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Abstract

Many SNPs are predicted to encode deleterious amino acid variants. These slightly deleterious mutations can provide
unique insights into population history, the dynamics of selection, and the genetic bases of phenotypes. This is especially
true for domesticated species, where a history of bottlenecks and selection may affect the frequency of deleterious
variants and signal a “cost of domestication”. Here, we investigated the numbers and frequencies of deleterious variants
in Asian rice (Oryza sativa), focusing on two varieties (japonica and indica) and their wild relative (O. rufipogon). We
investigated three signals of a potential cost of domestication in Asian rice relative to O. rufipogon: an increase in the
frequency of deleterious SNPs (dSNPs), an enrichment of dSNPs compared with synonymous SNPs (sSNPs), and an
increased number of deleterious variants. We found evidence for all three signals, and domesticated individuals con-
tained ~3-4% more deleterious alleles than wild individuals. Deleterious variants were enriched within low recombin-
ation regions of the genome and experienced frequency increases similar to sSNPs within regions of putative selective
sweeps. A characteristic feature of rice domestication was a shift in mating system from outcrossing to predominantly
selfing. Forward simulations suggest that this shift in mating system may have been the dominant factor in shaping both

deleterious and neutral diversity in rice.
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Introduction

Several studies have suggested that there is a “cost of domes-
tication” (Schubert et al. 2014), because crops may harbor
slightly deleterious mutations that reduce their relative fitness
(Lu et al. 2006). Under this hypothesis, the decreased effective
population size (N.) during a domestication bottleneck re-
duces the efficacy of genome-wide selection (Charlesworth
and Willis 2009), leading to an increase in the frequency of
slightly deleterious variants (Lohmueller et al. 2008; Casals
et al. 2013). The fate of these variants also relies on linkage,
because selection is less effective in genomic regions of low
recombination (Hill and Robertson 1966; Felsenstein and
Yokoyama 1976) and because deleterious variants may hitch-
hike with alleles that are positively selected for agronomic
traits (Fay and Wu 2000; Hartfield and Otto 2011; Campos
et al. 2014). Overall, the cost of domestication is expected to
increase the frequency of deleterious variants in small relative
to large populations, in regions of low recombination, and
near sites of positive selection.

This hypothesis about the cost of domestication parallels
the debate regarding the genetic effects of migration-related
bottlenecks and demographic expansion in human popula-
tions (Lohmueller et al. 2008; Casals et al. 2013; Peischl et al.
2013; Simons et al. 2014). The debate regarding human popu-
lations is contentious, perhaps because it suggests that some

human populations may, on average, carry a greater load of
deleterious variants than others (Peischl et al. 2016). Studies in
humans also suggest that subtlety of interpretation is
required when considering the relative frequency of deleteri-
ous variants in populations, because both the effect size and
the dominance of deleterious variants likely play a role in how
mutations impact the fitness of populations (Henn et al.
2016). Moreover, deleterious variants in nonequilibrium
populations, such as those that have experienced a recent
bottleneck, may return to pre-bottleneck frequencies more
rapidly than neutral variants (Brandvain and Wright 2016). It
nonetheless remains an important task to identify the num-
ber, frequency and genomic distribution of deleterious vari-
ants in humans, for the purposes of disentangling
evolutionary history and for understanding the association
between deleterious variants and disease (Kryukov et al.
2007; Eyre-Walker 2010; Gazave et al. 2013; Lohmueller
2014a; Simons et al. 2014; Uricchio et al. 2016).

In plant crops, the potential for a “cost of domestication”
was first examined in Asian rice (Oryza sativa) (Lu et al. 2006).
At the time, limited population resequencing data were avail-
able, so Lu et al. (2006) compared two O. sativa reference
genomes to that of a related wild species (O. brachyntha).
They found that the K,/K; ratio for radical, presumably dele-
terious amino acid variants was higher between the two
O. sativa genomes than between O. sativa and O. brachyntha.
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The K,/K; ratios for individual genes were negatively corre-
lated with genomic recombination rates, potentially suggest-
ing hitchhiking effects (Lu et al. 2006). Finally, they showed
that deleterious amino acid variants in rice were typically
found at intermediate population frequencies. Altogether,
they hypothesized that these observations reflect a cost of
domestication, whereby deleterious variants are enriched
(relative to synonymous variants) during domestication.
They hypothesized that enrichment was driven by two evo-
lutionary processes: relaxation of selective constraint and
hitchhiking due to artificial selection.

A handful of studies have since analysed deleterious vari-
ants in crops based on resequencing data (Gunther and
Schmid 2010; Nabholz et al. 2014; Renaut and Rieseberg
2015; Kono et al. 2016). Together these studies report that:
(1) deleterious variants are found at higher population fre-
quencies within crops compared with their wild relatives and
(2) the relative frequency of deleterious to neutral variants is
higher in crops than in their wild progenitors. For example,
Renaut and Rieseberg (2015) measured the proportion of
deleterious SNPs to synonymous SNPs in wild and cultivated
accessions of sunflower, and they showed that this proportion
was consistently higher for domesticated than for wild acces-
sions. More limited analyses have also shown that deleterious
variants are enriched within genes associated with phenotypic
traits (Mezmouk and Ross-Ibarra 2014; Kono et al. 2016), sug-
gesting both that deleterious variants are affected by selection
through hitchhiking and that the study of deleterious variants
is crucial for understanding the potential for crop improve-
ment (Morrell et al. 2011). While a general picture is thus
beginning to emerge, most of these studies have suffered
from substantial shortcomings, such as small numbers of
genes, low numbers of individuals, or the lack of an outgroup
to infer ancestral states. Moreover, no study of crops has yet
investigated the frequency of deleterious variants in putative
selective sweep regions, which is especially important given
the hypothesis that artificial selection has increased the fre-
quency of deleterious mutations (Lu et al. 2006).

In this study, we reanalyse genomic data from hundreds of
accessions of Asian rice and its wild relative O. rufipogon.
Asian rice feeds more than half of the global population
(IRGSP 2005), but the domestication of the two main varieties
of Asian rice (ssp. japonica and ssp. indica) remains enigmatic.
It is unclear whether the two varieties represent independent
domestication events (Londo et al. 2006; Civian et al. 2015), a
single domestication event with subsequent divergence (Gao
and Innan 2008; Molina et al. 2011), or separate events
coupled with substantial homogenizing gene flow of benefi-
cial domestication alleles (Caicedo et al. 2007; Sang and Ge
2007; Zhang et al. 2009; Huang et al. 20123, 2012b). It is clear,
however, that domestication has included a shift in mating
system from predominantly outcrossing O. rufipogon [which
has outcrossing rates between 5% and 60%, depending on the
population of origin and other factors (Oka and Miroshima
1967)] to predominantly selfing rice [which has outcrossing
rates of ~1% (Oka 1988)]. This shift in mating system has the
potential to affect the population dynamics of deleterious
variants, because inbreeding exposes partially recessive

variants to selection (Lande and Schemske 1985), which
may in turn facilitate purging of deleterious alleles
(Arunkumar et al. 2015).

Commensurate with its agricultural importance, the popu-
lation genetics of Asian rice have been studied in great detail.
Resequencing studies indicate that nucleotide sequence diver-
sity is ~2- to 3-fold lower in indica rice compared with
O. rufipogon (Caicedo et al. 2007; Huang et al. 2012b) and
that diversity in indica is ~2- to 3-fold higher than japonica
rice (Zhu et al. 2007; Huang et al. 2012b). Japonica rice is often
further separated into tropical and temperate germplasm, with
higher diversity in the former (Caicedo et al. 2007). Sequence
polymorphism data have also shown that the derived site
frequency spectrum (SFS) of rice varieties exhibit a distinct
U-shaped distribution relative to O. rufipogon, due either to
the genome-wide effects of selection or migration (Caicedo
et al. 2007). However, the population genetics of putatively
deleterious variants have not been studied across O. sativa
genomes, nor have deleterious variants been contrasted be-
tween O. sativa and O. rufipogon based on genomic data.

