM module, the number of the units is
denoted by L in the hidden layer. Let W € RP*L be lower-
layer weights from the input layer to the hidden layer. Let
U € RL*C be upper-layer weights from the hidden layer to
the upper-layer. The output of the upper-layer is computed by
Y = U'H and H = a(WTX) € RLXN where the sigmoid
function is o (a) = 1/(1 4+ e~%) [6], [7]. The weight matrices
U and W are trained by minimizing the following square error

(1)

’xjiﬂ"'

: T 2 2
{El‘gfdsn = [[U H - T|g + a|[Ulg,

with a regularization parameter a. Clearly, by using the ridge
regression, a closed-form solution of U is written as

U= HH? + o)~ 'HTT. )

To minimize the square error in (1) by a gradient descent
algorithm [7], [32], the gradient of W in the SNNM module
is derived as

af dsn

oW
where a matrix of all ones is denoted by 1, and a element-wise
multiplication is denoted as o.

—2X [HT o(1—-H")o (UUTH - UT)T] . 3
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The closed-form solution (2) accentuates the “convex” role
to train U in each SNNM module [6]. Many SNNM modules
are often used to form a deep model by a stacked operation.
In particular, the input units of a higher SNNM module can
be constructed by cascading the raw input and the output
units of the lowest SNNM module. DSN has recently been
extended to T-DSN by using two parallel branches of hidden
representations, which combine them bi-linearly to produce
the predictions [21]. Moreover, T-DSN still retains the com-
putational advantage of the DSN in parallelism and scalability
during training all parameters.

IV. GROUP SPARSE DEEP STACKING NETWORK

GS-DSN, described in Fig. 1 (2) and (3), is a group sparse
variant of DSN. The stacking operation of GS-DSN is the same
as DSN [9]. The general paradigm uses the original input and
the outputs of all the lower modules to construct the expanded
“input” of the higher module. Our modular architecture in
GS-DSN is different from that in DSN. We propose two
group sparse modular architectures (GSNM-1 and GSNM-2)
in GS-DSN, while DSN only considers a simple SNNM
modular architecture (SNNM). The first one divides hidden
units into non-overlapping groups and the second one splits
hidden representations of samples of different classes into
different groups. GSNM-1 and GSNM-2 are finally stacked
into GS-DSN.

The output of the upper-layer is calculated by Y = UTH,
and the output of the hidden layer (hidden representation) is
computed by

H=¢W'X) e REXN, “)

where hj; denotes a state of j-th hidden unit of the i-th
sample, ¢(a) is an activation function (e.g., sigmoid, soft-plus,
and ReLU), N is the number of the training samples, and L
is the number of the hidden units.

A. GSNM-1: Divide Hidden Units Into
Non-Overlapping Groups

Let a set of all hidden units be denoted as
H = {1,2,---,L}. GSNM-1 evenly and sequentially
divides H into G groups, where G is the number of groups.
Let the g-th group be denoted by I'y, where H = ngl I,
and Vg T, = @. So, H = [Hr, .- Hr,. - Hrg],
where Hr, . = [h);] (j € Ty, 1 <i < N) are the hidden
representations that belong to the g-th group I'y. For example,
given L = 500 and G = 5, we have H = |JJ_; T, =
{1,2,---,100} J{101, 102, - - - , 200} | J{201, 202, - - - , 300}
J{301, 302, ---,400} (J{401,402,---,500} and H =
[Hl"l,:Hl"z,: e Hl"5,:]'

The weight matrices U and W are trained by minimizing
the regularized squares error

fsasmt = IUTH = T||§ + a||U|If + ¥ (H), Q)

where o and S are the regularization parameters of U and
Y(H), and W(H) is an imposed penalty over H. Typically,
enforcing sparsity on each representation is done by using the

[1-norm as the following form

N
W(H) =D IH., 6)
i=1

where H. ; is the hidden representation given i-th sample.

However, the SNNM module using /; sparse regulariza-
tion cannot capture the local dependencies between hidden
units. To incorporate the local dependencies, the set H =
{1,2,---, L} is evenly divided into non-overlapping groups
I'; for restraining the dependencies within these groups and
competing with each other [36]. Fortunately, a mixed-norm
regularization (I1/l,-norm) can be applied into the hidden
units to achieve group sparse representations. Following the
group sparse representation in [2] and [36], /;/lp-norm is
considered as the following form

G
W(H) = [Hr, [, @)
g=1
where Hr, . = [h);] (j € Ty, 1 <i < N) are the hidden
representations that belong to the g-th group I'.
1) Learning Weights- Algorithm 1: Given the fixed W, H is
uniquely determined. Then, U is easily solved by minimizing
the following square error

ftsm = IUTH = T + Uz, ®)

Clearly, by using the ridge regression, U in (8) has a closed-
form solution, which is same to (2). Then, we have two gra-
dient descent algorithms to train W. First, given a fixed U, W
can be solved by using a gradient descent algorithm [7], [32]

to minimize the following square error
Frasm = IUTH =TI + B (H). ©)

