
1. Introduction 
Whereas many older approaches to computer-based sign 
recognition from video had focused on a selection of fea-
tures known to be linguistically relevant to sign produc-
tion, more recent research that has exploited neural nets 
has generally not attended to what is known about lin-
guistic structure. The latter approaches do not work well, 
however, in the absence of large quantities of annotated 
data, quantities that exceed what is generally available for 
sign languages currently. Furthermore, they fail to provide 
insights into cases where the recognition fails.  

To address the linguistic and computer vision complexi-
ties associated with automatic sign recognition, we have 
developed a novel hybrid approach that utilizes a set of 
known linguistic properties of the language to optimize 
the parameterization for state-of-the-art machine learning 
methods. These methods also rely on linguistically annot-
ated data for citation-form signs from our American Sign 
Language Lexicon Video Dataset (ASLLVD) (Neidle, 
Thangali, and Sclaroff, 2012).1  

Our 3-step approach differs from most other methods 
since it uses parameters related to upper body and hand 
and face configuration, coupled with linguistic constraints 
(as reflected in the statistics from the dataset).  

1) We first use neural networks to automatically extract 
the 2D upper body and facial features from a signer’s 
video sequence. These features are then used to estimate 
the 2D pose of the signer, and then, using dynamic 
programming, to fit a 3D model to estimate the related 
parameters. We also extract hand features using another 
neural net trained for handshape recognition. 

                                                             
1 See http://www.bu.edu/av/asllrp/dai-asllvd.html. This dataset is also 
available at http://secrets.rutgers.edu/dai/queryPages/search/search.php  
and forms the basis for our new Web-accessible ASLLRP Sign 
Bank, accessible at http://dai.cs.rutgers.edu/dai/s/signbank (Neidle et 
al., 2018). The Sign Bank examples that were recorded as isolat-
ed signs, in citation form, are taken from the ASLLVD; the Sign 
Bank also includes additional examples taken from continuous 
signing. 

2) We then introduce linguistic dependencies to adjust 
the probabilities of estimated start and end handshapes; 
these are based on precomputed co-occurrence probability 
priors for start/end handshape combinations. We also add 
a parameter related to the possible relationships between 
handshapes on the 2 hands in 2-handed signs.  

3) The previously estimated parameters related to the 
upper body and handshape probabilities, modified with 
linguistically based information, are then used in a 
modified Hidden Conditional Ordinal Random Field 
(HCORF) for sign recognition. 
This unified hybrid framework for sign recognition offers 
impressive sign recognition results in a fully scalable 
manner. Using a 350-sign vocabulary of isolated, citation-
form lexical signs, we achieve a top-1 accuracy of 93.3% 
and a top-5 accuracy of 97.9%. 

Section 2 briefly situates our current approach in the 
context of previous attempts at sign recognition. Section 3 
presents our framework; the experiments and results are 
summarized in Section 4. In Section 5, we discuss 
possible applications of this technology. 

2. Previous Achievements in  
Sign Recognition 

In the early 2000’s, isolated sign recognition from video 
or RGBD sensors, often using features of the signing 
known to be linguistically significant (e.g., Bowden et al., 
2004), demonstrated some success on small vocabularies. 

Signer independence poses additional challenges. Von A-
gris et al. (2006), using extracted image features, achieved 
96.9% signer-independent recognition of 153 signs from 4 
native signers of British Sign Language. Later, von Agris, 
Knorr, and Kraiss (2008), by combining 2D motion trajec-
tories, facial features, and a hand model, achieved 88.3%, 
84.5%, and 80.2% respectively for signer-independent 
recognition of vocabularies of 150, 300, and 450 signs 
from 25 native signers of German Sign Language. These 
results indicate that scalability is an issue.  

Zaki and Shaheen (2011), using hand-crafted features 
describing handshape and orientation, place of articula-
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tion, and hand motion, report 89.9% success in recogniz-
ing 30 ASL signs from 3 signers from the RWTH-
BOSTON-50 database (Zahedi et al., 2005; that database 
is, in fact, comprised of a subset of 50 signs taken from 
the ASL data we had made publicly available and which 
are now shared through our Data Access Interface (DAI, 
and the new DAI 2); see Footnote 1).  

For larger vocabularies, Cooper et al. (2011) attained 
71.4% top-1 accuracy on a set of 984 signs from British 
Sign Language, but all from a single signer. Wang et al. 
(2016) achieved 70.9% accuracy on 1,000 isolated signs 
in Chinese Sign Language across multiple signers. How-
ever, they relied on an RGBD sensor for 3D information. 

More recent approaches to sign language recognition, al-
though focused on continuous signing rather than isolated 
signs, have been spurred by advances in neural nets. Such 
purely data-driven end-to-end approaches have been bas-
ed on Recurrent Neural Net (RNN) architectures (e.g., 
Cui, Liu, and Zhang, 2017). Koller, Zargarin, and Ney 
(2017) use such an architecture, incorporating HMMs and 
2D motion trajectories (but without integration of linguis-
tic knowledge) to achieve 45.1% accuracy. Their multi-
signer performance (27.1%) demonstrates that such 
methods do not generalize easily. 

