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ABSTRACT

The Skip-gram with negative sampling (SGNS) method of Word2Vec
is an unsupervised approach to map words in a text corpus to low
dimensional real vectors. The learned vectors capture semantic
relationships between co-occurring words and can be used as in-
puts to many natural language processing and machine learning
tasks. There are several high-performance implementations of
the Word2Vec SGNS method. In this paper, we introduce a new
optimization called context combining to further boost SGNS per-
formance on multicore systems. For processing the One Billion
Word benchmark dataset on a 16-core platform, we show that our
approach is 3.53x faster than the original multithreaded Word2Vec
implementation and 1.28x faster than a recent parallel Word2Vec
implementation. We also show that our accuracy on benchmark
queries is comparable to state-of-the-art implementations.
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1 INTRODUCTION

Word embedding techniques learn vector representations of words
in a given textual dataset such that semantically and syntactically
relevant words are close to each other in the vector space. The
learned word vectors are effective and discriminative as inputs to
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many natural language processing and machine learning applica-
tions such as document classification [14], machine translation [28],
and named entity recognition [15]. Distributional Semantic Mod-
els (DSMs) are approaches that use the count of co-occurrences
of words to obtain word representations. For example, the Posi-
tive Pointwise Mutual Information (PMI) method [8] learns high
dimensional sparse vector representations of words using the co-
occurrence counts of words. Each element in a word’s vector gives
the strength of association of that word to another word in the vo-
cabulary. Another DSM approach is Singular Value Decomposition,
where the dimensionality of the PMI matrix is reduced to create
dense vector representations for words.

Bengio et al. [4] and Collobert and Weston [9] present neural
network-based language models for predicting the next word when
given a sequence of words. In contrast to the count-based DSM
approaches, the neural network models predict words that are syn-
tactically and semantically similar. Mikolov et al’s Word2Vec [19]
and Pennington et al’s GloVe [22] are two popular neural network-
based models for word representation learning.

The Word2Vec Skip-gram with negative sampling (SGNS) algo-
rithm is widely used for learning word vectors that are useful for
predicting the surrounding words (i.e., context words) of each word
(i.e., a target word) in a sentence. Levy, Goldberg, and Dagan [16]
show that SGNS training is faster than other competing methods.
Word2Vec has received considerable attention in the natural lan-
guage processing community. For example, Kiros et al. [13] propose
Skip-thought vectors that use the Skip-gram model at the sentence
level instead of word level to predict surrounding sentences that
share the same semantic information as the target sentence.

Although SGNS is faster than alternatives, it can still take consid-
erable time for training datasets with billions of words. For example,
our experiment indicates that on a 16-core platform, SGNS takes
nearly one hour to process a benchmark dataset with 805 million
words. Text corpora of several billion words are now commonplace,
and so improving SGNS efficiency is important. Also, any opti-
mization technique that improves SGNS’s throughput can be used
to accelerate other applications of the Skip-gram model such as
Skip-thought vectors and BioVec [3]. Hence, in this paper, we focus
on improving the throughput of the Word2Vec SGNS algorithm.

SGNS uses the Stochastic Gradient Descent (SGD) algorithm for
model parameter optimization. The input text corpus is scanned
word by word to generate word pairs. A word pair consists of either
a target word and another word from its neighborhood (a positive
sample), or the target word and a randomly chosen word (a negative
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sample). The probability of whether these two words co-occur in
a sentence is estimated, and the vectors corresponding to the two
words are updated, based on the gradients of the objective function
with respect to the two words.

The main throughput-limiting step in SGNS is the probability
calculation. This involves several vector-vector operations (e.g., the
inner product of vectors corresponding to two words). The inner
product of two length-D vectors requires 3D memory references
and 2D floating point operations. Hence, the arithmetic intensity,
or the number of floating point operations per memory access, is
%. Without reuse, vector operations on modern platforms tend to
be memory-bound. Moreover, in a multithreaded setting, threads
update word vectors asynchronously without locking or atomics
(based on the HogwiLp! scheme [21]). This could lead to a ping-
ponging of cache lines [12].

In this paper, we propose a new SGNS optimization called con-
text combining: we aim to improve the throughput of Word2Vec by
simultaneously processing multiple contexts and reusing positive
and negative samples. Due to the reuse across contexts, this opti-
mization has the effect of converting vector-vector inner products
used in SGNS to efficient matrix-matrix multiplications, thereby im-
proving floating point throughput. The data reuse also reduces the
overhead due to random memory accesses and asynchronous model
parameter updates. For processing the One Billion Word bench-
mark dataset on a 16-core platform, we achieve a 3.53X speedup
in comparison to the original Word2Vec implementation, and a
1.28x% speedup compared to pWord2Vec [12], another recent paral-
lel SGNS implementation.

