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Abstract

Multi-view data are extensively accessible nowa-
days thanks to various types of features, differ-
ent view-points and sensors which tend to facili-
tate better representation in many key applications.
This survey covers the topic of robust multi-view
data representation, centered around several ma-
jor visual applications. First of all, we formu-
late a unified learning framework which is able to
model most existing multi-view learning and do-
main adaptation in this line. Following this, we
conduct a comprehensive discussion across these
two problems by reviewing the algorithms along
these two topics, including multi-view clustering,
multi-view classification, zero-shot learning, and
domain adaption. We further present more practi-
cal challenges in multi-view data analysis. Finally,
we discuss future research including incomplete,
unbalance, large-scale multi-view learning. This
would benefit Al community from literature review
to future direction.

1 Introduction

Multi-view data generated from various view-points or mul-
tiple sensors are commonly seen in real-world applications.
For example, the popular commercial depth sensor Kinect
uses both visible light and near infrared sensors for depth
estimation; autopilot uses both visual and radar sensors to
produce real-time 3D information on the road; face analysis
algorithms prefer face images from different views for high-
fidelity reconstruction and recognition. However, such data
with large view divergence would lead to an enormous chal-
lenge: data across various views have a large divergence pre-
venting them from a fair comparison. Generally, different
views tend to be treated as different domains from different
distributions. Thus, there is an urgent need to mitigate the
view divergence when facing specific problems by either fus-
ing the knowledge across multiple views or adapting knowl-
edge from some views to others. Since there are different
terms regarding “multi-view” data analysis and its aliasing,
we first give a formal definition and narrow down our re-
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search focus to differentiate it from other related works but
in different lines.

Definition [Multi-view Data]: Assume we have a set of
data X = {X;1, X5, -+, X, } from v views, e.g., face poses,
camera views and types of features. In this paper, we
are especially interested in two cases upon data correspon-
dence: First, the samples across v views are correspondent
(i.e., sample-wise relationship) in multi-view data, falling in
the conventional multi-view learning; Second, the samples
across different views have no data correspondence, falling
in the domain adaption scenario, where discriminant knowl-
edge are transferred.

First, multi-view learning aims to to merge the knowledge
from different views to either uncover common knowledge,
or employ the complementary knowledge in specific views
to assist learning tasks, e.g., clustering [Zhao et al., 2017,
Tao et al., 2017], outliers detection [Zhao et al., 2018] and
classification [Ding and Fu, 2014; 2017b; Kan et al., 2016b;
2016a; Li er al., 2017; Ding and Fu, 2016]. For example,
in vision, multiple features extracted from the same object
by various visual descriptors, e.g., LBP, SIFT and HOG are
very discriminant in recognition tasks. Another example is
multi-modal data captured, represented, and stored in varied
formats, e.g., near-infrared & visible face, and image & text.

Second, domain adaptation attempts to transfer knowledge
from labeled source domains to facilitate the learning burden
in the target domains with sparsely or no labeled samples. For
example, in surveillance, faces are captured by long wave in-
frared sensor in night-time, but recognition model is trained
on regular face images collected under visible light. Con-
ventional domain adaptation methods [Ding and Fu, 2017b;
Ding et al., 2015a; Shao et al., 2014] consider seeking
domain-invariant representation for the data or modifying
classifiers to fight off the marginal or conditional distribution
mismatch across source and target domains.

In this work, we provide a comprehensive review on robust
multi-view data representation by jointly considering multi-
view learning and domain adaptation as a unified learning
framework. To the best of our knowledge, this is the first
work to discuss both of them in such a unified perspective.
Beyond their similarity, we further discuss their differences
based on data organization and problem setting, as well as the
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research goal. To sum up, we have our two-fold contributions
as follows:

e First of all, we formulate multi-view learning and do-
main adaptation as a unified objective into two parts:
multi-view alignment term and feature learning regu-
larizer. This formulation would cover most multi-view
representation learning algorithms in the fields of multi-
view learning and domain adaptation.

e Secondly, based on the unified perspective, we further
broaden our discussions of multi-view learning and do-
main adaptation, specifically for their different problem
settings. Then, we lead a comprehensive review of our
past research and other highly related work in this line.

