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1. PD, HL, HR

Let X be a mathematical object of “dimension” d. Often it is possible
to construct from X in a natural way a graded vector space over the real
numbers

d

equipped with a graded bilinear pairing P = P(X) and a graded linear map
L =L(X):

P:A*(X) x AT*(X) — R, L:A%X)— A"TY(X).

(© 2018 International Press
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The linear operator L usually comes in as a member of a family K(X), a
convex cone in the space of linear operators. Here “P” is for Poincaré, “L”
is for Lefschetz, and “K” is for Kéahler. For example, A*(X) may be

(1) the (q,q)-part of the intersection cohomology of a complex projective
variety, or

(2) the cohomology of real (g, ¢)-forms on a compact Ké&hler manifold, or

(3) algebraic cycles modulo homological equivalence on a smooth projective
variety, or

(4) the combinatorial intersection cohomology of a convex polytope [Kar04],
or

(5) the Soergel bimodule attached to an element of a Coxeter group [EW 14],
or

(6) the Chow ring of a matroid, defined below.

When X is “sufficiently smooth”, A*(X) is a graded algebra, and the maps P
and L respect the multiplicative structure of A*(X). In any case, we expect
the following properties from the triple (4*(X),P(X),K(X)):

(PD) For every nonnegative integer q < %, the bilinear pairing
P:AYX) x ATIX) — R

is nondegenerate (Poincaré duality for X).
(HL) For every nonnegative integer ¢ < % and every L € K(X), the com-
position
L4720 A9(X) — AT9(X)
is bijective (the hard Lefschetz theorem for X).
(HR) For every nonnegative integer ¢ < %l and every L € K(X), the bilinear
form

ANX)x AYX) — R,  (x1,22) —> (=1)? P(z1, L9 %02,)
is symmetric, and is positive definite on the kernel of

Ld—2q+1 . Aq(X) N Ad_q+1(X)
(the Hodge-Riemann relations for X).

All three properties are known to hold for the objects listed above except
one, which is the subject of Grothendieck’s standard conjectures on algebraic
cycles. The known proofs of the hard Lefschetz theorem and the Hodge-
Riemann relations for different types of objects have certain structural simi-
larities, but there is no known way of deducing one from the others. Below we
describe the triple (4*(X),P(X),K(X)) for some of the objects mentioned
above.

1.1. Polytopes. A polytope in R? is the convex hull of a finite subset
of R?. Let’s write II for the abelian group with generators [P], one for each
polytope P C R?, which satisfy the following relations:

(1) [P U B] + [P N Py] = [P1] + [P2] whenever Py U P, is a polytope,
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(2) [P +t] = [P] for every point t in R?, and

(3) [@] =0.

This is the polytope algebra of McMullen [McM89]. The multiplication in
II is defined by the Minkowski sum

[P1] - [P2] = [P1 + P2,

and this makes II a commutative ring with 1 = [point] and 0 = [@].

The structure of II can be glimpsed through some familiar translation
invariant measures on the set of polytopes. For example, the Euler charac-
teristic shows that there is a surjective ring homomorphism

x:M—2z,  [Pl— x(P),

and the Lebesgue measure on R™ shows that there is a surjective group
homomorphism

Vol : 1T — R, [P] — Vol(P).
A fundamental observation is that some power of [P] — 1 is zero in II for
every nonempty polytope P. Since every polytope can be triangulated, it is
enough to check this when the polytope is a simplex. In this case, a picture
drawing for d = 0, 1,2, and if necessary 3, will convince the reader that

(1P — 1)1 = 0.
The kernel of the Euler characteristic x turns out to be torsion free and
divisible. Thus we may speak about the logarithm of a polytope in II, which
satisfies the usual rule
log[P; + P»] = log[P1] + log[P].
The notion of logarithm leads to a remarkable identity concerning volumes
of convex polytopes.

THEOREM 1.1. Writing p for the logarithm of [P], we have
1
Vol(P) = I Vol(p?).
This shows that, more generally, Minkowski’s mixed volume of polytopes

Py, ..., P; can be expressed in terms of the product of the corresponding
logarithms p;,...,py:

Vol(Pr, ..., P;) = Vol(py - - pg)-

Let’s write P; < Py to mean that P; is a Minkowski summand of some
positive multiple of P,. This relation is clearly transitive. We way that P;
and P, are equivalent when

PP <P

Let K(P) be the set of all polytopes equivalent to a given polytope P. The
collection K(P) is a convex cone in the sense that

Py, P, € K(P) = M\ Py + Mo P> € K(P) for positive real numbers Aq, \o.
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We will meet an analogue of this convex cone in each of the following sec-
tions.

DEFINITION 1.2. For each positive integer ¢, let I1¢(P) C II be the
subgroup generated by all elements of the form

P1P2 """ Py
where p, is the logarithm of a polytope in K(P).
Note that any two equivalent polytopes define the same set of subgroups
of II. These subgroups are related to each other in a surprising way when

P is an d-dimensional simple polytope; this means that every vertex of the
polytope is contained in exactly d edges.

THEOREM 1.3. [McM93| Let p be the logarithm of a simple polytope in
K(P), and let 1 < ¢ < 4.
(PD) The multiplication in 11 defines a nondegenerate bilinear pairing

I19(P) x I4~9(P) — R, (x,y) — Vol(zy).
(HL) The multiplication by p®=24 defines an isomorphism of abelian groups
I9(P) — 11979(P), x+— p? 2z,
(HR) The multiplication by p?=29 defines a symmetric bilinear form
M9(P) x M(P) — R, (z1,2) — (—1)7 Vol(p* *z122)
that is positive definite on the kernel of
pd72t L I19(P) — I 9t(P).

In fact, the group I19(P) can be equipped with the structure of a finite
dimensional real vector space in a certain natural way. The Z-linear and
Z-bilinear maps in the above statement turns out to be R-linear and R-
bilinear.

Here are two concrete implications of (HL) and (HR) for P.

(1) The hard Lefschetz theorem is the main ingredient in the proof of the
g-conjecture for simple polytopes [Sta80]. This gives a numerical char-
acterization of sequences of the form

fo(P), f1(P), ..., fa(P),

where f;(P) is the number of i-dimensional faces of an d-dimensional
simple polytope P.

(2) The Hodge-Riemann relations, in the special case ¢ = 1, is essentially
equivalent to the Aleksandrov-Fenchel inequality on mixed volumes of
convex bodies:

Vol(p,pyps - - - P4) Vol(pypaPs - - - Pyg) < Vol(pypyps - -+ Py)°-

The inequality played a central role in the proof of the van der Waerden
conjecture that the permanent of any doubly stochastic dx d nonnegative
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matrix is at least d!/d?. An interesting account on the formulation and
the solution of the conjecture can be found in [Lin82].

With suitable modifications, the hard Lefschetz theorem and the Hodge-
Riemann relations can be extended to arbitrary polytopes [Kar04].

1.2. Kahler manifolds. Let w be a Kahler form on an d-dimensional
compact complex manifold M. This means that w is a smooth differential
2-form on M that can be written locally in coordinate charts as

i00 f
for some smooth real functions f whose complex Hessian matrix [%] is
10%j
positive definite; here z1, ..., 24 are holomorphic coordinates and 9, 0 are
the differential operators

9 d 9,

Like all other good definitions, the Kéhler condition has many other equiv-
alent characterizations, and we have chosen the one that emphasizes the
analogy with the notion of convexity.

To a Kéhler form w on M, we can associate a Riemannian metric g on
M by setting

g(u,v) = w(u, Iv),

where [ is the operator on tangent vectors of M that corresponds to the
multiplication by . Thus we may speak of the length, area, etc., on M with
respect to w.

THEOREM 1.4. The volume of M is given by the integral

1
Vol(M) = ¥ /M w?,

More generally, the volume of a k-dimensional complex submanifold N C M

s given by
1 k
Vol(N) = H/Nw .

Compare the corresponding statement of the previous section that
Vol(P) = % Vol(p?).

Let K(M) be the set of all Kéhler forms on M. The collection K(M) is
a convex cone in the sense that

w1, ws € K(M) = A\jw1 + Aows € K(M) for positive real numbers Aj, Ao.

This follows from the fact that the sum of two positive definite matrices is
positive definite.
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DEFINITION 1.5. For each nonnegative integer ¢, let H%%(M) C
H?(M,C) be the subset of all the cohomology classes of closed differen-
tial forms that can be written in local coordinate charts as

Z fk17_..7kq7117._.71qdzk1 FANKIEIIVAN dqu A d?ll FANCIIVAN dflq.

Note that the cohomology class of a Kihler form w is in H>!(M), and
that
(] € HO9(M) = [w A ] € HIFLTH (),

THEOREM 1.6 (Classical). Let w be an element of K(M), and let q be a
nonnegative integer < g.
(PD) The wedge product of differential forms defines a nondegenerate bilin-

ear form
H(M) x H"949(M) — C.
(HL) The wedge product with w21 defines an isomorphism
HO(M) — HE90(0), (o] > w2 A ).

(HR) The wedge product with w2 defines a Hermitian form

HPY(M) x HY(M) — C, (1, ¢2) —> (—1)"/ WA 1 AT
M

that is positive definite on the kernel of
wi=20th s gU9(M) — g IThAmar L (),

Analogous statements hold for H9%2 (M) with ¢ # g2, and these provide
a way to show that certain compact complex manifolds cannot admit any
Kéhler form. For deeper applications, see [Voil0].

1.3. Projective varieties. Let k be an algebraically closed field, and
let P™ be the m-dimensional projective space over k. A projective variety
over k is a subset of the form

X={hi=hy=...=h =0} CP",

where h; are homogeneous polynomials in m + 1 variables. We can define
the dimension, connectedness, and smoothness of projective varieties in a
way that is compatible with our intuition when k& = C. We can also define
what it means for a map between two projective varieties, each living in two
possibly different ambient projective spaces, to be algebraic.

Let K be another field, not necessarily algebraically closed but of char-
acteristic zero. A Weil cohomology theory with coefficients in K is an as-
signment

X — H*(X) =P H"X

where X is a smooth and connected projective variety over k and H*(X)
is a graded-commutative algebra over K. This assignment is required to
satisfy certain rules similar to those satisfied by the singular cohomology
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of compact complex manifolds, such as functoriality, finite dimensionality,
Poincaré duality, Kiinneth formula, etc. For this reason the product of two
elements in H*(X) will be written

LLUE € H*(X)
One of the important rules says that every codimension ¢ subvariety Y C X
defines a cohomology class

(Y) € H*(X).
These classes should have the property that, for example,

CI(YI N Yg) = Cl(Yl) U CI(YQ)

whenever Y] and Y, are subvarieties intersecting transversely, and that

Cl(Hl) = CI(HQ)

whenever H; and Hs are two hyperplane sections of X C P™. Though not
easy, it is possible to construct a Weil cohomology theory for any k for some
K. For example, when both k and K are the field of complex numbers, we
can take the de Rham cohomology of smooth differential forms.

