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ABSTRACT
In this paper, we propose a novel representation learning frame-
work, namely HIN2Vec, for heterogeneous information networks
(HINs). The core of the proposed framework is a neural network
model, also called HIN2Vec, designed to capture the rich seman-
tics embedded in HINs by exploiting different types of relation-
ships among nodes. Given a set of relationships specified in forms
of meta-paths in an HIN, HIN2Vec carries out multiple prediction
training tasks jointly based on a target set of relationships to learn
latent vectors of nodes and meta-paths in the HIN. In addition to
model design, several issues unique to HIN2Vec, including regular-
ization of meta-path vectors, node type selection in negative sam-
pling, and cycles in random walks, are examined. To validate our
ideas, we learn latent vectors of nodes using four large-scale real
HIN datasets, including Blogcatalog, Yelp, DBLP and U.S. Patents,
and use them as features for multi-label node classification and
link prediction applications on those networks. Empirical results
show that HIN2Vec soundly outperforms the state-of-the-art repre-
sentation learning models for network data, including DeepWalk,
LINE, node2vec, PTE, HINE and ESim, by 6.6% to 23.8% ofmicro-f1
in multi-label node classification and 5% to 70.8% of MAP in link
prediction.
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1 INTRODUCTION
Network data analysis and mining is an important research field
because network data, capturing phenomena in various networks,
such as social networks, paper citation networks, and World Wide
Web, are ubiquitous in the real world [6, 15, 29]. Network analy-
sis often involves prediction tasks over nodes or edges, e.g., node
classification [14], node clustering [23] and link prediction [20]. In
order to achieve good performance in these tasks, a proper repre-
sentation of network nodes and edges that captures embedded in-
formation in the network structure while preserving the original
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relationships amongst nodes is much needed to serve as input fea-
tures to supervised machine learning algorithms. This is a prepro-
cessing step for data mining and knowledge discovery, well known
as feature engineering. A typical approach of feature engineering is
to involve domain experts to manually design domain-specific rep-
resentation of data, i.e., feature vectors of data, for specific predic-
tion tasks. This approach, heavily relying on prior knowledge and
experiences of domain experts, is time-consuming and expensive.
This issue has given rise to a great deal of interest in representation
learning in networks that aims to embed a network into a low-
dimensional space and represent each node as a low-dimensional
feature vector for supervised learning.

In this paper, we propose a new neural network (NN) model,
namely Heterogeneous Information Network to Vector (HIN2Vec) for
representation learning of nodes in heterogeneous information net-
works (HINs). The HIN2Vec model aims to capture the rich in-
formation in an HIN by exploiting various types of relationships
among nodes and the network structure. HINs, such as Yelp social
network [4], DBLP collaboratoin network [3], and U.S. patent ci-
tation network [2], are networks with nodes and edges belonging
to different types. With heterogeneous types of nodes and edges,
HINs are able to describe various types of relationships among
nodes and thus contain very rich information. A meta-path, con-
sisted of a sequence of node types and/or edge types, is usually
used to denote a particular relationship between node pairs. There-
fore, different meta-paths may have different semantics. For ex-
ample, consider a DBLP collaboration network, which consists of
three node types: Author, Paper and Venue, and two edge types:
an author writes a paper, and a paper is published in a venue. A
meta-path Author-Paper-Author describes the collaboration be-
tween two authors, while Author-Paper-Venue-Paper-Author
describes the relationship where both authors have papers pub-
lished in the same conference venue. We claim that encoding the
rich information embedded in meta-paths and the whole network
structure would help learning meaningful representation which is
useful for various applications, because the different semantics of
relationships are better captured.

To achieve this goal and to train theHIN2Vecmodel, we design a
new learning framework (also called HIN2Vec) (shown in Figure 1)
which, given an HIN and a set of targeted relationships specified
in forms of meta-paths, learns latent vectors of both nodes and the
targeted relationships in the HIN by predicting relationships be-
tween nodes. Compared with previous works, the HIN2Vec model
preserves more contextual information, not only assuming that
two nodes are relevant if there exists a relationship between them
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y have the relationship r in the network. Specifically, for a train-
ing data entry ⟨x ,y,r ,L(x ,y,r)⟩, when L(x ,y,r) is 1,Ox,y,r (x ,y,r)
aims to maximize P(r |x ,y); otherwise,Ox,y,r (x ,y,r) aims to mini-
mize P(r |x ,y). Thus,Ox,y,r (x ,y,r), logOx,y,r (x ,y,r) and P(r |x ,y)
are derived as below,