2 A Unified Perspective

Due to the distribution divergence across different views,
view-invariant feature learning is a widely-used and promis-
ing technique to address the multi-view challenges. Gen-
erally, multiple view-specific linear or non-linear mapping
functions would be sought to transform the original multi-
view data into a new common space by identifying dedicated
alignment strategies with various loss functions. Specifically,
we could formulate them into a common objective including
two parts: (1) multi-view alignment term; (2) feature learning
regularizer, namely:

v v
min > A, f5(X5)) + A DD RU(X)),
AR A k=1

where f;(-) is a feature learning function for view i, either
linear, non-linear mapping, or deep network.

The first common term .A(-) is a pairwise symmetric align-
ment function across multiple views to either fuse the knowl-
edge among multiple views or transfer knowledge across dif-
ferent views. Due to different problem settings, multi-view
learning and domain adaptation would explore various strate-
gies to define the loss functions. While multi-view learning
employs data correspondence (i.e., sample-wise relationship
w/ or w/o labels) to seek common representation, domain
adaptation employs domain- or class-wise relationship during
the model learning for discriminant domain invariant feature.

The second common term R () is the feature learning reg-
ularizer by incorporating either the labeled information or the
intrinsic structure of the data, or both during the mapping
learning. For a part of multi-view learning algorithms, they
would merge feature learning regularizer into the alignment
term. Generally, the formulation of the second term is very
similar between multi-view learning and domain adaptation
within our research concentration.

For clarity, Table 1 lists the frequently used notations.

3 Multi-View Learning

For multi-view learning, the goal is to fuse the knowledge
from multiple views to facilitate common learning tasks, e.g.,
clustering and classification. The key challenge is explor-
ing data correspondence across multiple views. The map-
pings among different views are able to couple view-specific
knowledge while additional labels would help formulate su-
pervised regularizers.

Notation  Description
Il 1le Frobenius norm of a matrix
rank(-)  rank operator of a matrix

I 1l Nuclear norm of a matrix
tr(+) the trace of a matrix
IRt the /;-norm of a matrix
[ - 1l2.1

the l5 1-norm of a matrix
P/W View-invariant linear projection/rotation
P, /W; the linear projection/rotation for view i
H the new shared representation for all views
H; the new representation for the ¢-th view
L a pre-defined matrix for all views
L; a pre-defined matrix for the i-th view
Z the reconstruction matrix for all views
Z; the reconstruction matrix for the i-th view
S within-class scatter matrix for the i-th view
Sw within-class scatter matrix for all views
S g between-class scatter matrix for the i-th view
Sh between-class scatter matrix for all views
a, B,\,n balance parameters

Table 1: Notations and Descriptions.

3.1 Multi-view Clustering

The general setting of multi-view clustering is to group n data
samples in v different views (e.g., v types of features, sensors,
or modalities) by fusing the knowledge across different views
to seek a consistent clustering result.

As known to all, canonical correlation analysis (CCA) is
the most popular algorithm to achieve a common space for
two views. Specifically, CCA attempted to obtain two pro-
jections, one for each view, to transform the data from two
different views into a shared subspace, respectively, through
maximizing the cross correlation across two views:

A() = —tI‘(PlTXlX;—PQ)

with constraint as tr(P,' X; X," P;) = I,, (i = 1,2).

While pairwise constraint for multiple views works well,
it becomes trivial when the number of views is large. Thus,
given more views, a more efficient solution (Multi-view CCA
[Chaudhuri et al., 2009]) was proposed to seek a unified com-
mon space shared across all views:

v

A== Y t(BTX:X] P
i j=1,i]
with constraint as tr(P," X; X, P;) =1, (i = 1,--- ,v).

