
Deleterious Variants in Asian Rice and the Potential Cost of
Domestication

Qingpo Liu,*,1 Yongfeng Zhou,2 Peter L. Morrell,3 and Brandon S. Gaut*,2
1College of Agriculture and Food Science, Zhejiang A&F University, Lin’an, Hangzhou, People’s Republic of China
2Department of Ecology and Evolutionary Biology, UC Irvine, Irvine, CA
3Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN

*Corresponding authors: E-mails: liuqp@zafu.edu.cn; bgaut@uci.edu.

Associate editor: Song Ge

Abstract

Many SNPs are predicted to encode deleterious amino acid variants. These slightly deleterious mutations can provide

unique insights into population history, the dynamics of selection, and the genetic bases of phenotypes. This is especially
true for domesticated species, where a history of bottlenecks and selection may affect the frequency of deleterious

variants and signal a “cost of domestication”. Here, we investigated the numbers and frequencies of deleterious variants

in Asian rice (Oryza sativa), focusing on two varieties (japonica and indica) and their wild relative (O. rufipogon). We
investigated three signals of a potential cost of domestication in Asian rice relative to O. rufipogon: an increase in the

frequency of deleterious SNPs (dSNPs), an enrichment of dSNPs compared with synonymous SNPs (sSNPs), and an

increased number of deleterious variants. We found evidence for all three signals, and domesticated individuals con-
tained �3–4% more deleterious alleles than wild individuals. Deleterious variants were enriched within low recombin-

ation regions of the genome and experienced frequency increases similar to sSNPs within regions of putative selective

sweeps. A characteristic feature of rice domestication was a shift in mating system from outcrossing to predominantly
selfing. Forward simulations suggest that this shift in mating systemmay have been the dominant factor in shaping both

deleterious and neutral diversity in rice.
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Introduction

Several studies have suggested that there is a “cost of domes-

tication” (Schubert et al. 2014), because crops may harbor

slightly deleteriousmutations that reduce their relative fitness

(Lu et al. 2006). Under this hypothesis, the decreased effective

population size (Ne) during a domestication bottleneck re-

duces the efficacy of genome-wide selection (Charlesworth

and Willis 2009), leading to an increase in the frequency of

slightly deleterious variants (Lohmueller et al. 2008; Casals

et al. 2013). The fate of these variants also relies on linkage,

because selection is less effective in genomic regions of low

recombination (Hill and Robertson 1966; Felsenstein and

Yokoyama 1976) and because deleterious variants may hitch-

hike with alleles that are positively selected for agronomic

traits (Fay and Wu 2000; Hartfield and Otto 2011; Campos

et al. 2014). Overall, the cost of domestication is expected to

increase the frequency of deleterious variants in small relative

to large populations, in regions of low recombination, and

near sites of positive selection.
This hypothesis about the cost of domestication parallels

the debate regarding the genetic effects of migration-related

bottlenecks and demographic expansion in human popula-

tions (Lohmueller et al. 2008; Casals et al. 2013; Peischl et al.

2013; Simons et al. 2014). The debate regarding human popu-

lations is contentious, perhaps because it suggests that some

human populations may, on average, carry a greater load of

deleterious variants than others (Peischl et al. 2016). Studies in

humans also suggest that subtlety of interpretation is

required when considering the relative frequency of deleteri-

ous variants in populations, because both the effect size and

the dominance of deleterious variants likely play a role in how

mutations impact the fitness of populations (Henn et al.

2016). Moreover, deleterious variants in nonequilibrium

populations, such as those that have experienced a recent

bottleneck, may return to pre-bottleneck frequencies more

rapidly than neutral variants (Brandvain and Wright 2016). It

nonetheless remains an important task to identify the num-

ber, frequency and genomic distribution of deleterious vari-

ants in humans, for the purposes of disentangling

evolutionary history and for understanding the association

between deleterious variants and disease (Kryukov et al.

2007; Eyre-Walker 2010; Gazave et al. 2013; Lohmueller

2014a; Simons et al. 2014; Uricchio et al. 2016).
In plant crops, the potential for a “cost of domestication”

was first examined in Asian rice (Oryza sativa) (Lu et al. 2006).
At the time, limited population resequencing data were avail-

able, so Lu et al. (2006) compared two O. sativa reference

genomes to that of a related wild species (O. brachyntha).
They found that the Ka/Ks ratio for radical, presumably dele-

terious amino acid variants was higher between the two

O. sativa genomes than between O. sativa and O. brachyntha.
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The Ka/Ks ratios for individual genes were negatively corre-
lated with genomic recombination rates, potentially suggest-
ing hitchhiking effects (Lu et al. 2006). Finally, they showed
that deleterious amino acid variants in rice were typically
found at intermediate population frequencies. Altogether,
they hypothesized that these observations reflect a cost of
domestication, whereby deleterious variants are enriched
(relative to synonymous variants) during domestication.
They hypothesized that enrichment was driven by two evo-
lutionary processes: relaxation of selective constraint and
hitchhiking due to artificial selection.

A handful of studies have since analysed deleterious vari-
ants in crops based on resequencing data (Gunther and
Schmid 2010; Nabholz et al. 2014; Renaut and Rieseberg
2015; Kono et al. 2016). Together these studies report that:
(1) deleterious variants are found at higher population fre-
quencies within crops compared with their wild relatives and
(2) the relative frequency of deleterious to neutral variants is
higher in crops than in their wild progenitors. For example,
Renaut and Rieseberg (2015) measured the proportion of
deleterious SNPs to synonymous SNPs in wild and cultivated
accessions of sunflower, and they showed that this proportion
was consistently higher for domesticated than for wild acces-
sions. More limited analyses have also shown that deleterious
variants are enrichedwithin genes associatedwith phenotypic
traits (Mezmouk and Ross-Ibarra 2014; Kono et al. 2016), sug-
gesting both that deleterious variants are affected by selection
through hitchhiking and that the study of deleterious variants
is crucial for understanding the potential for crop improve-
ment (Morrell et al. 2011). While a general picture is thus
beginning to emerge, most of these studies have suffered
from substantial shortcomings, such as small numbers of
genes, low numbers of individuals, or the lack of an outgroup
to infer ancestral states. Moreover, no study of crops has yet
investigated the frequency of deleterious variants in putative
selective sweep regions, which is especially important given
the hypothesis that artificial selection has increased the fre-
quency of deleterious mutations (Lu et al. 2006).

In this study, we reanalyse genomic data from hundreds of
accessions of Asian rice and its wild relative O. rufipogon.
Asian rice feeds more than half of the global population
(IRGSP 2005), but the domestication of the twomain varieties
of Asian rice (ssp. japonica and ssp. indica) remains enigmatic.
It is unclear whether the two varieties represent independent
domestication events (Londo et al. 2006; Civian et al. 2015), a
single domestication event with subsequent divergence (Gao
and Innan 2008; Molina et al. 2011), or separate events
coupled with substantial homogenizing gene flow of benefi-
cial domestication alleles (Caicedo et al. 2007; Sang and Ge
2007; Zhang et al. 2009; Huang et al. 2012a, 2012b). It is clear,
however, that domestication has included a shift in mating
system from predominantly outcrossing O. rufipogon [which
has outcrossing rates between 5% and 60%, depending on the
population of origin and other factors (Oka and Miroshima
1967)] to predominantly selfing rice [which has outcrossing
rates of�1% (Oka 1988)]. This shift in mating system has the
potential to affect the population dynamics of deleterious
variants, because inbreeding exposes partially recessive

variants to selection (Lande and Schemske 1985), which

may in turn facilitate purging of deleterious alleles

(Arunkumar et al. 2015).
Commensurate with its agricultural importance, the popu-

lation genetics of Asian rice have been studied in great detail.