2 BACKGROUND
2.1 Word2Vec training process

Word2Vec includes two model architectures to learn word repre-
sentations, Contextual Bag-Of-Words (CBOW) and SGNS. CBOW
aims to predict the target word given the surrounding words (or
the context), whereas SGNS aims to predict context words given
the target word. Prior evaluations show that SGNS performs better
than CBOW on semantic tests, while performing slightly worse on
syntactic tests [19]. Further, SGNS is shown to have a higher accu-
racy on infrequent words [2]. For these reasons, SGNS is widely
used in many applications and hence is the focus of our work.

2.1.1  Skip-gram Model. The Skip-gram model is a single layer
neural network model with one hidden layer. The input layer is a
vector of size V (where V is the vocabulary size) representing a 1-
hot encoding of words. The low dimensional word representations
are stored as input-hidden layer weight matrix M;,, in which each
row is a D-dimensional vector representation of the corresponding
word in the vocabulary. The 1-hot encoding performs the function
of selecting the input word representation from M;,. The output
layer computes the probability of a word y occurring in the same
context as a target word x, by computing probabilities using x and
K randomly-chosen negative samples:

K
log P(y|x) = log sig(vxTVy) + Z log sig(—vxTVi)
i=1
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Algorithm 1 Skip-gram with negative sampling, SGD updates in
one training window.

Target word x, context window size N, context words
Yo, Y1, - - - » YN—1, K negative samples, SGD learning rate a.

1: fori=0to N —-1do

2 for j =0to K do

3 if j = 0 then

4 se—x,le1

5 else

6 s « rand. neg. sample, [ « 0
7: e—1- sig(vimyiTvout,s)
8: dout < eVout,s

9: dip < €Vin,y;

10: Vout,s < Vout,s + @din

11: Vin,y; < Vin,y; + @dout

Here, vy is the word representation of x in M;,. vy and v; are
the weight vectors for the target word y and the negative samples
in Moy ¢. From this equation, we can see that the probability calcu-
lation involves several memory-bound vector-vector products. The
sigmoid function sig is defined as sig(u) = m.

Positive and negative samples are processed using the Stochastic
Gradient Descent (SGD) algorithm during training. Word vectors
in the input and output layers are updated with the objective of
maximizing P(y|x) for positive samples and 1 — P(y|x) for negative
samples. Each word in the training data is processed successively
during the training process and the training involves many passes to
improve accuracy. In the multithreaded setting, data are partitioned
among threads and each thread asynchronously performs updates
using target words in its partition. This lock-free scheme is known
as the HogwiLp! approach and is frequently used in many tasks
that rely on SGD.

In summary, the SGNS model learns a D-dimensional vector
representation of each word present in a large text corpus. This
is done by using each target word to predict the surrounding N
context words in a sliding window manner. Algorithm 1 explains
the steps involved in the learning process for one target word x and
the N context words surrounding the target word. For each context
word y;, K negative samples are randomly selected. Lines 7-11
correspond to the SGD computation to update the word vectors.
All target words are processed in this manner and the entire dataset
is processed I times.

2.2 Matrix multiplication throughput

The floating-point throughput of SGNS can be significantly im-
proved by converting vector-based computations into matrix-based
computations [6, 12]. However, the performance improvement de-
pends on the sizes of matrices, which in turn depend on the values
of K, D, and N.

Fig. 1 gives the single precision generalized matrix multiplica-
tion (SGEMM) throughput in Giga FLoating point Operations Per
Second (GFLOPS) for input matrices of sizes (K + 1, D) and (D, 2N).
These are sizes of matrices multiplied in Ji et al’s pWord2Vec im-
plementation [12]. The matrix multiplications are performed on a
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Figure 1: Floating point throughput for Ag.1 p X Bp 2N-

single core of a 2.4 GHz Intel Xeon E5-2695 v2 (Ivy Bridge) proces-
sor. The peak throughput is 38.4 GFLOPS per core. We used Intel
Math Kernel Library version 2017.2.174 for this experiment. The
title of each plot in Fig. 1 gives the fixed parameter settings and the
X axis indicates the varying parameters. The leftmost point in each
plot corresponds to a typically used set of values (K = 5, N = 8 and
D = 100). We can see that these values result in less than half the
peak floating point performance, and hence using larger matrices
is necessary for higher floating point throughput. Increasing one
parameter (K or N) while keeping the other two fixed results in a
slight throughput increase, whereas increasing both K and N while
keeping D fixed improves the throughput of SGEMM significantly.

3 RELATED WORK

In this section, we discuss the state-of-the-art parallel implementa-
tions of Word2Vec and then describe commonly used test datasets.

We begin by describing shared-memory parallel implementa-
tions that are most relevant to our proposed approach. Our work is
closely related to Ji et al’s pWord2Vec implementation [12], which
is an extension of Word2Vec with the negative sample sharing opti-
mization. This approach facilitates matrix-matrix multiplications in-
stead of vector-vector operations. We present accuracy and training
time comparisons of our new approach with Ji et al’s pWord2Vec.
pWord2Vec involves reusing a common set of negative samples in
addition to using the same positive sample (target word) for all
the words in a window of size N, and this data reuse leads to the
computations being expressed as matrix-matrix multiplications.

