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ABSTRACT
Wepresent a development of cellular cohomology in homotopy type

theory. Cohomology associates to each space a sequence of abelian

groups capturing part of its structure, and has the advantage over

homotopy groups in that these abelian groups of many common

spaces are easier to compute. Cellular cohomology is a special kind

of cohomology designed for cell complexes: these are built in stages

by attaching spheres of progressively higher dimension, and cellular

cohomology defines the groups out of the combinatorial description

of how spheres are attached. Our main result is that for finite cell

complexes, a wide class of cohomology theories (including the ones

defined through Eilenberg-MacLane spaces) can be calculated via

cellular cohomology. This result was formalized in the Agda proof

assistant.

CCS CONCEPTS
• Mathematics of computing → Lambda calculus; Algebraic
topology; • Theory of computation → Type structures; Con-
structive mathematics;
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1 INTRODUCTION
Homotopy type theory (HoTT) [27] is a new area exploring the po-

tential of type-theoretic presentations of homotopy theory, an area

originating from the study of topological spaces up to continuous

transformation. It facilitates computer checking of proofs, and in

some case results in the discovery of new proofs. (See for exam-

ple [22].) Many proofs have since been mechanized and checked

by proof assistants such as Agda [8], Lean [16] and Coq [6]. HoTT

sheds new light on how type theory can be understood and leads

to new type theories based on the resulting insights [1–4, 12, 13].
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One important concept in homotopy theory is homotopy groups,

groups associated with every (pointed) space that reveals impor-

tant structures of that space. However, it is difficult to calculate

higher homotopy groups for many common spaces, for example

spheres. As a result, homology and cohomology theories arise as

an alternative way to study spaces.

The success of homotopy type theory begins with homotopy

groups partially because of their simple type-theoretic definition.

For example, the homotopy groups πn (S
n ) were calculated in [23].

Over time people have been extending the success in homotopy and

cohomology theories as well. This paper is yet another milestone

we have achieved.

The basic idea of cohomology theory is to study functions from
cycles in a space. Functions from the cycles at a fixed dimension n
form a group, which is called the nth cohomology group. There are

several ways to define a theory of such groups, some combinatorial

and some axiomatic; amazingly, the classical theory states that the

two approaches are essentially equivalent. Our goal is to recreate

such an equivalence in HoTT.

In this paper we focus on a particular class of types, CW com-
plexes, which come with an explicit description of how the space

is built by iterated attachment of disks. We will then introduce

cellular cohomology theory, a combinatorial cohomology theory

specifically defined for CW complexes. After that, we will define

ordinary Eilenberg–Steenrod cohomology theory, an axiomatic frame-

work for cohomology theory.

A large part of the text and Agda formulation presented in this

paper already appeared in Hou (Favonia)’s PhD thesis [21]. How-

ever, one critical lemma, Lemma 7.3, was stated as a conjecture

and the main theorem was only proved after the thesis. During

the study, a critical component, degree, was radically changed to

facilitate the proving.

2 NOTATION
We assume that readers are familiar with common type-theoretic

expressions as in [21, 27]. In particular, we work in Martin-Löf

type theory augmented with Voevodsky’s univalence axiom and

the pushout type constructor for homotopy pushouts. From these

ingredients we can define the propositional [15] and the higher

dimensional truncations [24]. Our constructions also work in the

proposed cubical type theories [1–4, 12, 13].

We often use the word “space” as a synonym for “type” in or-

der to facilitate the intuition of types as spaces. Pointed arrows

are specially marked as X ·→ Y for its importance in calculating

degrees (Section 5). A special instance of pushouts that will occur

throughout this paper is the homotopy cofiber of a pointed map

https://doi.org/10.1145/3209108.3209188
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f : X ·→ Y . It is defined to be the following pushout:

X Y

1 cofiber(f )

f

cfcod

cfbase

If the map f is understood, we write Y /X := cofiber(f ).

3 CW COMPLEXES

A CW complex (also known as a cell complex) is an inductively

defined type built by attaching cells, starting from points, lines,

faces, and so on. The description consists of An as the index set

of cells at dimension n, along with functions αn denoting how

cells are attached. (We refer to [20, Chapter 0] for a discussion

of CW complexes in a classical context.) With this combinatorial

description at hand, one may define the cellular cohomology groups

as shown in Section 4.

Many common types can be represented as CW complexes:

the unit type, the spheres, the torus, and even the real projective

spaces [10]. One can also build the two-cell complexes obtained by

attaching a cell of dimensionm + 1 to a sphere of dimension n with
attaching map given by an element of πm (Sn ). A special case is that

of the Moore spaces M(Z/qZ,n) given by the element of πn (S
n )

corresponding to q ∈ Z under the isomorphism πn (S
n ) � Z. The

two-cell complexes are the simplest ones that are not spheres, and

they form an important family of examples and counter-examples,

see Section 5 below for an instance of this.