Ox,y,r (x ,y,r) =




P(r |x ,y), if L(x ,y,r) = 1

1 − P(r |x ,y), if L(x ,y,r) = 0

logOx,y,r (x ,y,r) =L(x ,y,r) log P(r |x ,y)
+ [1 − L(x ,y,r)] log[1 − P(r |x ,y)]

P(r |x ,y) = siдmoid
(

∑

W ′
X
x⃗ ⊙W ′

Y
y⃗ ⊙ f01(W

′
R
r⃗)
)

We then apply the stochastic gradient descent algorithm tomax-
imize the objective function O . Specifically, for each training data
entry, ⟨x ,y,r ,L(x ,y,r)⟩, it goes backwards to adjust the weights
inW ′

X
x⃗ ,W ′

Y
y⃗, andW ′

R
r⃗ based on the gradients of logOx,y,r (x ,y,r)

differentiated byW ′
X
x⃗ ,W ′

Y
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r⃗ , respectively, by
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4.2 Training Data Preparation
We develop an efficient algorithm to sample the HIN while extract-
ing training data for HIN2Vec in the form of ⟨x ,y,r ,L(x ,y,r)⟩. No-
tice that there is a trade-off in data collection between the compu-
tational efficiency (e.g., to sample training data randomly instead
of enumerating) and the quality (e.g., the training dataset should
cover as many nodes pairs with correct semantics in their relation-
ships as possible). Therefore, it’s essential to design an efficient
data sample extraction scheme for training data preparation.

We apply randomwalks in the task for several advantages. First,
it is computationally efficient for both space and time complexity.
The space complexity of storing the direct neighbors of a node to
select the next node in a randomwalk isO(|V |), and the space com-
plexity of storing the path of a random walk with length l is O(l).
The time complexity of selecting the next node is O(1) (by some
random selection methods, such as Alias method [5, 17]), and the
time complexity of generating a path with length l by a random
walk is O(l). Moreover, subsequences of a random walk are also
random walks, which can be used to generate training data with-
out re-generating new random walks. Suppose we consider all re-
lationships within w-hop neighborhood. Given a random walk of
length l > w , it can generatew training data for l −w nodes. Thus,
the time complexity of generating training data given a random
walk isO(w(l−w)). Therefore, if we consider 1 tow-hop neighbor
relationships, the space complexity and time complexity of gener-
ating training data by a random walk with length l is O(|V | + l)
and O(l + w(l − w)), respectively. When l and w are both much
smaller than |V |, using random walks to generate training data is
scalable for large-scale networks.

Consider the example of paper-author network discussed ear-
lier. Suppose we generate a random walk P1,P2,A1,P3,A1. Let
the target relationship set R include all relationships with meta-
path length no greater than 2-hop. We can generate training data

Table 1: Statistics of Datasets

Blogcatalog User Group
10312 39

Yelp User Business City Category
630639 86810 10 807

DBLP Paper Author Venue
53464 54949 20

U.S. Patents Patent Inventor Assignee Class
295145 293848 31805 14

for the first node P1 as ⟨P1,P2,P-P⟩ and ⟨P1,A1,P-P-A⟩, for the
second node P2 as ⟨P2,A1,P-A⟩ and ⟨P2,A3,P-A-P⟩, and so on.

There are issues in applying random walks to HIN2Vec data
preparation. First, a random walk may give rise to cycles, which
hurt the quality of the training data, because a path instance with
cycles may not comply to the semantics of the correspondingmeta-
path. For example, the third node A1 in the above random walk
generates a training data entry ⟨A1,A1,A-P-A⟩ by the path
A1,P3,A1. However, an author has no coauthorship with herself.
Thus, we eliminate data entries with any cycle by checking dupli-
cate nodes.