Resequencing studies indicate that nucleotide sequence diver-

sity is �2- to 3-fold lower in indica rice compared with

O. rufipogon (Caicedo et al. 2007; Huang et al. 2012b) and

that diversity in indica is �2- to 3-fold higher than japonica

rice (Zhu et al. 2007; Huang et al. 2012b). Japonica rice is often

further separated into tropical and temperate germplasm,with

higher diversity in the former (Caicedo et al. 2007). Sequence

polymorphism data have also shown that the derived site

frequency spectrum (SFS) of rice varieties exhibit a distinct

U-shaped distribution relative to O. rufipogon, due either to

the genome-wide effects of selection or migration (Caicedo

et al. 2007). However, the population genetics of putatively

deleterious variants have not been studied across O. sativa

genomes, nor have deleterious variants been contrasted be-

tween O. sativa and O. rufipogon based on genomic data.
Here we assess whether genomic data provide evidence for

a “cost of domestication” in rice. We consider three measures

of cost, as defined previously in the literature. The first is

elevated population frequencies of deleterious variants that
remain after domestication (Lu et al. 2006); the second is an

enrichment in the proportion of deleterious SNPs to syn-

onymous SNPs in cultivated versus wild individuals (Renaut

and Rieseberg 2015); and the third is an increase in the num-

ber of derived deleterious variants in domesticated versus

wild germplasm. To our knowledge, this last measure of

cost has not yet been considered in the context of crop do-

mestication. We include it here because it is central to dis-

cussions of deleterious mutations in human populations,

particularly with regard to population expansion

(Lohmueller 2014b; Simons et al. 2014; Henn et al. 2016).
To identify putatively deleterious variants, we have utilized

two O. sativa datasets: one with many accessions (n¼ 766)

but low sequencing coverage (1–2�), and the other with

fewer individuals (n¼ 45) but enhanced coverage. For both

datasets, we re-map raw reads and then apply independent

computational pipelines for SNP variant detection. We have

used two different approaches—PROVEAN (Choi et al. 2012)

and SIFT (Kumar et al. 2009)—to predict which nonsynon-

ymous SNPs are deleterious. With these predicted deleterious

variants, we investigate three signals of cost (i.e., frequencies,

enrichment and numbers of deleterious variants). We also

examine the distribution of deleterious variants relative to

genome-wide recombination rates and the locations of pu-

tative selective sweeps. Finally, we attempt to gain insights

into the relative contributions of demography, linkage, posi-

tive selection and inbreeding on the dynamics of deleterious

variants within Asian rice.

Results

Datasets and Site Frequency Spectra
To investigate the population dynamics of deleterious vari-

ants, we collated two rice datasets. The first was based on the
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genomic data of 1,212 accessions reported in Huang et al.
(2012b) (supplementary table S1, Supplementary Material
online). This dataset, which we call the “BH” data after the
senior author, contained raw reads from 766 individuals of
Asian rice, including 436 indica accessions and 330 japonica
accessions. The BH dataset also included 446 accessions rep-
resenting three populations of O. rufipogon, the wild ancestor
of cultivated rice (supplementary table S1, Supplementary
Material online). Huang et al. (2012b) determined that their
O. rufipogon accessions represented three differentwild popu-
lations, which we denote WI, WII and WIII. They also inferred
thatWIwas ancestral to indica rice and thatWIIIwas ancestral
to japonica rice. Accordingly, we based our cultivated-to-wild
comparisons on indica versus WI and japonica versus WIII for
the BH data, but when appropriate we also included com-
parisons to the complete set of wild accessions (Wall). For
these BH data, we remapped sequencing reads to the japon-
ica reference sequence (Goff et al. 2002), then used ANGSD
(Korneliussen et al. 2014) to apply cut-offs for quality and
coverage and to estimate the SFS (see “Materials and
Methods” section).

The second dataset, which we call the “3K” data (Li et al.
2014), consisted of 15 cultivated, high-coverage (>12�) ac-
cessions for each of indica, tropical japonica, and temperate
japonica (supplementary table S2, Supplementary Material
online). We also included data from the BH dataset of the
15 wild O. rufipogon individuals with the highest coverage,
which we denote W15; coverage for the W15 individuals
ranged from 4.6� to 9.8�. For this dataset, reads were again
mapped to the japonica reference, but SNPs were called using
tools from GATK and SAMtools (see “Materials and
Methods” section). Formany analyses, we focused on a subset
of this 3K data (3Ksubset) that included only sites without
missing data and for which SNPs were identified within the
entire n¼ 60 sample, rather than within individual taxa.

Once identified, we annotated SNPs as either noncoding
(ncSNPs), synonymous (sSNPs), Loss of Function (LoF) or
nonsynonymous. LoF SNPs were those that contribute to
apparent splicing variation, the gain of a stop codon or the
loss of a stop codon. Nonsynonymous SNPs were predicted
to be tolerant (tSNPs) or deleterious (dSNPs) based on
PROVEAN (Choi et al. 2012) or SIFT (Ng and Henikoff
2003). Supplementary table S3, Supplementary Material on-
line, reports raw numbers of detected SNPs in both datasets.
In the BH rice samples, we identified hundreds of LoF muta-
tions and predicted 7,506 and 4,530 dSNPs in indica and
japonica samples using PROVEAN. Despite fewer accessions,
we identified more SNPs within the 3K data owing to higher
sequence coverage, including 21,234 dSNPs in indica rice (sup
plementary table S3, Supplementary Material online).

To determine the unfolded site frequency spectra for vari-
ous datasets and SNP classes, we defined SNPs as ancestral or
derived based on comparison to 93 O. barthii accessions (sup
plementary table S4, Supplementary Material online). For the
BH data, we reduced the sample size to 70 for each popula-
tion, based on sampling and coverage criteria (see “Materials
and Methods” section). The resulting SFS had a U-shape for
all SNP categories in cultivated rice, as observed previously

(Caicedo et al. 2007), but not for ancestral O. rufipogon (fig. 1
and supplementary fig. S1, Supplementary Material online).
The SFS differed significantly between wild and domesticated
samples for all SNP categories (Kolmogorov–Smirnoff tests;
P< 0.001; fig. 1 and supplementary fig. S1, Supplementary
Material online).

SNPs in the BH data were based on detecting polymorph-
isms within each taxon separately (supplementary table S3,
Supplementary Material online), which limits the potential to
infer sites at the extremes of the SFS—that is the zero and fixed
classes. To estimate these classes, we focused on the 3Ksubset
data, which had 2,239,824 SNPs across the 60 individuals,
including 22,377 dSNPs, 65,594 tSNPs, 81,648 sSNPs and
4,102 LoF variants (see also supplementary table S3,
Supplementary Material online). Nucleotide diversity esti-
mates (p) for noncoding and 4-fold degenerate sites based
on these data were similar to those of previous studies
(Huang et al. 2012b), with the expected hierarchy of diversity
relationships (i.e., O. rufipogon> indica> tropical japon-
ica> temperate japonica) (Caicedo et al. 2007) (table 1). In
the 3Ksubset data, the comparisons between the wild and cul-
tivated SFS were not significant (Kolmogorov–Smirnoff; P> 0.
05), but the resulting SFS were similar to the BH data in ex-
hibiting hints of a U-shaped SFS for all three cultivated taxa
and for most site categories (fig. 2 and supplementary fig. S2,
Supplementary Material online). This U-shape included
enhanced frequencies of fixed and high frequency (>12)
derived variants and a dearth of low frequency (<3) variants
in domesticates compared with the W15 sample (fig. 2 and
supplementary fig. S2, Supplementary Material online). These
comparisons also illustrate that the zero class was greatly
enhanced in domesticated taxa, indicative of the loss of rare,
low frequency variants through the domestication bottleneck.

