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a b s t r a c t

Multivariate outcomes with multivariate features of possibly high dimension are routinely
produced in various fields. In many real-world problems, the collected outcomes are of
mixed types, including continuous measurements, binary indicators and counts, and a
substantial proportion of valuesmay also bemissing. Regardless of their types, thesemixed
outcomes are often interrelated, representing diverse reflections or views of the same
underlying data generation mechanism. As such, an integrative multivariate model can
be beneficial. We develop a mixed-outcome reduced-rank regression, which effectively
enables information sharing among different prediction tasks. Our approach integrates
mixed and partially observed outcomes belonging to the exponential dispersion family, by
assuming that all the outcomes are associated through a shared low-dimensional subspace
spanned by the features. A general singular value regularized criterion is proposed, and
we establish a non-asymptotic performance bound for the proposed estimators in the
context of supervised learning with mixed outcomes from an exponential family and
under a general sampling scheme of missing data. An iterative singular value thresholding
algorithm is developed for optimization with convergence guarantee. The effectiveness
of our approach is demonstrated by simulation studies and an application on predicting
health-related outcomes in longitudinal studies of aging.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate outcomes/responses, or measurements of diverse and yet interrelated characteristics pertaining to a single
set of subjects, together with multivariate features/predictors of possibly high dimension, are routinely produced in various
fields of scientific research as well as in our daily lives. Many associated statistical learning problems fall into the domain
of multivariate regression analysis, whose main objective is to build an accurate and interpretable predictive model for the
outcomes of interest. In a human lung study of asthmatics, for example, the goal is to understand how overall functions of
lung are influenced by microscopic lung airway structure [12], which amounts to associating discrete clinically-determined
asthma severity status or continuous asthmaquality of life scores fromquestionnaireswith high-dimensionalmeasurements
of lung airway tree from a computed tomography scan. In an adolescent health study, annual hospitalization counts due
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to various causes such as disease, accidental injury, self-inflicted injury, etc., were collected for each school district in
a state [8]; the interest was to understand how the various types of health-related risks, proxied by the hospitalization
counts, were related to demographics, social-economic factors, academic performances, etc. In studies of aging on elderly
subjects [45], continuous measurements of health, memory and sensation scores, dichotomous measurements of various
medical conditions may be well predicted by subject demographics and records of medical history, life style and social
behavior.

In the aforementioned examples, several types of outcomes, e.g., continuous, binary, and count data, may all be collected
from the same cohort in the same study. We refer to such a collection of outcomes as mixed outcomes or outcomes of mixed
types. In general, regardless of their types of measurements, such outcomes are expected to be related, as they commonly
represent diverse reflections or different views of the underlying data generation mechanism. Therefore, an integrative
learning of themixed outcomes could be highly preferable in order to enable information sharing among different prediction
tasks.

However, most existing multivariate techniques are only applicable for analyzing one type of outcomes at a time. For
continuous outcomes, multivariate linear regression and its extensions have been extensively studied, e.g., ridge regression
for overcomingmulticollinearity [24], sparse regression for variable selection [19,37,40,52], and reduced-rank regression for
dimension reduction [1,4,39]. Besides rank-constrained estimation, reduced-rank models can be realized through singular
value regularization [10,27,33,36,51,54]. Recently, several authors considered sparse and reduced-rank models [5,9,11,48].
As soon as we step into the territory of non-Gaussian and/or non-linear analysis, the modeling of multivariate dependency
becomesmuchmore complicated. Vector generalized linearmodelswere extended from their univariate counterparts based
on a multivariate analogue of dispersion model family distributions, in which the correlation of the outcomes is explicitly
modeled by an association matrix; see [44] for a comprehensive review on related topics. Yee and Hastie [50] proposed
reduced-rank vector generalized linear models (RR-VGLM). She [42] further studied RR-VGLM and proposed an iterative
algorithm with convergence guarantee. However, neither of them considered incomplete data and studied the theoretical
properties of RR-VGLM. Yuan et al. [51] studied semiparametric and nonparametric low-rank models. There is also a rich
literature on using sufficient dimension reduction to explore multivariate association; see [14,30,31] and the references
therein.

Simultaneous statistical modeling of mixed outcomes is under-explored thus far. To the best of our knowledge, most of
the existing approaches attempt to model the correlation among mixed outcomes in an explicit way; a drawback of such,
however, is that itmay not be applicable in high-dimensional settings. Cox andWermuth [16] and Fitzmaurice and Laird [22]
considered likelihood basedmethods by factorizing the joint distribution asmarginal and conditional distributions. Prentice
and Zhao [38] and Zhao et al. [53] used generalized estimating equations [32] to handle mixtures of continuous and
discrete outcomes. Indeed, direct jointmodeling ofmixed outcomes is challenging due to the lack of convenientmultivariate
distributions, even when the number of outcomes is small. Another strategy is to induce multivariate dependency through
some shared latent variable, conditional on which the outcomes are then assumed to be independent [17,41].

Our particular interest here is on generalizing and leveraging a reduced-rank matrix structure for modeling mixed
multivariate outcomes with multivariate features, both of which are possibly of high dimension. From the publication
of the seminal work by Anderson [1] several decades ago to the current era of big data, reduced-rank models have
been very attractive, especially for modeling continuous multivariate data, in which the low-rank assumption of certain
coefficient matrices conveniently captures the dependencies among the variables and systematically mitigates the curse of
dimensionality. In the regression context, the low-rank assumption translates into a latent variable model, implying that all
the outcomes are associated with the same small set of latent variables that are themselves linear functions of the original
high-dimensional features/predictors. This elegant idea brings a genuine multivariate flavor to the model and, in an implicit
way, induces and takes advantage of the dependency among the outcomes.

Giving the prevalence of big data, it is appealing to explore the use of reduced-rank structure in an integrative analysis of
mixed outcomes, especially when the main goal is on dimension reduction and prediction. Similar ideas recently appeared
in Udell et al. [49], in which the authors mainly focused on unsupervised learning and computation. Here, our goal is
to provide a comprehensive study on a mixed-response reduced-rank generalized linear regression model (mRRR). The main
contributions of this paper and some key features of our proposed approach are outlined as follows:

(i) Our approach integrates multivariate outcomes of mixed types belonging to an exponential dispersion family, and is
able to conveniently handle incomplete data records in the multivariate statistical analysis.

(ii) We study the theoretical properties ofmRRR in a general high-dimensional non-asymptotic framework. Finite-sample
performance bounds are established for mRRR under a general setup of incomplete and mixed outcomes from an
exponential family.

(iii) We provide a general, practical modeling framework and computational implementation for analyzing
high-dimensional mixed outcomes, taking into account offset terms, fixed effects of control variables, and differential
dispersion of the mixed-type outcomes. Our model and implementation can be readily extended to enable robust
estimation, variable selection, etc.

The rest of the paper is organized as follows. In Section 2, we propose the mRRR framework for jointly analyzing mixed
outcomes. In Section 3, we establish oracle inequalities for mRRR. A unified iterative algorithm is presented in Section 4.
The performance gain by mRRR over several alternative modeling strategies is demonstrated via simulations in Section 5.
In Section 6, we apply mRRR to build a joint predictive model of health conditions with data from studies of aging. Some
concluding remarks are provided in Section 7.
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Table 1

Some common distributions in the exponential dispersion family.

Distribution Mean Variance θ φ a(φ) b(θ ) c(y;φ)
Bernoulli(p) p p(1− p) ln{p/(1− p)} 1 1 ln(1+ eθ ) 0

P(λ) λ λ ln λ 1 1 eθ − ln y!
N (µ, σ 2) µ σ 2 µ σ 2 φ θ2/2 −(y2φ−1 + ln 2π )/2

G(α, β) α/β α/β2 −β/α 1/α φ − ln(−θ ) ln{ααyα−1/Γ (α)}

2. Mixed-response reduced-rank regression

Let Y = (ỹ1, . . . , ỹq) = (y1, . . . , yn)
⊤ ∈ R

n×q be the complete response matrix consisting of n mutually independent
observations from q outcome/response variables. In many applications, however, Ymay be partially observed. Let

Ω = {(i, k); yik is observed, i ∈ {1, . . . , n}, k ∈ {1, . . . , q}}
be an index set collecting all the entries corresponding to the observed outcomes. Let Ỹ = PΩ (Y) denote the projection of Y
onto Ω , i.e., ỹik = yik for any (i, k) ∈ Ω and ỹik = 0 otherwise.