Let X0 be the index set A0 itself as the start and in general Xn
be the construction up to dimension n.1 A cell of index a : An+1
at dimension n + 1 is specified by its boundary in Xn , denoted by
the function αn+1〈a;−〉 from Sn to Xn . The type Xn+1 is then the
result after attaching all cells at dimension n+1 toXn . Formally, the
function αn+1 is of type An+1 ×Sn → Xn describing the boundary

of each cell. Inductively, the type Xn+1 is defined to be the pushout
Xn �An+1×Sn ;αn+1;fst An+1: (Note that every pushout in homotopy
type theory is a homotopy pushout.)

An+1 × Sn An+1

Xn Xn+1

αn+1

fst

In this paper, we only work with finite CW complexes whose

building process stops at some finite dimension and for which every

An is a finite set. Pictorially, a (finite) CW complex is the following

iterated pushout, starting from the type X0 :≡ A0 and ending at
some dimension.

An+1 × Sn An+1 An+2 × Sn+1 An+2

. . . Xn Xn+1 . . .

αn+1

fst

αn+2

fst

1This definition was adapted from Buchholtz’s work in Lean [9].

A pointed CW complex additionally requires A0 to be pointed
(and hence X0 and all following pushouts).

4 CELLULAR COHOMOLOGY

Cohomology theory concerns functions from cycles, and one of

the best ways to introduce it is through its dual, homology theory,

which is about the cycles themselves. With access to an explicit,

combinatorial description of a type, suitable algebraic structures

can be defined for cycles.

To begin with, a one-dimensional cycle in homology theory (and

cohomology theory) is a linear combination of oriented lines that

at each any point has equally many incoming and outgoing lines

counted with multiplicity (the in-degree equals the out-degree),

see below for the precise definition. The intuition is to capture

traversals in the space without worrying about the order of lines

being traversed. Each coefficient in a cycle (as a linear combination)

tracks the number of occurrences of a line, where a negative number

signifies a traversal in the opposite direction. One can define the

addition, subtraction and negation on these cycles as those on linear

combinations.

Let ∂̃1 be the function mapping a line from a to b to the linear
combination a − b, which represents the oriented boundary of the
line. Whether the in- and out- degrees are in balance reduces to

whether the summation of ∂̃1 of these lines is exactly zero. If we

extend the function ∂̃1 on lines to linear combinations of lines as

∂1, then a linear combination of lines is a cycle if and only if it is

in the kernel of ∂1. In the context of CW complexes introduced in

Section 3, the linear combinations of lines and points are the free

abelian groups Z[A1] and Z[A0], respectively:

Z[A1] Z[A0]
∂1

We would like to identify cycles up to cells at higher dimensions;

in particular, if there is a two-dimensional cell filling the difference

between two cycles (which is itself a cycle), then those two cycles

should be regarded as the same. Intuitively, a cell fills a cycle if

its boundary matches the cycle. Similar to ∂1, one can define the

boundary function ∂2 for any two-dimensional cell a : A2 by sum-
ming up lines traversed by α2〈a;−〉. A cycle can be filled if and only

if it is in the image of ∂2. Consider the following diagram:

Z[A2] Z[A1] Z[A0]
∂2 ∂1

The subject of our interest, cycles up to identifications, is exactly

the quotient of cycles (the kernel of ∂1) by boundaries of cells at

the next dimension (the image of ∂2). This quotient forms the first

cellular homology group of type X (with integer coefficients), and

groups for higher dimensions can be defined in a similar way. How

exactly the boundary functions ∂n at higher dimensions should be

defined from An and αn will be discussed later.

The sequence formed by the free abelian groups Z[An ] and
boundary maps ∂n is a chain complex. Cellular cohomology takes

the dual of the sequence before calculating the quotients of kernels

by images; it applies the contravariant functor hom(−,G) for some
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given abelian groupG to the entire sequence. The dualized sequence

is a cochain complex.2 The resulting diagram is

hom
(
Z[A2],G

)
hom

(
Z[A1],G

)
hom

(
Z[A0],G

)hom(∂2, G) hom(∂1, G)

and the first cohomology group, denoted H1(X ;G), is the quotient
of the kernel of hom(∂2,G) by the image of hom(∂1,G). Groups at
higher dimensions are defined in a similar way; we write Hn (X ;G)
as the nth cellular cohomology group with coefficients in G.