Here we assess whether genomic data provide evidence for
a “cost of domestication” in rice. We consider three measures
of cost, as defined previously in the literature. The first is
elevated population frequencies of deleterious variants that
remain after domestication (Lu et al. 2006); the second is an
enrichment in the proportion of deleterious SNPs to syn-
onymous SNPs in cultivated versus wild individuals (Renaut
and Rieseberg 2015); and the third is an increase in the num-
ber of derived deleterious variants in domesticated versus
wild germplasm. To our knowledge, this last measure of
cost has not yet been considered in the context of crop do-
mestication. We include it here because it is central to dis-
cussions of deleterious mutations in human populations,
particularly with regard to population expansion
(Lohmueller 2014b; Simons et al. 2014; Henn et al. 2016).

To identify putatively deleterious variants, we have utilized
two O. sativa datasets: one with many accessions (n = 766)
but low sequencing coverage (1-2x), and the other with
fewer individuals (n = 45) but enhanced coverage. For both
datasets, we re-map raw reads and then apply independent
computational pipelines for SNP variant detection. We have
used two different approaches—PROVEAN (Choi et al. 2012)
and SIFT (Kumar et al. 2009)—to predict which nonsynon-
ymous SNPs are deleterious. With these predicted deleterious
variants, we investigate three signals of cost (i.e, frequencies,
enrichment and numbers of deleterious variants). We also
examine the distribution of deleterious variants relative to
genome-wide recombination rates and the locations of pu-
tative selective sweeps. Finally, we attempt to gain insights
into the relative contributions of demography, linkage, posi-
tive selection and inbreeding on the dynamics of deleterious
variants within Asian rice.

Results

Datasets and Site Frequency Spectra
To investigate the population dynamics of deleterious vari-
ants, we collated two rice datasets. The first was based on the
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genomic data of 1,212 accessions reported in Huang et al.
(2012b) (supplementary table S1, Supplementary Material
online). This dataset, which we call the “BH” data after the
senior author, contained raw reads from 766 individuals of
Asian rice, including 436 indica accessions and 330 japonica
accessions. The BH dataset also included 446 accessions rep-
resenting three populations of O. rufipogon, the wild ancestor
of cultivated rice (supplementary table S1, Supplementary
Material online). Huang et al. (2012b) determined that their
O. rufipogon accessions represented three different wild popu-
lations, which we denote W, W, and W,;. They also inferred
that W, was ancestral to indica rice and that W), was ancestral
to japonica rice. Accordingly, we based our cultivated-to-wild
comparisons on indica versus W, and japonica versus Wy, for
the BH data, but when appropriate we also included com-
parisons to the complete set of wild accessions (W,). For
these BH data, we remapped sequencing reads to the japon-
ica reference sequence (Goff et al. 2002), then used ANGSD
(Korneliussen et al. 2014) to apply cut-offs for quality and
coverage and to estimate the SFS (see “Materials and
Methods” section).

The second dataset, which we call the “3K” data (Li et al.
2014), consisted of 15 cultivated, high-coverage (>12x) ac-
cessions for each of indica, tropical japonica, and temperate
japonica (supplementary table S2, Supplementary Material
online). We also included data from the BH dataset of the
15 wild O. rufipogon individuals with the highest coverage,
which we denote W;5 coverage for the W;s individuals
ranged from 4.6 to 9.8X. For this dataset, reads were again
mapped to the japonica reference, but SNPs were called using
tools from GATK and SAMtools (see “Materials and
Methods” section). For many analyses, we focused on a subset
of this 3K data (3K ypser) that included only sites without
missing data and for which SNPs were identified within the
entire n = 60 sample, rather than within individual taxa.

Once identified, we annotated SNPs as either noncoding
(ncSNPs), synonymous (sSNPs), Loss of Function (LoF) or
nonsynonymous. LoF SNPs were those that contribute to
apparent splicing variation, the gain of a stop codon or the
loss of a stop codon. Nonsynonymous SNPs were predicted
to be tolerant (tSNPs) or deleterious (dSNPs) based on
PROVEAN (Choi et al. 2012) or SIFT (Ng and Henikoff
2003). Supplementary table S3, Supplementary Material on-
line, reports raw numbers of detected SNPs in both datasets.
In the BH rice samples, we identified hundreds of LoF muta-
tions and predicted 7,506 and 4,530 dSNPs in indica and
japonica samples using PROVEAN. Despite fewer accessions,
we identified more SNPs within the 3K data owing to higher
sequence coverage, including 21,234 dSNPs in indica rice (sup
plementary table S3, Supplementary Material online).

To determine the unfolded site frequency spectra for vari-
ous datasets and SNP classes, we defined SNPs as ancestral or
derived based on comparison to 93 O. barthii accessions (sup
plementary table S4, Supplementary Material online). For the
BH data, we reduced the sample size to 70 for each popula-
tion, based on sampling and coverage criteria (see “Materials
and Methods” section). The resulting SFS had a U-shape for
all SNP categories in cultivated rice, as observed previously
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(Caicedo et al. 2007), but not for ancestral O. rufipogon (fig. 1
and supplementary fig. S1, Supplementary Material online).
The SFS differed significantly between wild and domesticated
samples for all SNP categories (Kolmogorov—Smirnoff tests;
P < 0.007; fig. 1 and supplementary fig. S1, Supplementary
Material online).

SNPs in the BH data were based on detecting polymorph-
isms within each taxon separately (supplementary table S3,
Supplementary Material online), which limits the potential to
infer sites at the extremes of the SFS—that is the zero and fixed
classes. To estimate these classes, we focused on the 3K per
data, which had 2,239,824 SNPs across the 60 individuals,
including 22,377 dSNPs, 65,594 tSNPs, 81,648 sSNPs and
4,102 LoF variants (see also supplementary table S3,
Supplementary Material online). Nucleotide diversity esti-
mates (1) for noncoding and 4-fold degenerate sites based
on these data were similar to those of previous studies
(Huang et al. 2012b), with the expected hierarchy of diversity
relationships (e, O. rufipogon > indica > tropical japon-
ica > temperate japonica) (Caicedo et al. 2007) (table 1). In
the 3K,,pser data, the comparisons between the wild and cul-
tivated SFS were not significant (Kolmogorov—-Smirnoff; P > 0.
05), but the resulting SFS were similar to the BH data in ex-
hibiting hints of a U-shaped SFS for all three cultivated taxa
and for most site categories (fig. 2 and supplementary fig. S2,
Supplementary Material online). This U-shape included
enhanced frequencies of fixed and high frequency (>12)
derived variants and a dearth of low frequency (<3) variants
in domesticates compared with the W5 sample (fig. 2 and
supplementary fig. S2, Supplementary Material online). These
comparisons also illustrate that the zero class was greatly
enhanced in domesticated taxa, indicative of the loss of rare,
low frequency variants through the domestication bottleneck.