We assume that each yik, i.e., the ith observation on the kth outcome variable, for any (i, k) ∈ Ω , follows a distribution
from the exponential dispersion family [25]. Specifically, the probability density function of each yik takes the form

f (yik; θik, φk) = exp

{
yikθik − bk(θik)

ak(φk)
+ ck(yik;φk)

}
, (1)

where θik is the natural parameter of yik, φk is the dispersion parameter of the kth outcome variable, and ak, bk, ck are known
functions determined by the specific distribution of the kth outcome variable. Here the q outcome variables are allowed
to have different distributions in the exponential-dispersion family; Table 1 provides details of some of the most common
distributions in this family, including theNormal, Bernoulli, and Poissondistributions. The dispersionparameterφk can either
be knownor unknown. For example,φk for the Poisson distribution equals 1which is known, but for theGaussian distribution
φk corresponds to the variance parameter which may be estimated from the data. Let φ = (φ1, . . . , φq)

⊤ be the vector of the
dispersion parameters, and denote φu as a subvector of φ consisting of all the unknown dispersion parameters. Without loss

of generality, for each outcome variable, we apply the canonical link function gk = (b′k)
−1, so that E(yik) = b′k(θik) = g−1k (θik),

where b′k denotes the derivative function of bk.
Let X = (x̃1, . . . , x̃p) = (x1, . . . , xn)

⊤ ∈ R
n×p be the observed feature/predictor matrix, where the number p of features

can be much larger than the sample size n. Also let Z = (z1, . . . , zn)
⊤ ∈ R

n×(pz+1) be consisting of a vector of 1s in its first
column (to be corresponding to the intercept term) and the observed data from a few control variables in its subsequent
pz columns. The choice of control variables depends on the application, e.g., gender and age. Here it is understood that the
number pz of control variables ismuch smaller than the sample sizen, which is the case inmost real applications. The skeleton
of our proposed approach is the familiar generalized linear model (GLM). Specifically, we model the natural parameters in
(1) as

θik = oik + z⊤i βk + x⊤i ck, (2)

where (i, k) ∈ Ω and the oiks are known offset terms. The offset terms commonly arise, for example, in the modeling of
count data for adjusting the size of a population from which a count is drawn. The βks are unknown coefficient vectors
corresponding to the intercept and the control variables, and ck are unknown coefficient vectors corresponding to the
high-dimensional predictors. Let C = (c1, . . . , cq) = (c̃1, . . . , c̃p)

⊤ ∈ R
p×q be the coefficient matrix of the predictors and

β = (β1, . . . ,βq) = (β̃0, . . . , β̃pz
)⊤ ∈ R

(pz+1)×q be the coefficient matrix of the intercept and control variables, whose first

row, β̃0, gives the intercept vector.
Without any additional assumptions on the parameters, the above model is over-parameterized when p or q are

comparable or much larger than n. Moreover, when the independence of the yiks is assumed, the model reduces to a set of
univariate GLM analysis and thus does not possess anymultivariate flavor. The key here is how to induce and take advantage
of the dependence among the outcomes. We argue that the merit of the formulations in (1) and (2) lies in imposing some
suitable low-dimensional structures on C. In particular, here we consider the case where C is a reduced-rank or low-rank

matrix. The low-rank assumption implies that the outcomesY are dependent on the predictors through a few latent variables.
To see this, assume the rank of C is r , which can be much smaller than both p and q. Then C can be decomposed as C = AB⊤,
for some A ∈ R

p×r and B ∈ R
q×r . From this decomposition, all the outcomes Y are linked to the predictors X only through

a few latent directions XA, which are some unknown linear combinations of the original predictors and are what we refer
to as ‘‘latent variables’’ or ‘‘latent factors’’. Because these latent variables are shared among all the responses, a reduced-
rank model indeed possesses a genuine multivariate flavor. Another useful perspective is to view the proposed model as a
‘‘supervised’’ factor analysis (FA); the main difference is that the latent factors in the proposed model are assumed to live in
the subspace spanned by the predictors X, rather than left unsupervised in FA. The proposed approach also connects to the
sufficient dimension reduction (SDR) [15,29–31], since in mRRR the conditional distribution of Y given X is the same as that
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of Y given XA, albeit that this SDR structure is embedded in a parametric GLM framework. With this information-sharing
mechanism enabled by the low-rank structure, we then assume that the outcomes yik are conditionally independent given
the predictors. This appealing latent model setup facilities model interpretation, enables dimension reduction for handling
high dimensional data, and more importantly, in an implicit way it induces dependency among the outcomes.

We term the above model, i.e., (1), (2) together with the low-rank assumption on C, as a mixed-response reduced-rank
regression (mRRR) model. The mRRR is a rather ‘‘simple’’ model, in the sense that the dependency among the outcomes
is not explicitly modeled. Indeed, in this research, we do not intend to incorporate certain fully-parameterized association
matrix to explicitly characterize the dependency among the outcomes or specify a comprehensive joint distribution for them.
Such proposals would not be easily applicable or generalizable in the simultaneous presence of outcome heterogeneity, high
dimensionality and incomplete data. Our focus is to show that the reduced-rankmethodology has great potential in handling
such complex data structures. We will also discuss later that the mRRR model can be further generalized in various aspects,
such as the incorporation of variable selection, outlier detection and/or robust estimation.

We conduct mRRR analysis via the following regularized estimation approach:

min
C,β,φu

⎡
⎣F (C, β, φu) ≡ −

∑

(i,k)∈Ω
ℓk(ck, βk, φk; xi, zi, yik)+

p∧q∑

h=1
ρ{dh(C); λ}

⎤
⎦ , (3)

where

ℓk(ck, βk, φk; xi, zi, yik) =
yik(oik + z⊤i βk + x⊤i ck)− bk(oik + z⊤i βk + x⊤i ck)

ak(φk)
+ ck(yik, φk) (4)

is the log-likelihood function, dh(C) denotes the hth largest singular value of C, ρ(·; λ) is a penalty function with tuning
parameter λ for inducing the sparsity of the singular values and hence reducing the rank. The intercept term and the effects
of control variables are always included and not penalized. Some popular choices for the penalty include the convex nuclear
norm penalty, i.e.,

p∧q∑

h=1
ρ{dh(C); λ} = λ

p∧q∑

h=1
dh(C) = λ∥C∥∗, (5)

where ∥ · ∥∗ denotes the nuclear norm, and the nonconvex rank penalty, i.e.,

p∧q∑

h=1
ρ{dh(C); λ} = λ

p∧q∑

h=1
1{dh(C) > 0} = λr(C), (6)

where 1(·) is the indicator function and r denotes the rank of the enclosed matrix. It can be readily shown that possible
solutions produced by the rank penalized approach, i.e., (3)with (6), can also be obtained via the rank-constrained estimation
as follows [10],

min
C,β,φu

⎧
⎨
⎩−

∑

(i,k)∈Ω
ℓk(ck, βk, φk; xi, zi, yik)

⎫
⎬
⎭ such that r(C) ≤ r, (7)

for r ∈ {1, . . . , p ∧ q}. In the current work we mainly focus on the rank-penalized version of mRRR.
When X is taken as the n × n identity matrix, mRRR specializes to a mixed principal component analysis (PCA) with

incomplete data.When the responses are all from the same type of distribution, themodel further simplifies to a generalized
PCA [13] or a generalized matrix completion [7]. When all the outcomes are Gaussian, mRRR reduces to the regular RRR, in
which the dispersion parameter can be treated as nuisance.

3. Non-asymptotic analysis

Building upon a rich literature on low rank models, e.g., [4,27,28,51], we study the performance of mRRR in a general
context of supervised learning with mixed and incomplete outcomes. Denote s = |Ω|, i.e., the number of observed entries
in Y. For simplicity we omit the fixed and known offset terms oiks in (2), so the model for the natural parameters becomes

θik = x⊤i ck + z⊤i βk,

or in its matrix form, Θ = Zβ + XC. We consider fixed design. Let A = (Z,X) ∈ R
n×(pz+p+1), and let PA = A(A⊤A)−A⊤ be

the projectionmatrix onto the column space of A, where (·)− denotes theMoore–Penrose inverse. We also useP
⊥
A to denote

the projection matrix onto the orthogonal complement of the column space of A.
We consider C and β in a bounded parameter space,

C = {β ∈ R
pz×q, C ∈ R

(p+1)×q, |θik| ≤ K , i ∈ {1, . . . , n}, k ∈ {1, . . . , q}}.
Here (C∗, β∗) ∈ C is to denote the parameters of the underlying true model, where C∗ is possibly of low rank and β∗ is of full
column rank. Also let r∗ = r(C∗), and Θ

∗ = Zβ∗ + XC∗.
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Regarding themodel structure, in thisworkwe assume that the dispersion parameters are known and focusmainly on the
estimation of the natural parameters. For simplicity and without loss of generality, we then let a(φk) = 1 and consequently
f (yik; θik) = exp {yikθik − b(θik)+ c(yik;φk)}. The log-likelihood becomes

L(C, β;X, Z, Ỹ) =
∑

(i,k)∈Ω
ℓk(ck, βk; xi, zi, yik) = ⟨̃Y,Θ⟩F − ⟨b(Θ), 1

n×q
Ω ⟩F + const,

where ⟨·⟩F denotes the Frobenius inner product, 1n×q
Ω is a n×qmatrix with those entries with indices inΩ being 1 and other

entries being 0, and b(Θ) = (b1(θ1), . . . , bq(θq)), with bk(θk) = (bk(θ1k), . . . , bk(θnk))
⊤ for k ∈ {1, . . . , q}.

Condition 1. For each k ∈ {1, . . . , q}, bk is a continuously differentiable, real-valued and strictly convex function defined on a

closed convex set. Also, for some constants γ , γ > 0,

max
i∈{1,...,n}, k∈{1,...,q}

sup
β,C∈C
|b′′k (θik)| ≤ γ and min

i∈{1,...,n}, k∈{1,...,q}
inf

β,C∈C
|b′′k (θik)| ≥ γ .