Inferred shifts in the SFS after domestication were robust
to: (1) dataset, because the 3Ksubset and BH datasets yielded
similar results, (2) SNP calling approaches, because different
methods were applied to the 3K and BH datasets, (3) the
composition of the wild sample, because similar patterns
were observed when the BH japonica and indica samples
were compared with Wall (P� 1.93� 10� 8 for all compari-
sons in both varieties) (supplementary fig. S3, Supplementary
Material online), (4) variation in sample sizes (n) among taxa,
because the BH data did not have the same number of indi-
viduals per taxon, while the 3K data did (supplementary table
S3, Supplementary Material online), and (5) the prediction
approach used to identify dSNPs (i.e., PROVEAN or SIFT;
supplementary figs. S4 and S5, Supplementary Material on-
line). Overall, the derived variants that remained after domes-
tication were shifted to higher frequency, as is expected
following a bottleneck (Simons et al. 2014).

Enhanced Frequencies and Numbers of Deleterious
Variants in Rice
Previous work has defined the cost of domestication as higher
frequencies of dSNPs (Lu et al. 2006), particularly differential
shifts in frequencies of dSNPs relative to putatively neutral
SNPs (Gunther and Schmid 2010). To investigate frequency
shifts, we plotted the ratio of the number of derived dSNPs
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versus derived sSNPs for each frequency category of the SFS.

Figure 3 shows that, for the BH data, both indica and japonica

have enhanced numbers of derived dSNPs to sSNPs relative to

O. rufipogon across the entire frequency range (Wilcoxon rank

sum: indica vs. WI, P¼ 4.98� 10� 16; japonica vs. WIII,

P< 2.20� 10� 16; fig. 3). The 3Ksubset data exhibited similar

properties throughout most of the frequency range, with the

exception of the lowest frequency classes, but the distribu-

tions remained significantly different overall (Wilcoxon rank

sum: indica 3K vs.W15, P¼ 0.035; tropical japonica 3K vs.W15,

P¼ 0.023; fig. 3).
We also calculated R(A/B), a measure that compares the

frequency and abundance of dSNPs versus sSNPs in one

population (A) relative to another (B) (Xue et al. 2015).

When R(A/B) is> 1.0, it reflects an overabundance of derived

dSNPs (or LoF variants) relative to sSNPs in one population

over another across the entire frequency range. As expected

from SFS analyses, we found that R(A/B) was> 1.0 for LoF

variants and for dSNPs in indica relative to theWI population

(P� 2.30� 10� 139 for all three comparisons; fig. 3) and in

japonica relative toWIII (P� 0.000 for the three comparisons;

fig. 3). The 3Ksubset, which included both the zero and fixed

classes of variants, yielded similar results (P� 0.000 for all six

comparisons; fig. 3). Hence, all cultivated samples contained

increased proportions of derived dSNPs to derived sSNPs

relative to wild samples.
An enrichment of the number of derived dSNPs to sSNPs

within cultivated individuals has also been cited as evidence
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FIG. 1. The site frequency spectrum (SFS) for cultivated rice andOryza rufipogon, based on BH data. The top row represents sSNPs, and the bottom

row represents dSNPs. Additional SNP classes are graphed in supplementary figure S1, SupplementaryMaterial online. The two columns represent

indica rice on the left and japonica rice on the right. As per Huang et al. (2012b), indica rice is contrasted to the accessions from wild population

I (WI) and japonica rice is contrasted to wild sample population III (WIII). The Density on the y-axis is the proportion of alleles in a given allele

frequency. Each graph reports the P value of the contrast in SFS between cultivated and wild samples.

Table 1. Comparison of Genetic Diversity (p), Average Counts of Derived Deleterious Variants (#dSNPs) Per Individual, and The Average Ratio of
Deleterious to Synonymous Variants (#dSNPs/#sSNPs) Per Individual.

Samplea pnoncoding
b p4-fold

b Avg. #dSNPsc Avg. [#dSNPs/#sSNPs]d

indica 0.00394 0.00289 6351.4 (676.3) 0.1818 (60.0032)

japonica (temperate) 0.00252 0.00177 6290.3 (659.7) 0.1912 (60.0020)

japonica (tropical) 0.00345 0.00246 6300.7 (636.9) 0.1880 (60.0031)

W15 0.00620 0.00505 6098.5 (6126.8) 0.1522 (60.0067)

aAll samples are based on the 3Ksubset data.
bPairwise diversity, based on a common set of SNPs without missing data, along with invariant sites without missing data.
cThe number of derived segregating and fixed dSNPs per individual, averaged over the 15 individuals within each of the four groups. Parentheses indicate the 95% confidence

interval.
dThe average ratio of derived dSNPs to sSNPs per individual. Parentheses indicate the 95% confidence interval.
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for a cost of domestication (Renaut and Rieseberg 2015).

Because the 3Ksubset included the same sample size and num-

ber of nucleotide sites across taxa, it permitted direct com-

parisons of the numbers of derived alleles across individuals.

We therefore calculated the average number of derived dele-

terious variants within individuals and the average ratio of

derived dSNPs to sSNPs within individuals (table 1).

Following Henn et al. (2016), we counted the number of

derived variants per individual as the number of heterozygous

sites plus twice the number of derived homozygous sites. We

included both fixed and segregating derived variants in our

calculations.
The results showed that the count of derived, putatively

deleterious variants increased for each cultivated individual, on

average, despite lower overall noncoding and synonymous

diversity (p) in the cultivated samples (table 1). These counts

differed significantly between the W15 sample and the three

cultivated samples for dSNPs (Mann–Whitney U, P� 0.0344),

representing a �3–4% increase in the average number of

derived deleterious variants per individuals. Accordingly, the

ratio of derived deleterious to synonymous variants per

individual was significantly higher for the domesticated rice

samples than for O. rufipogon (Mann–Whitney U,

P� 2.51� 10� 6 for all three comparisons). Analysis based

on SIFT prediction of deleterious variants yielded similar trends

(supplementary table S5, Supplementary Material online).

dSNPs Are Enriched in Regions of Low Recombination
We have established that our rice samples have enhanced

frequencies, proportions and numbers of dSNPs. We now

evaluate whether the accumulation of putatively deleterious

variants was homogenous across the genome. Theory pre-

dicts that diversity should be lower in low recombination

regions (Begun and Aquadro 1992; Charlesworth 1994) and

also that fate of dSNPs relative to sSNPs may differ between

high and low recombination regions due to interference

(Felsenstein 1974). To test these predictions, we used a gen-

etic map to calculate recombination rate in windows across

rice chromosomes. Applying 2MB windows to the 3K data,

we found that the average number of derived (segrega-

tingþ fixed) sSNPs and dSNPs per individual were signifi-

cantly positively correlated with recombination rate in each

of the rice samples (fig. 4; P� 5.18�10� 8), indicating lower

diversity in low recombination regions.
Following precedent (Renaut and Rieseberg 2015; Kono

et al. 2016), we also plotted recombination rate against the

ratio of the number of derived dSNPs to derived sSNPs; these

correlations were significantly negative (P� 1.32� 10� 4).