DEFINITION 1.7. For each nonnegative integer ¢, let A9(X) C H?(X) be
the set of rational linear combinations of cohomology classes of codimension
q subvarieties of X.

One of the rules for H*(X) implies that, if d is the dimension of X, there
is an isomorphism
deg: AY(X) — Q
determined by the property that
deg(cl(p)) =1 for every p € X.

Writing A for the class in A'(X) of any hyperplane section of X C P™, the
number of points in the intersection of X with a sufficiently general subspace
Pm—d C P™ gatisfies the formula

#(X NP = deg(h?).
Compare the corresponding statements of the previous sections
1 1
Vol(P) = —Vol(p?) and Vol(M) = = / w?.
d! d! Jur
Let K(X) be the set of cohomology classes of hyperplane sections of X
under all possible embeddings of X into projective spaces. Classical projec-

tive geometers knew that K(X) is a convex cone in a certain sense; keywords
are “Segre embedding” and “Veronese embedding”.

CONJECTURE 1.8 (Grothendieck). Let h € K(X), and let g be a non-
negative integer < %.
(PD) The multiplication in H*(X) defines a nondegenerate bilinear pairing
A(X) x ATIX) 5 Q,  (2,y) —> deg(ay).
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(HL) The multiplication by h%=29 defines an isomorphism
AYX) — A"UX), & R U
(HR) The multiplication by h%=24 defines a symmetric bilinear form
AUX) x AYX) — Q, (é1,8&) — (—=1)%deg(hT 21U & U &),
that is positive definite on the kernel of
pi=2atl . A9(X) — AnTIHL(X).

The above statements are at the heart of Grothendieck’s approach to
Weil’s conjecture on zeta functions and other important problems in alge-
braic geometry [Gro69].

2. Log-concavity and unimodality conjectures

Logarithmic concavity is a property of a sequence of real numbers, occur-
ring throughout algebraic geometry, convex geometry, and combinatorics. A
sequence of positive real numbers ag, ..., aq is log-concave if

2
a;

> i —1Q441 for all 7.
This means that the logarithms of a; form a concave sequence. The condition
implies unimodality of the sequence (a;), a property easier to visualize: the

sequence is unimodal if there is an index 7 such that
ap < - < @1 S A 2 Ayl 2 0 2 Age

We will discuss the proof of log-concavity of various combinatorial se-
quences in [AHK], such as the coefficients of the chromatic polynomial of
graphs and the face numbers of matroid complexes. From a given combina-
torial object M (a matroid), we construct a triple

(4w, POM), KOW),

which satisfies Poincaré duality, the hard Lefschetz theorem, and the Hodge-
Riemann relations. Log-concavity will be deduced from the Hodge-Riemann
relations for M. I believe that behind any log-concave sequence that appears
in nature, there is such a “Hodge structure” responsible for the log-concavity.

2.1. Coloring graphs. Generalizing earlier work of George Birkhoff,
Hassler Whitney introduced in [Whi32] the chromatic polynomial of a con-
nected graph G as the function on N defined by

xc(q) = #{proper colorings of G using ¢ colors}.

In other words, x¢(¢) is the number of ways to color the vertices of G using
q colors so that the endpoints of every edge have different colors. Whitney
noticed that the chromatic polynomial is indeed a polynomial. In fact, we
can write

xc(0)/a = ao(G)g? — ar(G)g™ !+ + (=1)%aq(G)
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for some positive integers ag(G),...,aq(G), where d is one less than the
number of vertices of G.

ExaMPLE 2.1. Consider the square graph G with 4 vertices and 4 edges:
e — o
.« e
There are precisely two different ways of properly coloring the vertices using
two colors:

xa(2) = 2.
In fact, the graph has the chromatic polynomial

xc(q) = 1¢* — 4¢® + 6¢* — 3q.

ExAaMPLE 2.2. Let G be the graph obtained by adding a diagonal to the
square:

e — 0
N
e — o
There is no proper coloring of the vertices of this graph using two colors:
xa(2) =0.
In fact, the graph has the chromatic polynomial
xa(q) = 1¢" = 5¢> + 8¢ — 4q.

The chromatic polynomial was originally devised as a tool for attacking
the Four Color Problem, but soon it attracted attention in its own right.
Ronald Read conjectured in 1968 that the coefficients of the chromatic poly-
nomial form a unimodal sequence for any graph [Rea68]. A few years later,
Stuart Hoggar conjectured in [Hog74] that the coefficients in fact form a
log-concave sequence:

ai(G)? > a;_1(G)a;+1(G) for any i and G.

The chromatic polynomial can be computed using the deletion-contraction
relation: if G\e is the deletion of an edge e from G and G/e is the contraction
of the same edge, then

xXc(2) = Xxa\e(q) — Xa/e(q)-

The first term counts the proper colorings of GG, the second term counts
the otherwise-proper colorings of G where the endpoints of e are permitted
to have the same color, and the third term counts the otherwise-proper
colorings of G where the endpoints of e are mandated to have the same
color. Note that the sum of two log-concave sequences need not be log-
concave and the sum of two unimodal sequences need not be unimodal. For
example, we have

(1,2,4) + (4,2,1) = (5,4, 5).
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ExaMpPLE 2.3. To compute the chromatic polynomial of the graph in
Example 2.1, write

IR NN
and use xcn\.(¢) = q(q —1)* and xg/c(q) = q(g —1)(q — 2).

ExAMPLE 2.4. To compute the chromatic polynomial of the graph in
Example 2.2, write

/.
e

[ ]
|
[ ] ° 2

|/

[ J e — 0
=1 | -
[} e — 0
and use xc\e(q) = 1¢* — 4¢* + 6% — 3¢ and x¢/c(q) = 1¢° — 2¢° + ¢.

The Hodge-Riemann relations for the algebra A*(M), where M is the
matroid attached to G as in Section 2.3 below, imply that the coefficients
of the chromatic polynomial of G form a log-concave sequence.

2.2. Counting independent subsets. Linear independence is a fun-
damental notion in algebra and geometry: a collection of vectors is linearly
independent if no non-trivial linear combination sums to zero. How many
linearly independent collection of ¢ vectors are there in a given configuration
of vectors? Write A for a finite subset of a vector space and f;(A) for the
number of independent subsets of A of size i.

ExaMPLE 2.5. Let A be the set of all nonzero vectors in the three dimen-
sional vector space over the field with two elements. Nontrivial dependencies
between elements of A can be read off from the picture of the Fano plane
shown below. We have fo = 1, one for the empty subset, fi = 7, seven for

the seven points, fo = 21, seven-choose-two for pairs of points, and f3 = 28,
seven-choose-three minus seven for triple of points not in one of the seven
lines:
fOZ]-a f1:7a f2:217 f3:28
Examples suggest a pattern leading to a conjecture of John Mason and

Dominic Welsh [Mas72, Wel71]:
fi(A)? > fi_1(A) fi1(A) for any i and A.

For any small specific case, the conjecture can be verified by computing
the f;(A)’s by the deletion-contraction relation: if A\v is the deletion of a



TROPICAL GEOMETRY OF MATROIDS 11

nonzero vector v from A and A/v is the projection of A in the direction of
v, then
fitA) = fi(A\v) + fi-1(A/v).

The first term counts the number of independent subsets of size 4, the second
term counts the independent subsets of size ¢ not containing v, and the third
term counts the independent subsets of size i containing v. As in the case
of graphs, we notice the apparent interference between the log-concavity
conjecture and the additive nature of f;(A).

The Hodge-Riemann relations for the algebra A*(M), where M is the
matroid attached to A as in Section 2.3 below, imply that the sequence
fi(A) form a log-concave sequence.

2.3. Matroids. In the 1930s, Hassler Whitney observed that several
notions in graph theory and linear algebra fit together in a common frame-
work, that of matroids [Whi35]. This observation started a new subject
with applications to a wide range of topics like characteristic classes, opti-
mization, and moduli spaces, to name a few.

DEFINITION 2.6. A matroid M on a finite set E is a collection of subsets
of F, called flats of M, satisfying the following axioms:

(1) If Fy and Fy are flats of M, then their intersection is a flat of M.

(2) If F is a flat of M, then any element of E'\ F' is contained in exactly one
flat of M covering F.

(3) The set E' is a flat of M.

Here, a flat of M is said to cover F' if it is minimal among the flats of M
properly containing F'. For our purposes, we may and will suppose that M
is loopless:

(4) The empty set is a flat of M.

Every maximal chain of flats of M has the same length, and this common
length is called the rank of M.

EXAMPLE 2.7. The collection of all subsets of E form a matroid, called
the Boolean matroid on E. The rank of the Boolean matroid on E is the
cardinality of F.

ExaMPLE 2.8. Let E be the set of edges of a finite graph G. Call a
subset I' of E a flat when there is no edge in E \ F whose endpoints are
connected by a path in F. This defines a graphic matroid on E.

EXAMPLE 2.9. A projective space is a set with distinguished subsets,
called lines, satisfying:

(1) Any two distinct points are in exactly one line.
(2) Each line contains more than two points.
(3) If z,y, z, w are distinct points, no three collinear, then

Ty intersects zw = xz intersects yw.
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A projective space has a structure of flats (subspaces), and this structure
is inherited by any of its finite subset, defining a matroid on that finite
subset. Matroids arising from subsets of projective spaces over a field k are
said to be realizable over k (the idea of “coordinates”); see Example 2.12 for
another, equivalent, description of realizable matroids.

We write M\e for the matroid obtained by deleting e from the flats of
M, and M/e for the matroid obtained by deleting e from the flats of M
containing e. When M; is a matroid on F;, My is a matroid on FEs, and
F1 N Es is empty, the direct sum My @& Ms is defined to be the matroid on
F1 U E5 whose flats are all sets of the form Fy U Fs, where F} is a flat of My
and F5 is a flat of Ms.

Matroids are determined by their independent sets (the idea of “general
position”), and can be equivalently defined in terms of independent sets.

DEFINITION 2.10. A matroid M on E is a collection of subsets of F,

called independent sets, which satisfies the following properties.

(1) The empty subset of E is an independent set.

(2) Every subset of an independent set is an independent set.

(3) If I; and I» are independent sets and I; has more elements than I,
then there is an element in /; which, when added to I, gives a larger
independent set than Is.

A matroid M is loopless if every singleton subset of E is independent.

A matroid M assigns a nonnegative integer, called rank, to each subset
S of E:

ranky;(S) := (the cardinality of any maximal independent subset of S)

The rank of the entire set E is called the rank of M. It is the common
cardinality of any one of the maximal independent subset of E. A matroid
has rank 0 if and only if every element of E is a loop. If the rank of a matroid
M is positive, we write

ranky (E) =7+ 1.
That Definitions 2.6 and 2.10 lead to equivalent structures is a fundamental
observation in matroid theory.