Remark 1. If bk is smooth enough, a simple derivation of the density shows that its successive derivatives can be used to
determine the distribution moments. When bk is twice differentiable, E(yik|θ∗ik) = b′k(θ

∗
ik) and var(yik|θ∗ik) = b′′k (θ

∗
ik) hold for

(i, k) ∈ Ω .

The error matrix is defined as the difference between the response matrix and its expectation, E = Ỹ − PΩ{µ(Θ∗)}. To
cover a wide range of outcomes, we assume the entries of E = (eik) follow a sub-exponential distribution.

Condition 2. Assume that E has independent entries and for some constant σE > 0,

max
i∈{1,...,n}, k∈{1,...,q}

E{exp(|eik|/σE)} ≤ e.

Here, for simplicity σE is the same for all the responses.

We regard the incompleteness of the data as due to sampling. Following Klopp [26] and Lafond [28], we impose
conditions on the boundedness of the sampling probabilities and the number of entries.

Condition 3. Let πik = Pr{(i, k) ∈ Ω} for all i ∈ {1, . . . , n} and k ∈ {1, . . . , q}. Assume that for some constants µ, ν ≥ 1,

min
i∈{1,...,n}, k∈{1,...,q}

πik ≥
1

µnq
, (8)

max
i∈{1,...,n}, k∈{1,...,q}

(∑

i

πik,
∑

k

πik

)
≤ ν

n ∧ q
. (9)

The condition in (8) bounds the lowest sampling probability of all entries and (9) ensures that no row nor column should
be sampled far more frequently than the others. When µ = ν = 1, the condition corresponds to the special case of uniform
sampling. The estimation may fail when the number of observed entries is too small or the noise in the observed outcomes
is too large. The next condition then imposes a lower bound on the number of observed entries which depends on the noise
level measured by σ 2

E .

Condition 4.

s = |Ω| > 2

ν
ln{r(A)+ q}(n ∧ q)max

{
σ 2
E

γ
ln2

(
σE

√
n ∧ q

γ

)
,
1

9

}
.

The above conditions are reasonable inmany practical scenarios of mixed response regression. In particular, Conditions 1
and 2 cover mixed responses from several commonly used distributions including the ones from the natural exponential
family, such as the Bernoulli, Poisson, Normal distribution with fixed variance, Gamma distribution with fixed shape
parameter, among others.

Consider the rank penalized mRRR estimator,

(̂C, β̂) = arg min
C,β∈C
−1

s
L(C, β;X, Z, Ỹ)+ λr(C). (10)

We establish an oracle inequality for ∥Θ̂−Θ
∗∥2F , where Θ̂ = X̂C+ Zβ̂.

Theorem 1. Suppose Conditions 1–4 hold. Choose

λ = 16µν

(
α2e2γ + c2E

γ

γ

)
ln{r(A)+ q}

s
(n ∨ q),
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where α and cE are constants defined in Lemma A.2. Then, with probability of at least 1− 3{r(A)+ q}−1, we have

∥Θ̂−Θ
∗∥2F

nq
≲ max

[
µeK 2

√
ln{r(A)+ q}

s
, µ2ν

(
α2e2 + c2E

γ

γ 2

)
{r(C∗)+ r(Zβ∗)} ln{r(A)+ q}

s
(n ∨ q)

]
,

where ≲ means that the inequality holds up to some multiplicative numerical constants.

Theorem 1 extends the existing results on high-dimensional reduced-rank regression. In general case, the second term
dominates when n is large, and thus the mRRR estimator achieves

∥Θ̂−Θ
∗∥2F ≲ {r(C∗)+ pz + 1}(n ∨ q) ln{r(A)+ q} nq/s.

Comparing to the results in [4] that the reduced-rank regression estimator achieves ∥X̂C − XC∗∥ ≲ r(C∗)(n ∨ q) under
sub-Gaussian error, the term pz + 1 comes from the inclusion of the unpenalized control variables and intercept, the term
(nq)/s is due to the incomplete data, and the extra ln{r(A)+ q} term arises from the sub-exponential error structure.

The nuclear-norm penalized estimator using (5) can achieve the same error rate as the rank penalized mRRR given in
Theorem 1, albeit under additional conditions on the design matrix [4,43]. See, for example, Theorem 12 in [4], which states
that under full-rank design, nuclear-norm penalized regression can achieve the same error bound as its rank penalized
counterpart. We omit the details.

4. Computation

We first briefly review a generic matrix approximation problem, viz.

min
Γ∈Rn×q

1

2
∥Y− Γ∥2F +

n∧q∑

h=1
ρ{dh(Γ); λ}, (11)

where ∥ · ∥F denotes the Frobenius norm and ρ is a sparsity-inducing penalty. Let Y = UDV⊤ be the singular value
decomposition (SVD) of Y, so that U⊤U = In∧q, V⊤V = In∧q where In∧q is the (n ∧ q) × (n ∧ q) identity matrix, and D is
a diagonal matrix with the nonzero singular values on its diagonal in descending order. For a given ρ, the solution of (11), Γ̂,
is obtained from singular value thresholding by T

d(·; λ), i.e.,

Γ̂ = T
d(Y; λ) ≡ UT(D; λ)V⊤, (12)

where T(·; λ) is an element-wise thresholding function associated with the penalty ρ. For example, the ℓ1 penalty is
associated with the soft-thresholding operator, i.e., T(t; λ) = sign(t)(|t| − λ)+, and the ℓ0 penalty is associated with

the hard-thresholding operator, i.e., T(t; λ) = t1(|t| >
√
2λ). Consequently, (11) with the nuclear norm penalization

is solved by singular value soft-thresholding, while (11) with the rank penalization is solved by singular value hard-
thresholding [6,10,43].

Utilizing the above results, we present an iterative singular value thresholding algorithm to solve the mRRR problem in
(3). To save space, its derivation is given in the Appendices A and B. For the ease of presentation, we omit the oik term in (2)
as their inclusion adds no difficulty in computation. Define Φ = diag{a1(φ1), . . . , aq(φq)}, a diagonal matrix with ak(φk)s on
its diagonal. Define

µ(ck, βk) = (g−1k (x⊤1 ck + z⊤1 βk), . . . , g
−1
k (x⊤n ck + z⊤n βk))

⊤ ∈ R
n, µ(C, β) = (µ(c1, β1), . . . ,µ(cq, βq)) ∈ R

n×q.

The proposed algorithm is given in Algorithm 1.

Algorithm 1Mixed-response reduced-rank regression algorithm (mRRR)

Initialize C(0), β(0) and φ(0)
u . Set t ← 0.

repeat

(a) C-step: C(t+1) = T
d[C(t) + X⊤PΩ{Y− µ(C(t), β(t))}Φ(t)−1; λ],

(b) β-step: β(t+1) = β(t) + Z⊤PΩ{Y− µ(C(t+1), β(t))}Φ(t)−1,

(c) φu-step: φ(t+1)
u = argmaxφu

∑
(i,k)∈Ω ℓk(c

(t+1)
k , β

(t+1)
k , φk; xi, zi, yik),

t ← t + 1.
until convergence,
e.g., |F (C(t), β(t), φ(t)

u )− F (C(t+1), β(t+1), φ(t+1)
u )|/|F (C(t), β(t), φ(t)

u )|≤ ϵ, e.g., ϵ = 10−6.
return Ĉ, β̂, φ̂u.

Several remarks are in order. The C-step is solved by singular value thresholding. As in practice the desired rank is
usually much smaller than both p and q, the computation cost of performing SVD can be well controlled. When updating the
unknown dispersion parameters, the problem is separable in each φk, and can be handled by standard optimizationmethods
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such as Newton–Raphson. Besides, for some common distributions, e.g., Gaussian, the optimizer of a dispersion parameter

admits an explicit form. Algorithm 1 can be readily modified to optimize the rank-constrained criterion in (7), for which the

C-step is replaced with setting C(t+1) as the rank-r approximation of C(t) + X⊤PΩ{Y− µ(C(t), β(t))}Φ(t)−1.
We have the following results regarding the convergence properties of Algorithm 1. Define

W(ck, βk, φk) = diag{|b′′k (x⊤i ck + z⊤i βk)|/ak(φk) : i ∈ {1, . . . , n}}, γ1 = max
k∈{1,...,q}

sup
(ξk,ζk,δk)∈Ak

∥X⊤W(ξk, ζk, δk)X∥2,

where Ak = {(ac(t)k + (1− a)c
(t+1)
k , β

(t)
k , φ

(t)
k ) : a ∈ (0, 1), t ∈ {1, 2, . . .}}, and

γ2 = max
k∈{1,...,q}

sup
(ξk,ζk,δk)∈Bk

∥Z⊤W(ξk, ζk, δk)Z∥2.

where Bk = {(c(t+1)k , aβ
(t)
k + (1− a)β

(t+1)
k , φ

(t)
k ) : a ∈ (0, 1), t ∈ {1, 2, . . .}}. Here ∥ · ∥2 denotes the spectral norm.

Theorem 2. The sequence {C(t), β(t), φ(t)
u } produced by Algorithm 1 satisfies,

F (C(t), β(t), φ(t)
u )− F (C(t+1), β(t+1), φ(t+1)

u ) ≥ 1− γ1

2
∥C(t+1) − C(t)∥2F +

2− γ2

2
∥β(t+1) − β(t)∥2F .

Theorem 2 shows that as long as γ1 ≤ 1, γ2 ≤ 2, the monotone descending of the objective function is guaranteed.