For example, in Fig. 2a, bright and sunny are the context words
surrounding the target word day. Fig. 2b shows the training samples
generated for this window in the original Word2Vec implementa-
tion. Apart from the target word (day) being used as the positive
training sample for both the context words, one negative sample
is randomly selected for each word. The resulting vector-vector
products are listed in Fig. 2b. Fig. 2c shows how multiple vector-
vector products of an input context are combined into a single
matrix-matrix multiplication step by pWord2Vec. The key change
is that both context words use the same word (desert) as the neg-
ative sample, in addition to sharing the target word. Hence, the
word representations of the input words can be multiplied with
the shared positive and negative samples using a matrix-matrix
multiplication, as shown in Fig. 2c.

BIDMach [6] is a machine learning library based on rooflined
design principle. The SGNS model of Word2Vec implemented in
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It is a bright sunny day. Sahara is the largest desert.
\—'—J

(a) Training data

Input | sample | Label

Probability Calculati
Input | Sample | Label robability Calculation \nput | Samp

Word | word Probability Calculation

bright | day + sig (<day . bright>) bright | day + T
sig (<desert . bright>) | | day bright
bright | desert sig (<day . sunny>) bright | desert - SI8| | desert sunny
sig (<largest . sunny>) % 2,
sunny day + sunny day +
sunny | largest N sunny | desert
(b) Word2Vec (c) pWord2Vec

Figure 2: Illustrating the pWord2Vec approach.

BIDMach uses rooflined matrix primitives instead of vector prod-
ucts, while also achieving memory rooflining by merging accesses
to the same memory location and by using the large GPU register
memory to cache word vectors. However, since this implementa-
tion processes one sample at a time, the operations performed are
matrix-vector products, as noted by Ji et al. [12]. Ji et al. compare
the throughput of their implementation with BIDMach SGNS, and
report that their pWord2Vec performs better. This is attributed to
the use of matrix-matrix multiplications instead of matrix-vector
products.

Vuurens et al. [27] observe that cache collisions due to multi-
threaded execution is a major performance bottleneck in the hierar-
chical softmax variant of Word2Vec. They obtain a 4x improvement
over the multithreaded code by a straightforward caching of com-
monly used word vectors. TensorFlow [1] is a popular machine
learning framework, and includes a multithreaded implementation
of Word2Vec.

There are several distributed-memory implementations of Word2Vec.

Jietal’s pWord2Vec [12], Deeplearning4j [25], MLLib [18] replicate
the word representations for the entire vocabulary on all tasks. The
tasks update their local vectors. The local updates are propagated
to other tasks periodically. This replication of word vectors limits
the above-mentioned approaches to low-to-medium vocabulary
sizes. Stergiou et al. [24] propose novel distributed algorithms
which enable processing corpora of more than a trillion words.
Their method involves partitioning word vectors using the 128-bit
md5sum of the words, constructing a graph representation using
the samples generated and processing the graph using a distributed
graph processing framework.

Word2Vec’s accuracy is often evaluated using word similarity
and word analogy tests. Several test datasets are publicly avail-
able. These contain manually assigned similarity scores for word
similarity tests, as well as word analogy questions and answers.
Some test datasets for evaluating word similarity include Word-
Sim353 [10], MEN [5], Mechanical Turk [23], Rare words [17] and
SimLex-999 [11]. Two commonly used datasets for word analogy
tests include the MSR [20] and Google’s analogy datasets [19]. In
our evaluations, we use WordSim353 for word similarity tests and
Google’s dataset for word analogy tests.
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Target It is a | bright | Sunny | day | Sahara | the | largest | desert
word
Offsets 0 17 | 2 3 4 5 6 8 9 10

Figure 3: Creating inverse index as a preprocessing step.

4 OUR APPROACH

We propose to improve the throughput of Word2Vec by sharing
positive/negative samples across multiple context windows, and
thus processing multiple contexts simultaneously. This sharing
mechanism not only enables us to adopt efficient matrix-matrix
multiplications instead of vector-vector products, but also creates
large matrices for matrix-matrix multiplications, thus further im-
proving floating point throughput. We call this new optimization
context combining.

Given a dataset, our approach reads and processes T words at
a time in every iteration, and each word is used as a target word
for learning. For a target word, the algorithm selects K negative
samples and then chooses C — 1 unprocessed context windows
based on these negative samples and the target word. These C
context windows (the target word’s context window and C — 1
selected unprocessed ones) are then processed simultaneously for
learning. Algorithm 2 describes the proposed algorithm for pro-
cessing T words of the training data. In the following subsections,
we describe each step of the proposed algorithm. These include
1) Preprocessing, where we create an index for identifying unpro-
cessed context windows, and ensuring each word is used as a target
word for learning, 2) Identifying related windows, where we select
C context windows based on a target word and K negative sam-
ples, and 3) SGD update, where we update word representations by
processing C context windows simultaneously.