DEFINITION 2.11. A flat of M, in terms of independent sets of M, is a
subset F' of F with the following property:
The addition of any element not in F' to F increases the
rank.

In other words, a flat of M is a subset of F which is maximal for its rank.
We leave it as an exercise to describe independent sets in terms of flats.

EXAMPLE 2.12.

(1) Let G be a finite graph, and E the set of edges. Call a subset of E
independent if it does not contain a circuit. This defines a graphic ma-
troid M.
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(2) Let E be a finite subset of a vector space over a field k. Call a subset of
F independent if it is linearly independent over k. This defines a matroid
M realizable over k.

EXAMPLE 2.13. Write E = {0, 1,2, 3} for the set of edges of the square
graph GG in Example 2.1. The graphic matroid M on E attached to G has
flats

2,{0}, {1},{2},{3},{0,1},{0,2},{0,3},{1,2},{1,3},{2,3},{0,1,2,3},
and maximal independent sets
{0,1,2},{0,1,3},{0,2,3},{1,2,3}.

EXAMPLE 2.14. Write E = {0,1,2,3,4,5,6} for the configuration of
vectors A in Example 2.5. The linear matroid M on E attached to A has
flats

2,{0}, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2,3}, {3,4,5},{1,5, 6},
{0,1,4},{0,2,5},{0,3,6},{2,4,6},{0,1,2,3,4,5,6}.
Every three element subset of E different from
{1,2,3},{3,4,5},{1,5,6},{0,1,4},{0,2,5},{0, 3,6}, {2,4,6},
is a maximal independent set of M.

Not surprisingly, the notion of realizability is sensitive to the field k.
A matroid may arise from a vector configuration over one field while no
such vector configuration exists over another field. A matroid may not be
realizable over any field.

O O

Among the rank 3 loopless matroids pictured above, where rank 1 flats
are represented by points and rank 2 flats containing more than 2 points
are represented by lines, the first is realizable over k if and only if the
characteristic of k is 2, the second is realizable over k if and only if the
characteristic of k is not 2, and the third is not realizable over any field.
Problems concerning the realizability of a matroid over a given field k
tend to be difficult. When k = Q, the existence of an algorithm testing the
realizability is Hilbert’s tenth problem over Q in disguise [Stu87], and, when
k =R, C, there are universality theorems on realization spaces [Mne88]. It
was recently shown that almost all matroids are not realizable over any field

[Nel].
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The characteristic polynomial xn(q) of a matroid M is a generalization
of the chromatic polynomial x(q) of a graph G. It can be recursively defined
using the following rules:

(1) If M is the direct sum M; @ My, then xm(q) = xm, (¢) X, (Q)-

(2) If M is not a direct sum, then, for any e, xm(q) = xane(q) — Xm/e(q)-
(3) If M is the rank 1 matroid on {e}, then xm(q) = ¢ — 1.

(4) If M is the rank 0 matroid on {e}, then xm(q) = 0.

It is a consequence of the M&bius inversion for partially ordered sets that
that the characteristic polynomial of M is well-defined, see Section 3.3.

The following result from [AHK] confirms a conjecture of Gian-Carlo
Rota and Dominic Welsh.

THEOREM 2.15. The coefficients of the characteristic polynomial form a
log-concave sequence for any matroid M.

This implies the log-concavity of the sequence a;(G) [Huh12] and the
log-concavity of the sequence f;(A) [Lenl2].

2.4. The Hodge-Riemann relations for matroids. Let E be a fi-
nite set, and let M be a loopless matroid on E. The vector space A*(M) has
the structure of a graded algebra that can be described explicitly.

DEFINITION 2.16. We introduce variables g, one for each nonempty
proper flat F' of M, and set

S*(M) = R[zr]|pro,r4E-
The Chow ring A*(M) of M is the quotient of S*(M) by the ideal generated

by the linear forms
> ar= ) r
neFr io€F

one for each pair of distinct elements i; and io of E, and the quadratic
monomials

TR T Fy,
one for each pair of incomparable nonempty proper flats F} and Fy of M.

The Chow ring of M was introduced by Eva Maria Feichtner and Sergey
Yuzvinsky [FY04]. When M is realizable over a field k, it is the Chow
ring of the “wonderful” compactification of the complement of a hyperplane
arrangement defined over k as described by Corrado de Concini and Claudio
Procesi [DP95].

Let d be the integer one less than the rank of M. It can be shown that
there is a linear bijection

deg:Ad(M)—>R, TR TR, TR, — 1

for every maximal chain of nonempty proper flats F; C --- C Fy, see [AHK,
Proposition 5.10].
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DEFINITION 2.17. We define P = P(M) to be the bilinear pairing
P: A*(M) x AT*(M) — R, (x,y) — deg(zy).

What should be the linear operator L for M7 We collect all valid choices
of L in a nonempty open convex cone. The cone is an analogue of the Kéhler
cone in complex geometry.

DEFINITION 2.18. A real-valued function ¢ on 2% is said to be strictly
submodular if
cx =0, cp=0,
and, for any two incomparable subsets I1,I> C F,
cll + CIQ > Cll N1z + CI1 UJls-
A strictly submodular function ¢ defines an element
L(c) =) cpap € A (M),
F
that acts as a linear operator by multiplication
A*(M) — A*TY(M), 2 — L(c)z.
The set of all such elements is a convex cone in A'(M).

The main result of [AHK] states that the triple (A*(M),P(M),L(c))
satisfies the hard Lefschetz theorem and the Hodge-Riemann relations for
every strictly submodular function c:

THEOREM 2.19. Let q be a nonnegative integer < %.

(PD) The product in A*(M) defines a nondegenerate bilinear pairing
P: AYM) x A9(M) — R, (x,y) —> deg(zy).
(HL) The multiplication by L(c) defines an isomorphism
AIM) — AYIM), 2 — L(c)472 .

(HR) The symmetric bilinear form on A?(M) defined by

(21, 2) — (—1)7 P(21, L(c)? 2xy)

is positive definite on the kernel of
L(c)? 20t AY(M) — AT 9L (M).

2.5. Sketch of proof of log-concavity. Why do the Hodge-Riemann
relations for M imply log-concavity for xar(g)? The Hodge-Riemann relations

for M, in fact, imply that the sequence (u};) in the expression

@)/ (g —1) = g — pigg® "+ (1)

is log-concave, which is stronger.
Let’s define two elements of A'(M): for any j € E, set

Oé:Z.'L'F, B:pr.

jeF Jj¢F
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The two elements do not depend on the choice of j, and they are limits
of elements of the form L(c) for strictly submodular c¢. A combinatorial
argument shows that p; is a mixed degree of o and f in the ring A*(M).

PrOPOSITION 2.20. For every i, we have
iy = deg(a’ B7).

See Section 7 for geometry behind the formula. Thus, it is enough to prove
for every i that

deg(ad—i—i-lBi—l)deg(ad—i—lﬁi—kl) < deg(ad_iﬁi)Q.
This is an analogue of the Teisser-Khovanskii inequality for intersection
numbers in algebraic geometry, and the Alezandrov-Fenchel inequality for
mixed volumes in convex geometry. The main case is when 1 =d — 1.

By a continuity argument, we may replace 8 by L = L(c¢) sufficiently
close to 8. The desired inequality in the main case then becomes
deg(a’L?2)deg(L?) < deg(aLd1)2,

This follows from the fact that the signature of the bilinear form

AYM) x AY(M) = R, (21, 22) — deg(z1 LY 2xp)

restricted to the span of o and L is semi-indefinite, which, in turn, is a
consequence of the Hodge-Riemann relations for M in the cases ¢ =0, 1.

This application only uses a small piece of the Hodge-Riemann relations
for M. The general Hodge-Riemann relations for M may be used to extract
other interesting combinatorial information about M.

EXERCISE 2.21. Let M be the rank 3 matroid on E = {0, 1, 2,3} whose
nonempty proper flats are

{0}, {1}, {2}, {3, {0, 1}, {0, 2}, {0,3}, {1, 2}, {1, 3}, {2. 3},
and, in the Chow ring of M, set
a =T+ To1 + To2 +To3, B =x1+ T2+ T3+ T12 + T13 + T23.

Show that the following equalities hold:

a’?=1- ToTol, af =3-xToxo1, 52 =3 x9To1.
Compare the result with coefficients of the reduced characteristic polynomial
xm(q)/(g—=1).

3. Matroids from a tropical point of view

The remaining part of this note provides a detailed introduction to the
geometry behind the ring A*(M), following [Huh]. The tropical point of view
suggested here motivates Question 7.6, which asks whether every matroid is
realizable over every field in some generalized sense.
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3.1. The permutohedral variety. Let n be a nonnegative integer
and let E be the set {0,1,...,n}.

DEFINITION 3.1. The n-dimensional permutohedron is the convex hull
B, = Conv{(a;o, ooy ZTn) | ®o, 21, ..., Ty is a permutation of 0, 1,. . .,n}

The symmetric group on E acts on the permutohedron =, by permuting
coordinates, and hence each one of the above (n + 1)! points is a vertex
of &,,.

The n-dimensional permutohedron is contained in the hyperplane
n(n+1)

5 .
The permutohedron has one facet for each nonempty proper subset S of
E, denoted =g, is the convex hull of those vertices whose coordinates in

positions in S are smaller than any coordinate in positions not in S. For
example, if S is a set with one element ¢, then the corresponding facet is

To+x1+ -+ Ty =

By = conv{(xo, coosp) | (xo,...,xn) is a vertex of E, with z; = O}
g R’I’L-i-l‘

Similarly, if S is the entire set minus one element E \ {i}, then the corre-
sponding facet is

Ep\{i} = conv{(xo, coosy) | (xoy...,x,) is a vertex of E, with x; = n}
C Rn-‘rl.

These facets can be identified with the permutohedron of one smaller di-
mension. In general, a facet of a permutohedron can be identified with the
product of two permutohedrons of smaller dimensions:

g~ =1S|—1 X S|E\S|—-1-

More generally, the codimension d faces of the permutohedron =, bijec-
tively correspond to the ordered partitions of E into d + 1 parts. Explicitly,
the codimension d face corresponding to a flag of nonempty proper subsets
(5’1 CS C---C Sd) is the convex hull of those vertices whose coordinates
in positions in S; \ S;j—1 are smaller than any coordinate in positions in
Sj+1\ S for all j.

The normal fan of the n-dimensional permutohedron is a complete fan
in an n-dimensional quotient of the vector space R™"*!:

|Ay4, | :=R" /span(1,1,...,1).

The quotient space |A4, | is generated by the vectors ug, uy, ..., u,, where
u; is the primitive ray generator in the normal fan corresponding to the
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facet Eg;y. In coordinates,

uO:(l,O,...,O), u1:(0,1,...,0),
.u, =(0,0,...,1) mod (1,1,...,1).

