
Optimizing Word2Vec Performance on Multicore Systems

Vasudevan Rengasamy
Tao-Yang Fu

Wang-Chien Lee
Kamesh Madduri

�e Pennsylvania State University

Department of Computer Science and Engineering

University Park, Pennsylvania 16802

[vxr162,txf225,wlee,madduri]@cse.psu.edu

ABSTRACT

�e Skip-gramwith negative sampling (SGNS)method ofWord2Vec

is an unsupervised approach to map words in a text corpus to low

dimensional real vectors. �e learned vectors capture semantic

relationships between co-occurring words and can be used as in-

puts to many natural language processing and machine learning

tasks. �ere are several high-performance implementations of

the Word2Vec SGNS method. In this paper, we introduce a new

optimization called context combining to further boost SGNS per-

formance on multicore systems. For processing the One Billion

Word benchmark dataset on a 16-core platform, we show that our

approach is 3.53× faster than the original multithreaded Word2Vec

implementation and 1.28× faster than a recent parallel Word2Vec

implementation. We also show that our accuracy on benchmark

queries is comparable to state-of-the-art implementations.

CCS CONCEPTS

•Computing methodologies → Shared memory algorithms; Nat-

ural language processing; Unsupervised learning;

KEYWORDS

word embeddings, Word2Vec, SGD, multicore

ACM Reference format:

Vasudevan Rengasamy, Tao-Yang Fu, Wang-Chien Lee, and Kamesh Mad-

duri. 2017. Optimizing Word2Vec Performance on Multicore Systems. In

Proceedings of IA3’17: Seventh Workshop on Irregular Applications: Archi-

tectures and Algorithms, Denver, CO, USA, November 12–17, 2017 (IA3’17),

9 pages.

DOI: 10.1145/3149704.3149768

1 INTRODUCTION

Word embedding techniques learn vector representations of words

in a given textual dataset such that semantically and syntactically

relevant words are close to each other in the vector space. �e

learned word vectors are e�ective and discriminative as inputs to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

IA
3’17, Denver, CO, USA

© 2017 ACM. 978-1-4503-5136-2/17/11. . .$15.00
DOI: 10.1145/3149704.3149768

many natural language processing and machine learning applica-

tions such as document classi�cation [14], machine translation [28],

and named entity recognition [15]. Distributional Semantic Mod-

els (DSMs) are approaches that use the count of co-occurrences

of words to obtain word representations. For example, the Posi-

tive Pointwise Mutual Information (PMI) method [8] learns high

dimensional sparse vector representations of words using the co-

occurrence counts of words. Each element in a word’s vector gives

the strength of association of that word to another word in the vo-

cabulary. Another DSM approach is Singular Value Decomposition,

where the dimensionality of the PMI matrix is reduced to create

dense vector representations for words.

Bengio et al. [4] and Collobert and Weston [9] present neural

network-based language models for predicting the next word when

given a sequence of words. In contrast to the count-based DSM

approaches, the neural network models predict words that are syn-

tactically and semantically similar. Mikolov et al.’s Word2Vec [19]

and Pennington et al.’s GloVe [22] are two popular neural network-

based models for word representation learning.

�e Word2Vec Skip-gram with negative sampling (SGNS) algo-

rithm is widely used for learning word vectors that are useful for

predicting the surrounding words (i.e., context words) of each word

(i.e., a target word) in a sentence. Levy, Goldberg, and Dagan [16]

show that SGNS training is faster than other competing methods.

Word2Vec has received considerable a�ention in the natural lan-

guage processing community. For example, Kiros et al. [13] propose

Skip-thought vectors that use the Skip-gram model at the sentence

level instead of word level to predict surrounding sentences that

share the same semantic information as the target sentence.

Although SGNS is faster than alternatives, it can still take consid-

erable time for training datasets with billions of words. For example,

our experiment indicates that on a 16-core platform, SGNS takes

nearly one hour to process a benchmark dataset with 805 million

words. Text corpora of several billion words are now commonplace,

and so improving SGNS e�ciency is important. Also, any opti-

mization technique that improves SGNS’s throughput can be used

to accelerate other applications of the Skip-gram model such as

Skip-thought vectors and BioVec [3]. Hence, in this paper, we focus

on improving the throughput of the Word2Vec SGNS algorithm.