4.1 Preprocessing

This step corresponds to Line 2 in Algorithm 2. After reading T
target words into the array ts, we create an inverse index mapping
each target word to the set of positions where it occurs within ts.
For the example training data chunk with 11 words (T = 11) shown
in Fig. 2a, the corresponding inverse index is shown in Fig. 3. This
index is constructed to directly identify the positions of a given
word within the training data. For example, the word is occurs at
offsets 1 and 7 within the training data chunk. Since each word
occurs at different frequency, storing a separate list of offsets for
each word would result in memory wastage if uniform length lists
are used or would incur dynamic memory allocation overhead if
variable length lists are used. To overcome this, we use Compressed
Sparse Row (CSR) representation to store the index which requires
O(V + T) memory, V being the vocabulary size.

4.2 Identifying C related windows

Once the indexing is done, all target words are first marked as
unprocessed (lines 4-5). The for loop in line 6 iterates over each word
and considers unprocessed target words ts; for which p; = 0. In
lines 9-11 of Algorithm 2, we copy the unprocessed target word, the
corresponding window offset, and the N context words surrounding
the target word into local buffers. L is a matrix containing labels
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Algorithm 2 Our SGNS approach with the context combining op-
timization. We use index notation [,] to denote elements within
matrices M;p and Moy, ;. We use subscripts to index all other matri-
ces and vectors.

1: procedure PSGNScc
Input: Training data segment s containing T words, Context
size N, K negative samples, Dimension D, Windows to combine
C, and learning rate a.

2 INDEX (ts)

3: m«— CN

4: fori=1toT do

5: pi <0 > p tracks processed words

6: fori=1toT do

7: if p; # 0 then > Skip processed target words

8: continue

9: outy « ts;

10: wy «— i > Offset of out; in ts (window offset)

11: [in1, ..., inN] < context words € wy > Select
context words

12: fori=1toK+1do

13: forj=1tomdo

14: Lij«0 > Initialize labels

15: fori=1toN do

16: Ll,i —1

17: fori=1toK do

18: outj+1 < rand. neg. sample

19: [wa,...,wc] < FINDREL (W — 1, out) »Find C—1
related window offsets

20: fori =2toCdo

21: [inN(i=1)+1 s -+ » inNi] < context words € w;

22: outldx « j such that out; = ts,,,

23: forj = (i—1)N+1t0iN do

24 Loutldx,j —1

25: SGDUPDATE (M;y, Moy;, in, out, L, m, K + 1, D, @)

26: fori=1toCdo

27: Pw; — 1 > Mark target words as processed

1: procedure SGDUPDATE(M;,, Moy, in, out, L, N, K, D, a)
2: fori=0toN—-1do

3: l‘nMi’* — Min[ini9 *]

4: fori=0toK—-1do

OutMi,* — Mout[OUti» *]

5

6: E « L —sig (MatMul (outM, inMT))

7 Din <« MatMul (E, inM)

8: Dour — MatMul (ET, outM)

9: fori=0toK—-1do

10: Moy [outi, ¥] < Moy [outi, ] + & Din, ,
11: fori=0toN—-1do

12: Minling, *] < Min[in;, ] + « Dout,-,*

indicating the positive and negative samples for each context word.
The entry L; j is 1if out; is the positive sample for the context word
inj, and 0 otherwise. Lines 17-18 select K random negative samples
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from the vocabulary. While pWord2Vec selects one sliding window
of N words at a time and processes the window using K + 1 sample
words, our approach selects up to C windows from training data
and reuses the K + 1 samples to process all these windows. In Line
19, the algorithm finds up to C — 1 additional windows that contain
any of the sample words using the inverse index created in the
preprocessing step.

We illustrate context combining in Fig. 4. Here, day is the un-
processed target word and desert is the negative sample. In this
figure, C2 is the additional window selected because it contains
the negative sample desert, which becomes the positive sample
for C2 and the remaining sample day is assigned as the negative
sample for C2. As a result of combining two contexts, the context
matrix used for probability calculation contains three word vectors
instead of the two word vectors in the pWord2Vec approach shown
in Fig. 2c. The larger matrices resulting from context combining
yield a higher matrix multiplication throughput.

Using the inverse index to find related windows incurs addi-
tional overhead due to random accesses to the Index and wOffset
arrays. If the size of this index is large, this overhead would be
higher due to potential random accesses to these arrays and the
resulting cache and TLB misses. Since the size of the wOffset array
depends upon T, a small T value is desirable to reduce this access
overhead. However, very small T values would result in reading
only a few target words at a time. It would not be possible to find
multiple windows containing the sample words, thus resulting in
no throughput improvement. An optimal value of T can be found
by experimentation with a subset of the training data.