NOTATION. For a subset S of E, we define

ug = Z u;.

€S
If S is a nonempty and proper subset of E, then ug generates a ray in the
normal fan corresponding to the facet =g.

DEFINITION 3.2. The n-dimensional permutohedral fan is the complete
fan A4, whose d-dimensional cones are of the form

os = cone(ug,, us,,...,us,), Sz(Slgsgg---ng>,

where S is a flag of nonempty proper subsets of E. We call ogs the cone
determined by the flag S.

The permutohedral fan A 4, is the normal fan of the permutohedron =,
and can be identified with the fan of Weyl chambers of the root system A,,.

The geometry of the permutohedral fan is governed by the combinatorics
of the Boolean lattice of all subsets of E. Let T = (T1 CT, C--- C Td—l)
be a flag of nonempty proper subsets of E. We say that a subset S of F
is strictly compatible with T if S C T; or T; C S for each j. Then the d-
dimensional cones in A4, containing the cone determined by 7 bijectively
correspond to the nonempty proper subsets of E that are strictly compatible
with 7.

The symmetric group on E acts on the Boolean lattice of subsets of E,
and hence on the permutohedral fan A 4, . In addition, the permutohedral fan
has an automorphism of order 2, sometimes called the Cremona symmetry:

Crem : |Ay,| — |Aa,l T — —.

This automorphism associates to a flag the flag that consists of complements:
(S1cSc - Cl)r (SucSSHCH),  §=E\S;

Let k be a field. The normal fan of the permutohedron defines a smooth
projective toric variety over k. This variety is the main character of the
thesis.

DEFINITION 3.3. The n-dimensional permutohedral variety X 4, is the
toric variety of the permutohedral fan A 4, with respect to the lattice Z"*1/
span(l,...,1).

When the field £ is relevant to a statement, we will say that X,  is the
permutohedral variety over k. Otherwise, we do not explicitly mention the
field k. Our basic reference for toric varieties is [Ful93].
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NOTATION.

(1) If S is a nonempty proper subset of E, we write Dg for the torus-
invariant prime divisor of X4, corresponding to the ray generated by
ug.

(2) If S is a flag of nonempty proper subsets of E, we write V(S) for the
torus orbit closure in X4, corresponding to the cone determined by S.

The codimension of V(S) in X4, is equal to the length d of the flag
S=($1¢%c ¢ S).

The torus orbit closure V(S) is a transversal intersection of smooth hyper-
surfaces

V(S) =Dg, NDg,N---NDg,.

A fundamental geometric fact is that X 4, can be obtained by blowing
up all the torus-invariant linear subspaces of the projective space P". In fact,
there are two essentially different ways of identifying X4, with the blown
up projective space.

Consider the composition of blowups

Xp1— X9 — o — X1 — Xo = P,

where X441 — Xy is the blowup of the strict transform of the union of
all the torus-invariant d-dimensional linear subspaces of P". We identify the
rays of the fan of P™ with the vectors

Ug, ug, ..., Up,
and index the homogeneous coordinates of the projective space by the set E:
20, %1y -+ ”n-

This gives one identification between X4, and X,,_1. We denote the above
composition of blowups by 71 : X4, — P™.

DEFINITION 3.4. The map my : X4, — P" is the composition of the
Cremona symmetry and my : X4, — P™.

We have the commutative diagram

Xa,
Pr— — - - — - pr
Crem ’

where Crem is the standard Cremona transformation

Crem : P --» P", (20:21: - 12n) — (zgtizyt iz h).

All three maps in the diagram are torus-equivariant, and they restrict to
isomorphisms between the n-dimensional tori.
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Like 71, the induced map mo is the blowup of all the torus-invariant
linear subspaces of the target projective space. The rays in the fan of the
image of mo are generated by the vectors

Ug, Ug, ..., Up,

where 7 is the complement of {i} in E. The ray generated by u; correspond
to the facet Z; of the permutohedron. The homogeneous coordinates of this
projective space will be written

Z@,Zi, cee g By

If S is a nonempty proper subset of E with |S| > 2, then Dg is the excep-
tional divisor of m corresponding to the codimension |S| linear subspace

() {z =0} cP".

jeSs
If S is a nonempty subset of E with |E\ S| > 2, then Dy is the exceptional
divisor of 7y corresponding to the dimension |S| linear subspace

ﬂ {,25 = O} c p™.
Jj¢s
The Cremona symmetry of the permutohedral fan
Crem : |A4, | — |Aa,l, T — —

changes the role of m; and ms.

The anticanonical linear system of X 4, has a simple description in terms
of m; and mo. Choose an element ¢ of E, and consider the corresponding
hyperplanes in the two projective spaces:

The pullbacks of the hyperplanes in the permutohedral variety are
m '(H) =Y Ds and m'(H;) =) Ds.
€8 ¢S
Since any subset of E either contains ¢ or does not contain 4, the sum of
the two divisors is the union of all torus-invariant prime divisors in X4,,.

In other words, the sum is the torus-invariant anticanonical divisor of the
permutohedral variety:

—Kx,, = (H;)+ 5 (H;).

(2
The decomposition of the anticanonical linear system gives the map
w1 X mo: X4, — P x P

whose image is the closure of the graph of the Cremona transformation. This
gives another proof of the result of Batyrev and Blume that —Kx, is nef
and big [BB11].

PROPOSITION 3.5. The anticanonical divisor of X 4, is nef and big.
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The true anticanonical map of the linear system | — Kx, | fits into the
commutative diagram

T X T

Xy, Pn x Pn
-K 5
IP)nQ +n L IPmQ—I—Zn

Here — K is the anticanonical map, L is a linear embedding of codimension
n, and s is the Segre embedding.

REMARK 3.6. The permutohedral variety X 4, can be viewed as the torus
orbit closure of a general point in the flag variety F1(C"*1), see [Kly85,
Kly95]. Under this identification, 1 and 7y are projections onto the Grass-
mannians

Xa,
P" ~ Gr(1,C" ") Gr(n,Cnt1) ~ Pn.

It may be interesting to study matroid invariants obtained by intersecting
divisors coming from the intermediate Grassmannians with the Bergman fan
Ay (Definition 3.9).

Recall that torus-invariant divisors on X 4, may be viewed as piecewise
linear functions on A 4,,. For later use, we give names to the piecewise linear

functions of the divisors 7 ' (H;) and 7 ' (H;).

DEFINITION 3.7. Let ¢ be an element of E. We define a = «(i) to be the
piecewise linear function on A 4, determined by the values

a(ug) = -1 ifz €S,
T 0 itigs,

and define = (i) to be the piecewise linear function on A4, determined

by the values
0 ifies,
ﬁ<u5)_{—1 ifids.

The dependence of o and S on ¢ will often be invisible from their no-
tation. Different choices of ¢ will give rationally equivalent divisors, and
piecewise linear functions which are equal to each other modulo linear func-
tions. The functions « and § pull-back to each other under the Cremona
symmetry of Ay, .
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3.2. The Bergman fan of a matroid. We will show that a matroid
on F defines an extremal nef class in the homology of the permutohedral
variety X 4, . In principle, a question on matroids on E can be translated to
a question on the geometry of the permutohedral variety X4,,.

DEFINITION 3.8. The lattice of flats of a matroid M is the poset A of
all flats of M, ordered by inclusion.

The lattice of flats has a unique minimal element, the set of all loops,
and a unique maximal element, the entire set E. It is graded by the rank
function, and every maximal chain in %\ {min . %, max £ } has the same
number of flats r. In what follows, we suppose that M is a loopless matroid
on F with rank r + 1.

DEFINITION 3.9. The Bergman fan of M, denoted Ay, is the fan in
|A 4, | consisting of cones corresponding to flags of nonempty proper flats of
M. In other words, the Bergman fan of M is a collection of cones of the form

oF = cone(up,,up,,...,ug,),

where F is a flag of nonempty proper flats
F=(RchRc - CR).
When r = 0, by definition, Ay is the 0-dimensional fan at the origin.

The Bergman fan Ay is an r-dimensional subfan of the permutohedral
fan A4, . Ardila and Klivans introduced this fan in [AK06] and called it the
fine subdivision of the Bergman fan of the matroid. Sets of the form |Ay|
are called tropical linear spaces: they are basic building blocks of smooth
tropical varieties. Note that the permutohedral fan is the Bergman fan of
the uniform matroid of full rank.

We next prove a fundamental property of the Bergman fan Ay that it
satisfies the balancing condition. Geometrically, the condition says that, for
every (r — 1)-dimensional cone 7, the sum of the ray generators of the cones
in Ay that contain 7 is contained in 7. Combinatorially, the condition is a
translation of the flat partition property for matroids (Definition 2.6).

ProposITION 3.10. Let Fi,..., F,, be the nonempty proper flats of M
that are strictly compatible with a flag of nonempty proper flats

G=(G1CGrc CGra).
If we set Gy = @ and G, = E, then there is exactly one index | such that
each F; covers Gi—1 and is covered by Gy, and

m
Zqu =ug, + (m—1ug, ,.
j=1

When M has loops, the same formula holds if we replace G by the set of
all loops. For geometric and combinatorial reasons, we choose not to define
the Bergman fan for matroids with loops.
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3.3. The Modébius function of a matroid. The Mobius function of
the lattice of flats will play a fundamental role in the intersection theory of
matroids in the permutohedral variety. We continue to assume that M is a
matroid which has no loops.

DEFINITION 3.11. Let .Z be a finite poset. The Mébius function of £
is the function

ui;:;%’x ¥ —7
determined by the following properties:
(1) If z £ y, then py(z,y) = 0.
(2) If z =y, then py(x,y) = 1.
(3) If x < y, then
,U,j(fL‘,y) == Z /Lg(ﬂ?,Z)'

r<z<y

When & is the lattice of flats of M, we write u; for the Mébius function
. The Mobius function of the lattice of flats of a matroid has several
special properties that the Mobius function of posets in general do not have.
For example, Rota’s theorem says that, if F} is a flat contained in a flat Fb,
then

(_1)rankM(Fz)frankM(FﬂluM(Fl7FQ) > O
Another basic result on matroids is the following theorem of Weisner. For
proofs, see [Rot64, Zas87|.

THEOREM 3.12. Let F' be a flat of M, and let i be an element of F. If
Fi, Fs, ..., F,, are the flats of M covered by F' which do not contain i, then

w(@, F) == (2, F).
Jj=1

When M has loops, one should replace & by the set of loops and choose
1 among elements of F' which is not a loop. We will frequently use Weisner’s
theorem later in intersection theoretic computations in X4,. In a sense,
Weisner’s theorem plays a role which is Cremona symmetric to the role
played by the flat partition property for matroids.