Second, random walks are used to sample positive data, but the
model also needs negative data for learning. Thus, while generat-
ing positive samples via random walks, we also generate negative
data entries following the ideas of negative sampling in Word2Vec
[21]. For each sampled positive entry, ⟨x ,y,r⟩, we generate neg-
ative data entries by randomly replacing one of the three values
with other x ′, y′, or r ′, where x ′ and y′ are randomly selected
nodes, and r ′ is a randomly selected relationship from R. A gen-
erated negative data entry, ⟨x ′′,y′′,r ′′⟩ indicates that x ′′ and y′′
are not expected to have a certain relationship r ′′. However, for
HIN2Vec, more erroneous negative data (which actually a positve
data) might be generated by replacement of r compared with by re-
placement of x ory since |V | is usually much larger than |R |, while
|R | is usually not very large (tens to hundreds). To maintain effi-
ciency and the cleanness of the negative samples, we only sample
negative data by randomly replacing x or y, and filter out erro-
neously generated positive samples. To do so, we also ensure that
the randomly selected x ′ or y′ has the same node type as x or y.
For example, for a positive data ⟨P1,P2,P-P⟩, we randomly select
a paper, says P3, to replace P2 (or P1) to generate a negative data
that indicates P2 (or P1) does not have a citation relationship with
P3. In other words, we do not select a node with a different node
type, says authors, for replacement. We empirically examine the
effect of avoiding cycles in random walks and ensuring the same
node type in negative sampling.

5 EXPERIMENTS
In this section, we conduct a comprehensive evaluation onHIN2Vec.
We first introduce four real-world HINs used for experiments and
six models for representation learning on networks. Then, we eval-
uate HIN2Vec and those models by two applications: multi-label
classification for nodes and link prediction for edges.
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5.1 Datasets and Models for Evaluation
Our evaluation involves two social network datasets (Blogcatalog
and Yelp) and two scientific publication datasets (DBLP and U.S.
Patents). Some statistics of the HINs extracted from these datasets
are summarized in Table 1.
Blogcatalog is a blog dataset of Blogcatalog, released by Arizona
State University [1]. We use all bloggers (U) and their groups (G)
as nodes to form a social network, which contains friendships (U-
U) and users’ groups (U-G) as edges.
Yelp is a social media dataset, released in Yelp Dataset Challenge
[4]. We extract data of the top 10 cities with the most businesses to
form a network, which includes users (U), businesses (B), cities(C)
and categories (T) as nodes, and friendships (U-U), users’ reviews
(B-U), businesses’ cities (B-L) and businesses’ categories (B-C) as
edges. We filter small categories with less than 10 businesses.
DBLP is a bibliographic dataset in computer science [3]. We ex-
tract papers published between 1994 to 2014 of 20 conferences in 4
research fields to form a network 2. The network includes papers
(P), authors (A) and venues (V) as nodes, and authorships (P-A),
papers’ venues (P-V) as edges.
U.S. Patent is a patent dataset of United States Patent and Trade-
mark Office (USPTO) [2]. We extract patents issued between 1998
to 2012 in 14 drug related patent classes to form a network 3. The
network contains patents (P), inventors (I), assignees (A) and patent
classes (C) as nodes, and inventorships (P-I), patents’ assignees (P-
A), patents’ classes (P-C) and citations (P→P) as edges.

We evaluate HIN2Vec against six state-of-the-art representation
learningmodels. Among them, DeepWalk, LINE and node2vec, are
designed for homogeneous information networks. The are applied
by treating all node and edges in the HINs as homogeneous ones.
DeepWalk [24] learns d-dimensional node vectors by capturing
node pairs withinw-hop neighborhood via uniform random walks
in the network.
LINE [28] learns node vectors by considering first- and second-
order proximities of nodes in a network separately. We apply LINE
to learn d/2 dimensions by capturing first-order information, and
the other d/2 dimensions by capturing the second-order informa-
tion, and then use both to form d-dimensional node vectors.
node2vec [10] is generalized from DeepWalk. It learns d-
dimensional node vectors by capturing node pairs within w-hop
neighborhood via parameterized random walks.
PTE [27] decomposes an HIN to a set of bipartite networks by
edge tyes, and learns d-dimensional node vectors by capturing 1-
hop neighborhood of the resulting bipartite networks.
HINE [13] learns d-dimensional node vectors by capturing path
counts or path constrained randomwalks [19] of node pairs within
w-hop neighborhood.
ESim [25] learns d-dimensional node vectors by paths between
nodes along a given set of meta-paths. This model also learns meta-
path vectors, which is used to shift node vectors in the designed
objective function.