Following She [42],we achieve this by properly scalingX andZ. The upper boundofγ1 can bedetermined for several common

distributions. For Gaussian responses, b′′k (x) = 1 for any x, and ak(φk) = σ 2
k , where σ 2

k is the variance parameter; therefore,

γ1 ≤ ∥X∥22/min(σ 2
k ), where theminimum is over all the Gaussian responses. It then suffices to scale X by some scaling factor

κ∗1 ≥ ∥X∥2/min(σk), so that after scaling it comes that γ1 ≤ 1. In practice, σk can be replaced by some conservative initial
estimator, e.g., from fitting linear regression of Gaussian response alone. For binary responses, b′′k (x) = ex/(1 + ex)2 ≤ 1/4

for any x and ak(φk) = 1, so that γ1 ≤ ∥X∥22/4. Then it suffices to set κ∗1 = ∥X∥2/2. For Poisson responses, b′′k (x) = ex, so

the upper bound of γ1 does not have a simple form. In practice when an explicit bound is not available, we empirically set a

large enough scaling factor to ensure the descending of the C-step, with the expense of reduced convergence speed. In the

mixed response setting, the scale factor can be chosen as themaximumof these quantities for different types of distributions.

Similarly, 2− γ2 ≥ 0 can be achieved by scaling Z.

We stress that γ1, γ2 and the aforementioned choice of the scaling factor do not depend on the tuning parameter and the

penalty form in the objective function, and an estimator from the scaledmodel can be simply scaled back to give the solution

of the original problem. Although Theorem 2 does not guarantee the convergence of {C(t)} in general, in practice we always

observe a unique limit point, and the algorithm is efficient and stable.

To initialize Algorithm 1, we set C(0) = 0 and obtain β(0), φ(0)
u from univariate GLMs. When the model is fitted for a

sequence of λ values, the warm start strategy is adopted, i.e., using the solution from previous fit as the initial value for

the next λ value. We use K -fold cross validation [46] to choose the optimal λ and hence the optimal solution, based on the

predictive performance of the models. The implementation is available in the R package rrpack.

5. Simulation

5.1. Simulation setups

We consider several simulation models. Model 1 is a low-dimensional example. We set n = 100, p = 15, q = 20, and

r = 2. Among the q = 20 responses, q1 = 8 of them are generated from Gaussian, q2 = 10 from Bernoulli, and q3 = 2

from Poisson. The predictor matrix X is constructed by generating its entries as independent and identically distributed (iid)

random samples from the standard normal distribution N (0, 1). The coefficient matrix C is generated as C = AB⊤, where

A ∈ R
p×r is an orthogonal matrix from the QR decomposition of a random p × r matrix filled with N (0, 1) entries, and all

entries in B ∈ R
q×r are iid samples from U(−1, 1). We let Z = 1n, and set the corresponding coefficient matrix, i.e., the

intercept vector, as β = β̃0 = 0.51q. The natural parameter matrix is then constructed as Θ = (θik)n×q = Zβ + XC. In this

example, all the Gaussian responses are set to have the same dispersion parameter, i.e., yik ∼ N (θik, 1) for all i ∈ {1, . . . , n}
and k ∈ {1, . . . , q1}. The response matrix Y is then generated from model (1).

Model 2 is a high-dimensional setup. We set n = 200, p = 1000, q = 20 and r = 2. The responses still consist of

q1 = 8 Gaussian, q2 = 10 Bernoulli, and q3 = 2 Poisson variables. The matrix X is generated as X1X
⊤
2 , where X1 ∈ R

n×10,
X2 ∈ R

p×10, and all entries of X1 and X2 are iid N (0, 1); the entire matrix is then scaled so that ∥X∥2F/(np) = 1. The C, Z, β

andΘ are generated in the same way as in Model 1. The Gaussian responses are set to have different dispersion parameters,

i.e., yik ∼ N (θik, k/q1), for i ∈ {1, . . . , n} and k ∈ {1, . . . , q}.
In each simulation run, once the full data (X, Y) are generated, we randomly choose M% of entries in Y and set them as

missing values, whereM ∈ {0, 10, 20}. The simulation experiments are replicated 100 times under each model setting.
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5.2. Methods and evaluation metrics

We consider several realistic modeling strategies for mixed responses/outcomes and incomplete data of possibly high
dimension. A simple approach is to model the responses marginally and separately, by fitting a univariate generalized linear
model for each response (uGLM). In each univariate regression, only complete data pairs (yik, xi) are used, and when dealing
with high dimension, we have used its penalized version with the elastic net penalty [55] implemented in the R package
glmnet. Another approach is to fit vector generalized reduced-rank regression (gRRR) [42,50] for each type of responses
separately. The gRRR can be viewed as a special case of mRRR, so our proposed algorithm still applies and also enables
gRRR to handle incomplete responses. To focus on the main idea and ease the presentation, however, we only separate the
Gaussian and non-Gaussian variables, e.g., binary and count data are modeled together using mRRR. With the proposed
mRRR, we are able to model all the mixed outcomes simultaneously. Both the rank and the nuclear-norm penalized gRRR
and mRRR are considered, and the corresponding methods are denoted as gRRR.r/gRRR.n and mRRR.r/mRRR.n, respectively.
As a benchmark, we also include an oracle approach by fitting mRRR with complete data (ORE); similarly, the methods with
different penalties are denoted as ORE.r and ORE.n.

For each reduced-rank method, we use 5-fold cross-validation for tuning parameter selection. To be specific, we split
the non-missing entries in Y to five folds, and each time use one fold as testing set (Ωte) and the others as training set
(Ωtr ). We apply each method to obtain its solution path using the training set, and evaluate the models along the path by
a predictive deviance measure using the testing set, i.e., −2

∑
(i,k)∈Ωte

ℓk(ĉk, φ̂k; x̃i, yik). The optimal tuning parameter and
hence the optimal model is selected as the one with the smallest cross validation error.

Let Θ1, Θ2 be the sub-matrices of Θ corresponding to the Gaussian and non-Gaussian outcomes, respectively. The
estimation of Θ is evaluated by

Erg (Θ̂) = ∥Θ̂1 −Θ1∥2F/(nq1), Erng (Θ̂) = ∥Θ̂2 −Θ2∥2F/{n(q− q1)},
and the combined estimation error Er(Θ̂) = ∥Θ̂ − Θ∥2F/(nq). Moreover, the estimation error of the dispersion parameters
is computed as

Er(̂φ) =
{

q1∑

k=1
(φ̂k − φk)

2

}
/q1.

To evaluate the rank estimation performance, we present the average selected rank (Rank), and the ratio between the
estimated nuclear norm and the truth, i.e., Ratio∗ = ∥X̂C∥∗/∥XC∥∗.

5.3. Simulation results

The simulation results ofModels 1 and 2 are reported in Tables 2–3, respectively. In Figs. 1–2, we also display the boxplots
of combined estimation error. As expected, the uGLM strategy performs theworst among all methods in every category. This
is because such amarginalmethod fails to exploit the potential correlation among the outcomes. In a reduced-rankmodel, all
the predictors may contribute to the prediction of the outcomes, which is quite different from the sparse model assumption.
As such, the sparse and shrinkage estimation adopted in uGLM may not be able to mimic the desired model structure in
these examples.

Comparing the two joint estimation approaches, mRRR performs substantially better than gRRR which models Gaussian
and non-Gaussian outcomes separately. We have also tried modeling separately each type of distributions, and the results
are evenworse than gRRR and hence are not reported. The reason is that gRRR is only able to partially capture the correlation
within each type of outcomes, while mRRR fully captures the latent dependency among all the outcomes. With incomplete
data, the performance of mRRR, gRRR and uGLM all becomes worse as the proportion of missing increases. Nevertheless,
mRRR still performs comparably well to ORE.

Comparing the rank penalized mRRR and the nuclear norm penalized mRRR, the performance of the latter is generally
worse than that of the former. In particular, using nuclear normpenalty tends to select a larger rank,while the overall nuclear
norm gets much heavier shrinkage. These findings agree with existing studies [10,51].

6. Application in longitudinal studies of aging

The Longitudinal Studies of Aging (LSOAs) is a collaborative project conducted by the US National Center for Health
Statistics and the National Institute on Aging [45]. A national representative sample of several thousands of subjects who
were at or over 70 years of age were interviewed and followed, and their health, functional status, living arrangements, and
health services utilization were measured as they moved into and through their oldest ages. It is of interest to examine the
changes and the associations between their current and future health status. Therefore,we consider amultivariate regression
setup, by jointly regressing various health measures collected during the period 1999–2000 on the records collected during
the period 1997–1998 from the same set of subjects. There are in total n = 3988 subjects who participated in the studies in
both periods.

There are q = 44 outcome variables covering a wide range of assessments of health conditions. Specifically, three self-
rated health measures, including overall health status, memory status and depression status, can be regarded as continuous



386 C. Luo et al. / Journal of Multivariate Analysis 167 (2018) 378–394

Table 2

Simulation: results of Model 1. Reported are the average values of various performance measures over replicated simulation experiments, with their

standard deviations reported in parentheses. To improve presentation, Erg (Θ̂), Erng (Θ̂) and Er(̂φ) are scaled by multiplying 102 .