It is difficult to make direct comparisons with other sign 
recognition results because of vast differences in the na-
ture of the data and conditions for research reported in the 
literature. In general, however, as the size of the dataset 
increases, the accuracy of isolated sign recognition has 
decreased. Methods used have not proved to be scalable. 
Our methods achieve both high accuracy in sign 
recognition on sizable vocabularies and scalability. 

3. Overview of our Sign  
Recognition Framework 

Our hybrid approach uses 1) discriminative neural net 
based computer vision methods coupled with generative 
methods for hand and pose feature extraction and related 
parameters, 2) additional linguistically driven parameters 
(Sections 3.1, 3.2), with enhancement of parameters from 
known linguistic dependencies (Section 3.3); and 
3) scalable machine learning methods for sign recognition 
using the extracted parameters (Section 3.4). 

This results in improved sign recognition compared to 
previous approaches, because of the reduced parameteriz-
ation and the efficiency of the algorithms, which are cap-
able of coping with limited quantities of annotated data.  

3.1 Summary of Features 
Using the framework just described, we estimate a com-
prehensive set of features, with regard to: a) handshapes, 
b) number of hands, c) 3D upper body locations, 
movements of the hands and arms, and distance between 
the hands, d) facial features, and e) contact. 

a) Features related to handshape are extracted from a 
neural net. 

b) Signs are categorized based on the number of hands 
(1 vs. 2 hands) and the degree of similarity of the 
handshapes on the 2 hands for 2-handed signs. 

c) The upper body parameters include 3D joint loca-
tions for the shoulders, arms, and wrists; velocities; 

and the distance between the hands. 
d)  The features for the face include 66 points (visible in 

Figure 1) from 3D estimates for the forehead, ear, 
eye, nose, and mouth regions, and their velocities 
across frames. 

e) The contact parameters are extracted from our 3D 
face and upper body movement estimation, and relate 
to the possibilities of the hand touching specific parts 
of the body, e.g., the forehead or other parts of the 
face, arms, upper body, or the other hand. 

The initial parameter values will, in some cases, be 
subsequently modified based on linguistic considerations, 
to be discussed in Section 3.3. This comprehensive set of 
parameters is then used within our CRF-based machine 
learning framework for purposes of sign recognition. 

3.2 Feature Parameter Extraction 
Next we describe how these parameters are extracted. 

3.2.1 Upper Body, Hands, and Arms  
We model upper body pose and use the 3D joint locations 
as features. We use Convolutional Neural Nets (CNNs) 
for initial estimation of 2D pose. We then apply a nearest 
neighbor matching coupled with a dynamic programming 
approach to search for the optimal 3D pose and part 
confidence maps (Dilsizian et al., 2016). 

Using this 3D approach, we also extract linguistically 
important parameters, such as 3D motion trajectories, 
information about the number of hands (1- vs. 2-hand-
ed) and events involving contact between the 2 hands 
or contact with the face or body, as shown in Figure 1. 

 

 

 

 

 

 

 

3.2.2 Handshape  
Our parameterization also includes feature extraction from 
hand images specifically. We focus on the handshapes at 
the start and end of each sign, because those are the most 
linguistically informative handshapes. 

We extract features derived from a neural net trained for 
handshape recognition. Additional features are then deriv- 
ed based on the relationship between handshapes on the 
dominant and non-dominant hands, as well as at the start 
and end of the sign (factoring in linguistic dependencies 
derived from frequencies of co-occurrence in our dataset; 
see Section 3.3). 

3.2.3 Face and Head 
Non-manual features have been shown to improve 
recognition of manual signs (von Agris, Knorr, and 
Kraiss, 2008; Koller, Forster, and Ney, 2015). Thus we 
estimate the 3D locations of 66 points on the face, as well 

Figure 1. Locations where contact occurs 



as head movement, to include all possible informative 
non-manual information. 

3.3 Incorporation of Linguistic Modeling for 
Enhancement of Parameter Estimates 

The initial estimates of several of the above parameters 
can be refined based on known linguistic dependencies.  
3.3.1 Dependencies between Start & End Handshapes 
We exploit phonological constraints that hold between 
start and end handshapes in lexical signs to refine the 
handshape estimates for start and end handshapes 
(Thangali et al., 2011; Thangali 2013; Dilsizian et al., 
2014). These dependences are reflected in the co-
occurrence probabilities from our dataset. 

3.3.2 Dependencies between Dominant & Non- 
dominant Handshapes in 2-handed Signs 

We distinguish 2-handed signs that have essentially the 
same handshape on both hands from those that involve 
different handshapes, based in part on the handshape 
similarity parameter mentioned earlier. In the former case, 
handshape accuracy can be boosted by combining 
information from the independent handshape estimates for 
the 2 hands. In the latter case, handshape possibilities for 
the non-dominant hand are significantly constrained.  

3.4 Sign Recognition 
We use the above extracted parameters as input to a struc-
tured Conditional Random Field (CRF) method—a modi-
fied Hidden Conditional Ordinal Random Field (HCORF)  
(Walecki et al., 2015)—to recognize signs. In addition, for 
each sequence, our modified HCORF includes an 
additional error term that measures the error between 
start/end handshape predictions and ground truth labels.  