220 conferences are ”AAAI”, ”CVPR”, ”ECML”, ”IJCAI”, ”SIGMOD”, ”VLDB”, ”PODS”,
”EDBT”, ”ICDE”, ”ICDM”, ”KDD”, ”PAKDD”, ”PKDD”, ”SDM”, ”ECIR”, ”SIGIR”,
”WSDM”, ”WWW”, ”CIKM”, that belong to 4 research fields, including DM, DB, IR,
and ML.
3Drug related patent classes are 128, 351, 433, 424, 435, 623, 514, 600, 601, 602, 604,
606, 607, 800.

5.2 Multi-label Classification of Nodes
In this section, we evaluate the models by multi-label classification
of nodes. We first introduce the experimental setup, including the
process of classification, the preparation of labeled datasets and
the default settings of parameters in the compared models. Then,
we perform sensitivity tests on parameters of HIN2Vec to deter-
mine their default settings. Next, we examine several issues in the
HIN2Vec framework, including the regularization on meta-path
vectorsWR , cycles in random walks, and negative sampling with
the same node type. Finally, we show the experimental results and
analyze the meta-path vectors learned by HIN2Vec.

5.2.1 Experimental Setup. After learning the node vectors, we
select a set of nodes, which are assigned one or more labels from
a finite label set, and use their representations as feature vectors
to learn and test a linear SVM classifier with five-fold cross vali-
dation. We usemicro-f1 score andmacro-f1 score as metrics for
evaluation.

In Blogcatalog, users are categorized by 39 groups, which serve
as labels. Thus, all users are included in the labeled dataset for
user group classification. In Yelp, as the majority of businesses are
restaurants, we select 10 main cuisines in restaurants’ categories
as labels, and select 13,111 restaurants with at least one of those
labels to form a labeled dataset for restaurant type classification 4.
In DBLP, we use the 4 research fields as labels, and assign an au-
thor with a field if he/she has a publication in a conference in that
field to form a labeled dataset for author classification. Finally, for
U.S. Patents, we use 14 drug related patent classes as labels, and in-
volve all patents to form a labeled dataset for patent classification.
For these node classifications, we eliminate from HINs, groups in
Blogcatalog, categories in Yelp, venues in DBLP and patent classes
in U.S. Patents, when we learn the representation of nodes.

Regarding default parameters, the dimensionality of node vec-
tors,d , is set to 128 for all approaches. The negative sampling raten
is set to 5. The initial learning rate α in stochastic gradient descent
is 0.025. The context window for DeepWalk and node2vec is set to
4 because they achieve good performance. Also, we use all meta-
paths with length w ≤ 4 for HINE, ESim and HIN2Vec. For ESim,
we set the weight of training data sampling of each meta-path
based on its length. For example, ameta-pathwith length l , its sam-
pling weight is 1/l . We also try equal weighting of eachmeta-path,
but weighting by meta-path length performs better. For node2vec,
the two parameters q and p for parameterized random walks are
set to 4 and 1, respectively. The number of training data sampling
or the length of random walks for generating training data varies
for each model and for each dataset, in order to obtain converged
results.

5.2.2 Parameter Tuning in HIN2Vec. Parameters settings in
HIN2Vec affect the node representation learning and the applica-
tion performance. To decide the default settings, we vary the val-
ues of important parameters to observe how themicro-f1 changes
in node classification in the networks. The results are shown in
Figure 5.

410 main cuisines are ”American”, ”Mexican”, ”Italian”, ”Chinese”, ”Japanese”, ”Thai”,
”Indian”, ”Canadian”, ”Middle Eastern” and ”Greek”
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cycles improve the efficiency while maintaining the effectiveness.
Thus, HIN2Vec chooses to remove cycles from training data.