There are multiple approaches to select C windows for context
combining. Since our approach statically assigns negative samples
for the related windows, we find that processing all windows for
a given target word at the same time reduces the effectiveness of
the learning process because of very few negative samples used
to process all input words for that target word. So, instead, we
select related windows in a round-robin fashion. For example, if
wp, . . ., Wy are the sample words, we first find a window whose
target word is wo, then wy, and so on, and then back to wy, until we
find C windows or there are no more related windows. The number
of windows combined is close to C during the initial iterations of
the for loop in Line 6 and reduces during the later iterations, as
more and more windows are processed, which results in fewer than
C unprocessed windows for a given set of samples. We show that
with this approach, the effectiveness of learning is comparable to
pWord2Vec.

4.3 Perform SGD update

After selecting C — 1 additional windows to combine, the for loop
in line 20 of Algorithm 2 aggregates the context words for the C — 1
windows and sets the labels for each of these words. Then SGD is
performed on these windows simultaneously to update the word
vectors corresponding to the m context and K + 1 sample words.
This step corresponds to Line 25 in Algorithm 2 and is described in
the procedure SGDUPDATE.

This procedure begins by copying the input word representations
of the context words into matrix inM and the output representations
of the samples into matrix outM. The subsequent steps are similar
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Itis a bright sunny day. Sahara is the largest desert.

[ —
1 c2

(a) Training data segment (T=11)

al c2

Input | Sample | Label Input | Sample | Label
Word | word Word | wort

bright | day + largest | desert |+
bright | desert - largest day
sunny | day +

sunny | desert

N
. ) day bright
Probability calculation: sig| | gor, | | sunny
largest
20

03

(b) Context combining approach

Figure 4: Sample selection in our method (K = 1, N = 2).

to Algorithm 1 except for the fact that this procedure operates on
matrices instead of vectors. The procedure calculates probabilities,
errors, and gradients, and finally the word representations are
updated. For example, in Fig. 4, input vectors of C1 (bright,sunny)
and C2 (largest) are copied into inM and the output vectors of
sample words desert, day are copied into the outM matrix. After
SGD computations, the target words of these windows are marked
as processed to avoid processing again in line 27 of Algorithm 2.

4.4 Parallelization

Algorithm 2 describes the sequential processing of target words
within a training data segment containing T words. The paralleliza-
tion strategy of our approach is similar to the original Word2Vec:
the training data segments are divided equally among threads and
each thread performs SGD computations and updates using the
target words present in its data segments. Updates of multiple
threads proceed asynchronously ignoring race conditions. This
static partitioning of training data leads to a good load balance in
practice. Our context combining approach differs from Word2Vec
since we may process up to C windows at a time, resulting in a
higher throughput.

5 EXPERIMENTS AND RESULTS

5.1 Experimental setup

5.1.1 Hardware. We primarily use a single compute node of the
Stampede supercomputer at the Texas Advanced Computing Center
(TACC). Each compute node of Stampede has two 8-core Intel Xeon
E5-2680 (Sandy Bridge) processors and an Intel Xeon Phi (Knights
Corner) coprocessor with 32 GB DDR3 memory. We do not use the
coprocessor in this work. In addition, we evaluate performance on
a single node of the new Stampede2 supercomputer, which has Intel
Xeon Phi 7250 Knights Landing (KNL) processors. These processors
have 68 cores with 4-way simultaneous multithreading, and thus
support 272 hardware thread contexts. Each node has 96 GB DDR4
and 16 GB high-speed MCDRAM memory. The MCDRAM memory
is used as an L3 cache in our experiments.
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Table 1: The default settings for hyper-parameters used.

Hyper-parameter Value
text8 1B

I Number of epochs/iterations 10 5
D Vector size 100 300
N Max window size 8 5
K Number of neg. samples 5
T  Data segment size 500K
C  Contexts combined 8

5.1.2 Data and queries. We use two training datasets in our
evaluations. text8 has approximately 17 million words taken from
Wikipedia, with a vocabulary size of 71, 292 unique words. The One
Billion Word benchmark (1B) [7] dataset contains 805 million words
of news crawl data. The vocabulary size is 1.1 million.

To evaluate performance on the word similarity task, we use the
WordSim353 (ws353) [10] benchmark queries containing 353 word
pairs with human assigned similarity scores. To evaluate word
analogy performance, we use the Google analogy queries [19],
which have 19,544 questions of the form athens is to greece as
baghdad is to ?.