SGNS uses the Stochastic Gradient Descent (SGD) algorithm for

model parameter optimization. �e input text corpus is scanned

word by word to generate word pairs. A word pair consists of either

a target word and another word from its neighborhood (a positive

sample), or the target word and a randomly chosen word (a negative

IA3’17, November 12–17, 2017, Denver, CO, USA V. Rengasamy et al.

sample). �e probability of whether these two words co-occur in

a sentence is estimated, and the vectors corresponding to the two

words are updated, based on the gradients of the objective function

with respect to the two words.

�e main throughput-limiting step in SGNS is the probability

calculation. �is involves several vector-vector operations (e.g., the

inner product of vectors corresponding to two words). �e inner

product of two length-D vectors requires 3D memory references

and 2D �oating point operations. Hence, the arithmetic intensity,

or the number of �oating point operations per memory access, is
2
3 . Without reuse, vector operations on modern platforms tend to

be memory-bound. Moreover, in a multithreaded se�ing, threads

update word vectors asynchronously without locking or atomics

(based on the H������! scheme [21]). �is could lead to a ping-

ponging of cache lines [12].

In this paper, we propose a new SGNS optimization called con-

text combining: we aim to improve the throughput of Word2Vec by

simultaneously processing multiple contexts and reusing positive

and negative samples. Due to the reuse across contexts, this opti-

mization has the e�ect of converting vector-vector inner products

used in SGNS to e�cient matrix-matrix multiplications, thereby im-

proving �oating point throughput. �e data reuse also reduces the

overhead due to randommemory accesses and asynchronous model

parameter updates. For processing the One Billion Word bench-

mark dataset on a 16-core platform, we achieve a 3.53× speedup

in comparison to the original Word2Vec implementation, and a

1.28× speedup compared to pWord2Vec [12], another recent paral-

lel SGNS implementation.

2 BACKGROUND

2.1 Word2Vec training process

Word2Vec includes two model architectures to learn word repre-

sentations, Contextual Bag-Of-Words (CBOW) and SGNS. CBOW

aims to predict the target word given the surrounding words (or

the context), whereas SGNS aims to predict context words given

the target word. Prior evaluations show that SGNS performs be�er

than CBOW on semantic tests, while performing slightly worse on

syntactic tests [19]. Further, SGNS is shown to have a higher accu-

racy on infrequent words [2]. For these reasons, SGNS is widely

used in many applications and hence is the focus of our work.

2.1.1 Skip-gram Model. �e Skip-gram model is a single layer

neural network model with one hidden layer. �e input layer is a

vector of size V (where V is the vocabulary size) representing a 1-

hot encoding of words. �e low dimensional word representations

are stored as input-hidden layer weight matrix Min , in which each

row is a D-dimensional vector representation of the corresponding

word in the vocabulary. �e 1-hot encoding performs the function

of selecting the input word representation from Min . �e output

layer computes the probability of a word � occurring in the same

context as a target word x , by computing probabilities using x and

K randomly-chosen negative samples:

log P(� |x) ≈ log sig(vx
T vy) +

K’

i=1

log sig(−vx
T vi)

Algorithm 1 Skip-gram with negative sampling, SGD updates in

one training window.

Target word x , context window size N , context words

�0,�1, . . . ,�N−1, K negative samples, SGD learning rate � .

1: for i = 0 to N − 1 do

2: for j = 0 to K do

3: if j = 0 then

4: s ← x , l ← 1

5: else

6: s ← rand. neg. sample, l ← 0

7: e ← l − sig(vin,yi
T vout,s)

8: dout ← evout,s
9: din ← evin,yi
10: vout,s ← vout,s + �din
11: vin,yi ← vin,yi + �dout

Here, vx is the word representation of x in Min . vy and vi are

the weight vectors for the target word � and the negative samples

inMout . From this equation, we can see that the probability calcu-

lation involves several memory-bound vector-vector products. �e

sigmoid function sig is de�ned as sig(u) = 1
1+exp (−u)

.