For completeness, we repeated these analyses on the density

and pairwise diversity of variants in the full BH and 3K data-

sets, which yielded similar results (supplementary tables S6

and S7, Supplementary Material online). In short, the ratio of

derived dSNPs to derived sSNPs was consistently higher in

regions of low recombination.

dSNP Frequencies in Regions of Putative Selective

Sweeps
Regions linked to selective sweeps (SS) may have increased

frequencies of derived mutations (Fay and Wu 2000), includ-

ing dSNPs (Hartfield and Otto 2011). Consistent with this
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expectation, a previous study of domesticateddogs has shown

that the frequency of both dSNPs and sSNPs are inflated

within SS regions (Marsden et al. 2016). Prompted by these

observations, we investigated the distribution of deleterious

and synonymous variants in putative SS regions, to test two

hypotheses. The first was that SS regions have increased fre-

quencies of derived SNPs relative to the remainder of the

genome. The second was that SS regions alone explain the

accumulation of high frequency derived dSNPs in Asian rice.
We used three different approaches to identify SS regions.

First, we used the SS regions defined by Huang et al. (2012c),

which were based on the relative difference in p between wild

and domesticated populations (Huang et al. 2012c). That is, the

regions were based on pd/pw, where p is measured per base

pair, and the subscripts refer to domesticated andwild samples.

We also inferred selective sweeps using two additional

approaches: SweeD (Pavlidis et al. 2013) and XP-CLR (Chen

et al. 2010). SweeD identifies regions of skewed SFS relative to

background levels for a single population (i.e., the rice sample).

In contrast, XP-CLR searches for genomic regions for which the

change in allele frequency between twopopulations (cultivated

vs. wild samples) occurred too quickly at a locus, relative to the

size of the region, to be caused by genetic drift. Both SweeD and

XP-CLRwere appliedwith a 5% cutoff. BecauseXP-CLR requires

explicit genotypes, we used the 3K datasets for all of the SS

analyses (see “Materials and Methods” section).
Focusing on the indica 3K dataset for simplicity, the three

approaches identified different numbers, locations and sizes

of selective sweeps (table 2). For example, Huang et al. (2012c)

defined 84 SS regions that encompassed 9.98% of the genome.

In contrast, SweeD identified 485 SS regions, and XP-CLR

distinguished an intermediate number of 161 SS regions.

Consistent with the 5% cutoff, SweeD and XP-CLR identified

4.61% and 5.02% of the genome, respectively, as having been

under selection (table 2). To see if the same genes were

identified with different SS identification methods, we calcu-

lated the degree of overlap across methods, focusing on the

percentage of genes that two methods identified in common

(see “Materials and Methods” section). The overlap was sur-

prisingly low (fig. 5 and supplementary figs. S6–S16,

Supplementary Material online). Across the entire genome,

the putative SS regions defined by SweeD and Huang et al.
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(2012c) shared 6.24% of genes. Similarly, the regions defined
by XP-CLR shared 8.51% and 8.69% of genes with Huang et al.
(2012c) and SweeD, respectively.

To determine if SS regions have increased frequencies of
derived dSNPs, we contrasted the SFS between SS and non-SS
regions for derived segregating and fixed sSNPs and dSNPs
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FIG. 4. Patterns of genomic variation relative to recombination, based on the 3K data. The x-axis for each graph is the recombination rate (x-axis) as

measured by centiMorgans (cM) per 100 kb. The y-axis varies by row. The top row is the average number of derived (segregatingþ fixed) synonymous

variants per individual, as measured by in 2MB windows; the middle row is the average number of derived (segregatingþ fixed) deleterious variants in
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graphs are all P� 2.1� 10� 9; the P values for themiddle row are all P� 5.2� 10� 8; and the P values for the bottom row are all P� 1.3� 10� 4. A table

for similar analyses with the full BH and 3K dataset are provided in supplementary tables S6 and S7, Supplementary Material online.

Table 2. The Number and Percentage of SS Regions Identified by Different Methods, Based on 3K Data.

indica japonica (temperate) japonica (tropical)

No. Extentb No. Extentb No. Extentb

Huang et al. (2012c) 84a 9.98% 103c 15.32% 103c 15.32%

SweeD 485 4.61% 461 4.76% 389 4.81%

XP-CLR 161 5.02% 160 8.41% 171 5.62%

aBased on 60 SS regions identified as specific to indica, which overlapped with 31 of 55 regions identified in the combined samples of indica and japonica rice, for a total of

[60þ (55�31)]¼84.
bExtent¼ the percentage of the reference genome covered by SS regions.
cBased on 62 SS regions identified as specific to japonica, which overlapped with 14 of 55 regions identified in the combined samples of indica and japonica rice, for a total of

[62þ (55�14)]¼103.
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(see Marsden et al. 2016). The SFS were skewed for SS regions

relative to non-SS regions for both SNP classes, independent

of the method used to detect selective sweeps (fig. 6A). We

summarized the shift in frequencies by counting the number

of derived alleles (DAC) per SNP (fig. 6B) (Marsden et al.

2016), which showed that SS regions also contained higher

DACs (fig. 6B). Note that these results were not completely

unexpected, because the methods used to define SS regions

rely, in part, on identifying a skewed SFS relative to the gen-

omic background (see “Discussion” section).
Did sweeps affect dSNPs more or less than sSNPs? To in-

vestigate this question, we calculated the ratio of the mean

DAC for SS and non-SS regions. There was some variation

among SS methods. For example, the SS regions exhibited a

1.23-fold enrichment for dSNPs versus a slightly smaller 1.16-

fold enrichment for sSNPs when SS regions were based on

SweeD (supplementary table S8, Supplementary Material on-

line). Similarly, the SS regions defined by Huang et al. (2012c)

included a 1.20- and 1.12-fold enrichment for dSNPs and

sSNPs, respectively. SS regions defined by XP-CLR showed

the reverse: slightly higher enrichment for sSNPs (1.33) than

for dSNPs (1.29). Altogether, the extent to which hitchhiking

drove dSNPs and sSNPs to higher frequency seems to be

roughly equivalent.
Enhanced SNP frequencies in SS regions raise the possibility

that selective sweeps alone explain the shifted SFS of indica

FIG. 5. A graph of the location of inferred SS regions along Chromosome 1 for the 3K indica dataset. The x-axis is the location along the

chromosome, measured in base pairs. The top graph (red) indicates the ratio of p for the indica accessions against a set of wild accessions.

The (grey) background represents values for windows of 10 kb with a step size of 1 kb. Values> 2.0 were omitted for ease of presentation, and the

linewas smoothed. Themiddle graph shows values ofp for the indica accessions. The bars at the bottom represent inferred SS regions using SweeD

and XP-CLR, along with predefined SS regions (BH) defined by Huang et al. (2012c). The red and blue colors are included to help differentiate SS

regions; the orange bars represent additional SS regions defined by Huang et al. (2012c) on the basis of their combined indicaþ japonica dataset.

The width of each bar is proportional to the length of the corresponding SS region along chromosome. Similar graphs for chromosomes 2 through

12 are available as supplementary figures (supplementary figs. S6–S16, Supplementary Material online).
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rice relative to O. rufipogon. To examine this second hypoth-
esis, we removed all SS regions (as defined by SweeD, XP-CLR
and pd/pw) from the indica 3K dataset and recalculated the
SFS. Even with SS regions removed, the SFS for wild and
cultivated samples remained significantly different for sSNPs

and dSNPs (P� 0.0067). These results imply either that posi-
tive selection is not the only cause of the U-shaped SFS in
indica rice (Caicedo et al. 2007) or that linked selection has
affectedmore of the genome than is encompassed within the
identified SS regions.

We have reported results based on indica rice, but we also
performed analyses of SS regions for the 3K temperate and
tropical japonica datasets (table 2). The results were similar to
indica rice in three respects. First, although a greater extent of
the genome tended to be identified as SS regions in japonica
(table 2), the overlap among SS regions identified by different
methods was again low (< 9%). Second, for both japonica
datasets, derived sSNPs and dSNPs were generally at higher
frequencies in putative SS regions, although the effect was not
as apparent for sweeps identified with SweeD (supplementary
fig. S17, SupplementaryMaterial online). Third, like indica rice,
the SS regions alone did not account for the difference in SFS

between O. rufipogon and either tropical or temperate japon-
ica (P� 0.0049 for both comparisons).