Inferred shifts in the SFS after domestication were robust
to: (1) dataset, because the 3K,,.c and BH datasets yielded
similar results, (2) SNP calling approaches, because different
methods were applied to the 3K and BH datasets, (3) the
composition of the wild sample, because similar patterns
were observed when the BH japonica and indica samples
were compared with W, (P <193 x 10~ for all compari-
sons in both varieties) (supplementary fig. S3, Supplementary
Material online), (4) variation in sample sizes (n) among taxa,
because the BH data did not have the same number of indi-
viduals per taxon, while the 3K data did (supplementary table
S3, Supplementary Material online), and (5) the prediction
approach used to identify dSNPs (i.e, PROVEAN or SIFT;
supplementary figs. S4 and S5, Supplementary Material on-
line). Overall, the derived variants that remained after domes-
tication were shifted to higher frequency, as is expected
following a bottleneck (Simons et al. 2014).

Enhanced Frequencies and Numbers of Deleterious
Variants in Rice

Previous work has defined the cost of domestication as higher
frequencies of dSNPs (Lu et al. 2006), particularly differential
shifts in frequencies of dSNPs relative to putatively neutral
SNPs (Gunther and Schmid 2010). To investigate frequency
shifts, we plotted the ratio of the number of derived dSNPs
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Fic. 1. The site frequency spectrum (SFS) for cultivated rice and Oryza rufipogon, based on BH data. The top row represents sSNPs, and the bottom
row represents dSNPs. Additional SNP classes are graphed in supplementary figure S1, Supplementary Material online. The two columns represent
indica rice on the left and japonica rice on the right. As per Huang et al. (2012b), indica rice is contrasted to the accessions from wild population
I (W,) and japonica rice is contrasted to wild sample population Ill (W,;). The Density on the y-axis is the proportion of alleles in a given allele
frequency. Each graph reports the P value of the contrast in SFS between cultivated and wild samples.

Table 1. Comparison of Genetic Diversity (1), Average Counts of Derived Deleterious Variants (#dSNPs) Per Individual, and The Average Ratio of
Deleterious to Synonymous Variants (#dSNPs/#sSNPs) Per Individual.

Sample® nnoncodingb n,,_ﬂ,,db Avg. #dSNPs® Avg. [#dSNPs/#sSNPs]d
indica 0.00394 0.00289 6351.4 (+76.3) 0.1818 (*+0.0032)
japonica (temperate) 0.00252 0.00177 6290.3 (+59.7) 0.1912 (*+0.0020)
japonica (tropical) 0.00345 0.00246 6300.7 (+36.9) 0.1880 (*+0.0031)
Wis 0.00620 0.00505 6098.5 (+126.8) 0.1522 (£0.0067)

*All samples are based on the 3K, pse data.

PPairwise diversity, based on a common set of SNPs without missing data, along with invariant sites without missing data.

“The number of derived segregating and fixed dSNPs per individual, averaged over the 15 individuals within each of the four groups. Parentheses indicate the 95% confidence
interval.

9The average ratio of derived dSNPs to sSNPs per individual. Parentheses indicate the 95% confidence interval.

versus derived sSNPs for each frequency category of the SFS. When Ra/g) is > 1.0, it reflects an overabundance of derived
Figure 3 shows that, for the BH data, both indica and japonica dSNPs (or LoF variants) relative to sSNPs in one population
have enhanced numbers of derived dSNPs to sSNPs relative to over another across the entire frequency range. As expected
O. rufipogon across the entire frequency range (Wilcoxon rank from SFS analyses, we found that R/ was > 1.0 for LoF
sum: indica vs. W, P=498 x 10~ ', japonica vs. Wy, variants and for dSNPs in indica relative to the W, population
P <220 % 10" fig. 3). The 3Kypsee data exhibited similar (P<230x 10~ " for all three comparisons; fig. 3) and in
properties throughout most of the frequency range, with the japonica relative to Wy, (P ~ 0.000 for the three comparisons;
exception of the lowest frequency classes, but the distribu- fig. 3). The 3K upser Which included both the zero and fixed
tions remained significantly different overall (Wilcoxon rank classes of variants, yielded similar results (P ~ 0.000 for all six
sum: indica 3K vs. W5, P = 0.035; tropical japonica 3K vs. W5, comparisons; fig. 3). Hence, all cultivated samples contained
P=0.023; fig. 3). increased proportions of derived dSNPs to derived sSNPs
We also calculated Ri/g), a measure that compares the relative to wild samples.
frequency and abundance of dSNPs versus sSNPs in one An enrichment of the number of derived dSNPs to sSNPs
population (A) relative to another (B) (Xue et al. 2015). within cultivated individuals has also been cited as evidence
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Fic. 2. The SFS for cultivated rice and Oryza rufipogon, based on 3K psec data for the indica and tropical japonica samples. The top row represents
sSNPs, and the bottom row represents dSNPs. Additional SNP classes are graphed in supplementary figure S2, Supplementary Material online. The
two columns represent indica rice on the left and tropical japonica rice on the right; temperate japonica is included in supplementary figure S2,

Supplementary Material online.

for a cost of domestication (Renaut and Rieseberg 2015).
Because the 3K psec included the same sample size and num-
ber of nucleotide sites across taxa, it permitted direct com-
parisons of the numbers of derived alleles across individuals.
We therefore calculated the average number of derived dele-
terious variants within individuals and the average ratio of
derived dSNPs to sSNPs within individuals (table 1).
Following Henn et al. (2016), we counted the number of
derived variants per individual as the number of heterozygous
sites plus twice the number of derived homozygous sites. We
included both fixed and segregating derived variants in our
calculations.

The results showed that the count of derived, putatively
deleterious variants increased for each cultivated individual, on
average, despite lower overall noncoding and synonymous
diversity () in the cultivated samples (table 1). These counts
differed significantly between the W5 sample and the three
cultivated samples for dSNPs (Mann—Whitney U, P < 0.0344),
representing a ~3—4% increase in the average number of
derived deleterious variants per individuals. Accordingly, the
ratio of derived deleterious to synonymous variants per
individual was significantly higher for the domesticated rice
samples than for O. rufipogon (Mann-Whitney U,
P<251x 10 ° for all three comparisons). Analysis based
on SIFT prediction of deleterious variants yielded similar trends
(supplementary table S5, Supplementary Material online).

dSNPs Are Enriched in Regions of Low Recombination
We have established that our rice samples have enhanced
frequencies, proportions and numbers of dSNPs. We now
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evaluate whether the accumulation of putatively deleterious
variants was homogenous across the genome. Theory pre-
dicts that diversity should be lower in low recombination
regions (Begun and Aquadro 1992; Charlesworth 1994) and
also that fate of dSNPs relative to sSNPs may differ between
high and low recombination regions due to interference
(Felsenstein 1974). To test these predictions, we used a gen-
etic map to calculate recombination rate in windows across
rice chromosomes. Applying 2MB windows to the 3K data,
we found that the average number of derived (segrega-
ting + fixed) sSNPs and dSNPs per individual were signifi-
cantly positively correlated with recombination rate in each
of the rice samples (fig. 4 P < 5.18 x 10 ~ ®), indicating lower
diversity in low recombination regions.