We use the evaluation methods described by Levy et al. [16].
Effectiveness of a model on word similarity tests is evaluated by
ranking the word pairs based on the cosine similarity of the word
vectors and then measuring the Spearman’s correlation with the
ratings present in the test dataset. Effectiveness of a model on word
analogy tests is evaluated as follows. For a given word analogy
question of the form a is to a” as b is to b*, where the answer b*
is hidden, the word that maximizes the cosine similarity function
(Equation 1) is taken to be the answer of the model. The answer is
correct if it is same as b*. Model accuracy is reported as the fraction
of questions answered correctly.

cos(b*,a* —a+b) = cos(b*,a*) — cos(b*, a) + cos(b*,b) (1)

5.1.3 Compile and Run time configurations. We compare our
context combining approach (denoted pSGNScc) to Mikolov et al’s
Word2Vec and Ji et al’s pWord2Vec approaches. We report training
time per epoch (or one pass over training data) and the accuracy on
word similarity and analogy tests. We used Intel compiler version
15.0.2 on Stampede and version 17.0.4 on Stampede2. We pin threads
to cores for all three methods. Table 1 gives the default settings we
use for the experimental hyper-parameters. Unless explicitly stated,
all experiments are run on a single compute node of Stampede
supercomputer using 16 threads.

5.2 Comparisons with state-of-the-art
implementations

5.2.1 Parallel Performance Evaluation. Fig. 5a compares the
training time with the three methods on a single node of the Stam-
pede supercomputer. For text8, pSGNScc results in a 3.6X speedup
over Word2Vec and a 1.08x speedup over pWord2Vec. For the
1B dataset, the speedup is 3.53X over Word2Vec and 1.28X over
pWord2Vec. The increase in speedup over pWord2Vec from 1.08x
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(text8) to 1.28X (1B) is due to the following reason. As the vocabu-
lary size increases from 71K (text8) to 1.1M (1B), selecting negative
samples becomes more expensive, since there are possibly more
random accesses to a larger vocabulary buffer in memory, leading
to more last level cache misses. As pSGNScc method uses fewer
negative samples per target word compared to the pWord2Vec ap-
proach, the performance improvement is more pronounced on
larger datasets.

We analyze the time taken by each step of pSGNScc and pWord2Vec
in order to understand the reason for the performance improvement.
The step-wise breakdown of time for one epoch of the two methods
are shown in Fig. 5b. Index overhead refers to the time taken for
creating the inverse index and traversing this index to find related
windows during training process. The Create inM and Create outM
steps refer to copying context word vectors from M;, to the inM
matrix, and target word vectors from My, to outM before SGD
computations. SGD computations refers to probability and gradient
computations, and Update M;, and Update Myy,; are the steps for
updating the M;, and M,; matrices after computation.

Fig. 5b shows that in pSGNScc, Create inM and Update M;, are
slower than the pWord2Vec approach, whereas SGD computation,
Create outM and Update Moy steps are faster, resulting in an overall
improvement in throughput. The time for creating the inM matrix
increases because the pWord2Vec approach processes consecutive
windows. Hence, it has better cache locality. pSGNScc selects
related windows from random offsets in the training data, hence
resulting in poor cache locality. This is the reason for increase in
time for updating M;, matrix as well. outM matrix creation time
and M,y matrix update time decreases in pSGNScc because we
use 1/C fewer negative samples. SGD computation is faster because
of the larger matrices created, which results in better matrix-matrix
multiplication throughput.

Fig. 5¢ compares the training time of pSGNScc with Word2Vec
and pWord2Vec for a varying number of cores. We use the 1B
dataset for this experiment. Our implementation uses the default
hyper-parameter settings and hence, identifies a maximum of 8
windows and processes them together during the training process.
As expected, pWord2Vec and pSGNScc are much faster than the
original Word2Vec implementation. pSGNScc is faster than the
pWord2Vec approach because it creates larger matrices for mul-
tiplication while reducing overheads involved. The training time
for Word2Vec, pWord2Vec, and pSGNScc methods for the 16-thread
run are 691, 251, and 196 seconds, respectively. By processing 8 win-
dows at a time, pSGNScc achieves a 3.53%X speedup over Word2Vec
and a 1.28x% speedup over pWord2Vec. The speedup obtained by 16
threaded execution of each method over single threaded execution
of the same method are 10.5x (Word2Vec), 14x (pWord2Vec) and
13.6X (pSGNScc). The speedup for the original implementation is
less due to cache collisions and memory boundedness, whereas
the remaining two methods show good scalability characteristics.
These two methods show near-linear scalability up to 8 cores (7.64x
and 7.4X), after which remote NUMA accesses limit scaling.

Fig. 5d compares the training time on a single node of Stam-
pede2 supercomputer, which contains Intel Knights Landing (KNL)
processor. For the 1B dataset, pSGNScc results in a 2.47X speedup
over Word2Vec and 1.11X speedup over pWord2Vec. These values
are less than the speedups achieved on Stampede system because
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Figure 5: Parallel performance results and comparisons.

Table 2: Comparing accuracy of the three implementations
on Similarity and Analogy queries. Higher values are better.

Similarity
text§ 1B
Word2Vec 671 636 297 330

pWord2Vec  .682 .639 .309 .327
PSGNScc .685 633 322 328

Analogy

Method text8§ 1B

in the Stampede2 runs, we used hyperthreading and hence a core’s
resources such as cache, vector and floating point units are shared
by 4 threads instead of a single thread. This leads to better resource
utilization for the pWord2Vec approach and hence the reduced
speedup for pSGNScc on KNL processor. Improving the perfor-
mance of pPSGNScc on KNL is a part of our future work.