M% ORE.r mRRR.r gRRR.r ORE.n mRRR.n gRRR.n uGLM

0% Erg (Θ̂) 5.2 (1.2) 5.2 (1.2) 7.1 (2.4) 11.7 (1.7) 11.7 (1.7) 13.5 (1.9) 33.8 (3.9)

Erng (Θ̂) 17.1 (5.2) 17.1 (5.2) 24.9 (8.1) 27.1 (4.3) 27.1 (4.3) 43.2 (6.8) 82.3 (11.1)

Er(̂φ) 2.2 (2.7) 2.2 (2.7) 2.4 (3.5) 4.1 (4.0) 4.1 (4.0) 4.3 (4.1) 4.4 (5.2)

Rank 2.0 (0.0) 2.0 (0.0) 1.9 (0.1)/2.0 (0.1) 6.6 (0.5) 6.6 (0.5) 4.0 (0.5)/5.5 (0.5) –

Ratio∗ 1.1 (0.0) 1.1 (0.0) 1.2 (0.1) 0.9 (0.1) 0.9 (0.1) 1.2 (0.1) 1.0 (0.1)

10% Erg (Θ̂) 5.3 (1.2) 5.9 (1.3) 9.3 (4.0) 11.8 (1.5) 14.0 (1.8) 15.7 (2.0) 36.2 (4.5)

Erng (Θ̂) 18.9 (5.6) 21.4 (6.5) 30.9 (8.1) 26.8 (4.0) 31.4 (5.0) 51.1 (8.1) 81.2 (9.1)

Er(̂φ) 2.3 (3.1) 4.2 (4.6) 5.0 (6.8) 4.1 (4.2) 8.2 (6.3) 8.3 (6.4) 6.2 (8.0)

Rank 2.0 (0.1) 2.0 (0.1) 2.0 (0.1)/2.0 (0.2) 6.7 (0.5) 6.8 (0.4) 4.0 (0.5)/5.5 (0.5) –

Ratio∗ 1.1 (0.0) 1.1 (0.0) 1.2 (0.1) 0.9 (0.1) 0.9 (0.1) 1.2 (0.1) 1.0 (0.1)

20% Erg (Θ̂) 5.2 (1.2) 7.8 (4.4) 13.6 (7.0) 12.3 (1.7) 17.2 (2.5) 19.2 (2.7) 39.3 (5.2)

Erng (Θ̂) 17.5 (5.3) 22.7 (7.0) 33.6 (10.5) 27.1 (4.6) 36.8 (6.9) 57.9 (11.1) 87.4 (11.1)

Er(̂φ) 2.3 (3.0) 8.3 (7.2) 8.0 (8.2) 4.2 (4.3) 14.5 (8.4) 14.7 (8.4) 7.5 (11.7)

Rank 2.0 (0.0) 1.9 (0.3) 1.9 (0.3)/2.0 (0.2) 6.6 (0.5) 6.9 (0.3) 4.0 (0.5)/5.5 (0.5) –

Ratio∗ 1.1 (0.0) 1.1 (0.0) 1.2 (0.1) 0.9 (0.1) 0.9 (0.1) 1.2 (0.1) 1.0 (0.1)

Table 3

Simulation: results of Model 2. The layout is the same as that of Table 2.

M% ORE.r mRRR.r gRRR.r ORE.n mRRR.n gRRR.n uGLM

0% Erg (Θ̂) 2.9 (0.5) 2.9 (0.5) 3.0 (0.5) 4.5 (0.7) 4.5 (0.7) 5.2 (0.5) 9.9 (1.2)

Erng (Θ̂) 22.6 (1.6) 22.6 (1.6) 24.8 (2.6) 33.5 (2.6) 33.5 (2.6) 35.2 (2.9) 64.9 (9.2)

Er(̂φ) 0.9 (1.8) 0.9 (1.8) 0.9 (1.7) 1.2 (2.4) 1.2 (2.4) 1.0 (1.9) 1.8 (3.9)

Rank 2.0 (0.0) 2.0 (0.0) 2.0 (0.1)/1.9 (0.3) 9.7 (0.4) 9.7 (0.4) 5.5 (0.6)/8.6 (0.6) –

Ratio∗ 1.0 (0.0) 1.0 (0.0) 1.1 (0.1) 1.2 (0.2) 1.2 (0.2) 1.2 (0.2) 0.8 (0.1)

10% Erg (Θ̂) 2.7 (0.6) 2.8 (0.6) 3.0 (0.7) 4.2 (0.8) 4.6 (0.8) 5.5 (0.7) 10.5 (1.4)

Erng (Θ̂) 22.1 (1.6) 23.2 (1.7) 25.3 (2.2) 33.2 (2.9) 36.2 (3.1) 38.1 (3.4) 68.9 (9.9)

Er(̂φ) 0.7 (1.6) 1.0 (2.1) 1.1 (2.1) 1.0 (2.4) 1.3 (2.3) 2.6 (3.8) 1.7 (3.9)

Rank 2.0 (0.0) 2.0 (0.0) 2.0 (0.1)/2.0 (0.2) 9.8 (0.4) 9.8 (0.4) 5.5 (0.6)/8.8 (0.6) –

Ratio∗ 1.0 (0.0) 1.0 (0.0) 1.1 (0.1) 1.2 (0.1) 1.2 (0.2) 1.3 (0.2) 0.8 (0.1)

20% Erg (Θ̂) 2.8 (0.5) 3.0 (0.6) 3.2 (0.7) 4.4 (0.7) 5.2 (0.8) 6.0 (0.6) 11.1 (1.6)

Erng (Θ̂) 22.4 (1.8) 25.0 (2.3) 27.6 (2.7) 33.3 (2.7) 39.8 (3.4) 41.9 (3.8) 69.9 (10.6)

Er(̂φ) 0.7 (1.5) 1.2 (1.8) 1.3 (1.8) 1.0 (2.5) 3.5 (4.5) 5.8 (6.6) 1.9 (4.4)

Rank 2.0 (0.0) 2.0 (0.0) 2.0 (0.0)/2.0 (0.3) 9.7 (0.4) 9.9 (0.3) 5.9 (0.6)/9.0 (0.6) –

Ratio∗ 1.0 (0.0) 1.0 (0.0) 1.1 (0.1) 1.2 (0.2) 1.3 (0.2) 1.3 (0.2) 0.8 (0.1)

Fig. 1. Simulation: boxplots of the estimation error, Er(Θ̂), from the simulation results of Model 1.

outcomes; there are 41 binary outcomes which fall into several categories: 7 measures on fundamental daily activity, 13 on

extended daily activity, 5 on social involvement, 8 onmedical condition, 4 on cognitive ability, and 4 on sensation condition.

In total, 20.2% of outcome values are missing.
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Fig. 2. Simulation: boxplots of the estimation error, Er(Θ̂), from the simulation results of model 2.

Potential predictors from 1997–1998 data include records of demographics, family structure, daily personal care, medical
history, social activity, health opinion, behavior, nutrition, health insurance and income and assets, the majority of which
are binary measurements. Among these variables, there are 13.7% missing values due to non-response and questionnaire
filtering. For a few continuous predictors, the missing values are imputed with sample mean. For binary predictors, a better
approach is to treatmissing as a third category as it may also carry important information; as such, two dummy variables are
created from each binary predictor with missing values (the third one is not necessary.) This results in p = 294 predictors.

Theremay be strong correlations among the large number of outcomes and the features. Therefore, it is plausible that the
outcomes are dependent on the features only through a few latent factors, making dimension reduction and reduced-rank
models applicable. We thus apply mRRR with rank penalization to conduct joint analysis of both the continuous and binary
outcomes; as mRRR can deal with the missing values in the outcomes, neither data removal nor imputation is needed. The
gender and age variables are used as control variables and their corresponding coefficients are not penalized. To demonstrate
the efficacy of joint modeling, we mainly compare mRRR with the univariate approach uGLM. We use a random splitting
procedure to evaluate the predictive performance. In each split, 75% of data are randomly selected for training and the rest
25%data for testing. Theprediction of the continuous outcomes in each split is evaluated bymean squared errors (MSE),while
the prediction of the binary outcomes is evaluated by Area Under Curve (AUC), based on testing data alone. The procedure
is repeated 100 times.

We compute the average predictive measures from random splitting. The average MSE for Gaussian outcomes are 0.69
(0.06) and 0.76 (0.07), and the average AUC for binary outcomes are 0.77 (0.10) and 0.65 (0.11), for mRRR and uGLM,
respectively (the standard deviations are reported in the parenthesis). The uGLM approach is outperformed by mRRR by a
largemargin, indicating the strength of low-rank estimation. Fig. 3 provides amore detailed performance comparison on the
prediction of each individual outcome. It can be seen that the improvement by mRRR over uGLM is persistent across all the
outcomes. The greatest improvement appears to be in the categories of fundamental activity and extended activity, where
the percentage of improvement is over 20% for several outcomes. Indeed, these outcomes tend to be moderately or highly
correlated, making joint estimation particularly beneficial. The mRRR also performs substantially better in predicting the
three continuous responses related to self-rated health. This can be explained by the fact that two out of the three self-rated
healthmeasures are aboutmemory and depression, which are very relevant to the variables in the category of cognition [23].
We have also tried the regularized version of uGLM using elastic net (uGLM-EN), whose average MSE for Gaussian outcomes
and average AUC for binary outcomes are 0.70 (0.06) and 0.75 (0.11), respectively. As such, the performance of mRRR is only
slightly better than that of uGLM-EN. This shows that shrinkage and sparse estimation could also be quite effective in this
application, so a joint sparse and reduced-rank method may lead to even better performance (to be discussed in Section 7).