By deriving the gradient, we obtain
0 1
% = 2X[dg (H") o (UUTH - UT)] |
+2pX [dp@T) oW o /H' |, (10)

where the element-wise multiplication and division are
respectively denoted as o and o/, the element-wise gradient
computation is denoted by d¢ (HT)L the gradient of ¢(a) is
denoted as d¢(a), H = [Hrlj;ouHrgj;ouHrG,;], Hrg,; =

(hjil G € Tgol < i < Ny, and hji = /> cr hd )

We mainly consider the sigmoid activation function and
the ReLU activation function. To better analyze the non-
differentiable ReLLU activation function, we also consider its
smooth function, soft-plus or soft(a) = log(1 4+ %) (more
analysis is provided in supplementary material (I)). Then,
d¢(a) is described as

¢(aa) X (1 — ¢(a)), if ¢(a) is the sigmoid;
¢ if ¢(a) is the soft-plus;

dp(a) =1} +e*
I, a>0; i )
0, a<0.’ if ¢(a) is the ReLU.

Y

Note that in this paper, we select a subgradient O for ReLU
because there exist a subgradient set {0, 1} although ReL.U is
non-differentiable at zero.
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Algorithm 1 Training Algorithm of GSNM-1 (or GSNM-2)

1: Input: Parameters 0 = {¢, e, a,(,G}, data matrix X,
label matrix T, and training epochs E.
2: Initialize: index = 0, weights W with small random
initialization.
While indexr < FE and fsgsn1 (Or fsqsn2) > € do
Update H by Eq. (4) given a fixed W,;
Update W by Eq. (14) (or Eq. (21));
index ++;
End While
Return Weight matrix W.

A A

Second, the deterministic relationship between U and W
is used to calculate the gradient of W for faster moving W
towards the optimal points. By plugging (2) into criterion (5),
the square error is rewritten as

fszdsnl = [[[(HHT 4+ «I)"'"HTT]"H — T||%
+al[HHT + o) "HTT |} + A¥(H). (12)

Unfortunately, the gradient of fszdsn1 tends to be complicated
when the regularization of U is used in the function (5)
(i.e. > 0). To simply compute the gradient, we assume
a =03%in Szdml. Similar to [7], we then derive the gradient

2
—af““”l to yield
afsa/’snl T

= 2X [d¢(H
Ly $HT) o[

128X [d¢(HT) oH' o /ﬁT] ,

HHTT)(TH') — TT(TH*)]]
(13)

where H' = H” (HH”)~!, d¢(-), and H are defined in (10).
By using the gradient defined in (10) and (13), the algorithm
then updates W as

fsdsnl

asdsnl FW=W —¢
W b

W=W-—¢ (14)

with a learning rate €. The complete learning process of the
weight matrix is summarized in Algorithm 1.

B. GSNM-2: Split Hidden Representations of Samples in
Different Classes Into Different Groups

In the above subsection IV-A, we use /1//, regularization
to learn the statistical dependencies between hidden units.
However, it is difficult to increase diversity between-class in
GSNM-1 for classification tasks. In this subsection, we use
I> regularization to prevent over-fitting, and utilize /; regu-
larization to obtain diversity between-class. Thus, the [1/l>
regularization can be applied to another group sparse repre-
sentation to enforce the image representations in each class
into a group [2], [20], [59]. The formulation of group sparse
representation is as follows.

Let a set of all samples be denoted by $ = {1,2,--- , N}.
GSNM-2 divides the set 9 1nt0 C groups where C is the
number of categories, ) = U _1 A, ﬂc 1 Ae =@, and A,

3Assuming o > 0. It would become more complicated due to lack of
cancellation of a number of terms [7]. Unfortunately, o = O will lead to
a bad result as there is no regularization issue to prevent U over-fitting.
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is the c-th group. Thus, H = [H. A;; -+ ; H: A -+ s Hoal]
where H.n, = [h;;] (1 < j < L,i € A.) are the
hidden representations corresponding to all samples of ¢
class. In this paper, we select the same number of the
training samples in every class. For example, given a
dataset with 5 classes, we select 20 training samples for
each class. We then have N = 5 x20 =100, § = Ule A =
{1,2,---,20} U{21,22,---,40} J{41,42,---,60} | J{61, 62,
,80} J{81,82,---,100}, and H H.oAHoAy -5
H:,A5]-
Following the group sparse representation [2],
we consider another /1//>-norm as follows

(591,

QH) =) [H. A, ¥,
c=1
where H: A, = [h;,;] (1 < j < L,i € A.) are the hidden
representations corresponding to all samples of ¢ class.
By replacing the ¥ (H) with Q (H), the square error (5) can
be rewritten as

5)

frasnz = IUTH =TI} + a|UlF + 7y Q(H),  (16)

where y is a tuning parameter denoting the weights of the
group sparse regularization term Q (H).

1) Learning Weights- Algorithm 2: Similar to GSNM-1,
the weight matrices U and W can also be trained by using
the gradient descent algorithm [7] to minimize the square
error (16). Given a fixed W, H is uniquely determined, and U
has the closed-form solution in Eq. (2).