5.2.4 Evaluation of models. The performance of node classifi-
cation by all evaluated models is summarized in Table 2. HIN2Vec
outperforms all the state-of-the-art models. As shown, the im-
provement ratio (compared with the best of these existing models,
marked by ’*’) ranges from 6.4% to 23.8%. We have the following
observations from the comparison.
Exploring meta-paths of longer length is useful. Compared
with LINE and PTE, which only capture 1-hop or 2-hop neigh-
borhood of nodes, other models usually have better performance
(except ESim) because they also capture “longer” relationships be-
tween nodes.
Distinguishing different meta-paths between nodes is use-
ful. Comparing with DeepWalk, node2vec, HINE andHIN2Vec, all
of which consider relationships of nodes within w(=4)-hop neigh-
borhood, HIN2Vec further distinguishes different relationships be-
tween nodes, whereas others only capture aggregated information.
Thus, HIN2Vec is able to capture more detailed information of net-
work structure and thus can achieve higher performance in node
classification.
Appropriate model design to distinguish relationships be-
tween nodes is crucial. Comparing with ESim which also cap-
turesmeta-path relationships between nodes, HIN2Vec outperforms
ESim in all four networks. We argue the superiority of HIN2Vec
is due to a better model design that precisely captures the relation-
ships between nodes.

5.2.5 Analysis of Meta-paths. In addition to node vectors,
HIN2Vec also learns meta-path vectors as a side-product. In this
section, we analyze the representations of relationships (i.e., meta-
path vectors) by clustering those vectors to examine whether meta-
paths with relevant semantics are clustered together. We use Yelp
and U.S. Patent networks as the study cases because they have
more complex schema of networks, with more meta-paths than
Blogcatalog and DBLP. We select top 20 meta-paths in these two
networks with the highest frequency when generating the train-
ing data by random walks, and then apply K-Means algorithm to
group meta-paths into 6 clusters. The results are shown in Table 3.

In Yelp, we observe that each of clusters 1 to 5 have clear and dis-
tinct semantics. Specifically, Cluster 1 groupsmeta-paths of friend-
ships (except 3-hop friendship). Cluster 2 groups meta-paths be-
tween two businesses via only friendships (exceptB-U-U-Bwhich
is not in top 20 frequent meta-path set). Cluster 3 contains meta-
paths between business to users via multiple hops of friendships.
In Cluster 4, B-U has unique semantics that no other meta-path is
similar with it. Cluster 5 contains meta-paths with cities. Cluster
6 contains several meta-paths that do not share semantics, and due
to the lack of space, we skip to show meta-paths in Cluster 6.

Among the 20 meta-paths in the U.S. Patent network, each of
clusters 1 to 5 also shows obvious semantics. Specifically, Clus-
ters 1 contains co-citing and co-cited meta-paths, which are rele-
vant because two patents are likely in the same research field if
they are co-cited or co-cite the same patents. Cluster 2 contains 1-
hop and 2-hop citationmeta-paths, which both indicate knowledge
flow among patents. Cluster 3 has meta-paths describing the rela-
tionships between inventors and his/her citing and cited patents.

In Cluster 4, the patents’ assignees, P-A, has unique semantics,
and thus no other meta-path is similar to it. Cluster 5 contains re-
lationships between patents via bibliographic information (inven-
tors and assignees) (except P-I). However, Cluster 6 also contains
several meta-paths with no similar semantics.

These analyses suggest that the representations of meta-paths
in HIN2Vec capture semantics of meta-paths very well, placing
meta-path vectors in the latent space closely with other vectors
of relevant semantics.

5.3 Link Prediction
In this section, we demonstrate that the same node vectors learned
by HIN2Vec can be used effectively for another application, link
prediction. We first introduce the experimental setup including
the experimental flow of link prediction andmetrics for evaluation.
Then, we study different vector functions that transform two node
vectors into one vector for the purpose of link prediction. Finally,
we show the experimental results of HIN2Vec, in comparison with
other models.

5.3.1 Experimental Setup. We model the link prediction prob-
lem as a recommendation problem that aims to rank node pairs
in terms of their relevancy, which may lead to potential linkage
between them. Specifically, given a network, we first generate a
sub-network by selecting an edge class and randomly removing a
certain fraction (20% in our experiments) of edges of the selected
edge class as missing edges. After removing edges, we apply rep-
resentation learning models on the resulting sub-network. Then,
to perform the recommendation on the sub-network, we apply su-
pervised models to rank node pairs which are more likely to have
missing edges. In specific, we randomly select 2000 nodes to form
a training set. For a selected node, we first use its neighbors within
a certain number of hops as candidates to form a set of candidate
node pairs (a pair contains the node and a candidate node). This
candidate selection step aims to reduce the number of node pairs
to be ranked. We choose an appropriate hop number for different
networks to ensure the coverage of missing edges is greater than
85%. To form a training set, for each node pair, we label it with 1 if
they have a missing edge, and with 0, otherwise. We study differ-
ent vector functions (to be discussed later) to construct a feature
vector for the node pair based on the two nodes’ representations.
Finally, we apply linear SVM to perform ranking, by using the pre-
dicted confidence of each data with five-fold cross validation. We
use Mean Average Precision (MAP) andThe top-k recall (recall@k)
as metrics for evaluation.