In our theoretical analysis in Section 3, we have assumed the independence of the error terms, which implies that the
dependency of the responses can be fully captured by the low-rank structure of the natural parametermatrix. It is important
to access the validity of this assumption in this application. Based on a referee’s suggestion, we use the nonparametric test
for independence proposed in Fan et al. [18] which extends the distance correlation test by Székely et al. [47] to the case
of testing mutual independence between q ≥ 2 random variables or vectors. The method is implemented in the R package
IndependenceTests, but unfortunately, it cannot be directly applied due to the presence ofmissing values in our problem.
We have thus adopted a naivemultiple imputation approach. Specifically, for each Gaussian response themissing values are
imputed by the observed mean value, and for each binary response the missing values are imputed by random Bernoulli
draws with the probability of 1 being the observed mean value. The mRRR model is then fitted with the fully imputed data
and the independence test is conductedwith the obtained residuals from the q response variables. This procedure is repeated
100 times.We find that the p-values are stably around 0.08, with a standard deviation of 0.008. This result suggests that there
is no apparent violation of the independent-error assumption in this particular application. We point out that it would be
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(a) Prediction performance. (b) Percentage of improvement over uGLM.

Fig. 3. LSOA data: comparison of predictive performance of mRRR and uGLM. Use 75% sample as training set. The left panel displays the MSE or AUC value

for predicting each individual outcome. The right panel shows the percentage of improvement by mRRR over uGLM. In the left panel, the left axis shows

MSE while the right axis shows AUC. In both panels, the solid vertical line separates the Gaussian and the binary outcomes, while the dashed vertical lines

separate the binary outcomes to different categories.

interesting to further extend the mRRR model to capture the potential response correlation even after conditioning on the
predictors; see Section 7 for more discussion.

We have also tried the gRRR approach, which fits the three Gaussian responses and the 41 binary responses separately.
Using the aforedescribed random-splitting procedure with 75% samples for training, the gRRR approach yields almost
identical results comparing to mRRR. That the benefit of joint modeling is not observed in this case is partly due to the
fact that the number of Gaussian responses is quite small and the sample size is very large. We have then tried smaller
sample sizes for training. From the random-splitting procedure with 25% data for training, the average MSE for Gaussian
outcomes are 0.78 (0.06) and 0.80 (0.06), and the average AUC for binary outcomes are 0.75 (0.10) and 0.73 (0.10), for mRRR
and gRRR, respectively; with 10% data for training, the average MSE for Gaussian outcomes are 0.86 (0.09) and 0.92 (0.09),
and the average AUC for binary outcomes are 0.73 (0.11) and 0.70 (0.10), for mRRR and gRRR, respectively. Therefore, as the
sample size becomes smaller, while the performance of both methods deteriorates, the gain of mRRR over gRRR becomes
more revealing. The results suggest that integrative modeling can be quite effective especially when sample size is small or
information from each individual response is limited.

7. Discussion

We will explore several extensions of mRRR that are of immediate interest in real applications. First, we could add
a sparsity-inducing penalty on C, e.g., a row-wise group lasso penalty [52], to conduct simultaneous rank reduction and
variable selection. Second, the model of the natural parameters in (2) can be extended to

θik = oik + x⊤i ck + z⊤i βk + sik,

with (i, k) ∈ Ω . Here, each sik is called a natural-shift parameter and S = (sik)n×q is termed the natural-shift matrix,
characterizing the additional effects in outcomes that cannot be explained by the linear function of X and Z. Certain low-
dimensional assumptions on S are necessary to ensure identifiability. For example, when S is a unit-rank matrix, the model
implies that all the yiks are related through another unsupervised latent feature, in addition to the supervised latent features
from X. This setup then induces response correlation even after conditioning on X. Following She and Chen [43], S can also
be assumed to be a sparse matrix for outlier detection, i.e., an entry sik is zero if the corresponding observation is a ‘‘normal
observation’’, so that its natural parameter θik is modeled in the usual way; otherwise, if an observation is an outlier, sik may
be nonzero to capture its outlying effect. As such, S is assumed to be a sparse matrix to adjust for the outliers, so that the
model estimation can be immune from potential data corruption. The model estimation can still be conducted via penalized
log-likelihood, by adding additional regularization terms on S.

We have used an iterative singular value thresholding algorithm for handling mixed and incomplete outcomes. It is
interesting to improve it by considering algorithmic acceleration techniques. Indeed, empirically we have tested that
properly updating the scaling factor during iterations can substantially speed up computation. Besides rank and nuclear
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norm penalization, some other non-convex or hybrid penalization methods could be attractive [20,21,35]. In our theoretical
analysis, we did not address the estimation problem of the dispersion parameters. This is known to be difficult in general
in regularized estimation, and we will certainly explore this important issue in the future. Several authors studied the
effective degrees of freedom of nuclear norm penalized estimation and reduced-rank estimation under Stein’s unbiased risk
estimation framework; see, e.g., [34,54]. It would be interesting to study this problem for the mRRR approach, which can
then advance the development of information criteria for model evaluation and selection. Last but not the least, in our work
the missing data are still regarded as happening at random, as we have not attempted to model its potential dependence
with observed data.When explicit information regardingmissing becomes available, it would be interesting and challenging
to consider how to incorporate more general missing mechanisms in the high dimensional regression problem.
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Appendix A. Proof of Theorem 1

Let UΛU⊤ be the eigen-decomposition of PA. Since PA is the projection matrix on the column space of A, only the first
r(A) entries of Λ on the diagonal equal to 1, and all the remaining entries equal to 0. Then for any matrix Q ∈ R

n×q, ΛU⊤Q
can be written as an r(A)× q matrix with non-zero entries on top of a {n− r(A)} × qmatrix of zeros.

For incomplete data, denote the sampled sequence of entries by (ωt )
s
t=1 ∈ ([n] × [q])s, where ωt = (it , kt ) ∈ Ω for all

t ∈ [s] and ω1 ∪ · · · ∪ωs = Ω . Following [28], define a sequence of matrices (Et )
s
t=1 ∈ R

n×q. Entries of Et are all zeros except
for the coefficientωt = (it , kt ) which is equal to 1, i.e., (Et )it ,kt = 1. Then for ϵ1, . . . , ϵs, a Rademacher sequence independent
from (ωt ,Y(it ,kt ))

s
t=1, we define ΣR = (ϵ1E1 + · · · + ϵsEs)/s. We first prove two lemmas.

Lemma A.1. Suppose Conditions 1 and 3 hold. For the rank-penalized estimator in (10), on the event

A =
[
(8eµγ )nq[E{d1(PAΣR)}]2 +

8µ

γ
nqd21

(
s−1PAE

)
≤ λ

]
,

we have

∥Θ̂−Θ
∗∥2F

nq
≲ max

[
µeK 2

√
ln(n+ q)

s
,
µ

γ
{r(C∗)+ r(Zβ∗)}λ

]
.

Proof. First, we denote by ε(Θ | Θ′) the Bregman divergence [2,3], viz.

ε(Θ | Θ′) = 1

s

(
⟨b(Θ), 1

n×q
Ω ⟩F − ⟨b(Θ′), 1

n×q
Ω ⟩F − ⟨PΩ{µ(Θ′)},Θ−Θ

′⟩F
)

.

By Taylor expansion, it follows that

γ

2s
∥PΩ (Θ−Θ

′)∥2F ≤ ε(Θ | Θ′) ≤ γ

2s
∥PΩ (Θ−Θ

′)∥2F .

In the special case of Gaussian, for example, ε(Θ | Θ′) = ∥PΩ (Θ − Θ
′)∥2F/(2s). This connects Bregman divergence to the

error metric we are interested in.

By the definition of (̂C, β̂) in (10),

− 1

s
⟨̃Y, Θ̂⟩F +

1

s
⟨b(Θ̂), 1

n×q
Ω ⟩F + λr (̂C) ≤ −1

s
⟨̃Y,Θ⟩F +

1

s
⟨b(Θ), 1

n×q
Ω ⟩F + λr(C),

for all p× qmatrices Cwith rank k̂ and (pz + 1)× qmatrices β. Then with the definition E = Ỹ− PΩ{µ(Θ∗)}, we have

− 1

s
⟨PΩ{µ(Θ∗)} + E, Θ̂⟩F +

1

s
⟨b(Θ̂), 1

n×q
Ω ⟩F + λr (̂C) ≤ −1

s
⟨PΩ{µ(Θ∗)} + E,Θ⟩F +

1

s
⟨b(Θ), 1

n×q
Ω ⟩F + λr(C).

By adding s−1⟨PΩ{µ(Θ∗)},Θ∗⟩F − s−1⟨b(Θ∗), 1n×q
Ω ⟩F to both sides, we have

ε(Θ̂ | Θ∗) ≤ ε(Θ | Θ∗)+ 2λr(C)+ 2⟨s−1E, Θ̂−Θ⟩F − λr (̂C)− λr(C)

= ε(Θ | Θ∗)+ 2λr(C)+ 2⟨s−1 PAE, Θ̂−Θ⟩F − λr (̂C)− λr(C).