Boundary functions. One reasonable definition of ∂n+1 on a cell

b at dimension n + 1 is to individually calculate the coefficient

coeff(b,a) : Z of each cell a within the boundary of the cell b; that
is, the boundary function is of the following form (where the

∑
below is the summation in linear algebra, not sum types):

∂n+1(b) :≡
∑
a:An

coeff(b,a) a.

In order to make summation over a possibly infinite An possible,
it seems we have to assume coeff(b,−) always has finite support;
this corresponds to the closure-finiteness condition in the classical

theory, which is part of the definition of CW complexes and in fact

what the “C” in the “CW” stands for. The classical condition says

the boundary of each cell should be covered by a finite union of

cells at lower dimensions, and so our assumption is well-motivated

and may be necessary.

Intuitively, the value coeff(b,a) should capture the number of
(signed) occurrences of a in the boundary of b. Considering the CW
complex

a

b

with a two-cell b with boundary consisting of the line a and two
other lines, the value coeff(b,a) should be 1 under suitable orienta-
tion. The trick is to identify all points and obtain a rose

a

where the boundary of b is now composed of loops at the center;

the winding number of the loop a is then the coefficient we are
looking for. More precisely, the coefficient is the winding number

of the function depicted in Figure 1, or more formally,

S1 X1 X1 /X0 �
∨

:A1
S1 S1

α2 〈b ;−〉 cfcod proja

where X1 /X0 is the cofiber of the inclusion from X0 to X1 and
proja kills every loop except the one indexed by a. The projection
function proja is definable whenever the index type has decidable

2The kernel-image quotienting is called homology in the classical literature, so the
homology of a chain complex is homology, and the homology of a cochain complex is
cohomology.

equality. For arbitrary dimension n ≥ 1, we follow the same pattern

to obtain a function from Sn to Sn ,

Sn Xn Xn /Xn−1 �
∨

:An Sn Sn
αn+1 〈b ;−〉 cfcod proja

and then inspect its generalized winding number, namely its degree

that will be defined in Section 5. The coefficient is defined as

coeff(b,a) :≡ deg
(
proja ◦ e ◦ cfcod ◦ λx .αn+1〈b;x〉

)
where e is the equivalence between Xn /Xn−1 and

∨
:An Sn . This

finishes our definition of boundary functions in HoTT.

Reduced cellular cohomology theory. The cellular cohomology

theory that is relevant in our paper is the reduced cellular cohomol-

ogy theory for pointed types. A characteristic difference is that a

reduced theory will assign the trivial group as the zeroth cohomol-

ogy group of the unit type—the most trivial pointed type—rather

than the group Z; it is more stylish to have trivial groups for trivial

types. To achieve this, the reduced homology theory augments the

chain complex with ϵ to Z to give

· · · Z[A1] Z[A0] Z
∂1 ϵ

where ϵ sums up integer coefficients in Z[A0]; its dual,

· · · hom
(
Z[A1],G

)
hom

(
Z[A0],G

)
hom(Z,G)

hom(∂1,G) hom(ϵ,G)

leads to reduced cohomology groups. The ending Z effectively

kills one degree of freedom in Z[A0]. In general, the reduced and
unreduced integral homology groups only differ by aZ at the zeroth

dimension.

5 DEGREES

The notion of the degree of a map of spheres of equal dimension is

the key tool for defining and computing with cellular cohomology

(and homology), as shown in the previous section. We therefore

need a definition of degrees in HoTT.

The requirements of the definition are that we get for each n : N
a function deg : (Sn → Sn ) → Z satisfying at least the following

properties:

(1) deg(id) = 1, where id : Sn → Sn is the identity function,

(2) deg(д ◦ f ) = deg(д) deg(f ), where д ◦ f is the composition
of f and д,

(3) deg(susp(f )) = deg(f ), where susp(f ) : Sn+1 → Sn+1 is

the suspension of f : Sn → Sn .

(4) deg(f ) is the usual winding number of f , for f : S1 → S1.

These requirements suffice to uniquely determine the degree func-

tion, although we have not formalized this fact.

One classical definition of degrees relies on homology theories,

which are only now becoming available in HoTT [19], and their

definition relies heavily on properties of the smash product, which

is an unnecessary complication just for the definition of degrees.

Another approach is to apply the homotopy group functor to

the function in question. However, for our purposes where we

need good control on the interaction between the degree and a
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a
a a

αn+1 〈b ;−〉 proja

Figure 1: The function used to define coeff(b,a).

cohomology theory, we have found it expedient to use yet another

approach.3

The first observation is that by property (3) we can always reduce

the computation of degree to the case of a pointed map. Another

manifestation of this is that the canonical map from the set of

pointed endo-arrows of the sphere
��Sn ·→ Sn

��
0 to the set of endo-

arrows
��Sn → Sn

��
0 given by forgetting the point is an equivalence

for n ≥ 1. This means pointedness is free. For n = 0, the identity on
S0 (= 2) has degree 1, the map that swaps the points has degree −1,

while the remaining two maps have degree 0, because they suspend

to maps of the circle with winding number zero.