Given fixed current U, learning W can be preformed by
minimizing the following two square errors

IUTH — T||3 + y Q(H), (17)

fsdsn2
and
Faignr = AT + o)~ HTTTH - T|}}
+al|HHT + o) 'HTT |2 4+ y Q(H). (18)

Similar to (10) and (13), the gradients of the square
errors (17) and (18) are calculated as follows

fsdsn2 T T T
29X [dng(H )o (UUTH — UT) ]
+2yX [d¢(HT) oH o /ET], (19)
and
fsdan _ T T T T T T
22 0% [d¢(H )o H' (HTT)(TH') — T (TH )]]

127X [d¢>(HT) oH o /ﬁT] ., (20)
where o, o/ and d¢(HT) are defined in (10), H' is defined
in (13), the gradient of ¢(a) is denoted as d¢(a) defined
in (11), H [H:,A1§ R H:,ACQ R H:,AC], H:,AC
(hjil (1 <j<Lji€A)andhji= [> o h5,

By using the gradient defined in (19) (or (20)), the algorithm
then updates W as

of !
€ sdsn2

W=W-— rW=W—¢ fsa”{ 1)

with the learning rate €. The complete learning process of the
weight matrix is summarized in Algorithm 1.
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Algorithm 2 Stacking Algorithm of Our GS-DSN Model

1: Input: Label matrix T, data matrix X, parameters § =
{e,e,a, B,G}, the number of layers K and training e-
pochs E (in this paper F and K are set to 5 and 3,
respectively).

2: Initialize: ¥ = 1 and X' = X.

3: for k< K

4; Train the weight matrix W” of k-th sparse module by
using the Algorithm 1 given X , T, 0 and E;

5:  Given X* and W*, calculate H” by Eq. (4), U” by Eq.
(2) and Y* = (UF)" BF;

6 XM =[xk Y

70k 4+

8: end for

9: return Weight Matrices W*(k =1,--- , K).

C. The GS-DSN Architecture

Two kinds of K-layer GS-DSN are constructed by respec-
tively stacking the GSNM-1 and GSNM-2 modules, which
are described in the above two subsections. In the k-th sparse
module, the input, hidden representations, output, and weight
matrices are denoted as X¥ s HF s Y s WF and UF , respectively.
Given a data matrix X and a label matrix T, k and X' are set
to 1 and X, respectively. Then the generally stacking procedure
of GS-DSN can be described as the following three phases:

1) Learn the weight matrices WX and UF in k-th module
by using the Algorithm 2 (GSNM-1 or GSNM-2) to
minimize the squares error between Y and T.

2) Construct the input data X**! in the k + 1-th module by
cascading the output Y¥ of k-th sparse module and the
input X¥ of the k-th module.

3) Iterate 1) and 2) to build our GS-DSN model.

The optimization of GS-DSN is summarized in
Algorithm 2. Two kinds of GS-DSN with three stacking
modules are illustrated in Fig. 1 (2) and (3). To capture the
group sparse representation information in the data, this paper
proposes GS-DSN, which is performed by penalizing the
hidden unit activations. GS-DSN still keeps the parallelism
and scalability advantages of DSN during training all weight
parameters because of its simple structure.

V. EXPERIMENTS

In this section, we firstly do experiments to confirm the
fast inference of our proposed models. We secondly perform
group sparseness comparison among DSN, GS-DSN(sigm),
GS-DSN(soft) and GS-DSN(relu). We finally demonstrate the
excellent performance of GS-DSN.

A. Datasets

Four popular image datasets (i.e., Extended YaleB, AR,

15-Scene and Caltech101) are described as follows.

« Extended YaleB dataset consists of 2,414 frontal face
images with 38 people. It approximately has 64 images
in each person. We crop and normalize these images to
192 x 168 pixels.

o AR dataset contains over 4,000 color images with
126 people. There are 26 face images taken during two
sessions for each person. There are more facial variations
(e.g., illuminations, and sunglasses) in these images.
We sample a subset from the dataset, which contains
2,600 images from 50 male people and 50 female people,
and crop and normalize them to 165 x 120 pixels.

o 15-Scene dataset consists of 4485 scene images with
15 categories (e.g., office, kitchen, living room, bedroom,
store, industrial). These images are about 250 x 300
resolution, with 200 to 400 images per category.

o Caltech-101 dataset consists of 9144 images from
102 classes (e.g., cars, pagodas, dollars). The samples
from each class have significant shape variabilities. The
size of each image is roughly 300 x 200 pixels, with 31 to
800 images per class.

All four datasets are processed* using the approach pro-
posed in [25]. With a random matrix created by using a
zero-mean normal distribution, we project every image onto
a feature vector with n-dimension in the Extended YaleB
and AR face datasets. Correspondingly, the dimensions of
their random features, which are normalized to [—1, 1], are
504 and 540, respectively. By using a four-level structure
and a 200 SIFT-descriptors codebook, the spatial pyramid
features are calculated from the SIFT descriptors, which are
extracted from patches in the 15-Scene dataset [25]. Moreover,
we reduce these features to 500 dimensions by using PCA. For
the Caltech101 dataset, we use the pre-trained VGG model®
to extract the CNN features with 4096 dimensions, and they
are finally reduced to 2000 dimensions by PCA. Note that
our result on Caltechl101 is 89.0% accuracy, which is less
than 92.3% reported in [44] as the VGG model provided in
MatConvNet® is worse than [44].