5.2.2  Evaluating accuracy. We evaluate the effectiveness of the
learning process of pSGNScc using word similarity and word anal-
ogy tests and present results comparing pSGNScc’s accuracy with
Word2Vec and pWord2Vec. As mentioned previously, we use Word-
Sim353 and Google analogy datasets for measuring accuracy on
word similarity and word analogy tests respectively. In pSGNScc,
once we identify an unprocessed target word and select K random
negative samples, we identify C — 1 related windows. For these
windows we statically assign negative samples. Table 2 shows that
pSGNScc and pWord2Vec outperform Word2Vec in terms of accu-
racy for text8 dataset. This could be due to shared negative samples
for the context words in both the methods. For 1B dataset, the
accuracy of all three methods are similar.

5.3 Tuning T and C

The number of target words read in a segment (T') and the maximum
number of contexts to combine (C) are two new hyper-parameters
introduced in the pSGNScc approach. The index is created on a
T-word training data segment. As mentioned in Section 4.2, a small
value of T results in fewer related windows processed simultane-
ously and a large value of T increases random access overhead
during inverse index lookups. Hence, finding the appropriate value
of T is essential for achieving high throughput. Table 3 shows the
time per epoch, the overhead due to index creation and lookup,

and the number of related windows processed simultaneously on
average when varying T.

When T is 100K, pSGNScc can only process 5.49 related windows
simultaneously on average, and hence the training time is higher
than when using larger T values, such as 500K or 1M. The index
time includes both creation and lookup time. Index creation time
is highest when T is 100K, because a small T value increases the
number of times the index is created for the entire dataset. Index
lookup time is low when T is 100K, because index lookup involves
random accesses to small index arrays. Hence, index creation time
decreases with increase in T and index lookup time increases with
increase in T. This results in least overhead when T is 500K. An
appropriate way to select T would be selecting the smallest T which
results in identifying close to W related windows on average. Hence,
we use 500K as the default setting in our experiments.

Similar to choosing T, choosing an appropriate C value also
involves trade-offs. As C increases, our approach combines more
windows, resulting in higher throughput until a point where C
related windows do not exist in the training data segment of size T,
or the overhead in identifying related windows negates improve-
ment in performance. Also, from the leftmost plot in Fig. 1 it can
be seen that for a fixed K and D parameters, increasing N does not
improve matrix-matrix multiplication throughput beyond certain
point. Considering all these limiting factors, we select a C value
that maximizes the training throughput by experimenting on a
subset of training data.

Table 3 shows that as C increases, the index overhead increases,
because identifying more related windows involves more lookups
in the inverse index. Also, the candidate window positions obtained
from the index lookup are checked to ensure that they have not been
processed already. Both these lookups incur more random memory
accesses, resulting in the increase in overhead. SGD computation
time continues to decrease until C = 16. However, the improvement
is less significant for C > 8. We have used C = 8 as the default
setting in our experiments.

6 CONCLUSIONS

In this work, we propose a new optimization called context com-
bining to improve throughput of Word2Vec’s SGNS algorithm. Our
approach results in a higher floating point throughput by perform-
ing matrix-matrix multiplications on large matrices, while reducing
the overhead involved in creating and updating the matrices by
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Table 3: Performance impact of T and C on the 1B dataset.

Value of T
100K 500K 1M 2M
Time per epoch (s) 220.13 196.03 196.74 201.13
Index time (s) 17.20  14.85 17.97 24.22
Avg. related windows (< 8) 5.49 7.53 7.80 7.92
Value of C
1 4 8 16
Time per epoch (s) 258.38  208.45 196.03 191.08
Index time (s) 3.16 12.47 14.92 20.25
SGD Computations (s) 129.94 108.27 102.12  95.69

sharing samples across multiple windows. We demonstrate a 3.53x
speedup in training time compared to the original Word2Vec SGNS,
and a 1.28x speedup compared to Ji et al’s pWord2Vec implemen-
tation. The training accuracy is comparable to these approaches.

Although matrix multiplication throughput is higher in compari-
son with pWord2Vec, it is still small compared to the system’s peak
floating point throughput since we increase the size of only one of
the matrices (containing context words) involved in the multipli-
cation. In other words, there exists much room for improvement.
In the future, we would like to explore variants of this approach to
further improve the throughput, such as combining unrelated con-
texts (contexts that do not share words), or combining successive
contexts (contexts that share the most words). Another direction
for our future work is to extend the context combining strategy to
GPU and distributed-memory settings.
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A ARTIFACT DESCRIPTION
A.1 Abstract

Our artifact contains source files for three implementations of
Word2Vec compared in this paper namely, Word2Vec, pWord2Vec
and pSGNScc. We have obtained Word2Vec source file from https://
github.com/dav/word2vec (commit 80be14a) and pWord2Vec source

file from https://github.com/IntelLabs/pWord2Vec (commit e6d0d1e).