The second idea is to observe that the degree function is for each

n ≥ 1 a bijection on connected components. Since Z is a group, this

suggests that we should be able to endow the type of pointed endo-

arrows ofSn with a natural group structure (up to homotopy). Thus,

we want to define a group-like H-space structure on Sn ·→ Sn ,

such that the degree map becomes a group isomorphism.

A co-H-space is the notion dual to that of an H-space. This is

a natural notion in homotopy theory, see [5] for a survey in the

classical setting.

Definition 5.1. A co-H-space is a pointed type A together with a

comultiplication map σ : A ·→ A∨A, and witnesses for the left and
right counit laws, stating that π1 ◦ σ and π2 ◦ σ are homotopic as

pointed maps to id : A ·→ A, where πi : A ∨ A → A denotes the

projection on the left or right summand, for i = 1, 2 respectively.

This definition ensures that the type of pointed maps from a

co-H-space to any pointed type is an H-space.

Definition 5.2. A cogroup is a (homotopy) associative co-H-space

together with a left inverse map λ : A ·→ A such that ∇◦(λ∨ id)◦σ
is homotopic to the constant pointed map, where ∇ : A ∨A ·→ A
is the folding map, which is the identity on each summand.

Our main interest in cogroups stems from the following fact.

Proposition 5.3. Any suspension susp(A) has the structure of a
cogroup with comultiplication given by the pinch map σ : susp(A) →
susp(A) ∨ susp(A).

The proof is easy and we omit it here. We note that there are

cogroups that are not suspensions, for example the two-cell complex

corresponding to an element of order 3 in π34(S
5), see [7].

The next fact is the main result we need.

Proposition 5.4. If X is a cogroup and Y is a pointed type, then

the set ‖X ·→ Y ‖0 has a natural group structure.

3In Hou (Favonia)’s thesis [21], the degree was defined using the homotopy group
functor.

Having thus equipped each type Sn ·→ Sn for n ≥ 1 with the

structure of a group up to homotopy, it remains to actually define

the degree functions.

For n = 1 we must choose the winding number per property (4).
Since we want property (3) to hold, we use the fact that the action of

suspension on pointed maps, (X ·→ Y ) → (susp(X ) ·→ susp(Y ))
is a group homomorphism whenever X is a cogroup. So it remains

to verify that this map is an group isomorphism in the case of

endo-arrows on Sn , for n ≥ 1. This follows from the Freudenthal

suspension theorem [27, Theorem 8.6.4], in the same way that we

prove that πn (S
n ) � Z. In fact, the loop-suspension adjunction

refines to a group isomorphism (susp(X ) ·→ Y ) � (X ·→ ΩY ),
using the cogroup structure on susp(X ) and the (H-)group structure
on ΩY .

6 EILENBERG–STEENROD COHOMOLOGY

Unlike the above explicit construction, there is also an axiomatic

framework for cohomology. Participants to the special year at In-

stitute for Advanced Study have brought into HoTT the standard

abstract framework for cohomology theories—Eilenberg–Steenrod

axioms [11, 17, 25]. An (ordinary)4 reduced cohomology theory in

HoTT may be defined as a contravariant functor h from pointed

types to sequences of abelian groups satisfying the following ax-

ioms. We write hn (X ) to denote the nth group in the sequence for
a pointed type X .

Before presenting these axioms, however, we need to define what

it means to satisfy set-level axiom of choice, a condition stating that∏
quantifiers and 0-truncation commute. This will be used in one

of the cohomology axioms shown later.

Definition 6.1 (set-level axiom of choice). A type A satisfies the

set-level axiom of choice if, for any family of types B indexed by

A, the canonical function from
���∏a:A B(a)

���0 to∏a:A

��B(a)��0 is an
equivalence.

See [27] for more discussion about the axiom of choice and [25]

for its role in cohomology theory in HoTT. Essentially, one could

present the Eilenberg–Steenrod axiomswithout the axiom of choice,

but it would be difficult for pointed arrows whose codomains are

Eilenberg–Mac Lane spaces, an important example of cohomology

theories, to satisfy these axioms within HoTT. In any case, because

we only deal with cell complexes with finite cell sets, we do not

have to worry about the axiom of choice, for it is provable in HoTT

for finite sets.