Factors Affecting the Distribution of Variants
Finally, we sought to gain insights into the relative effects of
processes that have affected the distribution of genetic vari-
ation in Asian rice. To do so, we first devised a measure that is
similar to the “mean derived allele frequency” (MDAF) (Simons
et al. 2014). Our measure, which we called the “mean retained
allele frequency” (MRAF), differs from the MDAF in ignoring
the zero class. We ignored the zero class because we were

chiefly interested in measuring effects on the set of segregating
and fixed variants that were retained through domestication.
Similar to the MDAF (Simons et al. 2014), the MRAF was
calculated as the average number of derived alleles per indi-
vidual, divided by twice the number of sites containing derived
(segregating sitesþ fixed) variants within that taxon (see
“Materials and Methods” section). We calculated the MRAF
separately for synonymous and putatively deleterious variants.
TheMRAFwas higher for all three rice groups than for theW15

O. rufipogon sample, regardless of SNP type (fig. 7A).
Rice has a complex history that includes a population

bottleneck, positive selection and a shift in mating system.
We were curious about the relative effects of these evolution-
ary forces on genetic diversity, as summarized by the MRAF,
and so employed forward simulations to model these varied
forces. We simulated models with and without a domestica-

tion bottleneck, using parameters similar to those inferred
from previous study of rice domestication (Caicedo et al.
2007), positive selection, and inbreeding (see “Materials and
Methods” section). To investigate relative effects across dif-
ferent classes of sites, all simulations included both neutral
and deleterious variants. Dominance effects were assumed to
be additive (h = 0.5).

Figure 7B presents simulation results for six models: an
outcrossing population (out), an outcrossing population

with a bottleneck (outþ bot), an outcrossing population

with a bottleneck and positively selected alleles (out-

þ botþ pos) and three analogous models that included

complete selfing that co-occurs with the bottleneck (inb,

inbþ bot, inbþ botþ pos). Focusing first on simulations

for outcrossing populations, the MRAF was higher for syn-

onymous compared with deleterious variants, as was found in

the empirical data (fig. 7A). The MRAF of both site classes

increased under a bottleneck (outþ bot) and yet again with

positive selection (outþ botþ pos), indicating that both

processes drive surviving variants to higher frequency, as ex-

pected. Interestingly, as the models progressed from out to

outþ bot to outþ botþ pos, the difference in mean MRAF

between synonymous and deleterious variants became larger

(from 0.035 to 0.083 to 0.088, respectively).
The inclusion of selfing (inb) had a more substantive effect

on the shift of theMRAF than the inclusion of either a bottle-

neck or positive selection (fig. 7B). Under inbreeding models,

the inclusion of a population bottleneck (inbþ bot) and posi-

tive selection (inbþ botþ pos) had no effect on the mean

MRAF of synonymous sites (t-tests, P> 0.55). However, the

addition of a bottleneck did increase the mean MRAF of

deleterious sites (t-test, P< 0.05), such that the difference

in mean MRAF between synonymous and deleterious vari-

ants became less pronounced from inb (mean differ-

ence¼ 0.067) to inbþ bot (0.058). In other words, the

MRAF of dSNPs was enriched relative to sSNPs as our models

progressed from inb ! inbþ bot ! inbþ botþ pos.

Discussion

Recent focus on the population genetics of dSNPs in humans

(Henn et al. 2015, 2016), plants (Lu et al. 2006; Gunther and

Schmid 2010; Mezmouk and Ross-Ibarra 2014; Nabholz et al.

2014; Renaut and Rieseberg 2015; Rodgers-Melnick et al. 2015;

Kono et al. 2016) and animals (Schubert et al. 2014; Marsden

et al. 2016; Robinson et al. 2016) reflect an emerging recog-

nition that dSNPs may provide unique clues into population

history, the dynamics of selection and the genetic bases of

phenotypes. This is especially true for the case of domesti-

cated species, where the enrichment of deleterious variants

relative to neutral variants reflect a potential “cost of domes-

tication” (Schubert et al. 2014).
Our analyses have provided a snapshot of the fate of dele-

terious variants during rice domestication. First, dSNPs are

typically found at low frequency in wild populations (figs. 1

and 2). Second, many of these low frequency SNPs were lost

during domestication, probably due to increased rates of gen-

etic drift during the domestication bottleneck and/or due to

inbreeding. The phenomenon of loss is reflected in the large

zero class in the SFS of domesticated versus wild germplasm

(fig. 2). Third, the surviving dSNPs shifted toward higher fre-

quency (figs. 1 and 2). Both of these processes—that is, the

loss of rare variants and a shifted SFS—also apply to sSNPs,

but our data suggest differential effects on dSNPs versus

sSNPs. This differential effect is evident in the higher propor-

tion of derived dSNPs to sSNPs in domesticated rice than wild

rice across most frequency classes (fig. 3), in significant R(A/B)

Liu et al. . doi:10.1093/molbev/msw296 MBE

916



measures (>1.0) for dSNPs (fig. 3), and in elevated ratios of
derived dSNPs/sSNPs per individual (table 1). For all of these
measures, the results were largely consistent between differ-
ent types of presumably deleterious variants (i.e., dSNPs vs.
LoF variants; fig. 3), different methods to predict deleterious
SNPs (PROVEAN vs. SIFT; supplementary figs. S4 and S5,
Supplementary Material online) and different rice datasets
(BH data vs. 3K data).

Our finding that dSNPs are enriched relative to sSNPs is
similar to previous observations that have been used to con-
clude that there is a “cost of domestication” for domesticated
crops (Lu et al. 2006; Gunther and Schmid 2010; Renaut and
Rieseberg 2015). However, we also find that the number of
derived deleterious alleles has increased between wild and
crop individuals. Rice individuals in the 3Ksubset data contain
�200 more deleterious alleles than individuals in the W15 O.
rufipogon sample, a �3–4% increase (table 1). To our know-
ledge, this is the first observation of increased numbers of

deleterious variants within domesticated crops, but these re-

sults are not dissimilar to breed dogs. Like rice, dog popula-

tions contain less genetic diversity than their wolf progenitors,
but they also harbor 2.6% more derived deleterious alleles per

individual (Marsden et al. 2016). Similarly, serially founded,

out-of-Africa human populations exhibit decreasing genetic

diversity but increasing counts of derived deleterious variants

as a function of geographic distance from Africa (Henn et al.

2016).

Processes That Contribute to Enrichment of dSNPs
Several evolutionary forces may contribute to an increase in

the number or the proportion of derived deleterious alleles

per individual. In out-of-Africa human populations, for ex-

ample, these factors include range expansion, serial bottle-

necks under which moderately deleterious variants evolve as

if there were neutral, and differential effects depending on

dominance (Henn et al. 2016). At least four major
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FIG. 6. A comparison between selective sweep (SS) and non-SS regions based on the indica 3Ksubset dataset. The rows correspond to different

methods employed to detect sweeps, including SS regions from Huang et al. (2012c) (top row), SweeD (middle row), and XP-CLR (bottom row).