We have modified both these source files to instrument time for
different training stages. We have implemented our Context Com-
bining method (pSGNScc) on top of pWord2Vec. pWord2Vec and
PSGNScc implementations require Intel C++ compiler and MKL
library. The three implementations have been tested on shared
memory systems with multicore Intel CPUs.

We have provided Collective Knowledge (CK) integration to
automatically check for dependencies, compile, run experiments
presented in our paper and present execution time and accuracy
results in tabular format.

A.2 Description
A.2.1 Check-list (artifact meta information).

o Algorithm: Context Combining (CC).

e Program: pSGNScc.cpp implements CC algorithm. Also included
are word2vec.c and pWord2Vec.cpp programs for comparison.

e Compilation: Intel Compiler.

e Binary: Binary not included.

o Data set: The 2 datasets used in this paper namely, text8 and 1B
have been added as CK packages and can be downloaded via CK.
text8 dataset requires ~100MB and 1B dataset requires ~6GB disk
space.

¢ Run-time environment: Our artifact has been developed and
tested on Linux environment. The main software dependencies
include Intel C++ compiler, MKL library and Python version > 2.7.

o Hardware: We used Intel Xeon E5-2680 (Sandy Bridge) and Intel
Xeon Phi (Knights Landing) processors for experiments presented
in our original paper. Similar hardware should result in similar
speedup results. Main memory usage is ~5GB.

e Output: All the three programs output a text file containing
the learnt word representations. These files are used to evaluate
training accuracy. These files will be created in the user’s home
directory and hence home directory should have at least 4GB free
disk space. The experiments output a table to the console. Each
table corresponds to one Figure in the paper indicating execution
times and accuracy.

e Experiment workflow: We have used CK framework to create
experiment workflows.

o Publicly available?: Yes.

A.2.2  How delivered. Our artifact is available on GitHub:
https://github.com/vasupsu/IA3_Paper16_ArtifactEvaluation.

A.2.3 Hardware dependencies. Our experiment workflows use
1 to 16 threads to report training time and hence we suggest a
machine with at least 16 CPU cores and 5 GB main memory.

A.2.4 Software dependencies. We recommend Linux x86-64 en-
vironment for running the experiments. We require Intel C++ com-
piler and hyperwords [16] package for evaluating training accuracy.
Hyperwords package has been added as a run time dependency and
will be downloaded when the programs are run for the first time.
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A.2.5 Datasets. The datasets text8 and 1B have been added as
CK packages and can be downloaded via CK.

A.3 Installation

CK can be installed by cloning a development CK version from
GitHub and then setting the PATH environment variable.

$ git clone https:// github.com/ctuning/ck.
git ck—master
$ export PATH=$PWD/ck—-master/bin :$PATH

Our artifact named IA3_Paper16_ArtifactEvaluation can be in-
stalled via CK as:

$ ck pull repo ——url=https:// github.com/
vasupsu/IA3_Paperl6_ArtifactEvaluation

Datasets can be downloaded and installed by running the com-
mand

$ ck install package ——tags=dataset ,words

twice and selecting 1 dataset each time.

A4 Experiment workflow

We have provided 4 experiment workflows implemented as CK
modules in the IA3_Paper16_ArtifactEvaluation repository. These
modules are named ia3-2017-paper16-figure5a, ia3-2017-paper16-
table2, ia3-2017-paper16-table3a and ia3-2017-paper16-table3b. The
module ia3-2017-paper16-figure5a outputs tables to verify results in
Figures 5a, 5b and 5c. The module ia3-2017-paper16-table2 is used to
verify results in Table 2 and the modules ia3-2017-paper16-table3a,
ia3-2017-paper16-table3b are used to verify results in Table 3.

Each of the experiment workflows can be run using the following
CK command:

$ ck run_expt <module—-name>

A.5 Evaluation and expected result

The training times output by the experiment workflows need not
match exactly with the numbers reported in the paper owing to
disparity in CPU clock frequency and concurrency settings. How-
ever, the relative speedup of pSGNScc method over pWord2Vec and
Word2Vec and the accuracy of different methods obtained from
the experiment outputs should be similar to the values reported in
the paper. The relative speedup information can be obtained using
the output table of experiment ia3-2017-paper16-figure5a which
corresponds to Figure 5a.

A.6 Experiment customization

Apart from the experiment workflows provided as CK modules,
each program can be run independently with different hyperparam-
eter settings. The CK program names corresponding to Word2Vec,
pWord2Vec and pSGNScc implementations are word2vec, pword2vec
and pSGNScc respectively. For example, the CK command to run
PpSGNScc program using 16 threads is:

$ ck run program:pSGNScc ——env.CK_THREADS=16
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