Positive and negative samples are processed using the Stochastic

Gradient Descent (SGD) algorithm during training. Word vectors

in the input and output layers are updated with the objective of

maximizing P(� |x) for positive samples and 1 − P(� |x) for negative

samples. Each word in the training data is processed successively

during the training process and the training involves many passes to

improve accuracy. In the multithreaded se�ing, data are partitioned

among threads and each thread asynchronously performs updates

using target words in its partition. �is lock-free scheme is known

as the H������! approach and is frequently used in many tasks

that rely on SGD.

In summary, the SGNS model learns a D-dimensional vector

representation of each word present in a large text corpus. �is

is done by using each target word to predict the surrounding N

context words in a sliding window manner. Algorithm 1 explains

the steps involved in the learning process for one target word x and

the N context words surrounding the target word. For each context

word �i , K negative samples are randomly selected. Lines 7-11

correspond to the SGD computation to update the word vectors.

All target words are processed in this manner and the entire dataset

is processed I times.

2.2 Matrix multiplication throughput

�e �oating-point throughput of SGNS can be signi�cantly im-

proved by converting vector-based computations into matrix-based

computations [6, 12]. However, the performance improvement de-

pends on the sizes of matrices, which in turn depend on the values

of K , D, and N .

Fig. 1 gives the single precision generalized matrix multiplica-

tion (SGEMM) throughput in Giga FLoating point Operations Per

Second (GFLOPS) for input matrices of sizes (K + 1,D) and (D, 2N).

�ese are sizes of matrices multiplied in Ji et al.’s pWord2Vec im-

plementation [12]. �e matrix multiplications are performed on a

IA3’17, November 12–17, 2017, Denver, CO, USA V. Rengasamy et al.

Table 1: �e default settings for hyper-parameters used.

Hyper-parameter Value

text8 1B

I Number of epochs/iterations 10 5

D Vector size 100 300

N Max window size 8 5

K Number of neg. samples 5

T Data segment size 500K

C Contexts combined 8

5.1.2 Data and queries. We use two training datasets in our

evaluations. text8 has approximately 17 million words taken from

Wikipedia, with a vocabulary size of 71, 292 unique words. �e One

Billion Word benchmark (1B) [7] dataset contains 805 million words

of news crawl data. �e vocabulary size is 1.1 million.

To evaluate performance on the word similarity task, we use the

WordSim353 (ws353) [10] benchmark queries containing 353 word

pairs with human assigned similarity scores. To evaluate word

analogy performance, we use the Google analogy queries [19],

which have 19, 544 questions of the form athens is to greece as

baghdad is to ?.

We use the evaluation methods described by Levy et al. [16].

E�ectiveness of a model on word similarity tests is evaluated by

ranking the word pairs based on the cosine similarity of the word

vectors and then measuring the Spearman’s correlation with the

ratings present in the test dataset. E�ectiveness of a model on word

analogy tests is evaluated as follows. For a given word analogy

question of the form a is to a* as b is to b*, where the answer b*

is hidden, the word that maximizes the cosine similarity function

(Equation 1) is taken to be the answer of the model. �e answer is

correct if it is same as b*. Model accuracy is reported as the fraction

of questions answered correctly.

cos(b∗,a∗ − a + b) = cos(b∗,a∗) − cos(b∗,a) + cos(b∗,b) (1)

5.1.3 Compile and Run time configurations. We compare our

context combining approach (denoted pSGNScc) to Mikolov et al.’s

Word2Vec and Ji et al.’s pWord2Vec approaches. We report training

time per epoch (or one pass over training data) and the accuracy on

word similarity and analogy tests. We used Intel compiler version

15.0.2 on Stampede and version 17.0.4 on Stampede2. We pin threads

to cores for all three methods. Table 1 gives the default se�ings we

use for the experimental hyper-parameters. Unless explicitly stated,

all experiments are run on a single compute node of Stampede

supercomputer using 16 threads.