(1) Mean Average Precision (MAP): the mean of the average pre-
cision scores for the ranking result of each nodev . The average pre-
cision score (AveP) is the sum of the top-k precision (precision@k),
the percentage of top-k ranking results that hit the ground truth
over k. The equations of AveP and MAP are shown below.

AveP(v) = Σn
k=1

precision@k
k

MAP =
ΣK
i=1

AveP(vi )
K

(2) The top-k recall (recall@k): the percentage of the ground
truth or indicators ranked in the top-k returned results.

recall@k =
# of hits in top−k

# of posit ive documents in theдround truth

To construct a feature vector for a node pair based their node
vectors, we study four vector functions, Hadamard, Average, Minus
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Table 2: Performance Evaluation of Node Classification

Blogcatalog Yelp DBLP U.S. Patents
micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1 micro-f1 macro-f1

DeepWalk 0.244 0.140 0.276 0.165 0.481 0.463 0.675 0.676
LINE 0.239 0.128 0.270 0.163 0.449 0.429 0.66 0.663

node2vec 0.246 0.141 0.276 0.166 0.491 0.470 0.676 0.677
PTE 0.179 0.096 0.222 0.130 0.417 0.394 0.547 0.555
HINE *0.250 *0.144 *0.278 *0.169 0.475 0.461 *0.681 *0.685
ESim 0.207 0.102 0.229 0.132 *0.514 *0.496 0.610 0.562

HIN2Vec 0.272(9.9%) 0.158(11.3%) 0.302(7.9%) 0.192(12.0%) 0.605(23.8%) 0.594(20.1%) 0.729(6.6%) 0.732(6.4%)

Table 3: Clusters of Meta-paths

Cluster Yelp U.S. Patents
1 U-U, U-U-U, U-U-U-U-U P→P←P, P←P→P
2 B-U-B, B-U-U-U-B P←P, P←P←P
3 B-U-U, B-U-U-U-U I-P→P, I-P←P
4 B-U P-A
5 B-C, B-C-B, U-B-C P-A-P, P-I-P, P-I
6 … …

Table 4: Vector Functions of Node Pairs

Functions Hadamard Average Minus Abs. Minus
Description v⃗1i ∗ v⃗2i

v⃗1i+v⃗2i
2 v⃗1i − v⃗2i |v⃗1i − v⃗2i |

and Absolute Minus. The equations are shown in Table 4. Specifi-
cally, Hadamard function is the element-wisemultiplication of two
vectors. Average function obtains the centroid of two vectors in
the latent space. Minus function yields the difference between two
vectors in the latent space. Finally, Absolute Minus function cal-
culates the distance of the two vectors in each dimension of the
latent space.

Regarding the edge class of missing edges in each network for
experiments, we choose friendships (U-U) in Blogcatalog, users’
business reviews (B-U) in Yelp, authorships (P-A) in DBLP and
patent citations (P→P) in U.S. Patent network.

Regarding default settings, we use the same parameter values
used in node classification experiments. Additionally, the default
feature vector function for node pairs is Hadamard function be-
cause it has the best performance for all the models.

5.3.2 Vector Functions for Node Pairs. In this section, we study
the effect of aforementioned vector functions for node pairs and
summarize their performance in Table 5. First of all, Hadamard
function outperforms all the other functions because it matches
the objective function of HIN2Vec (and other models). In specific,
if two nodes are more relevant (i.e., with more relationships be-
tween them), the sum of element-wise multiplication of their vec-
tors should be larger (i.e., their vectors are closer in the latent
space). This is also the reason why Absolute Minus performs well
because it captures the distance in each dimension of the two nodes’
vectors. However, Average function and Minus function do not
have good performance. Average function gets the centroid of two
nodes’ vectors but does not well capture the similarity between the
two nodes (i.e., the closeness of the two nodes in the latent space).
For example, two pairs of nodes may have the same centroid, but

one pair is distant and the other pair is close. On the other hand,
Minus function yields the difference between two node vectors but
does not capture their similarity. For example, two pairs of nodes
can be similar (close in the latent space) but quite different in terms
of their node vectors.