The set of histograms on the right compare the derived allele count (DAC) of segregating and fixed synonymous site or putatively deleterious sites

between SS regions and the remainder of the genome (non-SS regions).
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evolutionary factors could drive increased number of deleteri-

ous variants in domesticated rice: (1) changes in population

size, particularly bottlenecks associated with domestication

(Caicedo et al. 2007; Zhu et al. 2007), (2) linked selection

(Hartfield and Otto 2011; Marsden et al. 2016), (3) the tran-

sition to selfing and (4) relaxed selection onwild traits that are

no longer important under cultivation (Renaut and Rieseberg

2015).
Among these, evidence about linkage effects is accumulat-

ing. The enrichment of dSNPs in low recombination regions

appears to be a general phenomenon, based on studies in

Drosophila (Campos et al. 2014), humans (Hussin et al. 2015),

sunflower (Renaut and Rieseberg 2015), maize (Rodgers-

Melnick et al. 2015), soybean (Kono et al. 2016) and rice

(Lu et al. 2006; fig. 4). It remains unclear whether differences

between high and low recombination regions of the genome

are driven by lower Ne in regions of low recombination (Hill

and Robertson 1966; Felsenstein 1974; Charlesworth et al.

1993) or by linkage effects to positively selected variants

(Begun and Aquadro 1992). The relationship between recom-

bination and diversity should be diminished in selfing species

(Marais et al. 2004), suggesting that the observed patterns in

rice may have accumulated in historically outcrossing O. rufi-

pogon populations prior to domestication.
Another aspect of linkage is the enrichment of dSNP fre-

quencies near genes that have experienced selective sweeps

(SS). In domesticated dogs, Marsden et al. (2016) document

that the average DAC of dSNPs is significantly elevated within

SS regions and also that dSNPs experienced the same increase

in frequency as sSNPs due to hitchhiking. We find similar

effects in rice—that is, roughly equivalent increases in DACs

for dSNPs and sSNPs due to hitchhiking (fig. 6). This suggests

that alleles within selected genes, which are presumably of

phenotypic importance, may be more often associated with

slightly deleterious variants. One must nonetheless be cau-

tious about our approach, because methods that detect SS

regions, including pd/pw, rely to some extent on a skew of the

SFS. This skew should manifest itself as elevated DACs. It is

therefore difficult to separate potential methodological arti-

facts from true signal, but it should be noted that the signal is

consistent among SS methods (fig. 6).
Finally, we address the concomitant shift in population size

andmating system in rice. It is generally thought that a shift to

selfing offers advantages for an incipient crop, such as repro-

ductive assurance, reduced opportunities for gene flow be-

tween an incipient crop and its wild ancestor (Dempewolf

et al. 2012), and the creation of lines that “breed true” for

agronomically advantageous traits (Allard 1999). This shift

may also affect the accumulation of deleterious mutations,

but the effect can be difficult to predict, because of antagon-

istic effects (Arunkumar et al. 2015). On one hand, inbreeding

increases homozygosity, exposing recessive deleterious muta-

tions to natural selection (Lande and Schemske 1985) and

potentially leading to the purging of deleterious alleles

(Charlesworth and Willis 2009). On the other hand, inbreed-

ing reduces both population size and effective recombination

rates (Nordborg 2000), thereby reducing the efficiency of se-

lection and contributing to the retention and possible fixation

of deleterious variants (Takebayashi and Morrell 2001).
We have used forward simulations to begin to examine the

interplay between inbreeding and demographic (bottleneck)

effects under parameters designed to reflect those expected

duringO. sativa domestication. These simulations are unlikely

to precisely mimic rice genome history, but they offer insight

into the relative effects of evolutionary forces that may have

shaped segregating variation in rice. Under outcrossing mod-

els, a bottleneck increases the MRAF, as expected, and posi-

tive selection increases it even further for both deleterious
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and synonymous variants (fig. 7B). Under the selfing model,
the MRAF of synonymous sites increased dramatically imme-
diately. The addition of a bottleneck and positive selection
enriched theMRAF of deleterious variants, but not synonym-
ous variants, such that the MRAF of synonymous and dele-
terious variants became more similar (fig. 7B).

To the extent that these are representative models, they
suggest that the observed difference in MRAFs between O.
rufipogon and domesticated rice have been affected by selfing
more than a bottleneck or positive selection, both of which
have subtle effects in the presence of inbreeding (fig. 7B). A
relevant comparison is to dog domestication, which occurred
in two stages: a population bottleneck associatedwith domes-
tication�15,000 years ago (Vonholdt et al. 2010) and inbreed-
ing within the last few hundred years to produce modern
breeds. In this case, the domestication bottleneck, rather
than inbreeding, has had a larger effect on the accumulation
of deleterious genetic variation (Marsden et al. 2016), perhaps
because inbreeding in dogs has been more recent and not as
intense as inbreeding in rice. Our simulations suggest that
inbreeding has had the larger effect in rice, but this is also
dependent on assumptions in our models. We have, for ex-
ample, assumed that selfing was coincident with the domes-

tication bottleneck, but we cannot know this with certainly,
especially given the lengthy “pre-domestication” of some
crops (Purugganan and Fuller 2009; Meyer et al. 2016). We
have also made assumptions about population sizes, the tim-
ing of demographic events, recovery times from those events
(Brandvain and Wright 2016), dominance coefficients
(h¼ 0.5), and patterns of positive selection. In the future, it
will be important to vary these parameter values to better
understand their potential effects on crop diversity and the
potential cost of domestication.

Caveats and Assumptions
We close with consideration of the caveats and assumptions of
our analyses. While we have tried to avoid potential pitfalls by
usingmultiple approaches (different datasets, SNP callingmeth-
ods, dSNP predictors, and SS inferencemetrics), important limi-
tations remain. One is potential reference bias, because the use
of the japonica reference is expected to decrease the probability
that a japonica variant (as opposed to an indica variant) returns
a lowPROVEANor SIFT score (Lohmueller et al. 2008).Wehave
adjusted for this bias by submitting the ancestral allele—rather
than the reference allele—to annotation programs (Kono et al.
2016). Without this adjustment, a reference bias was patently
obvious, because the SFS of japonica dSNPs lacked a high fre-

quency peak, and the U-shape of tSNPs became commensur-
ately more extreme. We cannot know that we have corrected
completely for reference bias but do advocate caution when
interpreting results fromdSNP studies thatmake no attempt to
correct for reference bias. The effect can be substantial.

Our treatment of reference bias requires accurate infer-
ence of the ancestral state of variants. To date, most popu-
lation genetic studies of Asian rice have relied on outgroup
sequences from O. meridionalis (Caicedo et al. 2007; Gunther
and Schmid 2010), a species that diverged from O. sativa
�2 Mya (Zhu and Ge 2005). When we used O. meridionalis

as the sole outgroup, we inferred a U-shaped SFS in wild O.

rufipogon, which is suggestive of consistent parsimony mis-

inference of the ancestral state (Keightley et al. 2016). We

instead inferred ancestral states relative to a dataset of 93

accessions of African wild rice (O. barthii) (Wang et al.

2014). O. barthii is closer phylogenetically to O. sativa than

O. meridonalis, but O. barthii sequences form clades distinct

from O. sativa (Zhu and Ge 2005). Even so, we have found

that �10% of SNPs sites with minor allele frequencies> 5%

are shared between African wild rice and Asian rice, perhaps

due to introgression (Huang et al. 2015, but see Wang et al.

2014).
We do not believe that the use of O. barthii has distorted

our primary inferences, for two reasons. First, systematic mis-

inference of the ancestral state should lead to a U-shaped SFS,

which is not observed in O. rufipogon. Instead, the U-shaped
SFS is unique to O. sativa and differentiates wild from domes-

ticated species. Second, we have confirmed our inferences by

using O. meridonalis and O. barthii together as outgroups

(Keightley et al. 2016), considering only the sites where the

two agree on the ancestral state. The use of two outgroups

decreases the number of SNPs with ancestral states by�10%

and�15% for the BH and 3K datasets, but all analyses based

on these reduced SNP sets were qualitatively identical to

those with only an O. barthii outgroup (supplementary fig.