5.2 Comparisons with state-of-the-art

implementations

5.2.1 Parallel Performance Evaluation. Fig. 5a compares the

training time with the three methods on a single node of the Stam-

pede supercomputer. For text8, pSGNScc results in a 3.6× speedup

over Word2Vec and a 1.08× speedup over pWord2Vec. For the

1B dataset, the speedup is 3.53× over Word2Vec and 1.28× over

pWord2Vec. �e increase in speedup over pWord2Vec from 1.08×

(text8) to 1.28× (1B) is due to the following reason. As the vocabu-

lary size increases from 71K (text8) to 1.1M (1B), selecting negative

samples becomes more expensive, since there are possibly more

random accesses to a larger vocabulary bu�er in memory, leading

to more last level cache misses. As pSGNScc method uses fewer

negative samples per target word compared to the pWord2Vec ap-

proach, the performance improvement is more pronounced on

larger datasets.

We analyze the time taken by each step of pSGNScc and pWord2Vec

in order to understand the reason for the performance improvement.

�e step-wise breakdown of time for one epoch of the two methods

are shown in Fig. 5b. Index overhead refers to the time taken for

creating the inverse index and traversing this index to �nd related

windows during training process. �e Create inM and Create outM

steps refer to copying context word vectors fromMin to the inM

matrix, and target word vectors from Mout to outM before SGD

computations. SGD computations refers to probability and gradient

computations, and UpdateMin and UpdateMout are the steps for

updating theMin andMout matrices a�er computation.

Fig. 5b shows that in pSGNScc, Create inM and UpdateMin are

slower than the pWord2Vec approach, whereas SGD computation,

Create outM andUpdateMout steps are faster, resulting in an overall

improvement in throughput. �e time for creating the inM matrix

increases because the pWord2Vec approach processes consecutive

windows. Hence, it has be�er cache locality. pSGNScc selects

related windows from random o�sets in the training data, hence

resulting in poor cache locality. �is is the reason for increase in

time for updatingMin matrix as well. outM matrix creation time

and Mout matrix update time decreases in pSGNScc because we

use 1/C fewer negative samples. SGD computation is faster because

of the larger matrices created, which results in be�er matrix-matrix

multiplication throughput.

Fig. 5c compares the training time of pSGNScc with Word2Vec

and pWord2Vec for a varying number of cores. We use the 1B

dataset for this experiment. Our implementation uses the default

hyper-parameter se�ings and hence, identi�es a maximum of 8

windows and processes them together during the training process.

As expected, pWord2Vec and pSGNScc are much faster than the

original Word2Vec implementation. pSGNScc is faster than the

pWord2Vec approach because it creates larger matrices for mul-

tiplication while reducing overheads involved. �e training time

forWord2Vec, pWord2Vec, and pSGNScc methods for the 16-thread

run are 691, 251, and 196 seconds, respectively. By processing 8 win-

dows at a time, pSGNScc achieves a 3.53× speedup over Word2Vec

and a 1.28× speedup over pWord2Vec. �e speedup obtained by 16

threaded execution of each method over single threaded execution

of the same method are 10.5× (Word2Vec), 14× (pWord2Vec) and

13.6× (pSGNScc). �e speedup for the original implementation is

less due to cache collisions and memory boundedness, whereas

the remaining two methods show good scalability characteristics.

�ese two methods show near-linear scalability up to 8 cores (7.64×

and 7.4×), a�er which remote NUMA accesses limit scaling.

Fig. 5d compares the training time on a single node of Stam-

pede2 supercomputer, which contains Intel Knights Landing (KNL)

processor. For the 1B dataset, pSGNScc results in a 2.47× speedup

over Word2Vec and 1.11× speedup over pWord2Vec. �ese values

are less than the speedups achieved on Stampede system because

IA3’17, November 12–17, 2017, Denver, CO, USA V. Rengasamy et al.

Table 3: Performance impact of T and C on the 1B dataset.