We randomly initialize the weight parameters by using a
normal distribution with zero-mean and standard deviation of
0.01. For simplicity, the learning rate € and the parameter o
are selected from {2, 1,0.2,0.15,0.1,0.05,0.02,0.01, 0.001}
and {5,1,0.5,0.3,0.2,0.1}, respectively. In GSNM-1,
the parameter S is selected from {0.1,0.01,0.001, 0.0001,
0.0005,0.00001}, while in GSNM-2 the parameter y is
selected from {0.1, 0.01, 0.001, 0.005, 0.0001, 0.00001}. Both
GSNM-1 and GSNM-2 choose the group number G from
{1,5,10,20, 50}. The selected parameters of all datasets are
provided in supplementary material (II). In all experiments,
the training epochs E, the number of hidden units, and the
number of layers K are set to 5, 500 and 3, respectively. The
left equations in (14) and (21) are selected as the update rules
in Algorithm 1. For each data set, we run the experiments
10 times, with randomly selected training, validation, and
testing data, and report their average recognition results. The
validation data are used to tune the best hyper-parameters for
classification results. Some notation is shown in Table I.

4The pre-processed  data  that is  available for  download
http://www.umiacs.umd.edu/ zhuolin/projectlcksvd.html
5 http://www.vlfeat.org/matconvnet/pretrained/

6http://www.vlfeat.org/matconvnet/
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COMPUTATION TIME FOR A TEST IMAGE ON EXTENDED YALEB DATASET

TABLE I
NOTATION

DSN: DSN with sigmoid

GS-DSN(sigm): GS-DSN with sigmoid
GS-DSN(soft): GS-DSN with soft-plus
GS-DSN(relu): GS-DSN with ReLU

first layer

second layer

third layer

DSN-1

DSN-2

DSN-3

GS-DSN(sigm)-1
GS-DSN(soft)-1
GS-DSN(relu)-1

GS-DSN(sigm)-2
GS-DSN(soft)-2
GS-DSN(relu)-2

GS-DSN(sigm)-3
GS-DSN(soft)-3
GS-DSN(relu)-3

TABLE II

Methods SRC [52] LC-KSVDI [25] | LC-KSVD2 [25]
Average (ms) 20.121 0.531 0.502
Methods DSN [7] S-DSN [31] GS-DSN(sigm)
Average (ms) 0.078 0.070 0.081
Methods GS-DSN(soft) GS-DSN(relu)
Average (ms) 0.089 0.069

B. Fast Inference

GS-DSN is always faster than LC-KSVD and SRC, since
it only computes a projection multiplication and a non-
linear transformation. Based on the discriminative dictionaries,
LC-KSVD use the orthogonal matching pursuit (OMP) algo-
rithm [48] to compute sparse codes. Although OMP can obtain
a fast inference, it still needs many iterative computations.
SRC also solves the /{-minimization problem, which has an
expensive inference. We only select a repetition experiment
on the Extended YaleB dataset in subsection V-D to compute
the time as it is just to verify the fast inference. At testing
time, we compare with SRC, LC-KSVDI1, and LC-KSVD?2 for
inferring a single test sample. As showed in Table II, our
GS-DSN(relu) is 7 times faster than LC-KSVD?2, and is close
to DSN and S-DSN as they have the similar inference method.

C. Group Sparseness Comparisons

Compared to DSN, we present the group sparseness analysis
of GS-DSN with sigm, soft and relu in this subsection. The
effects of a [/l regularization can be interpreted on two
levels: a between-group and a within-group level. On the
within-group level, the /; norm will equally penalize the acti-
vation of all hidden units in the same group for preventing the
over-fitting. On the across-group level, the proposed models
use /1 norm to compete with each other for learning group
sparse representations. In this paper, GS-DSN is implemented
by adding a [;/l, regularization to DSN. The group effects
of GS-DSN are not as obvious as the ones described by
group sparse coding (GSC) [2]. The reason is that GSC
uses the different dictionary words to represent the images
of the different class and easily obtain group coefficients,
while GS-DSN randomly initializes the weights and uses the
[1/ 15 regularization to reinforce the group effects. In addition,
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Extended YaleB dataset.

Fig. 2.

we also show some differences between DSN and GS-DSN in
supplementary material (III).