Let C = C∗, β = β∗, we have

ε(Θ̂ | Θ∗) ≤ 2λr(C∗)+ 2⟨s−1PAE, Θ̂−Θ
∗⟩F − λr (̂C)− λr(C∗). (13)
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The inner product term can be bounded as follows,

⟨s−1PAE, Θ̂−Θ
∗⟩F ≤ d1

(
s−1PAE

)
∥Θ̂−Θ

∗∥∗
= d1

(
s−1PAE

)
∥X̂C+ Zβ̂ − (XC∗ + Zβ∗)∥∗

≤ d1
(
s−1PAE

)
{r(X̂C)+ r(XC∗)+ r(Ẑβ)+ r(Zβ∗)}1/2∥Θ̂−Θ

∗∥F
≤ d1

(
s−1PAE

)
{r (̂C)+ r(C∗)+ 2r(Zβ∗)}1/2∥Θ̂−Θ

∗∥F , (14)

where we assume β∗ has full rank.
By (13) and (14), and using the inequality 2xy ≤ x2/a+ ay2, for any a > 0, we have

ε(Θ̂ | Θ∗) ≤ 1

a
∥Θ̂−Θ

∗∥2F + {ad21
(
s−1PAE

)
− λ}{r (̂C)+ r(C∗)} + 2λr(C∗)+ 2r(Zβ∗)ad21

(
s−1PAE

)
. (15)

Denote

∆2
Ω (Θ̂,Θ∗) = 1

s
∥PΩ (Θ̂−Θ

∗)∥2F ≤
2

γ
ε(Θ̂ | Θ∗). (16)

Consider the following two cases according to a threshold value 8eK 2
√
ln{r(A)+ q}/s.

Case 1:
∑

ikπik (̂θik − θ∗ik)
2 ≤ 8eK 2

√
ln{r(A)+ q}/s. Using Condition 3, we have

∥Θ̂−Θ
∗∥2F

nq
≤
∑

ik

πik (̂θik − θ∗ik)
2 ≤ 8µeK 2

√
ln{r(A)+ q}/s. (17)

We thus obtain the first term in the final bound.

Case 2:
∑

ikπik (̂θik − θ∗ik)
2 > 8eK 2

√
ln{r(A)+ q}/s. We have

∥Θ̂−Θ
∗∥∗ ≤ {r (̂C)+ r(C∗)+ 2r(Zβ∗)}1/2∥Θ̂−Θ

∗∥F ≤
√
{r (̂C)+ r(C∗)+ 2r(Zβ∗)}(µnq)E{∆2

Ω (Θ̂,Θ∗)},

where E{∆2
Ω (Θ̂,Θ∗)} =

∑
ikπik (̂θik − θ∗ik)

2. Also, using Lemma 19 of [28], with probability at least 1 − {r(A) + q − 1}−1 ≥
1− 2{r(A)+ q}−1,

∆2
Ω (Θ̂,Θ∗) ≥ 1

2
E{∆2

Ω (Θ̂,Θ∗)} − 16e[E{d1(PAΣR)}]2(µnq){r (̂C)+ r(C∗)+ 2r(Zβ∗)}. (18)

Now, combining the results in (15), (16) and (18) we have

∥Θ̂−Θ
∗∥2F

2µnq
− 16e[E{d1(PAΣR)}]2(µnq){r (̂C)+ r(C∗)+ 2r(Zβ∗)}

≤ 2

γ

[
1

a
∥Θ̂−Θ

∗∥2F +
{
ad21
(
s−1PAE

)
− λ

}
{r (̂C)+ r(C∗)} + 2λr(C∗)+ 2r(Zβ∗)ad21

(
s−1PAE

)]
.

By choosing a = (8µnq)/γ , we have

∥Θ̂−Θ
∗∥2F

nq

(
1

2µ
− 1

4µ

)
≤
[
(16eµ)nq[E{d1(PAΣR)}]2 +

16µnq

γ 2
d21
(
s−1PAE

)
− 2

γ
λ

]
{r (̂C)+ r(C∗)}

+
[
(16eµ)nq[E{d1(PAΣR)}]2 +

16µnq

γ 2
d21
(
s−1PAE

)]
2r(Zβ∗)+ 4

γ
λr(C∗).

It follows that on the event A,

∥Θ̂−Θ
∗∥2F

nq
≲

µλ

γ
{r(C∗)+ r(Zβ∗)}. (19)

The proof is completed by combining the bounds in (17) and (19). □

Lemma A.2. Suppose Conditions 1–4 hold. For a constant α > 0, we have

E{d1(PAΣR)} ≤ α

√
2eν ln{r(A)+ q}

(n ∧ q)s
.

For a constant cE > 0 which depends on σE , we have, with probability of at least 1− {r(A)+ q}−1,

d21
(
s−1PAE

)
≤ c2Eγ

2 ln{r(A)+ q}ν
(n ∧ q)s

.
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Proof. (a) Bounding E{d1(PAΣR)}: First, one has d1(PAΣR) ≤ d1(ΛU⊤ΣR). One can write Σ
′
R = (W1 + · · · +Ws)/s, with

Wt denotes the r(A) × q non-zero matrix of ϵtΛU⊤Et and satisfies E(Wt ) = 0. Then we have E{d1(ΛU⊤ΣR)} = E{d1(Σ′R)}.
Denoting Ri = πi1 + · · · + πiq for each i ∈ {1, . . . , n}, one obtains

d1

{
E

(
1

s

s∑

t=1
WtW

⊤
t

)}
≤ d1

{
E

(
1

s

s∑

t=1
ϵ2
t EtE

⊤
t

)}
≤ d1{diag(R1, . . . , Rn)} ≤

ν

n ∧ q
,

where Condition 3 was used for the last inequality. Using a similar argument one also gets d1{E(s−1
∑s

t=1W
⊤
t Wt )} ≤ ν/n∧q.

Hence applying Lemma 20 of Lafond [28] with m1 = r(A),m2 = q, n = s, Zi = Wt , U = 1, c∗ = α = 1+
√
3, d = r(A)+ q

and σ 2
Z = ν/n ∧ q, for s > ln{r(A)+ q}(n ∧ q)/(9ν) yields

E{d1(Σ′R)} ≤ α

√
2eν ln{r(A)+ q}

(n ∧ q)s
.

(b) Bounding d1(s
−1

PAE): First, one has d1(s
−1

PAE) ≤ d1(s
−1

ΛU⊤E). Let us define W′t as the r(A) × q non-zero matrix of
{yit ,kt − µ(θ∗it ,kt )}ΛU⊤Et , which satisfies E(W′t ) = 0 (as any score function) and

σ 2
W′ = max

[
1

s
d1

[
E

{ s∑

t=1
(W′t )

⊤W′t

}]
,
1

s
d1

[
E

{ s∑

t=1
W′t (W

′
t )
⊤
}]]

.

Then we have d1(s
−1

ΛU⊤E) = d1{(W′1 + · · · +W′s)/s}. Using Conditions 1 and 2, a similar analysis yields σ 2
W′ ≤ γ ν/n ∧ q.

Combiningmaxi,k(
∑

iπik,
∑

kπik) ≥ 1/n∧q and E[{yit ,kt −µ(θ∗it ,kt )}
2] = b′′(θ∗it ,kt ) ≥ γ , we also have σ 2

W′ ≥ γ /n∧q. Since

d1(W
′
t ) = d1[{yit ,kt − µ(θ∗it ,kt )}ΛU⊤Et ] ≤ d1[{yit ,kt − µ(θ∗it ,kt )}Et ],

applying Proposition 21 of Lafond [28] for m1 = r(A),m2 = q, t = ln{r(A)+ q}, Zi = W′t , U = σE and σZ = σW′ gives with
probability at least 1− {r(A)+ q}−1

d1

(
1

s

s∑

t=1
W′t

)
≤ cE max

[√
γ

2 ln{r(A)+ q}ν
(n ∧ q)s

, σE ln

(
σE

√
n ∧ q
√

γ

)
2 ln{r(A)+ q}

s

]
,

with cE which depends only on σE . By assumption on s, the left term dominates. □

Now we finish the proof of Theorem 1. We have

(8eµγ )nq [E{d1(PAΣR)}]2 +
8µ

γ
nqd21

(
s−1PAE

)

≤ 16µνα2e2γ nq
ln{r(A)+ q}

(n ∧ q)s
+ 16µν

γ
c2Eγ nq

ln{r(A)+ q}
(n ∧ q)s

= 16µν

(
α2e2γ + c2E

γ

γ

)
ln{r(A)+ q}

s
(n ∨ q)

with probability at least 1−{r(A)+q}−1. The results immediately follow by combining the results in Lemmas A.1 and A.2. □

Appendix B. Details on computation

Derivation of Algorithm 1
We acknowledge that the derivation of the proposed algorithm follows similar architecture as in She [42]. We generalize

the method to handle incomplete data and mixed outcomes. For updating C, consider a surrogate function of F (C, β, φu) in
(3), viz.