S18, Supplementary Material online).
Finally, we focus briefly on the locations of SS regions

identified by three different methods (fig. 5 and supplemen

tary figs. S6–16, Supplementary Material online), which rarely

overlapped (table 2). In other words, the three methods iden-

tified almost completely independent regions of the rice gen-

ome. The lack of convergence among methods may reflect

that different tests are designed to capture different signals of

selection. However, the results are also sobering, because

overlaps in SS regions have been used by a number of groups

to argue for or against independent domestication of indica

and japonica rice (He et al. 2011; Molina et al. 2011). Recently,

both Huang et al. (2012b) and Civian et al. (2015) have argued

for independent domestication events for japonica and indica

based on the observation that there is little overlap in SS

regions between the two taxa [also see (Huang and Han

2015).] The fact that we find little overlap among SS regions

identified by distinct methods mirrors the lack of overlap of

SS regions identified across the human genome by various

studies (Akey 2009), between domesticated grasses (Gaut

2015), and between independent domestication events of

common bean (Gaut 2015). Because the inferred locations

of SS regions vary markedly by method, sampling and taxon,

they should be interpreted with caution, particularly as

markers of independent domestication events.

Materials and Methods

Sequence Polymorphism Data
All of the data used in this study are publicly available.

Illumina paired-end reads for the BH and 3K dataset were

downloaded from the European Nucleotide Archive (ENA;

http://www.ebi.ac.uk/ena; last accessed January 5, 2017) (see
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supplementary tables S1 and S2, Supplementary Material on-

line, for accession numbers). The 3K accessions were chosen

randomly among the total set of accessions with>12�
coverage for an equal representation (n¼ 15 for each set)

of indica, tropical japonica and temperate japonica rice ac-

cessions. We also downloaded resequencing reads from O.
barthii to polarize SNPs as either ancestral or derived.

Sequencing reads for 93 O. barthii accessions (Wang et al.

2014) were obtained from the Sequence Read Archive

(SRA) database of the National Center for Biotechnology

Information (NCBI; http://www.ncbi.nlm.nih.gov/sra/ last

accessed January 5, 2017) (see supplementary table S4,

Supplementary Material online, for accession numbers).

Sequencing reads for another outgroup taxon, O. meridonalis

were obtained from NCBI (BioProject No: PRJNA264483)

(Zhang et al. 2014).

Read Alignment and SNP Detection
Paired-end reads for O. sativa and O. rufipogon data were as-

sessed forqualityusing FastQCV0.11.2, and thenpreprocessed

to filter adapter contamination and low quality bases using

Trimmomatic V0.32 (Bolger et al. 2014). The trimmed reads

were mapped to the reference genome for japonica
Nipponbare rice (MSU V7), which was downloaded from

the Rice Genome Annotation Project (http://rice.plantbiol

ogy.msu.edu; last accessed January 5, 2017). Mapping was per-

formedwith theALNandSAMPE commands implemented in

the software Burrows–Wheeler Aligner (BWA) V0.7.8

(Li and Durbin 2010), using default parameters. All reads

with a mapping quality score of< 30 were discarded.
The method of SNP calling varied with the dataset. For

the BH data, alignment files from BWA mapping were pro-

cessed further by removing PCR duplicates and by conduct-

ing indel realignments using Picard tools V1.96 (http://

sourceforge.net/projects/picard/files/picard-tools/1.96/; last

accessed January 5, 2017) and GATK V3.1 (McKenna et al.

2010), and then used as input for ANGSD V0.901, which is

designed to deal with sequences of low depth (Korneliussen

et al. 2014). ANGSD was run with the command line:

angsd -b BAMLIST -ancOUTGROUP –out OUTFILE

-remove_bads -uniqueOnly 1 -minMapQ 30 -minQ

20 -only_proper_pairs 1 -trim0 -minIndNUMBER -P

CPUNUMBERS -setMinDepth 3 -setMaxDepth 15 -

GL 1 -doSaf 1 -doMaf 2 -SNP_pval 1e-3 -

doMajorMinor 1 -baq 1 –C 50 –ref REFSEQ

We considered only SNPs that had between 3� and 15�
coverage, with the high-end implemented to avoid regions

with copy number variation (Huang et al. 2012b). For SNP

calling, we used only uniquely mapping reads, and bases with

quality score of< 20 were removed. SNP sites with>50%

missing data were discarded.
For the higher coverage “3K” dataset, we used SAMtools

V1.2 (Li et al. 2009) and GATK V3.1 to call SNPs. After map-

ping reads of each accession onto the reference genome,

alignments were merged and potential PCR duplications

were removed using Picard tools V1.96. Unmapped and

nonunique reads were filtered using SAMtools V1.2. We re-

aligned reads near indels by using the IndelRealigner and
BaseRecalibrator packages in GATK to minimize the number

ofmismatched bases. The resultingmapping alignments were
used as input for UnifiedGenotyper package in GATK and for
SAMtools. SNPs that were identified by both tools, with no

missing data and a minimum phred-scaled confidence
threshold of 50, were retained. Subsequently, SNP calls were

further refined by using the VariantRecalibrator and
ApplyRecalibration packages in GATK on the basis of two

sets of “known” rice SNPs (9,713,967 and 2,593,842) that were
downloaded from the dbSNP and SNP-Seek databases

(Alexandrov et al. 2015). These same SNP detection methods
were applied to the subset of 29 O. rufipogon with>4�
coverage that were used as the diversity panel to infer SS
regions (supplementary table S1, SupplementaryMaterial on-

line), although no prior variants were available.
Finally, sequence reads for the outgroup dataset were

aligned to the reference genome using stampy V1.0.21
(Lunter and Goodson 2011), and then a pseudo-ancestral

genome sequence was created using ANGSD (Korneliussen
et al. 2014) with the parameters “-doFasta 2 -doCounts 1”.

This pseudo-ancestral genome was used to determine the
ancestral state of each SNP in O. sativa and O. rufipogon.

SNP Annotation and Deleterious Mutation Prediction
SNPs were annotated using the latest version of ANNOVAR
(Wang et al. 2010) relative to the japonica reference genome

(MSU v 7.0). SNPs were annotated as synonymous, nonsy-
nonymous, intergenic, splicing, stop-gain and stop-loss

related. Throughout the study, we combined SNPs that con-
tribute to splicing variation, stop-gain and stop-loss and called

them loss-of-function (LoF) mutations.
To discriminate putatively deleterious nSNPs from tolerant

nSNPs, nSNPs were predicted as deleterious or tolerated using
PROVEAN V1.1.5 against a search of the NCBI nr protein

database (Choi et al. 2012). To reduce the effects of reference
bias, predictions of deleterious variants were inferred using

the ancestral (rather than the reference) variant. Following
previous convention (Renaut and Rieseberg 2015), we con-

sidered an nSNP to be a deleterious dSNP if it had a
PROVEAN score��2.5 and a tolerant tSNP when a

PROVEAN score was>�2.5. To assess consistency, we also
employed SIFT (Kumar et al. 2009) to predict nSNPs as dSNPs
or tSNPs. For these analyses, a nSNPwas defined as a dSNP if it

had a normalized probability< 0.05, and an nSNP was pre-
dicted to be a tSNP with a SIFT score� 0.05.

Calculating Site Frequency Spectra
Following Huang et al. (2012b), we separated the BH dataset
of 1,212 accessions into five populations: indica, japonica
(mostly temperate) and three O. rufipogon subpopulations
(WI, WII, andWIII). The five subpopulations were composed of

436, 330, 155, 121, and 170 individuals, respectively (supple
mentary table S1, Supplementary Material online).