Similar to the sparseness analysis (sparse group
RBMs) [36], Hoyer’s sparseness measure (HSM) [19]
is employed to measure the sparsity of the representations,
which are trained by GS-DSN(sigm), GS-DSN(soft),
GS-DSN(relu) and DSN. Given a vector y with d dimension,
its HSM is calculated by:

Vd = L i/ Z ¥
N7 '

This measure is calculated in a normalized interval [0, 1].
If the vector y contains more zero elements, then H SM(y)
is closer to 1 and vice versa. Table III shows the sparseness
comparisons on the Extended YaleB dataset. We observe that
GS-DSN(sigm) and GS-DSN(relu) have higher HSM and
higher recognition results. When GSNM-1 is used to do exper-
iments, Table III shows that the average HSM of the three lay-
ers in GS-DSN(sigm) and GS-DSN(relu) are about 0.118 and
0.263, respectively. In contrast, the average sparseness of the
three layers in DSN and GS-DSN(soft) is on average below
0.036. It can be seen that GS-DSN(sigm) and GS-DSN(relu)
can learn much sparser representations. Although we add the
sparse penalties in GS-DSN(soft), HSM is still low because
the soft-plus activation function enforces the negative of output
of hidden units activations to approximate to zeros from
the positive part. soft-plus is not similar to ReLU, which
rectifies the negative activations. If we enforce the sparse
penalties, the classification result is very poor. In the same
way, when GSNM-2 is used to do experiments, there is a
similar observation that GS-DSN(sigm) and GS-DSN(relu)
have higher HSM and recognition results.

HSM(y) =

(22)

D. Results

1) Face Recognition: Extended YaleB is a challenging
dataset because of varying conditions (e.g., illuminations and
expressions), which are shown in Fig. 2. For each class,
we randomly choose 29 images for training, 3 images for
validation and the rest for testing. The validation data are
used to select the parameters. Compared to the extended
YaleB dataset, the AR dataset has more facial variations
(i.e., illuminations, expressions, and facial “disguises”), which
are shown in Fig. 3. For each person, we randomly select
18 images for training, 2 images for validation and the other
6 for testing.

We compare GS-DSN with many state-of-the-art meth-
ods, such as, DSN [7], locality-constrained linear cod-
ing (LLC) [50], label consistent K-SVD (LC-KSVD) [25],
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TABLE III

HSM ON EXTENDED YALEB. WE CHOOSE 15 TRAINING IMAGES PER CLASS, AND THE REST FOR TESTING. IN THE GSNM-1 MODULE THE HIDDEN
UNITS ARE DIVIDED INTO 5 NON-OVERLAPPING SETS, WHILE THE GROUP SIZE FOR GS-DSN ARE 38 IN THE GSNM-2 MODULE SINCE THE
REPRESENTATIONS OF EACH CLASS ARE ARRANGED INTO A GROUP, AND EXTENDED YALEB HAS 38 PEOPLE

layer DSN GS-DSN(sigm) GS-DSN(soft) GS-DSN(relu)
GSNM-1 HSM | Accuracy (%) | HSM | Accuracy (%) | HSM | Accuracy (%) | HSM | Accuracy (%)
G=5 1 0.035 86.8 0.106 86.9 0.004 86.7 0.314 89.7
2 0.039 88.1 0.119 89.3 0.004 88.9 0.237 89.9
3 0.035 89.1 0.128 90.6 0.004 89.5 0.237 91.2
GSNM-2 1 0.035 86.8 0.102 86.7 0.004 86.5 0.297 89.5
G=38 2 0.039 88.1 0.103 88.9 0.003 88.6 0.217 89.7
3 0.035 89.1 0.113 90.2 0.002 89.3 0.225 91.0
TABLE IV

RECOGNITION ACCURACIES ON THE EXTENDED YALEB DATASET BY USING RANDOM FACE FEATURES

Methods Accuracy (%) Methods Accuracy (%) Methods Accuracy (%)
SRC [52] 97.2+0.5 LC-KSVD [25] 96.7 £ 0.2 LLC [53] 90.7+0.3
DSN-1 [7] 96.6 + 0.5 DSN-2 [7] 96.9+ 0.6 DSN-3 [7] 97.4+04
S-DSN-1 [31] 96.9+ 0.4 S-DSN-2 [31] 97.6 +£0.3 S-DSN-3 [31] 97.6 £0.5

GSNM-1 | GS-DSN(sigm)-1 97.6 £0.5 GS-DSN(sigm)-2 97.9+0.5 GS-DSN(sigm)-3 | 98.1+ 0.4
GS-DSN(soft)-1 96.1 + 0.6 GS-DSN(soft)-2 96.2 0.4 GS-DSN(soft)-3 96.2+0.3
GS-DSN(relu)-1 96.7 + 0.7 GS-DSN(relu)-2 96.8+0.5 GS-DSN(relu)-3 96.8 +0.4
GSNM-2 | GS-DSN(sigm)-1 97.3+04 GS-DSN(sigm)-2 97.7+0.5 GS-DSN(sigm)-3 97.7+0.5
GS-DSN(soft)-1 95.8 £0.5 GS-DSN(soft)-2 96.0 + 0.6 GS-DSN(soft)-3 96.1+0.4
GS-DSN(relu)-1 96.7 £ 0.3 GS-DSN(relu)-2 96.7+ 0.4 GS-DSN(relu)-3 96.8+0.3

TABLE V
RECOGNITION ACCURACIES ON THE AR FACE DATASET BY USING RANDOM FACE FEATURES

Methods Accuracy (%) Methods Accuracy (%) Methods Accuracy (%)
SRC [52] 97.5+ 0.4 LC-KSVD [25] 97.8+0.3 LLC [53] 88.7+0.5
DSN-1 [7] 97.6 +0.5 DSN-2 [7] 97.94+0.5 DSN-3 [7] 98.1+0.6
S-DSN-1 [31] 97.9+0.3 S-DSN-2 [31] 98.1+0.6 S-DSN-3 [31] 98.2+0.5