In any case, here are the axioms we use:

4A cohomology theory is ordinary if it satisfies the last Eilenberg–Steenrod axiom.
See below.
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Suspension. There is an isomorphism betweenhn+1(susp(X )) and
hn (X ), and the choice of isomorphisms is natural in X .

Exactness. For any pointed arrow f : X ·→ Y , the following
sequence is exact, which means the kernel ofhn (f ) is exactly
the image of hn (cfcod).

hn (cofiber(f )) hn (Y ) hn (X )
hn (cfcod) hn (f )

Wedge. Let I be a type satisfying the set-level axiom of choice.

For any family of pointed types X indexed by I , the group
morphism

ι∗ : hn

(∨
i :I

X (i)

)
→

∏
i :I

hn (Xi )

induced by inclusions X (i) →
∨
i :I X (i) is a group isomor-

phism.

Dimension. For any integer n � 0, the group hn (2) is trivial.
The word ordinary refers to satisfying the dimension axiom. In-

teresting examples violating this axiom (but satisfying the rest),

such as K-theories or complex cobordism, were discovered after
the introduction of the framework, and are called extraordinary

cohomology theories. Our result only handles ordinary ones.

It will be shown that these axioms uniquely identify cohomology

groups for finite CW complexes. To begin with, we can calculate

all the groups of the spheres directly from the axioms:

Lemma 6.2. For anym,n : Z such that n ≥ 1, hm (Sn ) is isomor-

phic to h0(2) ifm = n and trivial otherwise.

Proof. Because the spheres are iterated suspensions of 2, one

can apply the suspension axiom till it reaches 2 and then the

dimension axiom if the dimensions mismatch. �

And similarly the groups for the bouquets, or wedges of spheres.

They play an important role in our calculation of the groups of the

CW complexes.

Lemma 6.3. For anym,n : Z such that n ≥ 0 and any finite set

A, hm
(∨

:A Sn
)
is isomorphic to

∏
:A h

0(2) ifm = n and trivial

otherwise.

There is also an important consequence from the suspension

and the exactness axioms which will be applied repeatedly:

Lemma 6.4. For any pointed arrow f : X ·→ Y , there exist a
natural choice of γn such that the following is a long exact sequence:

. . .

hn+1(X ) hn+1(Y ) hn+1(cofiber(f ))

hn (X ) hn (Y ) hn (cofiber(f ))

. . .

γn

hn (cfcod)hn (f )

γn+1

hn+1(cfcod)hn+1(f )

γn+2

Proof. The key observation is that the cofiber of cfcod : Y ·→

cofiber(f ) is equivalent to susp(X ), and thushn+1 on iterated cfcod’s
is equivalent to hn+1(susp(· · · )), which by the suspension axiom

is isomorphic to hn (· · ·). The exactness of hn+1 on iterated cfcod’s
is given by the exactness axiom. �

Finally, let us state the connection between cogroups and coho-

mology theories:

Proposition 6.5. Let X be a cogroup, and Y a pointed type. If h
is a cohomology theory, then the map

hn :
��X ·→ Y

��
0 → hom(hn (Y ),hn (X ))

is a group homomorphism for each n : Z.

Proof. This follows from the commutativity of the diagram:

hn (Y ) ⊕ hn (Y ) hn (X ) ⊕ hn (X )

hn (Y ) hn (Y ∨ Y ) hn (X ∨ X ) hn (X ) �

This key fact is a generalization of [20, Lemma 4.60] to cogroups,

and will be used in the proof of Lemma 7.3.

7 EQUIVALENCE OF TWO COHOMOLOGY

THEORIES

Our main result is the following:

Theorem 7.1. For any ordinary reduced cohomology theory h, any
pointed finite CW complex X and any n : Z, hn (X ) is isomorphic to

Hn (X ;h0(2)).

This basically states that, on CW complexes, two notions of

cohomology coincide. The significance is that it connects an explicit

construction with a rather abstract framework over a wide range

of types. Our approach is to break this theorem into two parts:

(1) We prove that from any ordinary cohomology theory h sat-
isfying the axioms, we may reconstruct a cochain complex

so that its kernel-image quotients are the same as the groups

directly given by h.
(2) We show that the reconstructed cochain complex is equiva-

lent to the cochain complex used in the cellular cohomology,

and thus the cellular cohomology groups and h should agree.

In details, these steps are:

Lemma 7.2 (reformulation of ordinary cohomology groups).

For any ordinary reduced cohomology theory h and any pointed finite

CW complexX , there is a choice of coboundary functions δn forming

a cochain complex

· · · hn (Xn /Xn−1) hn−1(Xn−1 /Xn−2) · · ·

h1(X1 /X0) h0(2) × h0(X0) h0(2)

δn

δ1 δ0

such that hn (X ) is isomorphic to the quotient of the kernel of δn+1 by
the image of δn for any n ≥ 0.
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The above lemma states that any ordinary cohomology groups

are also the kernel-image quotients of some cochain complex, simi-

lar to cellular cohomology groups. It is then sufficient to show that

the cochain complexes are equivalent.