Value of T

100K 500K 1M 2M

Time per epoch (s) 220.13 196.03 196.74 201.13

Index time (s) 17.20 14.85 17.97 24.22

Avg. related windows (≤ 8) 5.49 7.53 7.80 7.92

Value of C

1 4 8 16

Time per epoch (s) 258.38 208.45 196.03 191.08

Index time (s) 3.16 12.47 14.92 20.25

SGD Computations (s) 129.94 108.27 102.12 95.69

sharing samples across multiple windows. We demonstrate a 3.53×

speedup in training time compared to the original Word2Vec SGNS,

and a 1.28× speedup compared to Ji et al.’s pWord2Vec implemen-

tation. �e training accuracy is comparable to these approaches.

Although matrix multiplication throughput is higher in compari-

son with pWord2Vec, it is still small compared to the system’s peak

�oating point throughput since we increase the size of only one of

the matrices (containing context words) involved in the multipli-

cation. In other words, there exists much room for improvement.

In the future, we would like to explore variants of this approach to

further improve the throughput, such as combining unrelated con-

texts (contexts that do not share words), or combining successive

contexts (contexts that share the most words). Another direction

for our future work is to extend the context combining strategy to

GPU and distributed-memory se�ings.

ACKNOWLEDGMENT

�is research is supported in part by the US National Science Foun-

dation grants ACI-1253881, CCF-1439057, IIS-1717084, and SMA-

1360205. �is work used the Extreme Science and Engineering

Discovery Environment (XSEDE) [26], which is supported by Na-

tional Science Foundation grant number ACI-1548562.

REFERENCES
[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geo�rey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wa�enberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). h�p://tensor�ow.org/ So�ware available from tensor�ow.org.

[2] Google Code Archive. 2013. word2vec: Tool for computing continuous dis-
tributed representations of words. (2013). h�ps://code.google.com/archive/p/
word2vec/.

[3] Ehsaneddin Asgari and Mohammad RK Mofrad. 2015. Continuous Distributed
Representation of Biological Sequences for Deep Proteomics and Genomics. PLoS
ONE 10, 11 (2015), e0141287.

[4] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003.
A neural probabilistic language model. Journal of Machine Learning Research 3,
Feb (2003), 1137–1155.

[5] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-Khanh Tran. 2012. Distribu-
tional Semantics in Technicolor. In Proc. Annual Meeting of the Association for
Computational Linguistics (ACL).

[6] John Canny, Huasha Zhao, Bobby Jaros, Ye Chen, and Jiangchang Mao. 2015.
Machine Learning at the Limit. In Proc. Int’l. Conf. on Big Data (Big Data).

[7] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, �orsten Brants, Phillipp
Koehn, and Tony Robinson. 2013. One Billion Word Benchmark for Measuring
Progress in Statistical Language Modeling. Technical Report. Google. h�p:
//arxiv.org/abs/1312.3005.

[8] KennethWard Church and Patrick Hanks. 1990. Word association norms, mutual
information, and lexicography. Computational linguistics 16, 1 (1990), 22–29.

[9] Ronan Collobert and Jason Weston. 2008. A uni�ed architecture for natural
language processing: Deep neural networks with multitask learning. In Proc.
Int’l. Conf. on Machine Learning (ICML).

[10] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan,
Gadi Wolfman, and Eytan Ruppin. 2001. Placing Search in Context: �e Concept
Revisited. In Proc. Int’l. Conf. on World Wide Web (WWW).

[11] Felix Hill, Roi Reichart, and Anna Korhonen. 2015. SimLex-999: Evaluating
SemanticModels with (Genuine) Similarity Estimation. Computational Linguistics
41, 4 (2015), 665–695.

[12] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. 2016. Parallelizing
Word2Vec in Multi-Core and Many-Core Architectures. In Proc. Int’l. Workshop
on E�cient Methods for Deep Neural Networks (EMDNN).

[13] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Proc. Conf. on
Neural Information Processing Systems (NIPS).

[14] Ma� Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. 2015. From Word
Embeddings To Document Distances. In Proc. Int’l. Conf. on Machine Learning
(ICML).

[15] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proc. Conf. of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL HLT).

[16] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving Distributional
Similarity with Lessons Learned from Word Embeddings. Transactions of the
Association for Computational Linguistics 3 (2015), 211–225.