To calculate the site frequency spectrum (SFS) for BH
subpopulations, we initially projected the sample size of all

five subpopulations to that smallest WII population of
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n¼ 121. However, many of the 121 accessions had low

sequencing depth and high levels of missing data. We there-

fore focused on theWII population to find criteria suitable for

inclusion. Ultimately, we sought to retain� 90% of SNP sites

within each SNP category, which resulted in a sample size of

n¼ 70 for the WII population. Accordingly, we randomly

sampled n¼ 70 individuals from the remaining four subpo-

pulations, so long as the sample retained� 90% of SNP sites

for each category, to mimic the WII sample.
Given a sample of n¼ 70 for each of the five subpopula-

tions, the SFS for each subpopulationwas calculated using the

formula proposed by Nielsen et al., (2005), where the O.

barthii sequence was used as an outgroup to determine the

polarity of the mutations.

pi;70 ¼ k�1
X

k

j¼1

fj

i

 !

nj � fj

70� i

 !

nj

70

 ! (1)

In this formula (1), pi,70 represents the hypergeometric prob-

ability of the derived allele frequency (DAF) of SNPs found in i

individuals in a sample size of 70; k is the total number of

SNPs in the dataset; nj and fj are the sample size and the

number of derived alleles of the jth SNP, respectively. The

SFS for the 3K data were calculated by focusing on a common

set of SNPs that had no missing data and that were segregat-

ing in the total population of n¼ 60 individuals. The SFS for

sSNPs, tSNPs, dSNPs and LoF SNPs were compared with the

Kolmogorov–Smirnov test, based on proportions of SNPs at

different frequencies.

RA/B—a Relative Measure of dSNPs Frequency

Enhancement
We adopted a metric to assess the accumulation of deleteri-

ous variants in either cultivated or wild rice populations (Xue

et al. 2015). In this analysis, the statistic LA,B(C) compares two

populations (A and B) within a given particular category, C, of

SNP sites (e.g., dSNPs). It was calculated by counting the

derived alleles found at specific sites in population A rather

than B and then normalized by the same metric calculated in

synonymous sites (S). The calculation of LA,B(C) was:

LA;BðCÞ ¼

P

i2C f
A
i ð1� f Bi Þ

P

j2S f
A
j ð1� fBj Þ

(2)

where fi
A and fi

B are the observed derived allele frequency at

each site i in populations A and B, respectively, and S refers to

sSNPs. The ratio RA/B(C)¼ LA,B(C)/LB,A(C) then measures the

relative number of derived alleles that occur more often in

population A than that in population B. To obtain the stand-

ard errors of RA/B(C) we used the weighted-block jackknife

method (Kunsch 1989), where each of the tested SNP data-

sets was divided into 50 contiguous blocks and then the RA/

B(C) values were recomputed. A P value was assigned by using

a Z score assuming a normal distribution (Do et al. 2015).

Calculation of Recombination Rate
The high-density rice genetic map was downloaded from

http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/
index.html (last accessed January 5, 2017), on which a

total of 3,267 EST markers were anchored. We extracted
the sequences of thesemarkers from the dbEST database in

NCBI, which were used as query to perform a BLAST search
against the rice genome sequence (MSU V7) to annotate

their physical positions. Finally, we normalized the recom-
bination rate to centiMorgans (cM) per 100kb between
different markers, and then calculated the average recom-

bination rate in 3 or 2MB window segments for the BH and
3K datasets.

Identification of Selective Sweep Regions
Both SweeD (Pavlidis et al. 2013) and XP-CLR (Chen et al.
2010) were used for identifying selective sweep (SS) regions

separately in indica and japonica populations. SweeD was
used with a sliding window size of 10kb, and the O. barthii
genome sequence (Zhang et al. 2014) was used as an out-

group to determine whether alleles were ancestral or derived.
XP-CLR was applied to the 3K datasets along with a subset of

29 O. rufipogon individuals that had> 4� coverage and for
which we could infer explicit genotypes (supplementary table

S1, Supplementary Material online). Both packages were
applied with 5% cutoffs to define putative sweep regions.

The chromosomal regions identified by SweeD and XP-CLR
are provided in supplementary table S9, Supplementary
Material online.

We calculated the percentage of genes overlapping be-

tween two sets of SS regions, defined as:
Overlap%¼ number of genes in common/[(number of

genes in the first set of SS regionsþ number of genes in the
second set of SS regions)�number of genes in
common)]�100

Forward Simulations and MRAF
We conducted forward simulations using the software SLiM
V1.8 (Messer 2013). SLiM includes both selection and linkage

in a Wright–Fisher model with nonoverlapping generations.
Similar to previous demographic studies of Asian rice domes-

tication (Caicedo et al. 2007), we simulated a population of
N¼ 10,000 individuals, which were run for 10N generations
to reach equilibrium. We then introduced a domestication

bottleneck of size Nb/N¼ 0.01 at generation 10.1 N until gen-
eration 10.5 N, when the population size recovered to size N
until the end of the simulation at 11.0 N generations. For the
selfing populations, the population switched from outcross-

ing to total inbreeding (inbreeding coefficient F¼ 1) at the
beginning of the domestication bottleneck.

All simulations assumed a constant mutation rate
(l¼ 6.5� 10� 9 substitutions per site per generation)

(Gaut et al. 1996) and recombination rate (q¼ 4� 10� 8

recombinants per generation) (Gaut et al. 2007) across a sin-

gle chromosome of 100 Mb with alternating 400 bp of non-
coding and 200 bp of coding DNA. All noncoding and 75% of
coding sequences were selectively neutral (s¼ 0). The re-

maining 25% of coding sequences were under negative
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selection under an additive model, with s following a gamma

distribution with shape parameter 0.3 and mean �0.05. This

DFE was taken from another study of plant mating system

(Arunkumar et al. 2015), but we also estimated the DFE of

O. rufipogon empirically using dfe-alpha-release-2.15 (Eyre-

Walker and Keightley 2009) and the unfolded SFS of the

W15 sample. The estimated DFE for wild rice was nearly iden-

tical to that from Arunkumar et al. (2015), because s had an

estimated shape parameter of 0.28 (95% CI: 0.25–0.31) and a

mean of �0.048 (95% CI: �0.055 to �0.043). Given the sim-

ilarities between the estimated and assumed DFE, we per-

formed simulations using only the DFE from Arunkumar

et al. (2015).
For the inbreeding model without a bottleneck, we fol-

lowed themethod of (Arunkumar et al. 2015) to adjust popu-

lation size after the outcrossing-selfing transition by

calculating the reduction in silent genetic diversity

(hw¼ 4Nel, where hw is genetic diversity,Ne is effective popu-

lation size and l is mutation rate). This makes the measures

equivalent and the simulations comparable between the in-

breeding and outcrossingmodels that do not include a popu-

lation bottleneck or positive selection (i.e., out vs. inb; fig. 7B).
For the simulations with positive selection, we introduced

20 predetermined mutations with s drawn from an exponen-

tial distribution of mean 0.05 at the beginning of domestica-

tion. For all mutations under positive or negative selection,

we assumed a dominance coefficient h¼ 0.5 (i.e., an additive

model).
The results for each model were summarized over 20 sep-

arate runs of SLiM; the SLiM input is available as

Supplementary Material. The MRAF was calculated for simu-

lated data sets and the subset of 3K data as the sumof derived

alleles across sites divided by twice the total number of (seg-

regating þ fixed sites). Note that this definition varies from

that of Simons et al. (2014) by not including the zero class.

Supplementary Material

Supplementary data are available at Molecular Biology and

Evolution online.
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