Lemma 7.3 (two cochain complexes agree). Let h be an or-

dinary reduced cohomology theory and X be a pointed finite CW

complex. Let δn be the group homomorphisms given by Lemma 7.2

after reformulation. There exist an isomorphism

kn : hn (Xn /Xn−1) � hom
(
Z[An ],h

0(2)
)

for any n ≥ 1, an isomorphism for the zeroth dimension

k0 : h
0(2) × h0(X0) � hom

(
Z[A0],h

0(2)
)

and an isomorphism for the augmented part

k−1 : h
0(2) � hom

(
Z,h0(2)

)
such that for any n ≥ 1, the following square commutes

hn+1(Xn+1 /Xn ) hn (Xn /Xn−1)

hom
(
Z[An+1],h

0(2)
)

hom
(
Z[An ],h

0(2)
)

kn+1

δn+1

kn

hom(∂n+1,h
0(2))

and similarly for the case n = 0 and the augmented part with suitable

groups and group homomorphisms.

Our main result immediately follow from these two lemmas.

Proof of Theorem 7.1. Let h̃n (X ) be the kernel-image quotients

of the coboundary maps δ given by Lemma 7.2. We have h̃n (X ) �
hn (X ) by the lemma. Because the coboundary maps δ and the du-
alized boundary maps are equivalent according to Lemma 7.3, the

resulting groups h̃n (X ) and Hn (X ;h0(2)) are also isomorphic, and
thus the theorem. �

In the following subsections, we will sketch the proofs of Lem-

mas 7.2 and 7.3.

7.1 Reformulation of Cohomology Groups

The central idea is to construct as many cofibers as possible from its

cellular description, and then apply the exactness axiom on these

cofibers to obtain long exact sequences by Lemma 6.4. From the

obtained long exact sequences we can then calculate the groups of

our interest.

Before constructing those cofibers, it is essential to observe that

there is a lemma complimentary to Lemma 7.3:

Lemma 7.4. For anym � n : Z such that n ≥ 1, hm (Xn /Xn−1)
is trivial. Moreover, for anym : Z such thatm � 0, hm (X0) is also
trivial.

Proof Sketch. Let a be the distinguished point of X . It is suf-
ficient to show Xn /Xn−1 �

∨
:An Sn and X0 �

∨∑
x :A0

(a�x ) 2

because the rest follows from Lemma 6.3. The intuition is that, if

we shrink Xn−1 into a point, the remaining of Xn is the attachment

of An many cells at the nth dimension, which results into a wedge
of Sn indexed by An . The zeroth dimension is special because one

of the points—which is the distinguished point a here—is selected
as the center of the wedge. �

The way to construct numerous cofiber squares is to consider

the following grid diagram where every grid is a pushout square.

X0 X1 . . . Xn Xn+1 . . .

1 X1 /X0 . . . Xn /X0 Xn+1 /X0 . . .

. . .
. . .

...
...

...

1 Xn /Xn−1 Xn+1 /Xn−1 . . .

1 Xn+1 /Xn . . .

1 . . .

Any square (consisting of one or more grids) having the unit type 1

at the bottom left is a cofiber square and generates a long exact se-

quence by Lemma 6.4. Three conclusions can be drawn by choosing

different cofiber squares:

First, we can zoom in on a grid on the diagonal:

Xn /Xn−1 Xn+1 /Xn−1

1 Xn+1 /Xn .

Through Lemma 6.4, this grid generates the following exact se-

quence:

0 ker(δn+1)

hn (Xn+1 /Xn ) hn (Xn+1 /Xn−1) hn (Xn /Xn−1)

hn+1(Xn+1 /Xn ) hn+1(Xn+1 /Xn−1) hn+1(Xn /Xn−1).

coker(δn+1) 0

δn+1

We choose the coboundary function δn+1 to be the middle function
as required. Because hn (Xn+1 /Xn ) is trivial, from the exactness

we know hn (Xn+1 /Xn−1) is isomorphic to the kernel of δn+1 and
the group homomorphism from it is injective. Dually, we know

hn+1(Xn+1 /Xn−1) is isomorphic to the cokernel of δn+1 and the
group homomorphism to it is surjective.