Following precedent (Renaut and Rieseberg 2015; Kono
et al. 2016), we also plotted recombination rate against the
ratio of the number of derived dSNPs to derived sSNPs; these
correlations were significantly negative (P<132x 10~ %)
For completeness, we repeated these analyses on the density
and pairwise diversity of variants in the full BH and 3K data-
sets, which yielded similar results (supplementary tables S6
and S7, Supplementary Material online). In short, the ratio of
derived dSNPs to derived sSNPs was consistently higher in
regions of low recombination.

dSNP Frequencies in Regions of Putative Selective
Sweeps

Regions linked to selective sweeps (SS) may have increased
frequencies of derived mutations (Fay and Wu 2000), includ-
ing dSNPs (Hartfield and Otto 2011). Consistent with this



Deleterious Variants in Rice - doi:10.1093/molbev/msw296

MBE

Indica vs. W,

Japonica vs. Wy,

QZU') g = Indicavs. W,
) 04- 7] Cultivated 2.2 — o Japonica vs. Wy,
3 3 W wid
© 2 2 2.0
- 5 © 0.4-
ol s L
. 5 54
T & q o 16 8
pd Z
m s 2 #
° i 1.4 —
° o -
) 9]
2 >
@ 5} 1.2 —
© ©
o o)
Z ' ' ' ' ' ' zZ ' ' ' ' ' ' 10 4 = 2
0 02 04 06 08 1 0 02 04 06 08 1 | | | | |
Derived allele frequency Derived allele frequency Syn Tol Del LoF Del+LoF
Indica 3K vs. Wis Tropical Japonica vs. Wis -+ Indica 3K vs. Wre
& o5- & o5- Tropical 3K vs. Wis
Z Z 1.4 —
© % ? # : S
- kel
© ¢ g ..
T s 5 ~
© ©
-— 5 S [ua]
Q 2 2 5
N % % 1.2
O n o
S5z z &
®? S S
1.1 —
! 3 O
o (]
™ 2 £
(O] (0]
© ° 1.0 - #
2 1 i 1 i 1 ' (ZD ' 1 ' 1 i 1 T T T T T
0 02 04 06 08 1 0 02 04 06 08 1 Syn  Tol Del  LoF Del+LoF

Derived allele frequency

Derived allele frequency

Fic. 3. Comparisons of the number of derived dSNP to sSNP between wild and cultivated samples based on their frequencies. The top row reports
results based on the BH data. From left to right, the panels represent: left) the ratio of the number of dSNPs to sSNPs (y-axis) at each derived allele
frequency (x-axis) for indica rice and the W, sample; middle) the ratio of the number of dSNPs to sSNPs (y-axis) at each derived allele frequency (x-
axis) for japonica rice and the W), sample and right) a measure R 4 ) of the relative accumulation of SNPs in indica or japonica rice compared with
Oryza rufipogon, where a value > 1.0 indicates an increased population density of that SNP type relative to wild rice. Bars indicate standard errors.
The bottom row reports the 3K psc data, and the three panels (left to right) are equivalent to those from the BH data.

expectation, a previous study of domesticated dogs has shown
that the frequency of both dSNPs and sSNPs are inflated
within SS regions (Marsden et al. 2016). Prompted by these
observations, we investigated the distribution of deleterious
and synonymous variants in putative SS regions, to test two
hypotheses. The first was that SS regions have increased fre-
quencies of derived SNPs relative to the remainder of the
genome. The second was that SS regions alone explain the
accumulation of high frequency derived dSNPs in Asian rice.

We used three different approaches to identify SS regions.
First, we used the SS regions defined by Huang et al. (2012c),
which were based on the relative difference in 7 between wild
and domesticated populations (Huang et al. 2012¢). That is, the
regions were based on 74/, where 7 is measured per base
pair, and the subscripts refer to domesticated and wild samples.
We also inferred selective sweeps using two additional
approaches: SweeD (Pavlidis et al. 2013) and XP-CLR (Chen
et al. 2010). SweeD identifies regions of skewed SFS relative to
background levels for a single population (i.e, the rice sample).
In contrast, XP-CLR searches for genomic regions for which the
change in allele frequency between two populations (cultivated

vs. wild samples) occurred too quickly at a locus, relative to the
size of the region, to be caused by genetic drift. Both SweeD and
XP-CLR were applied with a 5% cutoff. Because XP-CLR requires
explicit genotypes, we used the 3K datasets for all of the SS
analyses (see “Materials and Methods” section).

Focusing on the indica 3K dataset for simplicity, the three
approaches identified different numbers, locations and sizes
of selective sweeps (table 2). For example, Huang et al. (2012¢)
defined 84 SS regions that encompassed 9.98% of the genome.
In contrast, SweeD identified 485 SS regions, and XP-CLR
distinguished an intermediate number of 161 SS regions.
Consistent with the 5% cutoff, SweeD and XP-CLR identified
4.61% and 5.02% of the genome, respectively, as having been
under selection (table 2). To see if the same genes were
identified with different SS identification methods, we calcu-
lated the degree of overlap across methods, focusing on the
percentage of genes that two methods identified in common
(see “Materials and Methods” section). The overlap was sur-
prisingly low (fig. 5 and supplementary figs. S6-S16,
Supplementary Material online). Across the entire genome,
the putative SS regions defined by SweeD and Huang et al.
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Table 2. The Number and Percentage of SS Regions Identified by Different Methods, Based on 3K Data.

indica japonica (temperate) japonica (tropical)
No. Extent” No. Extent” No. Extent”
Huang et al. (2012c) 84° 9.98% 103 15.32% 103¢ 15.32%
SweeD 485 4.61% 461 4.76% 389 4.81%
XP-CLR 161 5.02% 160 8.41% 171 5.62%

“Based on 60 SS regions identified as specific to indica, which overlapped with 31 of 55 regions identified in the combined samples of indica and japonica rice, for a total of
[60 + (55—31)]=84.

PExtent = the percentage of the reference genome covered by SS regions.

“Based on 62 SS regions identified as specific to japonica, which overlapped with 14 of 55 regions identified in the combined samples of indica and japonica rice, for a total of
[62 + (55—14)]=103.

(2012c) shared 6.24% of genes. Similarly, the regions defined To determine if SS regions have increased frequencies of
by XP-CLR shared 8.51% and 8.69% of genes with Huang et al. derived dSNPs, we contrasted the SFS between SS and non-SS
(2012c) and SweeD, respectively. regions for derived segregating and fixed sSNPs and dSNPs
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(see Marsden et al. 2016). The SFS were skewed for SS regions
relative to non-SS regions for both SNP classes, independent
of the method used to detect selective sweeps (fig. 6A). We
summarized the shift in frequencies by counting the number
of derived alleles (DAC) per SNP (fig. 6B) (Marsden et al.
2016), which showed that SS regions also contained higher
DACs (fig. 6B). Note that these results were not completely
unexpected, because the methods used to define SS regions
rely, in part, on identifying a skewed SFS relative to the gen-
omic background (see “Discussion” section).

Did sweeps affect dSNPs more or less than sSNPs? To in-
vestigate this question, we calculated the ratio of the mean
DAC for SS and non-SS regions. There was some variation

among SS methods. For example, the SS regions exhibited a
1.23-fold enrichment for dSNPs versus a slightly smaller 1.16-
fold enrichment for sSNPs when SS regions were based on
SweeD (supplementary table S8, Supplementary Material on-
line). Similarly, the SS regions defined by Huang et al. (2012c)
included a 1.20- and 1.12-fold enrichment for dSNPs and
sSNPs, respectively. SS regions defined by XP-CLR showed
the reverse: slightly higher enrichment for sSNPs (1.33) than
for dSNPs (1.29). Altogether, the extent to which hitchhiking
drove dSNPs and sSNPs to higher frequency seems to be
roughly equivalent.

Enhanced SNP frequencies in SS regions raise the possibility
that selective sweeps alone explain the shifted SFS of indica
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rice relative to O. rufipogon. To examine this second hypoth-
esis, we removed all SS regions (as defined by SweeD, XP-CLR
and n,/7m,) from the indica 3K dataset and recalculated the
SFS. Even with SS regions removed, the SFS for wild and
cultivated samples remained significantly different for sSNPs
and dSNPs (P < 0.0067). These results imply either that posi-
tive selection is not the only cause of the U-shaped SFS in
indica rice (Caicedo et al. 2007) or that linked selection has
affected more of the genome than is encompassed within the
identified SS regions.