DEFINITION 3.13. The characteristic polynomial of M is the polynomial
(@) = > pm(, F) grank(®)rank(E),
FeZAun
By definition of the Mobius function,
(1) = Y (@, F) =0.
Fe%u

We define the reduced characteristic polynomial of M by
xm(a) = xm(a)/ (g — 1).
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By Rota’s theorem, the coefficients of the characteristic polynomial of a
matroid alternate in sign. The same is true for the coefficients of the reduced
characteristic polynomial.

4. Intersection theory of the permutohedral variety

Let X be an n-dimensional smooth toric variety defined from a complete
fan ¥. An element of the Chow cohomology group A'(X) gives a homomor-
phism of Chow groups from A;(X) to Z. The resulting homomorphism of
abelian groups is the Kronecker duality homomorphism

A(X) — Hom(A4(X),Z).

The Kronecker duality homomorphism for X is, in fact, an isomorphism
[FS97]. Since A;(X) is generated by the classes of [-dimensional torus orbit
closures, the isomorphism identifies Chow cohomology classes with certain
integer valued functions on the set of d-dimensional cones in 3, where d =
n— 1.

NOTATION. If ¢ is a d-dimensional cone containing a (d —1)-dimensional

cone 7 in the fan of X, then there is exactly one ray in ¢ not in 7. The
primitive generator of this ray will be denoted u, .

DEFINITION 4.1. A d-dimensional Minkowski weight on ¥ is a function
A from the set of d-dimensional cones to the integers which satisfies the
balancing condition: For every (d — 1)-dimensional cone T,

Z A(o)u,/; is contained in the lattice generated by 7,
TCOo
where the sum is over all d-dimensional cones ¢ containing 7.
One may think a d-dimensional Minkowski weight as a d-dimensional
subfan of 3 with integer weights on its d-dimensional cones. The balancing
condition imposed on d-dimensional Minkowski weights on ¥ is a transla-

tion of the rational equivalence relations between [-dimensional torus orbit
closures in X [FS97].

THEOREM 4.2. The Chow cohomology group A'(X) is isomorphic to the
group of d-dimensional Minkowski weights on 3.:

AY(X) ~ Hom(A|(X),Z)
~ (the group of d-dimensional Minkowski weights) = MW;(X).

These groups are also isomorphic to the d-dimensional homology group
of X through the ‘degree’ map

Ad(X) — Hom(A)(X),Z), £+ (n — deg(€ - ?7))-

Its inverse is the composition of the isomorphism Hom(A;(X),Z) ~ AY(X)
and the Poincaré duality isomorphism

A(X) — Ag(X), A— AN[X].
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We say that A and A N [X] are Poincaré dual to each other.

Theorem 4.2, when applied to the permutohedral variety, says that a
cohomology class of X4, is a function from the set of flags in E' which sat-
isfies the balancing condition. The balancing condition for a d-dimensional
Minkowski weight A on the permutohedral fan can be translated as fol-
lows: For every flag of nonempty proper subsets S = (Sl c---C Sd_l), if
T11,...,T,, are the nonempty proper subsets of E that are strictly compatible
with &, then

m
Z A(oj)ur; is contained in the lattice generated by ug,,...,us, |,
J=1

where o is the cone generated by ur, and ug,,...,ug, ;.

Let M be a loopless matroid of rank r + 1. Proposition 3.10 shows that
the balancing condition is satisfied by the indicator function of the Bergman
fan of M. To be more precise, we have the following.

PROPOSITION 4.3. The Bergman fan Ay defines an r-dimensional Min-
kowski weight on the permutohedral fan A4, , denoted by the same symbol
Awm, such that

An(os) = {

When r = 0, by definition, Ay = 1.

1 if S is a mazimal flag of nonempty proper flats of M,

0 if otherwise.

The cup product of a divisor and a cohomology class of a smooth com-
plete toric variety defines a product of a piecewise linear function and a
Minkowski weight. If ¢ is a piecewise linear function and A is a d-dimensional
Minkowski weight, then ¢ U A is a (d — 1)-dimensional Minkowski weight.
We will often use the following explicit formula for the cup product [AR10].

THEOREM 4.4. Let ¢ be a piecewise linear function and let A be a d-

dimensional Minkowski weight on X. If T is a (d — 1)-dimensional cone in
>, then

(pua)n) = w(Z A(o)um) - e(A@u,).

TCOo

where the sums are over all d-dimensional cones o containing .

In particular, if A is nonnegative and ¢ is linear on the cone generated
by the cones containing 7, then

(goU A)(T) = 0.

Similarly, if A is nonnegative and ¢ is concave on the cone generated by the
cones containing 7, then

(gp U A) (r) > 0.
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COROLLARY 4.5. If ¢ is concave and A is nonnegative, then o U A is
nonnegative.

Theorem 4.4 can be used to compute the cup product of the piecewise
linear function o and the Bergman fan Ap;. Proposition 4.7 below shows
that the result of the cup product is the Bergman fan of another matroid.
Recall that o = «(i) is the piecewise linear function on the permutohedral
fan A4, determined by its values

a(ug) = -1 ifz €S,
TV 0 ifig¢s.

For any element ¢ of F and any nonempty proper subset G of E, the function
« is linear when restricted to the cone

cone(u; | j € G) = U oF,
f

where the union is over all flag of nonempty proper subsets contained in G.

DEFINITION 4.6. When r > 1, we define the truncation of M to be the
matroid M on the same set E defined by the following condition:

A subset I is independent for M if and only if I is independent
for M and [I] <.

We do not define the truncation for rank 1 matroids.

A proper subset F of E is a flat for M if and only if F is a flat for M
and ranky(F') < r. In other words, %51 \ {£} is obtained from Z \ {£}
by deleting all flats of rank r.

PROPOSITION 4.7. Ifr > 1 and M is the truncation of M, then

A repeated application of Proposition 4.7 gives the equality between the
0-dimensional Minkowski weights

(CXU"'UQ)UAM:L

T

EXERCISE 4.8. Let Sy, be the polynomial ring with variables x, indexed
by the rays of a (not necessarily complete) fan ¥, and define

A*(X) = Sy /(Is + Jx),
where I5; is the ideal generated by the squarefree monomials
Tp Tpy = Tpyy 1P15P2- -, pr} does not generate a cone in X,
and Jy is the ideal generated by the linear forms

Z (up,m) ,, m is an element of the dual space N".
p
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Show that the graded component A*(X) is spanned by degree k squarefree
monomials in Sf..

EXERCISE 4.9. The graded ring A*(X) defined in the previous exercise
is isomorphic to the Chow cohomology ring of the toric variety of 3; see
[Bri96]. Show that the graded ring A*(M) in Definition 2.16 is isomorphic
to the Chow cohomology ring of the toric variety of the Bergman fan Ayy.

EXERCISE 4.10. Define balancing condition for a k-dimensional weight
on a rational fan. How should one define the balancing condition for weights
on fans with irrational rays?

EXERCISE 4.11. Let P be a rational polytope containing 0 in its interior,
and let X be the fan obtained by taking the cone over the edges of P. Show
that X supports a positive 2-dimensional balanced weight.

EXERCISE 4.12. Let @ be the standard octahedron with vertices
(+1,0,0), (0,+£1,0), (0,0,=£1),
and let ¥ be the fan obtained by taking the cone over the proper faces of
. Compute the dimensions of the spaces of Minkowski weights
MWy(X), MW;(X), MWy(X), MW;3(%).

EXERCISE 4.13. Let M be a uniform matroid of rank 4 on E = {0, 1,2,
3,4}. Compute the dimensions of the spaces of Minkowski weights

MWo(An), MWi(Ayw), MWa(Ay), MWs(Aw).

5. Every matroid is nef, effective, and extremal

We have seen that the Bergman fan of a matroid on F defines a coho-
mology class of the permutohedral variety X 4,. The goal of this section is
to show that its Poincaré dual is an effective homology class which generates
an extremal ray of the nef cone of X4, .

DEFINITION 5.1. Let X be an n-dimensional smooth complete variety
over a field k, and d =n — [.

(1) A d-dimensional Chow homology class of X is nef if it intersects all
I-dimensional effective cycles nonnegatively.

(2) A d-dimensional Chow homology class of X is effective if it is the class
of an d-dimensional effective cycle.

If X is a toric variety, then every effective cycle is rationally equivalent
to a torus-invariant effective cycle [FMSS95|. Therefore, in this case, a
d-dimensional Chow homology class £ is nef if and only if

¢ [V(o)] =0

for every [-dimensional torus orbit closure V(o) of X. In other words, £ is nef
if and only if its Poincaré dual is a nonnegative function when viewed as a d-
dimensional Minkowski weight. For example, the Bergman fan of a matroid
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M on E defines a nef homology class Ay N [X4,] of the permutohedral
variety X4,,.

If X is a toric variety, then every nef class of X is effective. This is a
special case of the result of Li on spherical varieties [Lil3].

THEOREM 5.2. If X is a toric variety, then every nef class of X is
effective.

PRrOOF. The main observation is that every effective cycle in a toric
variety is rationally equivalent to a torus-invariant effective cycle. Applying
this to the diagonal embedding

1 X — X x X, x+— (z,z),
we have an expression

(L(X)] =) mer[V(e) x V(1)] € Ap(X x X),  mgr >0,

where the sum is over all cones o, 7 in the fan of X such that dimo+dim 7 =
n. The choice of the integers m, - is in general not unique, but the knowledge
of such constants characterizes both the cap product and the cup product
of (co)homology classes on X [FMSS95].

Let £ be a d-dimensional nef class of X. We show that £ is the class of
a torus-invariant effective cycle. If A is the Poincaré dual of &, viewed as a
d-dimensional Minkowski weight, then

E=AN[X] =D mer Alo) [V(7)],

where the sum is over all d-dimensional cones o and [-dimensional cones 7.
Since £ is nef, for all o, we have

A(o) = deg (5 : [V(a)]) > 0.
Therefore £ is the class of a torus-invariant effective cycle in X. O

An application of Theorem 5.2 to the permutohedral variety X 4, gives
the following.

COROLLARY 5.3. If M is a loopless matroid on E, then Ay N [Xa,] is
effective.

We stress that the statement does not involve the field k& which is used
to define the permutohedral variety X 4,. The proof of Theorem 5.2 shows
that an explicit effective cycle with the matroid homology class Ay N[ X4, ]
can be found by degenerating the diagonal of the permutohedral variety in
X A, X X Ay

DEFINITION 5.4. Let Ny(X) be the real vector space of d-dimensional
algebraic cycles with real coefficients modulo numerical equivalence on a
smooth complete variety X.
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(1) The nef cone of X in dimension d, denoted Nefy(X), is the cone in
Ny4(X) generated by d-dimensional nef classes.

(2) The pseudoeffective cone of X in dimension d, denoted Peff(X), is the
closure in Ng(X) of the cone generated by the d-dimensional effective
classes.