Secondly, let’s turn our focus to this square:

Xm Xm+1

1 Xm+1 /Xm
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which by Lemma 6.4 gives this exact sequence:

hn (Xm+1 /Xm ) hn (Xm+1) hn (Xm ) hn+1(Xm+1 /Xm )

When n � {m,m + 1}, both hn (Xm+1 /Xm ) and hn+1(Xm+1 /Xm )

are trivial by Lemma 7.4; therefore, by the exactness of the above

sequence, hn (Xm+1) � hn (Xm ). In other words, cells at dimensions

much higher or much lower thann are irrelevant to the cohomology
group at dimension n. This implies that there are at most three
different values of hn (Xm ) up to isomorphism:

(1) hn (Xn−1) � hn (Xn−2) � · · · � hn (X0) � 0. The intuition

is that Xm for any m < n does not have any interesting

information at dimension n.
(2) hn (Xn ). Xn has the cells at dimension n, but lacks the cells

at dimension (n + 1) which may identify some cycles at

dimension n.
(3) hn (Xn+1) � hn (Xn+2) � · · · � hn (X ). Cells at dimension

(n + 2) or above play no role in the nth cohomology group.

It is thus sufficient to studyhn (Xn+1) for the nth cohomology group
of X .
Finally, we investigate the square

Xn−2 Xn+1

1 Xn+1 /Xn−2

which generates the exact sequence

hn−1(Xn−2) hn (Xn+1 /Xn−2) hn (Xn+1) hn (Xn−2)

From the previous cofiber square we know both hn−1(Xn−2) and
hn (Xn−2) are trivial, and again by the exactness h

n (Xn+1 /Xn−2) �
hn (Xn+1). Therefore, we have

hn (Xn+1 /Xn−2) � hn (Xn+1) � hn (Xn+2) � · · · � hn (X ).

This means it is sufficient to calculate hn (Xn+1 /Xn−2).
Combining these three observations, we have the following com-

muting square for n ≥ 2:

coker(δn ) � hn (Xn /Xn−2) hn (Xn+1 /Xn−2) � hn (X )

hom
(
Z[A],G

)
� hn (Xn /Xn−1) hn (Xn+1 /Xn−1) � ker(δn+1).

We can further infer that the top homomorphism is injective and

the right one is surjective by applying Lemma 6.4 to the following

two cofiber squares, respectively,

Xn /Xn−2 Xn+1 /Xn−2

1 Xn+1 /Xn

Xn−1 /Xn−2 Xn+1 /Xn−2

1 Xn+1 /Xn−1

and finally obtain the desired isomorphism

hn (X ) � ker(δn+1)/im(δn )

by the following lemma from group theory:

Lemma 7.5. Let Q ⊆ P be two subgroups of G where Q is normal.

If we have a group K and a commuting diagram as follows, where the

group homomorphism from P to G is the canonical inclusion and the

one from G to G /Q is the quotienting, then K � P /Q .

G /Q K

G P

By choosing P to be the kernel and Q the image, we have the

desired formula that K is the quotient. (Q is normal because it is a

subgroup of an abelian group.) This shows that for anyn ≥ 2,hn (X )
is isomorphic to the kernel-image quotient of adjacent coboundary

functions δn . The cases for n = 0 or 1 can also be derived from the

grid diagram similarly but with special care of the distinguished

point of X0 :≡ A0 as demonstrated in the proof of Lemma 7.4. This
concludes the proof of Lemma 7.2.

7.2 Equivalence of Two Cochain Complexes

Recall the isomorphisms and commuting squares we want:

kn : hn (Xn /Xn−1) � hom
(
Z[An ],h

0(2)
)

k0 : h
0(2) × h0(X0) � hom

(
Z[A0],h

0(2)
)

k−1 : h
0(2) � hom

(
Z,h0(2)

)
hn (Xn+1 /Xn ) hn−1(Xn /Xn−1)

hom
(
Z[An+1],h

0(2)
)

hom
(
Z[An ],h

0(2)
)

kn+1

δn+1

kn

hom(∂n+1,h
0(2))

The isomorphisms kn for n ≥ 1 arise from the type equivalences

Xn /Xn−1 �
∨
:An

Sn

X0 �
∨

∑
x :A0

(a�x )

2

and then Lemma 6.3. The zeroth dimension needs special attention

for the same reason given in the proof of Lemma 7.4: the point a is
used as the center of the wedge. Therefore, we have to add one copy

of h0(2) to the left hand side to make ends meet. There is one more
subtlety in k0; here is a possible break down of the isomorphism:

k0 : h
0(2) × h0(X0) � h0(2) ×

∏
∑
a:A0

a�x

h0(2)

�
∏
A0

h0(2) � hom
(
Z
[
A0

]
,h0(2)

)
It would be naive to directly collect values arising from h0(2) and
h0(X0) (through

∏∑
a:A0

a�x h
0(2)) and form a function in the prod-

uct group
∏

A0
h0(2). That unfortunately would not make all the

needed squares commute. The correct way to merge an element д
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fromh0(2)with an element f from
∏∑

a:A0
a�x h

0(2) is to construct

a function h such that

h(x) =

{
д if a = x

f (x) · д if a � x .

where the binary operation is the one specified by the group h0(2).
The intuition is that in cohomology we care about the difference

between values on points, not their absolute values; thus, the natural

way to maintain the difference is to calculate the relative values

when the center a is chomped and restore them when the center a
revives. The first component from h0(2) in the isomorphism may

be seen as the standard sea level for the second component.