We have reported results based on indica rice, but we also
performed analyses of SS regions for the 3K temperate and
tropical japonica datasets (table 2). The results were similar to
indica rice in three respects. First, although a greater extent of
the genome tended to be identified as SS regions in japonica
(table 2), the overlap among SS regions identified by different
methods was again low (< 9%). Second, for both japonica
datasets, derived sSNPs and dSNPs were generally at higher
frequencies in putative SS regions, although the effect was not
as apparent for sweeps identified with SweeD (supplementary
fig. S17, Supplementary Material online). Third, like indica rice,
the SS regions alone did not account for the difference in SFS
between O. rufipogon and either tropical or temperate japon-
ica (P < 0.0049 for both comparisons).

Factors Affecting the Distribution of Variants

Finally, we sought to gain insights into the relative effects of
processes that have affected the distribution of genetic vari-
ation in Asian rice. To do so, we first devised a measure that is
similar to the “mean derived allele frequency” (MDAF) (Simons
et al. 2014). Our measure, which we called the “mean retained
allele frequency” (MRAF), differs from the MDAF in ignoring
the zero class. We ignored the zero class because we were
chiefly interested in measuring effects on the set of segregating
and fixed variants that were retained through domestication.
Similar to the MDAF (Simons et al. 2014), the MRAF was
calculated as the average number of derived alleles per indi-
vidual, divided by twice the number of sites containing derived
(segregating sites + fixed) variants within that taxon (see
“Materials and Methods” section). We calculated the MRAF
separately for synonymous and putatively deleterious variants.
The MRAF was higher for all three rice groups than for the W5
O. rufipogon sample, regardless of SNP type (fig. 7A).

Rice has a complex history that includes a population
bottleneck, positive selection and a shift in mating system.
We were curious about the relative effects of these evolution-
ary forces on genetic diversity, as summarized by the MRAF,
and so employed forward simulations to model these varied
forces. We simulated models with and without a domestica-
tion bottleneck, using parameters similar to those inferred
from previous study of rice domestication (Caicedo et al.
2007), positive selection, and inbreeding (see “Materials and
Methods” section). To investigate relative effects across dif-
ferent classes of sites, all simulations included both neutral
and deleterious variants. Dominance effects were assumed to
be additive (h = 0.5).

Figure 7B presents simulation results for six models: an
outcrossing population (out), an outcrossing population
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with a bottleneck (out+ bot), an outcrossing population
with a bottleneck and positively selected alleles (out-
+ bot+ pos) and three analogous models that included
complete selfing that co-occurs with the bottleneck (inb,
inb + bot, inb -+ bot+ pos). Focusing first on simulations
for outcrossing populations, the MRAF was higher for syn-
onymous compared with deleterious variants, as was found in
the empirical data (fig. 7A). The MRAF of both site classes
increased under a bottleneck (out + bot) and yet again with
positive selection (out -+ bot + pos), indicating that both
processes drive surviving variants to higher frequency, as ex-
pected. Interestingly, as the models progressed from out to
out + bot to out + bot + pos, the difference in mean MRAF
between synonymous and deleterious variants became larger
(from 0.035 to 0.083 to 0.088, respectively).

The inclusion of selfing (inb) had a more substantive effect
on the shift of the MRAF than the inclusion of either a bottle-
neck or positive selection (fig. 7B). Under inbreeding models,
the inclusion of a population bottleneck (inb 4 bot) and posi-
tive selection (inb + bot 4 pos) had no effect on the mean
MRAF of synonymous sites (t-tests, P > 0.55). However, the
addition of a bottleneck did increase the mean MRAF of
deleterious sites (t-test, P < 0.05), such that the difference
in mean MRAF between synonymous and deleterious vari-
ants became less pronounced from inb (mean differ-
ence =0.067) to inb+ bot (0.058). In other words, the
MRAF of dSNPs was enriched relative to sSSNPs as our models
progressed from inb — inb 4- bot — inb 4 bot + pos.

Discussion

Recent focus on the population genetics of dSNPs in humans
(Henn et al. 2015, 2016), plants (Lu et al. 2006; Gunther and
Schmid 2010; Mezmouk and Ross-Ibarra 2014; Nabholz et al.
2014; Renaut and Rieseberg 2015; Rodgers-Melnick et al. 2015;
Kono et al. 2016) and animals (Schubert et al. 2014; Marsden
et al. 2016; Robinson et al. 2016) reflect an emerging recog-
nition that dSNPs may provide unique clues into population
history, the dynamics of selection and the genetic bases of
phenotypes. This is especially true for the case of domesti-
cated species, where the enrichment of deleterious variants
relative to neutral variants reflect a potential “cost of domes-
tication” (Schubert et al. 2014).

Our analyses have provided a snapshot of the fate of dele-
terious variants during rice domestication. First, dSNPs are
typically found at low frequency in wild populations (figs. 1
and 2). Second, many of these low frequency SNPs were lost
during domestication, probably due to increased rates of gen-
etic drift during the domestication bottleneck and/or due to
inbreeding. The phenomenon of loss is reflected in the large
zero class in the SFS of domesticated versus wild germplasm
(fig. 2). Third, the surviving dSNPs shifted toward higher fre-
quency (figs. 1 and 2). Both of these processes—that is, the
loss of rare variants and a shifted SFS—also apply to sSNPs,
but our data suggest differential effects on dSNPs versus
sSNPs. This differential effect is evident in the higher propor-
tion of derived dSNPs to sSNPs in domesticated rice than wild
rice across most frequency classes (fig. 3), in significant R¢a/s)
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measures (>1.0) for dSNPs (fig. 3), and in elevated ratios of
derived dSNPs/sSNPs per individual (table 1). For all of these
measures, the results were largely consistent between differ-
ent types of presumably deleterious variants (i.e, dSNPs vs.
LoF variants; fig. 3), different methods to predict deleterious
SNPs (PROVEAN vs. SIFT; supplementary figs. S4 and S5,
Supplementary Material online) and different rice datasets
(BH data vs. 3K data).

Our finding that dSNPs are enriched relative to sSNPs is
similar to previous observations that have been used to con-
clude that there is a “cost of domestication” for domesticated
crops (Lu et al. 2006; Gunther and Schmid 2010; Renaut and
Rieseberg 2015). However, we also find that the number of
derived deleterious alleles has increased between wild and
crop individuals. Rice individuals in the 3Ky data contain
~200 more deleterious alleles than individuals in the W5 O.
rufipogon sample, a ~3-4% increase (table 1). To our know-
ledge, this is the first observation of increased numbers of

deleterious variants within domesticated crops, but these re-
sults are not dissimilar to breed dogs. Like rice, dog popula-
tions contain less genetic diversity than their wolf progenitors,
but they also harbor 2.6% more derived deleterious alleles per
individual (Marsden et al. 2016). Similarly, serially founded,
out-of-Africa human populations exhibit decreasing genetic
diversity but increasing counts of derived deleterious variants
as a function of geographic distance from Africa (Henn et al.
2016).

Processes That Contribute to Enrichment of dSNPs

Several evolutionary forces may contribute to an increase in
the number or the proportion of derived deleterious alleles
per individual. In out-of-Africa human populations, for ex-
ample, these factors include range expansion, serial bottle-
necks under which moderately deleterious variants evolve as
if there were neutral, and differential effects depending on
dominance (Henn et al. 2016). At least four major
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evolutionary factors could drive increased number of deleteri-
ous variants in domesticated rice: (1) changes in population
size, particularly bottlenecks associated with domestication
(Caicedo et al. 2007; Zhu et al. 2007), (2) linked selection
(Hartfield and Otto 2011; Marsden et al. 2016), (3) the tran-
sition to selfing and (4) relaxed selection on wild traits that are
no longer important under cultivation (Renaut and Rieseberg
2015).