The nef cone in dimension d and the pseudoeffective cone in dimension
[ are dual to each other under the intersection pairing

Nd(X) X NZ(X) — R.

If X is the toric variety of a complete fan 3, then Ng(X) ~ A44(X) @ R
can be identified with the set of real valued functions A from the set of
d-dimensional cones in ¥ which satisfy the balancing condition over R: For
every (d — 1)-dimensional cone T,

Z A(o)u,,, is contained in the subspace generated by 7,

TCOo

where the sum is over all d-dimensional cones ¢ containing 7.

In the toric case, any integral effective cycle is rationally equivalent to an
effective torus-invariant cycle, and hence there is no need to take the closure
when defining the pseudoeffective cone. Furthermore, the pseudoeffective
cone and the nef cone of X are polyhedral cones. These polyhedral cones
depend only on the fan ¥ and not on the field k£ used to define X. Theorem
5.2 shows that one is contained in the other.

THEOREM 5.5. If X is a toric variety, then the nef cone of X in di-
mension d is contained in the pseudoeffective cone of X in dimension d, for
every d.

We remark that there is a 4-dimensional complex abelian variety whose
nef cone in dimension 2 is not contained in the pseudoeffective cone in di-
mension 2 [DELV11].

We now show that a loopless matroid on E gives an extremal nef class of
X4, - The main combinatorial ingredient is the following theorem of Bjérner
[Bjo92]. Recall that the order complex of a finite poset £ is a simplicial
complex which has the underlying set of .Z as vertices and the finite chains
of £ as faces.

THEOREM 5.6. The order complex of the lattice of flats of a matroid is
shellable.

The shellability of the order complex of the lattice of flats Z implies,
among many other things, that the Bergman fan Ay is connected in codi-
mension 1: If o and & are r-dimensional cones in Ay, then there are r-
dimensional cones 0g,071,...,0; and (r — 1)-dimensional cones 7,...,7 in
Ay such that

c=09020T C01 D17 C---D1_1Co0o_1 D1 Co;=0.



30 J. HUH

THEOREM 5.7. If M is a loopless matroid on E of rank r + 1, then
the class Ay N [X a4, ] generates an extremal ray of the nef cone of Xa, in
dimension r.

ProOOF. The claim is that Ay cannot be written as a sum of two non-
negative real Minkowski weights in a nontrivial way. Suppose A is an r-
dimensional Minkowski weight with the following property:

IfS = (Sl CS C---C ST) is a flag of nonempty proper

subsets of E' and one of the S; is not a flat of M, then

A(os) = 0.
In short, we suppose that A is a Minkowski weight whose support is con-
tained in the support of Ap;. Note that any nonnegative summand of Ay
should have this property. We show that there is a constant ¢ such that
A =c Ay.

Let 7 be an (r — 1)-dimensional cone determined by a flag of nonempty
proper flats G = (G1 CGC - C G'r‘—l)- If Fy,..., F,, are the flats which
are strictly compatible with G, then the balancing condition for A at 7 says
that

m

Z A(oj)up, is in the subspace generated by 7,

j=1
where o; is the r-dimensional cone generated by ug; and ug,,...,ug, ;.
Writing Gj—; for the flat in G which is covered by (any) one of the F}, we
have

m
Z A(Uj)qu\szl = ciug, + CQuGg\G1 + -+ C7~_1uGT_1\GT_2
j=1
for some real numbers ¢y, co, ..., c.—1. One can solve this equation explicitly
using the fact that G;\Gj_; is a disjoint union of the nonempty sets F;\G_:
(i) If I # r, then A(o1) = -+ = A(om) = ¢ and all the other ¢, are zero.
(ii)) If l =7, then A(o1) = =A(om) =c1 =+ = 1.

In any case, we write ¢ for the common value of A(c;) and repeat the above
argument for all (r — 1)-dimensional cones 7. Since Ay is connected in
codimension 1, we have A = ¢ Ay O

ExAMPLE 5.8. The permutohedral surface X4, is the blowup of the
three torus invariant points of P2. Let m : X4, — P? be the blowup map,
Dy, D1, Dy be the exceptional curves, and H be the pull-back of a general
line. The nef cone of curves in X4, is a four-dimensional polyhedral cone
with five rays. The rays are generated by the classes of

H, H*Do, H*Dl, H*DQ, and 2H*D0*D1 *DQ.

The first four classes come from matroids on E = {0, 1,2}. The matroid
corresponding to H has five flats

@, {0}, {1}, {2}, E,
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and the matroid corresponding to H — D; has four flats

o, {i}, E\{i}, E.

The remaining class is the class of the strict transform under m; of a general
conic passing through the three torus-invariant points of P2. It is Cremona
symmetric to the class of H, and comes from the matroid on £ = {0,1,2},
where i = E \ {i}, whose flats are

2, {0}, {1}, {2}, E.
It is the class of the pull-back of a general line through the map mo in the
diagram

Xa,
;j/// ‘\\:i
P2 - - - - - — - - P?
Crem

EXAMPLE 5.9. The fan displacement rule of [FS97] shows that the prod-
uct of two nef classes in a toric variety is a nef class. However, one should
not expect that the product of two extremal nef classes in a toric variety is
an extremal nef class. For example, consider the diagram

X,
VN
P - — - — - — - > Pp3
Crem

If Hy, Hy are hyperplanes in P2, then the classes of their pullbacks T 1(H 1),
Ty L(Hy) are extremal nef classes in X A;- We note that the class of the
product 7, ' (Hy) - w; *(Hy) is a sum of three different extremal nef curve
classes in X 4,. One may show this by directly computing the cup product
of the piecewise linear functions o and § using Theorem 4.4. Alternatively,
one may see this geometrically as follows. Let H; be the plane

20+ 21+ 29 + 23 =0,

and choose Hj so that my 1(H2) is the strict transform under 71 of the cubic
surface
202122 + 202123 + 202223 + 212223 = 0.

Then the intersection in P3 is the union of three lines
{z0+z1 = Zz9+ 23 ZO}U{Zo+22 =2'1+Z3=0}U{Z()+23 =21+ 29 :()}_

The strict transform of any one of the three lines under m; generates an
extremal ray of the nef cone of X 4,. Their classes correspond to, respectively,
to rank 2 matroids whose nonempty proper flats are

{{0,1},{2,3}} and {{0,3},{1,3}} and {{0,3},{1,2}}.
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In this case, the intersection of the strict transforms is the strict transform
of the intersection. It follows that the sum of the three nef curve classes in
X 4, is the product 7, ' (Hy) - 7 ' (Ha).

In general, finding all extremal rays of the nef cone is difficult, even
for relatively simple toric varieties. Here is a sample question: How many
extremal rays are there in the nef cone of X4, in dimension two for some
small values of n?

Let A be a two-dimensional nonnegative Minkowski weight on the fan
of X. It is convenient to think the support of A as a geometric graph Ga,
whose vertices are the primitive generators of the rays of the cones in the
support of A. Two vertices of Ga are connected by an edge if and only if
they generate a cone on which A is nonzero.

The main idea used in the proof of Theorem 5.7 gives a simple condition
on Ga which guarantees that the class AN[X] generates an extremal ray of
the nef cone of X. A few graphs Ga, including those of the Bergman fans
of rank 3 matroids, satisfy this condition.

PRrROPOSITION 5.10. If Ga is connected and the set of neighbors of any
vertex is linearly independent, then AN[X] generates an extremal ray of the
nef cone of X in dimension two.

The condition on Ga is not necessary for A N [X] to be extremal.

ExAMPLE 5.11. Consider the two-dimensional Minkowski weight A on

A4, which has value 1 on the cones corresponding to flags of the form

{i} S{igk}y,  iFi#k,
and has value 0 on all other two-dimensional cones of Ay,. A direct com-
putation shows that A N[X 4,] generates an extremal ray of the nef cone of
X4,. The graph of A has 10 vertices at which the set of neighbors is linearly
dependent.

We note that A N [X4,] is an intersection of two extremal nef divisor
classes. In fact, there is a single irreducible family of surfaces in X 4, whose
members have the class A N [X4,]. The family consists of strict transforms
under 7 of the cubic surfaces in P* defined by the equations

coZp + €121 + C222 + €323 + c424 = 0,

C234222324 + Cc1342123%24 + C124212224 + C123212223 + C0342023%4
+ C024202224 + C023202223 + C014202124 + C013202123 + Co12202122 = 0,

where ¢; and c¢;j;, are parameters. Each one of the above two equations defines
a basepoint free linear system on X4, whose class generates an extremal ray
of the nef cone of divisors.

ExaMpPLE 5.12. Consider the two-dimensional Minkowski weight A on
A 4, which has value 1 on the cones corresponding to flags of the form

{i} SEN{j},  i#7,
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and has value 0 on all other two-dimensional cones of Ay, . Then the graph
G satisfies the condition of Proposition 5.10, and hence AN[X 4, | generates
an extremal ray of the nef cone of X 4,. This homology class is invariant
under the Cremona symmetry of X 4, and the action of the symmetric group
on E.

When n = 3, the graph is that of a three-dimensional cube. Since the
codimension of A is 1, it is not difficult to describe families of surfaces in
X 4, whose members have the class A N [X4,]. There is a single irreducible
family, and it consists of strict transforms under 7 of the quadric surfaces

in P3 defined by
C012021 + Co22022 + C032023 + C122122 + C132123 + C232223 = 0,

where ¢;; are parameters. The equation defines a basepoint free linear system
on X4, which is invariant under the Cremona symmetry of X4, and the
action of the symmetric group on F.

When n = 4, the extremal nef class AN[X 4,] has the interesting property
that

(1) AN[X4,] is not a product of two nef (integral) divisor classes, and
(2) 2A N [X4,] is a product of two nef (integral) divisor classes.

To see that A N [X4,] is not an intersection of two nef divisor classes, one
notes that any surface S in X4, which has the class A N [X 4,] should map
to a cubic surface in P* under the maps m; and mo. The cubic surfaces 1 (9)
and mo(.S) are obtained by intersecting general members of torus-invariant
linear systems on P* outside their common base locus. If the common base
locus has dimension less than 2, then the degrees of the linear systems are
1 and 3, and one can check directly that the class of S is not invariant
either under the Cremona symmetry of X4, or under the action of the
symmetric group on E. If the common base locus has dimension 2, then,
since complete intersections are connected in codimension 1, 71 (.S) and m2(S)
intersect some 2-dimensional torus orbits in P4 in curves. This contradicts
that the Minkowski weight A has value zero on all flags involving two element
subsets of F.