5.3.3 Evaluation. Theperformance of link prediction is summa-
rized in Table 6. ESim fails in Yelp and U.S. Patent networks, be-
cause it exhausts all memory (320G) on our server. HIN2Vec out-
performs the existing representation learning models, and the im-
provement ratio (compared with the best one of the existing works,
which is marked by ’*’) varies from 5.0% to 70.8% for MAP, and 10.8
to 24.3% for recall@100. We have the following observations.
Capturingmeta-paths of longer length is useful for link pre-
diction in complex HINs. Compared with LINE and PTE, which
only capture 1-hop or 2-hop neighborhood of nodes, other models
usually have better performance in most of the networks (except
for Blogcatalog), perhaps because they captures relationships be-
tween nodes with larger hop number. For friendship recommen-
dation in Blogcatalog, 1-hop or 2-hop friendship in the network al-
ready provides useful information, consistent with the notion that
two users are more likely to be friends if they have multiple com-
mon friends. Thus, capturing friendships with larger hop numbers
does not help in other models except for HIN2Vec. The reason why
HIN2Vec still outperforms LINE in Blogcatalog is that not only it
captures multiple hop relationships, but also it distinguishes them.
Distinguishing different relationships between nodes is use-
ful. Compared with DeepWalk, node2vec, HINE, HIN2Vec dis-
tinguishes relationships between nodes, rather than only captur-
ing aggregated information. Thus, when applying SVM to train a
model, the model can increase or reduce the feature weights of the
dimensions of the relationship if it is helpful or not for prediction,
respectively. Thus, it achieves higher performance in link predic-
tion. This is also the reason why HIN2Vec outperforms LINE in
Blogcatalog.

6 CONCLUSIONS
This study focuses on representation learning inHINs. Prior works
in representation learning in networks only consider limited types
of relationships among nodes, or only capture aggregated informa-
tion of relationships. To fill in this gap, we design a novel neural
network model, HIN to Vectors (HIN2Vec), that enables users to
capture rich semantics of relationships and the details of the net-
work structure to learn representations of nodes in HINs. More-
over, the proposed model also learn representations of meta-paths,
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Table 5: Performance Evaluation of Vector Functions

Blogcatalog Yelp DBLP U.S. Patents
MAP recall@100 MAP recall@100 MAP recall@100 MAP recall@100

Hadamard 0.141 0.279 0.028 0.138 0.265 0.751 0.176 0.602
Average 0.074 0.245 0.004 0.033 0.005 0.124 0.008 0.063
Minus 0.050 0.171 0.004 0.030 0.004 0.114 0.009 0.059

Abs. minus 0.130 0.238 0.023 0.119 0.249 0.750 0.130 0.540

Table 6: Performance Evaluation of Link Prediction

Blogcatalog Yelp DBLP U.S. Patents
MAP recall@100 MAP recall@100 MAP recall@100 MAP recall@100

DeepWalk 0.124 0.227 *0.021 0.110 0.230 *0.710 0.093 0.500
LINE *0.134 *0.249 0.017 0.104 0.086 0.580 0.091 0.400

node2vec 0.125 0.229 *0.021 *0.111 *0.231 *0.710 0.095 *0.503
PTE 0.067 0.139 0.004 0.034 0.071 0.324 0.030 0.243
HINE 0.085 0.179 0.016 0.097 0.205 0.697 *0.103 0.495
ESim 0.132 0.185 x x 0.179 0.633 x x
MPE 0.141(5.0%) 0.279(10.8%) 0.028(31.8%) 0.138(24.3%) 0.265(12.8%) 0.751(5.8%) 0.176(70.8%) 0.602(19.9%)

which can be used for meta-path analysis. Empirically, we demon-
strate that the proposed HIN2Vec model is able to automatically
learn feature vectors for nodes in HINs to support a variety of HIN
applications, including multi-label node classification and link pre-
diction, in several real-world networks. HIN2Vec also soundly out-
performs all the compared models in those experiments.

As for our next step, we plan to explore the regularization for
representations of nodes to learn sparse representations, which
may capture more distinct latent topics of each nodes and meta-
paths.
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