Among these, evidence about linkage effects is accumulat-
ing. The enrichment of dSNPs in low recombination regions
appears to be a general phenomenon, based on studies in
Drosophila (Campos et al. 2014), humans (Hussin et al. 2015),
sunflower (Renaut and Rieseberg 2015), maize (Rodgers-
Melnick et al. 2015), soybean (Kono et al. 2016) and rice
(Lu et al. 2006; fig. 4). It remains unclear whether differences
between high and low recombination regions of the genome
are driven by lower N, in regions of low recombination (Hill
and Robertson 1966; Felsenstein 1974; Charlesworth et al.
1993) or by linkage effects to positively selected variants
(Begun and Aquadro 1992). The relationship between recom-
bination and diversity should be diminished in selfing species
(Marais et al. 2004), suggesting that the observed patterns in
rice may have accumulated in historically outcrossing O. rufi-
pogon populations prior to domestication.

Another aspect of linkage is the enrichment of dSNP fre-
quencies near genes that have experienced selective sweeps
(SS). In domesticated dogs, Marsden et al. (2016) document
that the average DAC of dSNPs is significantly elevated within
SS regions and also that dSNPs experienced the same increase
in frequency as sSNPs due to hitchhiking. We find similar
effects in rice—that is, roughly equivalent increases in DACs
for dSNPs and sSNPs due to hitchhiking (fig. 6). This suggests
that alleles within selected genes, which are presumably of
phenotypic importance, may be more often associated with
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slightly deleterious variants. One must nonetheless be cau-
tious about our approach, because methods that detect SS
regions, including /7, rely to some extent on a skew of the
SFS. This skew should manifest itself as elevated DACs. It is
therefore difficult to separate potential methodological arti-
facts from true signal, but it should be noted that the signal is
consistent among SS methods (fig. 6).

Finally, we address the concomitant shift in population size
and mating system in rice. It is generally thought that a shift to
selfing offers advantages for an incipient crop, such as repro-
ductive assurance, reduced opportunities for gene flow be-
tween an incipient crop and its wild ancestor (Dempewolf
et al. 2012), and the creation of lines that “breed true” for
agronomically advantageous traits (Allard 1999). This shift
may also affect the accumulation of deleterious mutations,
but the effect can be difficult to predict, because of antagon-
istic effects (Arunkumar et al. 2015). On one hand, inbreeding
increases homozygosity, exposing recessive deleterious muta-
tions to natural selection (Lande and Schemske 1985) and
potentially leading to the purging of deleterious alleles
(Charlesworth and Willis 2009). On the other hand, inbreed-
ing reduces both population size and effective recombination
rates (Nordborg 2000), thereby reducing the efficiency of se-
lection and contributing to the retention and possible fixation
of deleterious variants (Takebayashi and Morrell 2001).

We have used forward simulations to begin to examine the
interplay between inbreeding and demographic (bottleneck)
effects under parameters designed to reflect those expected
during O. sativa domestication. These simulations are unlikely
to precisely mimic rice genome history, but they offer insight
into the relative effects of evolutionary forces that may have
shaped segregating variation in rice. Under outcrossing mod-
els, a bottleneck increases the MRAF, as expected, and posi-
tive selection increases it even further for both deleterious
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and synonymous variants (fig. 7B). Under the selfing model,
the MRAF of synonymous sites increased dramatically imme-
diately. The addition of a bottleneck and positive selection
enriched the MRAF of deleterious variants, but not synonym-
ous variants, such that the MRAF of synonymous and dele-
terious variants became more similar (fig. 7B).

To the extent that these are representative models, they
suggest that the observed difference in MRAFs between O.
rufipogon and domesticated rice have been affected by selfing
more than a bottleneck or positive selection, both of which
have subtle effects in the presence of inbreeding (fig. 7B). A
relevant comparison is to dog domestication, which occurred
in two stages: a population bottleneck associated with domes-
tication ~15,000 years ago (Vonholdt et al. 2010) and inbreed-
ing within the last few hundred years to produce modern
breeds. In this case, the domestication bottleneck, rather
than inbreeding, has had a larger effect on the accumulation
of deleterious genetic variation (Marsden et al. 2016), perhaps
because inbreeding in dogs has been more recent and not as
intense as inbreeding in rice. Our simulations suggest that
inbreeding has had the larger effect in rice, but this is also
dependent on assumptions in our models. We have, for ex-
ample, assumed that selfing was coincident with the domes-
tication bottleneck, but we cannot know this with certainly,
especially given the lengthy “pre-domestication” of some
crops (Purugganan and Fuller 2009; Meyer et al. 2016). We
have also made assumptions about population sizes, the tim-
ing of demographic events, recovery times from those events
(Brandvain and Wright 2016), dominance coefficients
(h=10.5), and patterns of positive selection. In the future, it
will be important to vary these parameter values to better
understand their potential effects on crop diversity and the
potential cost of domestication.

Caveats and Assumptions

We close with consideration of the caveats and assumptions of
our analyses. While we have tried to avoid potential pitfalls by
using multiple approaches (different datasets, SNP calling meth-
ods, dSNP predictors, and SS inference metrics), important limi-
tations remain. One is potential reference bias, because the use
of the japonica reference is expected to decrease the probability
that a japonica variant (as opposed to an indica variant) returns
alow PROVEAN or SIFT score (Lohmueller et al. 2008). We have
adjusted for this bias by submitting the ancestral allele—rather
than the reference allele—to annotation programs (Kono et al.
2016). Without this adjustment, a reference bias was patently
obvious, because the SFS of japonica dSNPs lacked a high fre-
quency peak, and the U-shape of tSNPs became commensur-
ately more extreme. We cannot know that we have corrected
completely for reference bias but do advocate caution when
interpreting results from dSNP studies that make no attempt to
correct for reference bias. The effect can be substantial.

Our treatment of reference bias requires accurate infer-
ence of the ancestral state of variants. To date, most popu-
lation genetic studies of Asian rice have relied on outgroup
sequences from O. meridionalis (Caicedo et al. 2007; Gunther
and Schmid 2010), a species that diverged from O. sativa
~2 Mya (Zhu and Ge 2005). When we used O. meridionalis

as the sole outgroup, we inferred a U-shaped SFS in wild O.
rufipogon, which is suggestive of consistent parsimony mis-
inference of the ancestral state (Keightley et al. 2016). We
instead inferred ancestral states relative to a dataset of 93
accessions of African wild rice (O. barthii) (Wang et al.
2014). O. barthii is closer phylogenetically to O. sativa than
O. meridonalis, but O. barthii sequences form clades distinct
from O. sativa (Zhu and Ge 2005). Even so, we have found
that ~10% of SNPs sites with minor allele frequencies > 5%
are shared between African wild rice and Asian rice, perhaps
due to introgression (Huang et al. 2015, but see Wang et al.
2014).

We do not believe that the use of O. barthii has distorted
our primary inferences, for two reasons. First, systematic mis-
inference of the ancestral state should lead to a U-shaped SFS,
which is not observed in O. rufipogon. Instead, the U-shaped
SFS is unique to O. sativa and differentiates wild from domes-
ticated species. Second, we have confirmed our inferences by
using O. meridonalis and O. barthii together as outgroups
(Keightley et al. 2016), considering only the sites where the
two agree on the ancestral state. The use of two outgroups
decreases the number of SNPs with ancestral states by ~10%
and ~15% for the BH and 3K datasets, but all analyses based
on these reduced SNP sets were qualitatively identical to
those with only an O. barthii outgroup (supplementary fig,
S18, Supplementary Material online).