GSNM-1 | GS-DSN(sigm)-1 98.3+0.4 GS-DSN(sigm)-2 98.7£0.5 GS-DSN(sigm)-3 | 98.8+ 0.5
GS-DSN(soft)-1 96.9 £ 0.1 GS-DSN(soft)-2 97.3+0.1 GS-DSN(soft)-3 97.5+0.2
GS-DSN(relu)-1 97.5+0.3 GS-DSN(relu)-2 97.7+0.3 GS-DSN(relu)-3 97.7+0.2
GSNM-2 | GS-DSN(sigm)-1 98.3+0.3 GS-DSN(sigm)-2 98.5+0.2 GS-DSN(sigm)-3 98.6 £ 0.4
GS-DSN(soft)-1 97.2+0.2 GS-DSN(soft)-2 97.5+£0.1 GS-DSN(soft)-3 97.6 £0.2
GS-DSN(relu)-1 97.24+04 GS-DSN(relu)-2 97.6 £0.3 GS-DSN(relu)-3 97.7+0.4

Fig. 3.

AR dataset.

and sparse representation-based classifier (SRC) [52].
Table IV and Table V summarize the recognition accura-
cies on Extended YaleB and AR, respectively. We observe
that our GS-DSN(sigm) has better recognition accuracies
than DSN, LLC, LC-KSVD, and SRC. Table IV shows that
GS-DSN(sigm)-1 and GS-DSN(sigm)-3 stacked by GSNM-1
have better recognition accuracies than LC-KSVD, and

achieve about 0.9% and 1.4% improvement on Extended
YaleB. Moreover, Table V also shows that GS-DSN(sigm)-1
and GS-DSN(sigm)-3 stacked by GSNM-1 also have better
recognition accuracies than LC-KSVD and achieve about 0.5%
and 1.0% improvement on AR. Compared to our conference
results [31], we have 0.5% and 0.6% improvement in Extended
YaleB and AR, respectively.

The learning rate € is chosen to balance the magnitude
of input data. When the value of input data is big, € is
small, and vice versa. a, which is the regularization parameter
of U, is chosen in our given set {5, 1,0.5,0.3,0.2,0.1}. So,
we mainly consider the parameters G and S, which are used
to determine the classification accuracy and the sparseness of
GSNM-1. Classification accuracies with different G and f are
shown in Fig. 4. Given € = 0.1 and o = 0.2 we can get a
good performance when G = 10 and § = 0.001.

2) 15-Scene: The 15-Scene dataset shown in Fig. 5 includes
living room, bedroom, kitchen, highway, mountain etc. For
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TABLE VI
RECOGNITION ACCURACIES ON THE 15-SCENE DATASET BY USING THE SPATIAL PYRAMID FEATURES

Methods Accuracy (%) Methods Accuracy (%) Methods Accuracy (%)
ITDL [39] 81.1 SR-LSR [34] 85.7 DPD [45] 86.0
RSP [23] 88.1 LLC [50] 89.2 BMDDL [58] 96.9
ISPR+IFV [35] 91.1 SRC [52] 96.2 LC-KSVD [25] 97.0
DBDL [1] 98.7 GSSC [46] 82.6 DeepSC [17] 83.8
Hybrid-CNN [57] 91.9 DeCAF [10] 88.0 DSFL+DeCAF [60] 92.8
DSN-1 [7] 96.3 + 0.5 DSN-2 [7] 97.1+0.5 DSN-3 [7] 97.4+0.5
S-DSN-1 [31] 98.6 £0.3 GS-DSN(relu)-2 98.7+£0.3 GS-DSN(relu)-3 98.8£0.3
GSNM-1 | GS-DSN(sigm)-1 96.7+ 0.4 GS-DSN(soft)-2 97.4+0.2 GS-DSN(soft)-3 97.7+0.2
GS-DSN(soft)-1 98.0£0.2 GS-DSN(soft)-2 98.3 +£0.2 GS-DSN(soft)-3 98.4+0.2
GS-DSN(relu)-1 98.3+0.2 GS-DSN(relu)-2 98.8 £0.2 GS-DSN(relu)-3 98.9+0.2
GSNM-2 | GS-DSN(sigm)-1 97.2+ 0.4 GS-DSN(soft)-2 97.8+£0.3 GS-DSN(soft)-3 98.0£0.3
GS-DSN(soft)-1 98.0£0.3 GS-DSN(soft)-2 98.24+0.3 GS-DSN(soft)-3 98.5+0.3
GS-DSN(relu)-1 98.5+0.2 GS-DSN(relu)-2 98.94+0.2 GS-DSN(relu)-3 99.1 +£ 0.2
First layer Seocnd layer Third layer suburb [ 0.00 0.00 0.60 0.50 0.60 0.0 0.b0 0.bo 0.bo 0.00 0.60 0.60 0.60 0.50]
coast [0.00 [iFE] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00{
forest 0.00 0.00 [XFEE] 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.004
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YaleB dataset. In this experiment, GSNM-1 with sigmoid activation function 2 %Y O%,a’ ) K

is used to build GS-DSN(sigm).