On the other hand, 2AN[X 4,] is an intersection of two nef divisor classes.
The corresponding family comes from sextic surfaces in P* defined by the
equations

C0120%1 + C0220%2 + C032023 + Co42024 + C122122
+ 132123 + 142124 + C232223 + Coa2024 + 342324 = 0,

234292324 + C1342123%24 + C124212224 + C123212223 + C034202324
+ €024202224 + C023202223 + C014202124 + C013202123 + Co12202122 = 0,
where ¢;; and c¢;;, are parameters. The family of strict transforms under

w1 is invariant under the Cremona symmetry of X 4, and the action of the
symmetric group on E. Each of its members has the class 2A N [X 4,]. Each
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one of the above two equations defines a basepoint free linear system on X 4,
whose class generates an extremal ray of the nef cone of divisors.

It is more difficult to describe families of surfaces in X 4, whose members
have the homology class AN[X 4,]. In fact, there is a single irreducible family,
and it is the family of strict transforms of cubic surfaces in P* defined by
the 2 x 2 minors of the matrix

€11020 + C11121 + C11222 + C11323 + C11424  C12020 1 C12121 + C12222 + C12323 + C12424

€21020 + C21121 + C21222 + C21323 + C21424  C22020 + C22121 + C22222 + 22323 + C22424
€31020 + €31121 + C31222 + €31323 + C31424  C32020 + C32121 + C32222 + €32323 + C32424

which is given by five sufficiently general rank 1 matrices

€110 €120 C111 €121 C112 €122 €113 €123 C114 C124
€210 €220 , [C211 €221, |C212 C222| , |C213 (€223, |C214 C224
C310 €320 C311 €321 C312 (€322 C313 €323 C314 €324

The family of strict transforms under m; is invariant under the Cremona
symmetry of X4, and the action of the symmetric group on E.

In general, for n > 3, there is a single irreducible family whose members
have the extremal nef class

AN [X An]'
The family consists of strict transforms of rational scrolls in P which contain
all the torus-invariant points and intersect no other torus orbits of codimen-
sion > 2. The homology class is not an intersection of nef divisor classes. On
the other hand,
(n—1!-AN[Xa4,]

is an intersection of nef divisor classes. The corresponding family is the
family of strict transforms of complete intersections in P” defined by general
linear combinations of square-free monomials in zg, 21, ..., 2z, with degrees
2,3,...,n—1.

EXERCISE 5.13. Let A be a fan in R™ with fixed ray generators u;. A
2-dimensional weight w on A is said to be geometrically balanced if, for each
ray ¢ of A, there is a real number d; satisfying

diui = Zwijuj,
i~
where the sum is over all the neighbors j of i in A. The tropical Laplacian
of such w is the square matrix L., defined by

d; ifi=j,
(Lw)ij = —wij ifi ~ j,
0 ifinej.

How is the corank of L,, related to the dimension of R™?

EXERCISE 5.14. Let w be the unique 2-dimensional positive weight on
the Bergman fan of a rank 3 matroid. Show that the tropical Laplacian of
w has exactly one negative eigenvalue.
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EXERCISE 5.15. Let w be the unique 2-dimensional positive weight on
the fan over the edges of the standard cube. Show that the tropical Laplacian
of w has exactly one negative eigenvalue.

EXERCISE 5.16. Let w be any 2-dimensional positive weight on the fan
over the edges of the standard octahedron. Show that the tropical Laplacian
of w has exactly one negative eigenvalue.

EXERCISE 5.17. Let Ap be the 2-dimensional “Desargues” fan on
Nyo,1,2,3,4) With ray generators

€01, €02, €03, €04, €12, €13, €14, €23, €24, €34,
€234, €134, €124, €123, €034, €024, €023, €014, €013, €012,

whose 2-dimensional cones correspond to inclusions between the subsets of

{0,1,2,3,4}.

(1) Show that there is, up to a multiple, unique 2-dimensional positive bal-
anced weight w on Ap.

(2) Show that the tropical Laplacian of w has exactly one negative eigen-
value.

EXERCISE 5.18. Is there a 2-dimensional positive balanced weight w in
R? whose tropical Laplacian has more than one negative eigenvalue? For an
example in R?*, see [BH17].

6. Realizing matroids in the permutohedral variety

Now the field k& comes into play. We will show that a matroid M is
realizable over k if and only if the corresponding homology class AyyN[X 4, ]
in the permutohedral variety is the class of a subvariety over k. This sharply
contrasts Corollary 5.3, which says that the class Ay N [X 4, ] is the class of
an effective cycle over k for any matroid M and any field k.

Let X4, be the permutohedral variety over k, and let M be a loopless
matroid on F = {0,1,...,n}. By a subvariety of X4, , we mean a geometri-
cally reduced and geometrically irreducible closed subscheme of finite type
over k. As before, the rank of M is r + 1.

DEFINITION 6.1. A realization % of M over k is a collection of vec-
tors fo, f1,..., fn in an (r + 1)-dimensional vector space V' over k with the
following property:

A subset I of F is independent for M if and only if {f; |

i € I} is linearly independent in V.
Since M has no loops, all the f; are nonzero. The arrangement associated
to %, denoted Ag, is the hyperplane arrangement

Az = {fofi-- fn =0} SP(VY),
where P(VV) is the projective space of hyperplanes in V. We say that a linear
subspace of P(VV) is a flat of Ay if it is an intersection of hyperplanes in
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Ag. There is an inclusion reversing bijection between the flats of M and the
flats of Ag:

Fr— () {f; =0}
JEF
The embedding associated to Z, denoted Lg, is the map from the projec-
tivized dual

Ly :P(VY)~P" — P", Le=1fo:fi:: fa]

Since fo, f1,..., fn generate V, the linear map Ly is well-defined and
is an embedding. Furthermore, since M has no loops, the generic point of
P(V"Y) maps to the open torus orbit of P™. If k is infinite, then a general point
of P(VV) maps to the open torus orbit of P". Under the embedding L, the
union of the torus-invariant hyperplanes in P™ pullbacks to the arrangement

Az .

DEFINITION 6.2. The variety of %, denoted Yz, is the strict transform
of the image of Ly under the composition of blowups 71 : X4, — P". By
definition, there is a commutative diagram

(%74

Yo XA,

T ™
\% n
POVY) P,

where 14 is the inclusion and w4 is the induced blowup.

Recall that m; can be factored into

XA = Xn_1—>Xn_2—>---—>X1—>X0 = Pn,

n

where Xg11 — Xy is the blowup of the strict transform of the union
of all the torus-invariant d-dimensional linear subspaces of P". If S is a
proper subset of E with |S| > 2, then Dg is the exceptional divisor of
corresponding to the codimension |S| linear subspace

() {z =0} cP"

€S
If S = {i}, then Dg is the strict transform of the hyperplane {z; = 0}. The
union of all the Dg is a simple normal crossings divisor whose complement
in X4, is the open torus orbit.

Similarly, w4 is the blowup of all the flats of the hyperplane arrangement
Agp. It is the composition of maps

Yo = Yo — Y, 90— — Y — Yy = P(VY),



TROPICAL GEOMETRY OF MATROIDS 37

where Y 11 — Yy is the blowup of the strict transform of the union of all
the d-dimensional flats of Ay. Exceptional divisors of 75 : Y — B(VY)
are indexed by flats with rank at least 2.

NoOTATION. If F'is a flat of rank at least 2, then we write Er for the
exceptional divisor of mg corresponding to the codimension rank;(F') linear

subspace

() {#;=0} CPOVY).

JEF
When F' is a flat of rank 1, we define Er to be the strict transform of the
hyperplane of P(V") corresponding to F.

The union of all the Er is a simple normal crossings divisor whose com-
plement in Yy is the intersection of Yy with the open torus orbit of X4, .
In the language of De Concini and Procesi [DP95], the variety Yy is the
wonderful compactification of the arrangement complement P(VV)\ Ay cor-
responding to the maximal building set.

The statement below is a classical variant of the tropical statement of
Katz and Payne [KP11].

THEOREM 6.3. Let X 4, be the n-dimensional permutohedral variety over
k

(i) If Z is a realization of M over k, then
[Yz] = Au N [Xa,] € 4r(Xa,).
(i1) If' Y is an r-dimensional subvariety of X 4, such that
Y]=AmN[Xa,] € A-(Xa,),
then' Y =Yy for some realization </ of M over k.

In particular, M is realizable over k if and only if Ay N [Xa,] is the class
of a subvariety over k.

PRrROOF. For a nonempty proper subset F' of E, the subvariety Yy inter-
sects the torus-invariant divisor Dp if and only if F is a flat of M. In this
case,

Yo NDp = Ep.
Let F = (F1 CFkFC..-C FT) be a flag of nonempty proper subsets of F.
If one of the F} is not a flat of M, then

If all the F}; are flats of M, then
Yy NV(F)=YzNDp N---NDp. =Ep N---NEp,

and this intersection is a reduced point. Therefore, the class of Y5 in X4,
is Poincaré dual to the Bergman fan of M. In other words,

Yol = An 0 [Xa,] € Ar(Xa,).

This proves the first assertion.
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Conversely, suppose that Y is an r-dimensional subvariety of X 4, defined

over k such that

[Y] =AmN [XA,L] S AT(XAH)'
As an intermediate step, we prove that Y is not contained in any torus-
invariant hypersurface of X4, .

Consider a torus-invariant prime divisor of X 4,,. It is of the form Dg for
some nonempty proper subset S of E. We show that Y is not contained in
Dg. Choose a rank 1 flat F; which is not comparable to S. This is possible
because M has no loops and E is a disjoint union of the rank 1 flats of M.
We extend F; to a maximal flag of proper flats

F=(Rchc - CF)
By definition of the Bergman fan Ay, we have
Dp, -Dp,-...-Dp, - [Y]=1.

On the other hand, if Y is contained in Dg, then the above intersection
product can be computed by pulling back the divisors Dp, under the inclu-
sion ¢ : Dg — X4, . Since Fj is not comparable to S, the pull-back of D,
to Dg is equivalent to zero. This leads to the contradiction that

(*Dp, -*Dp, - ...-"Dp, - [Y] =0.

We now show that Y = Yy for some realization &% of M. Let ¢ be an
element of E, and let H; = {z; = 0} be the corresponding hyperplane of P".
Proposition 4.7 shows that

ar (H) - (H) - [Y] = (aU---Ua U AM) N[Xa,]=1.

r

T
The projection formula tells us that the image m1(Y) is an r-dimensional
subvariety of P™ which has degree 1. In other words, the image is an 7-
dimensional linear subspace

m(Y)=P" CP".
Write the equations defining the above linear embedding by
LB — P f=[fo:fii: ful-

Since Y is not contained in any torus-invariant hypersurface of X4, , the im-
age 71 (Y) is not contained in any torus-invariant hyperplane of P". Therefore
all the linear forms f; are nonzero. Let Z be the set of vectors { fo, f1,..., fn}
in the (r+1)-dimensional vector space H°(P", O(1)). This defines a loopless
matroid N on E which is realizable over k.