Finally, we focus briefly on the locations of SS regions
identified by three different methods (fig. 5 and supplemen
tary figs. S6—16, Supplementary Material online), which rarely
overlapped (table 2). In other words, the three methods iden-
tified almost completely independent regions of the rice gen-
ome. The lack of convergence among methods may reflect
that different tests are designed to capture different signals of
selection. However, the results are also sobering, because
overlaps in SS regions have been used by a number of groups
to argue for or against independent domestication of indica
and japonica rice (He et al. 2011; Molina et al. 2011). Recently,
both Huang et al. (2012b) and Civian et al. (2015) have argued
for independent domestication events for japonica and indica
based on the observation that there is little overlap in SS
regions between the two taxa [also see (Huang and Han
2015).] The fact that we find little overlap among SS regions
identified by distinct methods mirrors the lack of overlap of
SS regions identified across the human genome by various
studies (Akey 2009), between domesticated grasses (Gaut
2015), and between independent domestication events of
common bean (Gaut 2015). Because the inferred locations
of SS regions vary markedly by method, sampling and taxon,
they should be interpreted with caution, particularly as
markers of independent domestication events.

Materials and Methods

Sequence Polymorphism Data

All of the data used in this study are publicly available.
lllumina paired-end reads for the BH and 3K dataset were
downloaded from the European Nucleotide Archive (ENA;
http://www.ebiac.uk/ena; last accessed January 5, 2017) (see
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supplementary tables S1 and S2, Supplementary Material on-
line, for accession numbers). The 3K accessions were chosen
randomly among the total set of accessions with >12x
coverage for an equal representation (n =15 for each set)
of indica, tropical japonica and temperate japonica rice ac-
cessions. We also downloaded resequencing reads from O.
barthii to polarize SNPs as either ancestral or derived.
Sequencing reads for 93 O. barthii accessions (Wang et al.
2014) were obtained from the Sequence Read Archive
(SRA) database of the National Center for Biotechnology
Information (NCBI; http://www.ncbi.nlm.nih.gov/sra/ last
accessed January 5, 2017) (see supplementary table S4,
Supplementary Material online, for accession numbers).
Sequencing reads for another outgroup taxon, O. meridonalis
were obtained from NCBI (BioProject No: PRJNA264483)
(Zhang et al. 2014).

Read Alignment and SNP Detection

Paired-end reads for O. sativa and O. rufipogon data were as-
sessed for quality using FastQC V0.11.2, and then preprocessed
to filter adapter contamination and low quality bases using
Trimmomatic V0.32 (Bolger et al. 2014). The trimmed reads
were mapped to the reference genome for japonica
Nipponbare rice (MSU V7), which was downloaded from
the Rice Genome Annotation Project (http://rice.plantbiol
ogy.msu.edu; last accessed January 5,2017). Mapping was per-
formed with the ALN and SAMPE commands implemented in
the software Burrows—Wheeler Aligner (BWA) V0.7.8
(Li and Durbin 2010), using default parameters. All reads
with a mapping quality score of < 30 were discarded.

The method of SNP calling varied with the dataset. For
the BH data, alignment files from BWA mapping were pro-
cessed further by removing PCR duplicates and by conduct-
ing indel realignments using Picard tools V1.96 (http://
sourceforge.net/projects/picard/files/picard-tools/1.96/; last
accessed January 5, 2017) and GATK V3.1 (McKenna et al.
2010), and then used as input for ANGSD V0.901, which is
designed to deal with sequences of low depth (Korneliussen
et al. 2014). ANGSD was run with the command line:

angsd -b BAMLIST -anc OUTGROUP —out OUTFILE
-remove_bads -uniqueOnly 1 -minMapQ 30 -minQ
20 -only_proper_pairs 1-trim 0 -minlnd NUMBER -P
CPUNUMBERS -setMinDepth 3 -setMaxDepth 15 -
GL 1 -doSaf 1 -doMaf 2 -SNP_pval 1Te-3 -
doMajorMinor 1 -baq 1 —C 50 —ref REFSEQ

We considered only SNPs that had between 3x and 15x%
coverage, with the high-end implemented to avoid regions
with copy number variation (Huang et al. 2012b). For SNP
calling, we used only uniquely mapping reads, and bases with
quality score of <20 were removed. SNP sites with >50%
missing data were discarded.

For the higher coverage “3K” dataset, we used SAMtools
V1.2 (Li et al. 2009) and GATK V3.1 to call SNPs. After map-
ping reads of each accession onto the reference genome,
alignments were merged and potential PCR duplications
were removed using Picard tools V1.96. Unmapped and
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nonunique reads were filtered using SAMtools V1.2. We re-
aligned reads near indels by using the IndelRealigner and
BaseRecalibrator packages in GATK to minimize the number
of mismatched bases. The resulting mapping alignments were
used as input for UnifiedGenotyper package in GATK and for
SAMtools. SNPs that were identified by both tools, with no
missing data and a minimum phred-scaled confidence
threshold of 50, were retained. Subsequently, SNP calls were
further refined by using the VariantRecalibrator and
ApplyRecalibration packages in GATK on the basis of two
sets of “known” rice SNPs (9,713,967 and 2,593,842) that were
downloaded from the dbSNP and SNP-Seek databases
(Alexandrov et al. 2015). These same SNP detection methods
were applied to the subset of 29 O. rufipogon with >4x
coverage that were used as the diversity panel to infer SS
regions (supplementary table S1, Supplementary Material on-
line), although no prior variants were available.

Finally, sequence reads for the outgroup dataset were
aligned to the reference genome using stampy V1.0.21
(Lunter and Goodson 2011), and then a pseudo-ancestral
genome sequence was created using ANGSD (Korneliussen
et al. 2014) with the parameters “-doFasta 2 -doCounts 1”.
This pseudo-ancestral genome was used to determine the
ancestral state of each SNP in O. sativa and O. rufipogon.

SNP Annotation and Deleterious Mutation Prediction
SNPs were annotated using the latest version of ANNOVAR
(Wang et al. 2010) relative to the japonica reference genome
(MSU v 7.0). SNPs were annotated as synonymous, nonsy-
nonymous, intergenic, splicing stop-gain and stop-loss
related. Throughout the study, we combined SNPs that con-
tribute to splicing variation, stop-gain and stop-loss and called
them loss-of-function (LoF) mutations.

To discriminate putatively deleterious nSNPs from tolerant
nSNPs, nSNPs were predicted as deleterious or tolerated using
PROVEAN V1.1.5 against a search of the NCBI nr protein
database (Choi et al. 2012). To reduce the effects of reference
bias, predictions of deleterious variants were inferred using
the ancestral (rather than the reference) variant. Following
previous convention (Renaut and Rieseberg 2015), we con-
sidered an nSNP to be a deleterious dSNP if it had a
PROVEAN score< —2.5 and a tolerant tSNP when a
PROVEAN score was > —2.5. To assess consistency, we also
employed SIFT (Kumar et al. 2009) to predict nSNPs as dSNPs
or tSNPs. For these analyses, a nSNP was defined as a dSNP if it
had a normalized probability < 0.05, and an nSNP was pre-
dicted to be a tSNP with a SIFT score > 0.05.