G(A; C, β, φu) = −
∑

(i,k)∈Ω
ℓk(ak, βk, φk; xi, zi, yik)+

p∧q∑

h=1
ρ{dh(A); λ} +

1

2
∥A− C∥2F

−
∑

(i,k)∈Ω
{bk(x⊤i ak + z⊤i βk)− bk(x

⊤
i ck + z⊤i βk)}/ak(φk)

+
∑

(i,k)∈Ω
g−1k (x⊤i ck + z⊤i βk)(x

⊤
i ak − x⊤i ck)/ak(φk), (20)

where ℓk is as defined in (4). It is easy to see that G(C; C, β, φu) = F (C, β, φu). After some algebra, G can be simplified as

G(A; C, β, φu) =
1

2
∥A− C− X⊤PΩ{Y− µ(C, β)}Φ−1∥2F +

p∧q∑

h=1
ρ{dh(A); λ} + const, (21)
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where ‘‘const’’ represents any remainder constant term that does not depend on A. A core setup in our algorithm is to

minimize G(A; C, β, φu) with respect to A. At the tth iteration, when C = C(t), β = β(t) and φ = φ(t), the minimizer of

G(A; C(t), β(t), φ(t)
u ) is

Â = C(t+1) = T
d[C(t) + X⊤PΩ{Y− µ(C(t), β(t))}Φ(t)−1; λ],

following the results in (11) and (12). In Theorem 2, we show that undermild conditions, this update ensures the descending

of the objective.

When C is held fixed, solving (3) with respect to β and φu boils down to a set of univariate GLM problems. When non-

Gaussian outcomes present, in general their corresponding GLM problems need iterative algorithms to solve, which could

be very time consuming. Here, alternatively, we construct another surrogate function to get an one-step update of β, similar

to the previous updating of C. Define

H(α; C, β, φu) = −
∑

(i,k)∈Ω
ℓk(ck, αk, φk; xi, zi, yik)+

p∧q∑

h=1
ρ{dh(C); λ1} +

1

2
∥α− β∥2F

−
∑

(i,k)∈Ω
{bk(x⊤i ck + z⊤i αk)− bk(x

⊤
i ck + ziβk)}/ak(φk)

+
∑

(i,k)∈Ω
g−1k (x⊤i ck + z⊤i βk)(z

⊤
i αk − z⊤i βk)/ak(φk).

Then minimizing H with respect to α is the same as minimizing ∥α−β− Z⊤PΩ{Y−µ(C, β)}Φ−1∥2F , which is a least squares

problem. When C = C(t+1), β = β(t), and φ = φ(t), the minimizer is α̂ = β(t+1) = β(t) + Z⊤PΩ{Y − µ(C(t+1), β(t))}Φ(t)−1.
Once C and β are updated, we can then update φu by maximizing the log-likelihood function.

Proof of Theorem 2. Consider first the surrogate function G defined in (20). As shown in Proposition 2.2 of She [42], for any

∆1 ∈ R
p×q,

G(C(t+1) +∆1; C(t), β(t), φ(t)
u )− G(C(t+1); C(t), β(t), φ(t)

u ) ≥ η1

2
∥∆1∥2F ,

where η1 = max(0, 1 − L1), and L1 ∈ [0, 1] is a constant such that for the thresholding rule T corresponding to ρ,

dT−1(u; λ)/du is bounded below by 1− L1. Using Taylor expansion,

∑

(i,k)∈Ω

1

ak(φ
(t)
k )
{bk(x⊤i c

(t+1)
k + z⊤i β

(t)
k )− bk(x

⊤
i c

(t)
k + z⊤i β

(t)
k )}

=
∑

(i,k)∈Ω

1

ak(φ
(t)
k )
{g−1k (x⊤i c

(t)
k + z⊤i β

(t)
k )(x⊤i c

(t+1)
k − x⊤i c

(t)
k )

+ 1

2
b′′k (x

⊤
i ξ

(t+1)
k + z⊤i β

(t)
k )(x⊤i c

(t+1)
k − x⊤i c

(t)
k )2},

where ξ
(t+1)
k ∈ {ac(t)k + (1− a)c

(t+1)
k ; 0 < a < 1}. It follows that

G(C(t+1); C(t), β(t), φ(t)
u ) = F (C(t+1), β(t), φ(t)

u )

− 1

2

∑

(i,k)∈Ω

1

ak(φ
(t)
k )

b′′k (x
⊤
i ξ

(t+1)
k + z⊤i β

(t)
k )(x⊤i c

(t+1)
k − x⊤i c

(t)
k )2 + 1

2
∥C(t+1) − C(t)∥2F

≤ G(C(t); C(t), β(t), φ(t)
u )− η1

2
∥C(t+1) − C(t)∥2F

= F (C(t), β(t), φ(t)
u )− η1

2
∥C(t+1) − C(t)∥2F .

Therefore,

F (C(t), β(t), φ(t)
u )− F (C(t+1), β(t), φ(t))

≥ 1+ η1

2
∥C(t+1) − C(t)∥2F −

1

2

∑

(i,k)∈Ω

1

ak(φ
(t)
k )

b′′k (x
⊤
i ξ

(t+1)
k + z⊤i β

(t)
k )(x⊤i c

(t+1)
k − x⊤i c

(t)
k )2.

The second term on the right-hand side is bounded from above by

1

2

q∑

k=1
(c

(t+1)
k − c

(t)
k )⊤I(ξ(t+1)k , β

(t)
k , φ

(t)
k ;X)(c

(t+1)
k − c

(t)
k ),
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where we have defined

W(ck, βk, φk) = diag

{
1

ak(φk)
|b′′k (x⊤1 ck + z⊤1 βk)|, . . . ,

1

ak(φk)
|b′′k (x⊤n ck + z⊤n βk)|

}
,

and

I(ck, βk, φk;X) =
n∑

i=1

1

ak(φk)
|b′′k (x⊤i ck + z⊤i βk)|xix⊤i = X⊤W(ck, βk, φk)X.

Let Ak = {(ac(t)k + (1− a)c
(t+1)
k , β

(t)
k , φ

(t)
k ) : a ∈ (0, 1), t ∈ {1, 2, . . .}}, and

γ1 = max
k∈{1,...,q}

sup
(ξk,ζk,δk)∈Ak

∥I(ξk, ζk, δk)∥2.

Then

F (C(t), β(t), φ(t)
u )− F (C(t+1), β(t), φ(t)

u ) ≥ κ1

2
∥C(t+1) − C(t)∥2F ,

where κ1 = 2− L1 − γ1. As long as κ1 ≥ 0, the monotone descending property of the C-step is guaranteed.
Similarly, we can investigate the β-step. For any ∆2 ∈ R

(pz+1)×q,

H(β(t+1) +∆2; C(t+1), β(t), φ(t)
u )− H(β(t+1); C(t+1), β(t), φ(t)

u ) ≥ 1

2
∥∆2∥2F ,

by the triangular inequality. Based on a Taylor expansion, we get

∑

(i,k)∈Ω

1

ak(φ
(t)
k )
{bk(x⊤i c

(t+1)
k + z⊤i β

(t+1)
k )− bk(x

⊤
i c

(t+1)
k + z⊤i β

(t)
k )}

=
∑

(i,k)∈Ω

1

ak(φ
(t)
k )
{g−1k (x⊤i c

(t+1)
k + z⊤i β

(t)
k )(z⊤i β

(t+1)
k − z⊤i β

(t)
k )

+ 1

2
b′′k (x

⊤
i c

(t+1)
k + z⊤i ζ

(t+1)
k )(z⊤i β

(t+1)
k − z⊤i β

(t)
k )2},

where ζ
(t+1)
k ∈ {aβ(t)

k + (1− a)β
(t+1)
k : a ∈ (0, 1)}. It follows that

H(β(t+1); C(t+1), β(t), φ(t)
u ) ≤ H(β(t); C(t+1), β(t), φ(t)

u )− 1

2
∥β(t+1) − β(t)∥2F = F (C(t+1), β(t), φ(t)

u )− 1

2
∥β(t+1) − β(t)∥2F .

Therefore,

F (C(t+1), β(t), φ(t)
u )− F (C(t+1), β(t+1), φ(t)

u )

≥ ∥β(t+1) − β(t)∥2F −
1

2

∑

(i,k)∈Ω

1

ak(φ
(t)
k )

b′′k (x
⊤
i c

(t+1)
k + z⊤i ζ

(t+1)
k )(z⊤i β

(t+1)
k − z⊤i β

(t)
k )2

≥ 1

2

n∑

i=1

q∑

k=1

{
2− 1

ak(φ
(t)
k )
|b′′k (x⊤i c

(t+1)
k + z⊤i ζ

(t+1)
k )|

}
(z⊤i β

(t+1)
k − z⊤i β

(t)
k )2.

Now, let Bk = {(c(t+1)k , aβ
(t)
k + (1− a)β

(t+1)
k , φ

(t)
k ) : a ∈ (0, 1), t ∈ {1, 2, . . .}}, and

γ2 = max
k∈{1,...,q}

sup
(ξk,ζk,δk)∈Bk

∥I(ξk, ζk, δk; Z)∥2.

Then

F (C(t+1), β(t), φ(t)
u )− F (C(t+1), β(t+1), φ(t)

u ) ≥ κ2

2
∥β(t+1) − β(t)∥2F ,

where κ2 = 2 − γ2. Finally, the unknown dispersion parameters are estimated based on maximizing the log-likelihood, so
it is guaranteed to non-increase the objective function.
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