Once the correct isomorphisms are in place, the commuting

squares are relatively straightforward. The simplest proof we found

is to rephrase the δn and the dualized ∂n , through the isomorphisms
kn and Proposition 6.5, as homomorphisms between the groups∏

An h
0(2) and

∏
An+1 h

0(2). When the sets An are finite, all these

maps can be rephrased as

λf .λ(x :An+1).
∑
y :An

f (y)deg(σx,y )

for some endo-arrows σx,y of the spheres. (Note that the
∑
here

is the summation defined by the group structure, not the sigma

types.) Therefore, it boils down to proving that the parameters σ
for the δn and the dualized ∂n have the same degrees. In our setting,
the parameters for coboundary maps are always the suspensions

of those for boundary maps, and thus share the same degree by

the property 3 of the degree function. This concludes the proof

of Lemma 7.3. The significance of the finiteness of An is that it

turns group products into direct sums and consequently gives an

explicit description of the inverse map in the wedge axiom of the

Eilenberg–Steenrod framework and enables summation over cells

at a dimension.

8 MECHANIZATION IN AGDA

The main theorem (Theorem 7.1) and all lemmas have been mecha-

nized in the proof assistant Agda, using the HoTT-Agda library [8].
The statement of the main theorem can be found at https://github.

com/HoTT/HoTT-Agda/blob/f46225f9428520572424a07fec71b5143f/

theorems/cw/cohomology/AxiomaticIsoCellular.agda#L18-L25.

In order to mechanize the proofs in our work, significant im-

provements have been done to the general framework and it is

difficult to quantify them. Already there are more than 4,000 lines

of code written specifically for the work presented in this paper,

among which much engineering was done to make it type-check

within reasonable time and memory space.

9 CONCLUSION AND FURTHERWORK

The main theorem in this paper dealt with the case where every

cell set An was finite and the dimension of the complex is finite. A

first, relatively straight-forward extension, is to consider infinite-

dimensional cell complexes with finite cell sets.

We believe that it should be possible to further generalize the

result to (certain) infinite cell sets as follows. Recall that the spheres

are ω-compact: if X : ω → U is a sequential diagram of types, then

any f : Sn → lim
−−→k

Xk factors through some Xk . More precisely:

Definition 9.1. A type C is ω-compact if for any sequential dia-

gram X : ω → U, the canonical map

lim
−−→k

(C → Xk ) →
(
C → lim

−−→k
Xk

)
is an equivalence.

Conjecture 9.2. If each An is either finite or isomorphic to N,

then each stage of a cell complex Xn is a sequential colimit.

Depending on how precisely this is formalized, it is possible

that countable choice is needed: there should be a natural map

from a sequential colimit of finite subcomplexes into Xn , and ω-
compactness of spheres should ensure this is an equivalence.

Note that classically, almost all cell complexes we want to con-

sider have explicitly given cell sets that are either finite or iso-

morphic to N. It is also worth remarking that assuming countable

choice may not interfere with a computational interpretation of

type theory, since countable choice holds in realizability models of

extensional type theory. (On the other hand, countable choice is

not provable in homotopy type theory, as shown in [14].) We leave

these deliberations for future work.

Another obvious line of inquiry is to use our setup to do cellular

homology theory. Once a good library has been developed for

homology theory, we in fact expect that the result corresponding

to our Theorem 7.1 will be simpler in the homology setting.

We can obtain a direct comparison between our results concern-

ing bare CW complexes, and results about usual CW complexes as

topological spaces using the real-cohesive type theory of [26]. A

CW complex in topological spaces corresponds to a CW complex

in the sense of Section 3, but with all spheres replaced by their

topological counterparts, viz., the unit spheres in Rn+1. The shape

functor will take such a topological CW complex to a CW complex

in our sense, since it preserves colimits and maps the topological

spheres to their homotopy types.

Eventually, it is also our hope that our work can be part of a full

formalization of practical algorithms used in constructive algebraic

topology, such as those in the Kenzo system [18].
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