Calculating Site Frequency Spectra
Following Huang et al. (2012b), we separated the BH dataset
of 1,212 accessions into five populations: indica, japonica
(mostly temperate) and three O. rufipogon subpopulations
(W, W, and Wy,). The five subpopulations were composed of
436, 330, 155, 121, and 170 individuals, respectively (supple
mentary table S1, Supplementary Material online).

To calculate the site frequency spectrum (SFS) for BH
subpopulations, we initially projected the sample size of all
five subpopulations to that smallest W, population of
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n=121. However, many of the 121 accessions had low
sequencing depth and high levels of missing data. We there-
fore focused on the W), population to find criteria suitable for
inclusion. Ultimately, we sought to retain > 90% of SNP sites
within each SNP category, which resulted in a sample size of
n=70 for the W, population. Accordingly, we randomly
sampled n = 70 individuals from the remaining four subpo-
pulations, so long as the sample retained > 90% of SNP sites
for each category, to mimic the W, sample.

Given a sample of n =70 for each of the five subpopula-
tions, the SFS for each subpopulation was calculated using the
formula proposed by Nielsen et al, (2005), where the O.
barthii sequence was used as an outgroup to determine the
polarity of the mutations.

()G
K . .
pizo = k! 21—70—1 (M
=1 n;
()

In this formula (1), p;o represents the hypergeometric prob-
ability of the derived allele frequency (DAF) of SNPs found in i
individuals in a sample size of 70; k is the total number of
SNPs in the dataset; nj and f; are the sample size and the
number of derived alleles of the jth SNP, respectively. The
SFS for the 3K data were calculated by focusing on a common
set of SNPs that had no missing data and that were segregat-
ing in the total population of n = 60 individuals. The SFS for
sSNPs, tSNPs, dSNPs and LoF SNPs were compared with the
Kolmogorov-Smirnov test, based on proportions of SNPs at
different frequencies.

Ra/s—a Relative Measure of dSNPs Frequency
Enhancement

We adopted a metric to assess the accumulation of deleteri-
ous variants in either cultivated or wild rice populations (Xue
et al. 2015). In this analysis, the statistic L g(C) compares two
populations (A and B) within a given particular category, C, of
SNP sites (e.g, dSNPs). It was calculated by counting the
derived alleles found at specific sites in population A rather
than B and then normalized by the same metric calculated in
synonymous sites (S). The calculation of L g(C) was:

ZieCfiA(‘l _fJB)
Zjes]j‘AU _JZ'B)

where f* and f® are the observed derived allele frequency at
each site i in populations A and B, respectively, and S refers to
sSNPs. The ratio Ra/s(C) = Lag(C)/Lg A(C) then measures the
relative number of derived alleles that occur more often in
population A than that in population B. To obtain the stand-
ard errors of Ra/s(C) we used the weighted-block jackknife
method (Kunsch 1989), where each of the tested SNP data-
sets was divided into 50 contiguous blocks and then the Ry,
g(C) values were recomputed. A P value was assigned by using
a Z score assuming a normal distribution (Do et al. 2015).

Lag(C) = ()

Calculation of Recombination Rate

The high-density rice genetic map was downloaded from
http://rgp.dna.affrc.go.jp/E/publicdata/geneticmap2000/
index.html (last accessed January 5, 2017), on which a
total of 3,267 EST markers were anchored. We extracted
the sequences of these markers from the dbEST database in
NCBI, which were used as query to perform a BLAST search
against the rice genome sequence (MSU V7) to annotate
their physical positions. Finally, we normalized the recom-
bination rate to centiMorgans (cM) per 100kb between
different markers, and then calculated the average recom-
bination rate in 3 or 2MB window segments for the BH and
3K datasets.

Identification of Selective Sweep Regions

Both SweeD (Pavlidis et al. 2013) and XP-CLR (Chen et al.
2010) were used for identifying selective sweep (SS) regions
separately in indica and japonica populations. SweeD was
used with a sliding window size of 10kb, and the O. barthii
genome sequence (Zhang et al. 2014) was used as an out-
group to determine whether alleles were ancestral or derived.
XP-CLR was applied to the 3K datasets along with a subset of
29 O. rufipogon individuals that had > 4x coverage and for
which we could infer explicit genotypes (supplementary table
S1, Supplementary Material online). Both packages were
applied with 5% cutoffs to define putative sweep regions.
The chromosomal regions identified by SweeD and XP-CLR
are provided in supplementary table S9, Supplementary
Material online.

We calculated the percentage of genes overlapping be-
tween two sets of SS regions, defined as:

Overlap%= number of genes in common/[(number of
genes in the first set of SS regions + number of genes in the
second set of SS regions)—number of genes in
common)]x 100

Forward Simulations and MRAF

We conducted forward simulations using the software SLiM
V1.8 (Messer 2013). SLiM includes both selection and linkage
in a Wright-Fisher model with nonoverlapping generations.
Similar to previous demographic studies of Asian rice domes-
tication (Caicedo et al. 2007), we simulated a population of
N =10,000 individuals, which were run for 10N generations
to reach equilibrium. We then introduced a domestication
bottleneck of size Np,/N = 0.01 at generation 10.1 N until gen-
eration 10.5 N, when the population size recovered to size N
until the end of the simulation at 11.0 N generations. For the
selfing populations, the population switched from outcross-
ing to total inbreeding (inbreeding coefficient F= 1) at the
beginning of the domestication bottleneck.

Al simulations assumed a constant mutation rate
(u=65x10"7 substitutions per site per generation)
(Gaut et al. 1996) and recombination rate (p=4x 10~ 2
recombinants per generation) (Gaut et al. 2007) across a sin-
gle chromosome of 100 Mb with alternating 400 bp of non-
coding and 200 bp of coding DNA. All noncoding and 75% of
coding sequences were selectively neutral (s=0). The re-
maining 25% of coding sequences were under negative
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selection under an additive model, with s following a gamma
distribution with shape parameter 0.3 and mean —0.05. This
DFE was taken from another study of plant mating system
(Arunkumar et al. 2015), but we also estimated the DFE of
O. rufipogon empirically using dfe-alpha-release-2.15 (Eyre-
Walker and Keightley 2009) and the unfolded SFS of the
W5 sample. The estimated DFE for wild rice was nearly iden-
tical to that from Arunkumar et al. (2015), because s had an
estimated shape parameter of 0.28 (95% Cl: 0.25-0.31) and a
mean of —0.048 (95% Cl: —0.055 to —0.043). Given the sim-
ilarities between the estimated and assumed DFE, we per-
formed simulations using only the DFE from Arunkumar
et al. (2015).

For the inbreeding model without a bottleneck, we fol-
lowed the method of (Arunkumar et al. 2015) to adjust popu-
lation size after the outcrossing-selfing transition by
calculating the reduction in silent genetic diversity
(0., = 4N.p, where 0, is genetic diversity, N, is effective popu-
lation size and p is mutation rate). This makes the measures
equivalent and the simulations comparable between the in-
breeding and outcrossing models that do not include a popu-
lation bottleneck or positive selection (i.e, out vs. inb; fig. 7B).

For the simulations with positive selection, we introduced
20 predetermined mutations with s drawn from an exponen-
tial distribution of mean 0.05 at the beginning of domestica-
tion. For all mutations under positive or negative selection,
we assumed a dominance coefficient h = 0.5 (i.e, an additive
model).

The results for each model were summarized over 20 sep-
arate runs of SLiM; the SLIM input is available as
Supplementary Material. The MRAF was calculated for simu-
lated data sets and the subset of 3K data as the sum of derived
alleles across sites divided by twice the total number of (seg-
regating + fixed sites). Note that this definition varies from
that of Simons et al. (2014) by not including the zero class.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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