The advantages of our linguistically motivated, reduced 
parameter approach are demonstrated in the next section. 

4. Sign Recognition Experiments  
and Results 

4.1 Dataset 
In this research we focus on lexical signs, the largest mor-
phological class of signs. For training, we used the most 
comprehensive publicly accessible, linguistically annotat-
ed, video collection of isolated ASL signs, the American 
Sign Language Lexicon Video Dataset (ASLLVD) 
(Neidle, Thangali, and Sclaroff, 2012); see also 
Footnote 1. The ASLLVD itself includes over 8500 
examples corresponding to almost 2800 monomorphemic 
lexical signs in citation form from 6 native signers.  
However, for these experiments, we selected a set of 350 
signs from among those that had the greatest number of 
examples and signers per sign. On average, there were 4.7 
signers and 6.9 total examples per sign for this set of 350 
signs (a total of about 2400 examples). This was sufficient 
to train our neural nets. 

4.2 Experiments  
For each frame in each video sequence, we extract a 
feature vector of dimension 110, which includes the 
previously discussed features (handshape, motion 
trajectory, and other linguistically motivated features). 
This feature vector is used as input to our machine 

learning framework for sign recognition. We trained on 
our dataset, which generally contained 4-6 signers per 
example, using 80% of the data for training and 20% for 
testing. For each sign, 2 examples were randomly selected 
to be in the testing set, and the remaining examples were 
used for training. We tested on vocabularies of differing 
sizes (175 vs. 350 signs) to test the efficiency and 
scalability of our approach. We also performed a series of 
experiments to separate out the contributions of the 
different parameters. 

4.3 Results 
As shown in Figure 2, from a vocabulary of 350 signs (in- 
cluding both 1- and 2-handed signs), using all of our para- 
meters, we achieve a top-1 accuracy of 93.3% and a top-5 
accuracy of 97.9%. Figure 3 demonstrates the advantage 
of : 3D pose over 2D (green vs. amber); the addition of 
contact parameters (red); and the inclusion of all linguistic 
parameters and constraints in our framework (blue). 

Comparing the results of vocabularies of 175 vs. 350 
signs (Figure 3), accuracy declines by only 2.1% for top 1, 
and by only 1.3% for top 5 with the larger vocabulary. 
This provides evidence for the scalability of the approach.  

 

 

Figure 3. Comparing the Results on  
Vocabularies of 175 vs. 350 Signs 

Figure 2. Contribution of Parameters to Accuracy 



5. Significance for Potential  
Future Applications 

There are many possible practical applications of 
technology for sign identification from video. For 
example, sign lookup capability would present significant 
benefits to Deaf communities, and to others wanting 
access to sign language resources such as dictionaries. 
Sign language dictionaries are currently often accessed by 
means of the written language, e.g., looking up a sign in 
an ASL resource by searching for a possible English 
translation of that sign. This has obvious drawbacks, as 
the user (whether Deaf or hearing) may not know the 
corresponding word from the spoken/written language. 
Available alternatives, which are in use for some sign 
language resources, generally involve laboriously having 
the user specify multiple features of the sign, such as 
handshape, etc.; this constitutes a very inefficient and 
unsatisfying lookup mechanism.  

Our goal is to develop a lookup functionality that would 
enable users to search through our own electronic 
resources (Neidle et al., 2018), or to use our lookup 
interface to access other resources, through one of two 
input methods: either by producing the target in front of a 
webcam, or by identifying the start and end frames of the 
sign of interest from a video with continuous signing.  

Although additional research will be required before such 
a lookup mechanism can be provided, the fact that we 
currently achieve about 98% success, using scalable 
methods, in identifying five candidate signs that include 
the target sign is extremely encouraging. It would be 
practically reasonable to offer the user 5 choices, in 
decreasing order of likelihood, as part of the lookup 
process, with the user able to view those sign videos and 
choose among the signs before confirming the selection 
and proceeding with the lookup, as sketched in Figure 4. 
Final design of such an interface will also involve 
consultation with prospective users of such tools.   

6. Conclusions 
We have demonstrated a general framework for 
recognition of isolated signs produced by multiple signers. 
Our framework leverages linguistic structure and 
dependencies, thereby enabling it to work from limited 
quantities of annotated data and to outperform previous 
methods. Our parameter extraction methods are based on 
state-of-the-art 3D handshape, face, and upper body 
parameter estimation, as well as integration of linguistic 
properties and constraints. The resulting modified 
parameter vector allows for a scalable and efficient 
approach to sign recognition.  

In the future, we plan to expand the corpus and associated 
annotation sets to further improve the performance of our 
methods. We also intend to refine/augment the 
linguistically motivated features to enhance recognition 
accuracy, which would not be possible with purely data-
driven methods. Furthermore, the methods being 
developed will, we hope, have beneficial practical 
applications, which we intend to pursue. 

 

 

 

 

 

 

 
Figure 4. Example of Choices to be Offered to a User before 
Confirmation of a Lookup Selection – Based on the Interface for 
our Current ASLLRP Sign Bank  
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