Fig. 5.

15 categories in the 15-Scene dataset.

each category, we randomly choose 90 images for training
data, 10 images for validation data, and the rest for test data.
The validation data are used to select the parameters.

We compare our results with SRC [52], LC-KSVD [25],
deep sparse coding (DeepSC) [17], DSN [7], and other state-
of-the-art approaches: spatial pyramid matching using
Laplacian sparse coding (LScSPM) [13], LLC [50],
information-theoretic ~ dictionary learning (ITDL) [39],
discriminative Bayesian dictionary learning (DBDL) [1],
important spatial pooling region + improved Fisher vector
(ISPR+IFV) [35], spatial regularized latent semantic
representation (SR-LSR) [34], deep convolutional activation
feature (DeCAF) [10], group structured sparse coding
(GSSC) [46], DSFL+DeCAF [60], Hybrid-CNN [57],

Fig. 6. Confusion matrix for 15-Scene category dataset using GSNM-1.

discriminative part detector (DPD) [45], and randomized
spatial partition (RSP) [23]. The detailed comparison
results are shown in Table VI. We successfully learned the
sparse representation by directly training the discriminative
dictionaries. Table VI shows that GS-DSN(relu)-3 has a
better performance than DBDL with a 0.4% improvement,
and reaches about 1.7% improvement over the deep
networks (e.g., DeepSC, Hybrid-CNN, DSN, DeCAF and
DSFL+DeCAF). Compared to our conference results [31],
we have 0.3% improvement. The confusion matrices for
GS-DSN(relu) stacked by GSNM-1 and GSNM-2 are shown
in Fig. 6 and Fig. 7, respectively. We can observe that the
accuracies of bedroom, industrial, kitchen and store are lower
than others since they are similar.

As far as we know, compared to the existing methods
GS-DSN(relu) gets the best accuracy, even though Hybrid-
CNN [57] combines the training set of a new scene-centric
dataset and the training set of ImageNet to train the deep
convolutional neural network. There are two reasons. First,
spatial pyramid feature is possibly better than Hybrid-CNN
in 15-Scene dataset because it is developed specifically for
recognizing natural scene categories (more details are provided
in [25] and [28]). Second, our model, GS-DSN(relu), has
more discriminative power than other sparse models, such as
SRC [52], LC-KSVD [25], DBDL [1], BMDDL [58].
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Fig. 7. Confusion matrix for 15-Scene category dataset using GSNM-2.
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Fig. 8. Classification accuracies with different y on the 15-Scene dataset.

In this experiment, GSNM-2 with ReLU activation function is used to build
the GS-DSN(relu).

minaret: 100%

pagoda: 100%

Fig. 9. Images from categories with 100% accuracy in the Caltech101 dataset.
In fact, there are 23 categories with 100% accuracy.

In addition, we consider the parameter y, which is used
to determine the classification accuracy and the sparseness of
GSNM-2. Classification accuracies with different y are shown
in Fig. 8. Given € = 1 and o = 0.1 we can observe that there is
little effect on performance with y, and the best classification
accuracy is achieved at y = 0.01.

3) Caltechl01: For each category, we randomly select 9,
18 and 27 images for training data, 1, 2 and 3 images
for validation data, and the rest for test data, respec-
tively. The validation data are used to select the parameters.
By using the CNN features, We compare our approach with
SRC [52], LC-KSVD [25], DeepSC [17], DSN [7] and other
approaches LScSPM [13], LLC [50], low-rank sparse coding
(LRSC) [55], DBDL [1], learning structured low-rank rep-
resentations (LSLR) [56], and locality-constrained low-rank
coding (LCLR) [24]. Table VII report the average classification

TABLE VII

RECOGNITION ACCURACIES ON THE CALTECH101 DATASET
BY USING THE CNN FEATURES

Methods [ 10 [ 20 [ 30
Unsupervised Methods
ScSPM [13] - - 85.1+0.7
SRC [52] 73.2+0.9 77.5+£0.9 81.8+£0.8
LLC [50] 73.7+£04 78.3+0.5 82.5+0.4
LRSC [55] 74.5+0.2 78.7+0.3 82.8 +0.2
LCLR [24] 75.1£0.3 79.6 £ 0.5 84.3+0.5
GSSC [46] - - 86.2 + 0.2
Supervised Methods
LSLR [56] - - 82.1+0.5
LC-KSVD [25] 77.5+£0.1 83.2£0.1 87.6£0.1
DBDL [1] 78.8+0.2 83.6+0.3 88.0+0.3
DSN-1 [7] 78.3+0.5 80.3+0.8 81.2+1.1
DSN-2 [7] 79.2+£0.6 81.0£0.5 81.9+1.0
DSN-3 [7] 79.5+0.7 81.3+0.5 82.3+ 1.0
S-DSN-1 [31] 78.9+0.5 82.4+0.5 85.3+0.5
S-DSN-2 [31] 79.5+£0.4 83.5£0.3 86.6 £ 0.6
S-DSN-3 [31] 79.9+0.5 83.9+0.4 87.5+0.5
GSNM-1
GS-DSN(sigm)-1 78.5+ 1.0 80.6 +0.9 81.5+0.9
GS-DSN(sigm)-2 | 79.6 £1.1 81.2+1.0 82.24+0.9
GS-DSN(sigm)-3 | 79.9£+1.1 81.8£0.9 82.7+0.8
GS-DSN(soft)-1 77.5+0.6 82.1+0.7 83.3+0.5
GS-DSN(soft)-2 77.7T+£04 81.2+0.6 83.4+0.5
GS-DSN(soft)-3 77.7£0.6 81.2+0.7 83.44+0.7
GS-DSN(relu)-1 80.1+0.7 83.2+0.7 87.3+0.3
GS-DSN(relu)-2 80.6 £ 0.7 83.8 £0.6 88.5+0.4
GS-DSN(relu)-3 | 80.94+0.6 | 84.44+0.7 | 89.0+ 0.3
GSNM-2