[17] �ang Luong, Richard Socher, and Christopher D Manning. 2013. Be�er word
representations with recursive neural networks for morphology. In Proc. Conf.
on Computational Natural Language Learning (CoNLL).

[18] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
Estimation of Word Representations in Vector Space. In Proc. Int’l. Conf. on
Learning Representations (ICLR) Workshop.

[20] Tomas Mikolov, Wen-tau Yih, and Geo�rey Zweig. 2013. Linguistic regularities
in continuous space word representations. In Proc. Conf. of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL HLT).

[21] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J Wright. 2011. H���
����!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In
Proc. Conf. on Neural Information Processing Systems (NIPS).

[22] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proc. Conf. on Empirical Methods in
Natural Language Processing (EMNLP).

[23] Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch.
2011. A Word at a Time: Computing Word Relatedness using Temporal Semantic
Analysis. In Proc. Int’l. Conf. on World Wide Web (WWW).

[24] Stergios Stergiou, Zygimantas Straznickas, Rolina Wu, and Kostas Tsioutsioulik-
lis. 2017. Distributed Negative Sampling for Word Embeddings. In Proc. AAAI
Conf. on Arti�cial Intelligence (AAAI).

[25] Deeplearning4j Development Team. 2017. Deeplearning4j: Open-source dis-
tributed deep learning for the JVM. (2017). Apache So�ware Foundation License
2.0, h�p://deeplearning4j.org.

[26] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Sco� Lathrop, Dave Li�a, Gregory D. Peterson,
Ralph Roskies, J. Ray Sco�, and NancyWilkins-Diehr. 2014. XSEDE: Accelerating
Scienti�c Discovery. Computing in Science & Engineering 16, 5 (2014), 62–74.

[27] Jeroen BP Vuurens, Carsten Eickho�, and Arjen P de Vries. 2016. E�cient
Parallel Learning of Word2Vec. In Proc. Int’l. Conf. on Machine Learning (ICML)
ML Systems Workshop.

[28] Will Y Zou, Richard Socher, Daniel M Cer, and Christopher D Manning. 2013.
Bilingual Word Embeddings for Phrase-Based Machine Translation. In Proc. Conf.
on Empirical Methods in Natural Language Processing (EMNLP).

Optimizing Word2Vec Performance on Multicore Systems IA3’17, November 12–17, 2017, Denver, CO, USA

A ARTIFACT DESCRIPTION

A.1 Abstract

Our artifact contains source �les for three implementations of

Word2Vec compared in this paper namely, Word2Vec, pWord2Vec

and pSGNScc. We have obtainedWord2Vec source �le from h�ps://

github.com/dav/word2vec (commit 80be14a) and pWord2Vec source

�le fromh�ps://github.com/IntelLabs/pWord2Vec (commit e6d0d1e).

We have modi�ed both these source �les to instrument time for

di�erent training stages. We have implemented our Context Com-

bining method (pSGNScc) on top of pWord2Vec. pWord2Vec and

pSGNScc implementations require Intel C++ compiler and MKL

library. �e three implementations have been tested on shared

memory systems with multicore Intel CPUs.

We have provided Collective Knowledge (CK) integration to

automatically check for dependencies, compile, run experiments

presented in our paper and present execution time and accuracy

results in tabular format.

A.2 Description
A.2.1 Check-list (artifact meta information).

• Algorithm: Context Combining (CC).

• Program: pSGNScc.cpp implements CC algorithm. Also included

are word2vec.c and pWord2Vec.cpp programs for comparison.

• Compilation: Intel Compiler.

• Binary: Binary not included.

• Data set: �e 2 datasets used in this paper namely, text8 and 1B

have been added as CK packages and can be downloaded via CK.

text8 dataset requires ≈100MB and 1B dataset requires ≈6GB disk

space.

• Run-time environment: Our artifact has been developed and

tested on Linux environment. �e main so�ware dependencies

include Intel C++ compiler, MKL library and Python version > 2.7.

• Hardware: We used Intel Xeon E5-2680 (Sandy Bridge) and Intel

Xeon Phi (Knights Landing) processors for experiments presented

in our original paper. Similar hardware should result in similar

speedup results. Main memory usage is ≈5GB.