By definition of the strict transform, Y = Y. Applying the first part of
the theorem to Yy, we have

[Y] = [Yp] = An N [X4,],

Since the set of flats of a matroid determines the matroid, M = N. This
proves the second assertion. O
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We remark that, when M is realizable over k, the ring A*(M) is iso-
morphic to the Chow ring of the variety Yy for any realization # of M
over k.

ExXAMPLE 6.4. We work with the permutohedral variety X = X 4, over
the integers. Consider the embedding
L:P? — PY,
[0 : @1 t@e] —> [xo: @1 @2t xo+ X1 1 ko + T2 w1 + T2 T + T + T2
The image of L is the intersection of the ten hyperplanes
Hy = {25 = 21 + 22}, Hy = {24 = 20+ 22}, H3 = {23 = 20 + 21},
Hy={zs =20+ 23}, Hy ={26 = 21+ 24}, Ho = {26 = 20 + 25},
H; ={220 =23+ 24— 25}, Hs = {221 = 23 — 24 + 25},
Hy={220 = —23+ 24+ 25}, Hio ={226 = 23+ 24 + 25}.

Let ﬁj be the strict transform of H; under the blowup 71 : X — PS. For
each prime number p, we have the commutative diagram over Z/p

Yp Xp
T1,p
Ly
T mn
Pp Pp )

where Y), is the strict transform of the image of L, under the blowup 1 .
Write Hj, for the intersection of H; and X,. For any prime number p, we
have

[V 1] = 20,
j=0

where M is the rank 3 matroid on E whose rank 2 flats are
{0,1,3}, {0,2,4}, {1,2,5}, {0,5,6}, {1,4,6}, {2,3,6}.
If p # 2, then

10 ~
m Hj7p = }/;)'
7j=1

If p = 2, then
10

ﬂ Hjp =Y, U5,

j=1
for some surface S, in X,. As a family of subschemes of X over Spec(Z),
the latter is the limit of the former. When p = 2, we have

[Yp] = An N [X5)],
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where N is the rank 3 matroid on E whose rank 2 flats are
{0,1,3}, {0,2,4}, {1,2,5}, {0,5,6}, {1,4,6}, {2,3,6}, {3,4,5}.

The matroid N is realized by the Fano plane, the configuration of the seven
nonzero vectors in the three-dimensional vector space over the field with two
elements. This matroid is not realizable over fields with characteristic not
equal to 2.

EXERCISE 6.5. Consider the quartic surface S in P* defined by
20+ 21+ 22+ 23+24=0,
21292324 + 20222324 + 20212324 + 20212224 + 20212223 = 0.
This quartic surface contains ten lines
Ziy + Ziy + 2iy = 2y = 2y, =0
and ten double points
Ziy = Ziy = Ziy = Zig + 2iy =0,
where (ig,11,1%2,13,14) is a permutation of (0,1,2,3,4). Every line contains
three of the ten points, and every point is contained in three of the ten lines.

In fact, the incidence between the lines and the points is that of the Desar-
gues configuration in a projective plane. We have a commutative diagram

‘s

Xa,

S
ﬂs‘/ ™
§—— P,
S

where tg, tg are inclusions and 7g is the blowup of the ten singular points.
The smooth surface S is invariant under the Cremona symmetry of X 4, and
the action of the symmetric group on E. It contains twenty smooth rational
curves with self-intersection (—2), namely the strict transforms of the ten
lines and the exceptional curves over the ten singular points. Any two of
the twenty curves are either disjoint or intersect transversely at one point.
Show that the homology class of S generates an extremal ray of the nef cone
of Xy,.

EXERCISE 6.6. Consider the quartic surface S in P* defined by
z1+z20+23+24 =0, 21292324+20222324+ 20212324+ 20212224+ 20212223 = 0.
This quartic surface contains four lines of the form

Ziy + Ziy + Zis = 21y = 20 = 0,
where (i1, 12,13,74) is a permutation of (1,2, 3,4), six lines of the form

Ziy + Zip = 2iy = 2y = 0,
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where (i1, 19, 13,44) is a permutation of (1,2, 3,4), six double points
20 = 2, = Ziy = Ziz + 2iy =0,
where (i1, 49,13,74) is a permutation of (1,2,3,4), and one triple point
21 =29 =23 =24 =0.

The incidence between the ten lines and the seven points is that of the rank
2 flats and rank 3 flats of the matroid M on {0,1,2,3,4} which has one
minimal dependent set {1,2,3,4}. We have a commutative diagram

S5 Xy,

Wsl/ 1

S — P4,
Ls

where 1g, ¢z are inclusions and 7g is the blowup of the seven singular points.
The strict transforms of the ten lines are smooth rational curves in S disjoint
from each other. Four of the ten curves, those corresponding to the lines con-
taining the triple point, have self-intersection (—2). The remaining six have
self-intersection (—1). The six exceptional curves over the double points of
S are smooth rational curves in S with self-intersection (—2), and the ex-
ceptional curve over the triple point is an elliptic curve with self-intersection
(—=3). A curve corresponding to a line meets a curve corresponding to a sin-
gular point if and only if the line contains the point. In this case, the two
curves intersect transversely at one point. Show that the homology class of
S generates an extremal ray of the nef cone of X Ay

7. The characteristic polynomial is the anticanonical image

The anticanonical linear system of the permutohedral variety X4, is
basepoint free and big. The product map m; X w9 may be viewed as the
anticanonical map of X4, , where 71, my are the blowups in the commutative
diagram

Xa,
PP - p»
Crem

Write the reduced characteristic polynomial of a loopless matroid M as

T

(@) = xm(@)/(g— 1) => (=) uyg".

=0
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Proposition 2.20 shows that the reduced characteristic polynomial j;(q)
represents the push-forward of the homology class of M under the anti-
canonical mapping.

THEOREM 7.1. Under the anticanonical map
w1 X mo: Xa, — P x P

the homology class of M push-forwards to its reduced characteristic polyno-
mial Xni(q):

AN [Xa,] — ) pp[P < P,
=0

Let X be an n-dimensional smooth complete variety over an algebraically
closed field k. The group of numerical equivalence classes of d-dimensional
cycles Ny(X) is a finitely generated abelian group with several additional
structures. In particular, it contains

(1) the set of prime classes, the classes of subvarieties,

(2) the set of effective classes, the nonnegative linear combinations of prime
classes,

(3) the set of nef classes, the classes which intersect all codimension d primes
nonnegatively.

The semigroups (2) and (3) define cones in the finite-dimensional vector
space Ng(X)r, the pseudoeffective cone and the nef cone of X. When X is
a toric variety, the group Ny(X) and its subsets (2), (3) are determined by
the fan of X. On the other hand, in general, the subset (1) depends on the
field k, as we have seen in Theorem 6.3 for permutohedral varieties.

DEFINITION 7.2. A homology class £ € Ng(X)r is said to be prime if
some positive multiple of ¢ is the class of a subvariety of X. Define

Py(X):= (the closure of the set of prime classes in Ng(X )R).

The set Py(X) is a closed subset of the finite-dimensional vector space
Ny4(X)gr invariant under scaling by positive real numbers. It contains all
extremal rays of the pseudoeffective cone of X in dimension d.

QUESTION 7.3. Suppose X is a smooth projective toric variety over an
algebraically closed field k. Does P;(X) depend only on the fan of X and
not on k?

The theorem of Kleiman says that a nef divisor class is a limit of ample
divisor classes [Kle66]. This shows that

Nefnfl(X) Q Pnfl(X) Q Peffnfl(X).

The theorem of Boucksom-Demailly-Paun-Peternell says that a nef curve
class is a limit of movable curve classes [ BDPP13]. This shows that

Nefy (X) € Pi(X) C Peff; (X).
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In general, the set Py(X) does not contain all the pseudoeffective nef classes
of X. If X is a product of two projective spaces, then P;(X) is the set of log-
concave sequences of nonnegative numbers with no internal zeros [Huh12].

THEOREM 7.4. If £ is an element in the homology group

= x; [P xP] € A4(X), X =P " xP",
J
then some positive integer multiple of £ is the class of a subvariety if and

only if the x; form a nonzero log-concave sequence of nonnegative integers
with no internal zeros.

Therefore, in the vector space Ny(X)r of numerical cycle classes in the
product of two projective spaces, the elements of the subset P;(X) corre-
spond to log-concave sequences of nonnegative real numbers with no internal
zeros, while the elements of the cones Nefy(X) and Peff;(X) correspond to
sequences of nonnegative real numbers. Note that Theorems 7.1 and 7.4 to-
gether imply the log-concavity conjectures when M is realizable over some
field.

EXAMPLE 7.5. There is no five-dimensional subvariety of P® x P> which
has the homology class

€ = 1[P% x PO+ 2[P* x P!] + 3[P? x P?] + 4[P? x P?] 4 2[P! x P4] + 1[P° x P?],

although (1,2, 3,4,2,1) is a log-concave sequence with no internal zeros. This
follows from the classification of the quadro-quadric Cremona transforma-
tions of Pirio and Russo [PR12]. On the other hand, the proof of Theorem
7.4 shows that there is a five-dimensional subvariety of P> x P® which has
the homology class 48 &.

Recall that the anticanonical push-forward of the homology class of a
matroid M in X 4, is the reduced characteristic polynomial X;(q):

Therefore, the coefficients of the reduced characteristic polynomial j;(q)
form a log-concave sequence if and only if

(7‘(’1 X 71'2)* Ay N [XAn] € PT(IPm X Pn)
We ask whether the same inclusion holds in the permutohedral variety X 4,,.

QUESTION 7.6. For any matroid M and any algebraically closed field k,
do we have
Ap N [XAn] S P’I‘(XAH)?

In view of Theorem 6.3, the question asks whether every matroid is
realizable over every field, perhaps not as an integral homology class, but
as a limit of homology class with real coefficients. Since P.(X4,) maps to
P.(P" x P™) under the anticanonical push-forward, Question 7.6 can be
viewed as a strengthening of the log-concavity conjectures.
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ExXaMPLE 7.7. Let E be a finite subset of a field containing k£ . Call

a subset
defines a

of E independent if it is algebraically independent over k . This
matroid M algebraic over k, see [Ox111, Chapter 6].

Non-algebraic matroids exist. Ingleton and Main showed that the Vamos

matroid,

(i

the matroid on {0,1,...,7} whose maximal independent sets are

> \ {{0, 1,2,3), 12,3, 4,5}, {4,5,6,7},{0,1,6, 7}, {0, 1,4,5}},

is not algebraic over any field. Many more examples can be found in [Ox111,
Appendix]. An argument of Josephine Yu [Yul?7] can be used to show that:

If M is not algebraic over k, then no multiple of Ay is the class

of a subvariety of X4, over k.

It is a challenging problem to decide whether the Bergman fan of the Vamos
matroid is contained in P3(X4,).
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