GS-DSN(sigm)-1 785+ 1.1 80.5+ 1.2 81.3+0.9
GS-DSN(sigm)-2 | 79.5£0.6 81.2+1.2 82.14+0.9
GS-DSN(sigm)-3 | 79.8 £0.7 81.7£1.0 82.3+£0.8
GS-DSN(soft)-1 76.7+0.6 80.2+0.6 82.5+0.6
GS-DSN(soft)-2 76.8 £0.6 80.2+0.7 82.5+0.6
GS-DSN(soft)-3 76.8 £0.6 80.2+0.7 82.5+0.6
GS-DSN(relu)-1 76.3+£0.9 81.8+0.5 87.24+0.6
GS-DSN(relu)-2 77.0£0.8 82.0£0.5 88.3+£0.5
GS-DSN(relu)-3 77.3£1.0 82.24+0.5 88.8+ 0.5

accuracies. We see that our GS-DSN(relu)-3 exceeds 1.0%
compared to the competing dictionary learning methods (e.g.,
DBDL, LC-KSVD, LRSC, SRC and GSSC. GS-DSN(relu)),
and also gets about 6.7% improvement over DSN. Compared
to our conference results [31], we have 1.5% improvement.
Moreover, Fig. 9 shows some images from four classes which
achieve high classification accuracy when training 30 images
per class.

We estimate the performances of our GS-DSN with different
numbers of hidden units. We randomly select 27 images for
training, 3 images for validation, and the rest for test data.
We consider five numbers (i.e., 100, 500, 1,000, 2,000, 3,000),
and report the recognition accuracies in Fig. 10. We see that
our GS-DSN maintains high recognition accuracies, and is
better than DSN. Clearly, we also observe that the accuracies
can be improved when increasing the number of hidden units.

4) Effects From the Number of Layers: The deep model can
abstract a better representation of images by utilizing multiple-
layers architecture. Based on the Tables IV, V, VI and VII to
check the effects, we see that the classification accuracy can
be improved with increasing the number of layers. Moreover,
compared with the sparse coding and dictionary learning
methods, the advantage of GS-DSN is that it can quickly infer
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First layer

Second layer

Third layer

g E

g BOE 804 804 gﬁj

g GS-DSN(relu)-1 GS-DSN(relu)-2 GS-DSN(relu)-3

3 75 GS-DSN(relu)-1 75 GS-DSN(relu)-2 751 GS-DSN(relu)-3

2 ]—&— GS-DSN(sigm)-1 —— GS-DSN(sigm)-2 {—A— GS-DSN(sigm)-3
70 |—&— GS-DSN(sigm)-1 70 —%— GS-DSN(sigm)-2 70 —*— GS-DSN(sigm)-3

—&— DSN-1 —*— DSN-3

65
100 500 1000 2000 3000
The number of hidden units

—v— DSN-2

65
100 500 1000 2000 3000
The number of hidden units

65
100 500 1000 2000 3000
The number of hidden units

Fig. 10. Recognition accuracy with different number of hidden units used in
GS-DSN(sigm), GS-DSN(soft), GS-DSN(relu), S-DSN [31] and DSN [9] on
Caltech101. We choose the number of hidden units ranging from 100 to 3000.
The red and green curves plot the accuracy of GS-DSN stacked GSNM-1 with
5 groups, while the cyan and black curves also plot the accuracy of S-DSN
and DSN, respectively.

the sparse representation by a deep network. When the number
of layers increases to four or five, the accuracy is slightly
improved because there is a suitable number of layers for a
given dataset.

VI. CONCLUSION

For image classification tasks, we proposed two kinds of
group sparse deep stacking network model, GS-DSN, which
was created by stacking GSNM-1 (or GSNM-2) modules.
GSNM-1 exhibited local dependencies between hidden units
and GSNM-2 gathered the image representations in each class
into a group. In each module, the lower-layer weights were
estimated using gradient descent with upper-layer weights,
which had the closed-form solution. We used the GS-DSN
to further extract features from the random facial features for
facial recognition, and the spatial pyramid features for object
recognition. Experimental results showed that GS-DSN out-
performed the relevant classification methods on four public
datasets.
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