• Output: All the three programs output a text �le containing

the learnt word representations. �ese �les are used to evaluate

training accuracy. �ese �les will be created in the user’s home

directory and hence home directory should have at least 4GB free

disk space. �e experiments output a table to the console. Each

table corresponds to one Figure in the paper indicating execution

times and accuracy.

• Experiment work�ow: We have used CK framework to create

experiment work�ows.

• Publicly available?: Yes.

A.2.2 How delivered. Our artifact is available on GitHub:

h�ps://github.com/vasupsu/IA3 Paper16 ArtifactEvaluation.

A.2.3 Hardware dependencies. Our experiment work�ows use

1 to 16 threads to report training time and hence we suggest a

machine with at least 16 CPU cores and 5 GB main memory.

A.2.4 So�ware dependencies. We recommend Linux x86 64 en-

vironment for running the experiments. We require Intel C++ com-

piler and hyperwords [16] package for evaluating training accuracy.

Hyperwords package has been added as a run time dependency and

will be downloaded when the programs are run for the �rst time.

A.2.5 Datasets. �e datasets text8 and 1B have been added as

CK packages and can be downloaded via CK.

A.3 Installation

CK can be installed by cloning a development CK version from

GitHub and then se�ing the PATH environment variable.

$ g i t c l one h t t p s : / / g i t hub . com / c tun ing / ck .

g i t ck−master

$ expo r t PATH=$PWD/ ck−master / b in : $PATH

Our artifact named IA3 Paper16 ArtifactEvaluation can be in-

stalled via CK as:

$ ck p u l l repo −−u r l = h t t p s : / / g i t hub . com /

vasupsu / I A 3 P a p e r 1 6 A r t i f a c t E v a l u a t i o n

Datasets can be downloaded and installed by running the com-

mand

$ ck i n s t a l l package −− t a g s = d a t a s e t , words

twice and selecting 1 dataset each time.

A.4 Experiment work�ow

We have provided 4 experiment work�ows implemented as CK

modules in the IA3 Paper16 ArtifactEvaluation repository. �ese

modules are named ia3-2017-paper16-�gure5a, ia3-2017-paper16-

table2, ia3-2017-paper16-table3a and ia3-2017-paper16-table3b. �e

module ia3-2017-paper16-�gure5a outputs tables to verify results in

Figures 5a, 5b and 5c. �e module ia3-2017-paper16-table2 is used to

verify results in Table 2 and the modules ia3-2017-paper16-table3a,

ia3-2017-paper16-table3b are used to verify results in Table 3.

Each of the experiment work�ows can be run using the following

CK command:

$ ck run exp t <module−name>

A.5 Evaluation and expected result

�e training times output by the experiment work�ows need not

match exactly with the numbers reported in the paper owing to

disparity in CPU clock frequency and concurrency se�ings. How-

ever, the relative speedup of pSGNScc method over pWord2Vec and

Word2Vec and the accuracy of di�erent methods obtained from

the experiment outputs should be similar to the values reported in

the paper. �e relative speedup information can be obtained using

the output table of experiment ia3-2017-paper16-�gure5a which

corresponds to Figure 5a.

A.6 Experiment customization

Apart from the experiment work�ows provided as CK modules,

each program can be run independently with di�erent hyperparam-

eter se�ings. �e CK program names corresponding to Word2Vec,

pWord2Vec and pSGNScc implementations areword2vec, pword2vec

and pSGNScc respectively. For example, the CK command to run

pSGNScc program using 16 threads is:

$ ck run program : pSGNScc −−env . CK THREADS=16

	Abstract
	1 Introduction
	2 Background
	2.1 Word2Vec training process
	2.2 Matrix multiplication throughput

	3 Related Work
	4 Our Approach
	4.1 Preprocessing
	4.2 Identifying C related windows
	4.3 Perform SGD update
	4.4 Parallelization

	5 Experiments and Results
	5.1 Experimental setup
	5.2 Comparisons with state-of-the-art implementations
	5.3 Tuning T and C

	6 Conclusions
	References
	A Artifact description
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result
	A.6 Experiment customization