Moreover, several recently proposed approaches for multi-
view representation learning were based on deep neural net-
works (DNN), inspired by their success in typical unsu-
pervised (single-view) feature learning settings. Andrew et
al. proposed a DNN extension of CCA termed deep CCA
(DCCA [Andrew et al., 2013], where two DNNs are used to
learn nonlinear features from each view and meanwhile the
canonical correlation across two views is maximized:

A() = *tf(Plel(Xl)ﬁ(Xz)TPz)
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with constraints as tr(P," (f;(X:)fi(X)))P) = 1, (i =
1,2). p{ f1(X1)f2(X2) " py; = O for k # I, where p,
is the k-th column of P;.

Following the idea of deep learning, we explored semi-
nonnegative matrix factorization to obtain the hierarchical se-
mantics from multi-view data in a layer-wise manner [Zhao
et al., 2017]. To maximize the mutual information of each
view, we couple new representations of all views to be the
same in the final layer. Furthermore, graph regularizers are
introduced to incorporate intrinsic geometric structure for the
deep structures:

tr(HL;HT),

P
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with constraints H > 0,>7_; o; = 1, > 0. And 7 is
adopted to balance the weights distribution.

Discussions: As no labels are available, the common repre-
sentation by either deep or shallow structure is learned based
on underlying distributions or the descriptors of data. The
statistics of data together with deep representation learning
plays a critical role. However, how to extend such as numeri-
cal methods to large-scale dataset will be an open question.

3.2 Multi-view Classification

The general setting of multi-view classification is that it needs
to build a model with given v views of training data. In the
test stage, we would have two different scenarios. First, one
view will be used to recognize other views with the learned
model. In this case, the label information across training and
test data is different'; Second, specifically for multi-features
based learning, is that v-view training data is used to seek
a model by fusing the cross-view knowledge, which is also
used as gallery data to recognize v-view probe data’.

Traditionally, to seek a discriminant shared space for mul-
tiple views, the label information is usually incorporated.
Along this line, Sharma et al. developed a generalized
multi-view analysis (GMA) framework [Sharma et al., 2012],
where the supervised information was involved as:

A() = Z; pitr(PTSyP;) + 37 Nijte (P X, X[ Py)

1<j

v .
with constraints Y v;tr(P;"SL P;) = I,

=1
Moreover, Cai et al. adopted partial least squares (PLS)
regression to classify faces with variations in pose, resolution

1Zero-shot learning [Ding et al., 2017] can also be modeled as a
special case of multi-view learning, which involves two views, i.e.,
visual features and semantic features.

?In this second case, gallery data and probe data have the same
label information. In reality, we may confront such a challenge that
we have no prior knowledge for the view information of test data, es-
pecially for cross-pose and cross-modality image recognition [Ding
and Fu, 2014; 2017al.
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and image domains [Cai et al., 2013]. To better align mul-
tiple view-specific transformations, they employed a smooth
constraint as well:

v v—1
A() = 21 |HL; — PiXi|% + 8 Zl 1P = Piyallz,
R(:)=tr(HLHT"),
where they only explored the constraints on the poses in their
neighborhoods.

Although GMA and PLS are able to learn a discrimi-
nant common subspace, they only took into consideration
the within-view knowledge, but ignored the between-view in-
formation. To this end, Kan et al. proposed a multi-view
discriminant analysis approach [Kan et al., 2016b] that can
achieve a single discriminant shared space for all views by
simultaneously learning v view-specific projections:

() = tr(Pp S, P)
(PSP’

where P, = [P X1, , P) X,].

By exploring deep neural networks, Kan et al. further pro-
posed a multi-view deep network, which aims to eliminate
the complex view divergence for favorable multi-view learn-
ing by seeking deep view-invariant and discriminant features
[Kan et al., 2016al. Specifically, the MvDN architecture in-
cludes two sub-networks, one is view-specific sub-network
fi(+) to reduce view-specific variations and the other is com-
mon sub-network g¢.() to seek shared representation across
all views. Finally, they adopted the Fisher loss, i.e. the
Rayleigh quotient objective, to guide the whole architecture
learning:

(D

_ tr(FuSuF, )
A() = (RS, FT)
where F, = [gc(f1(X1)), -+ 5 9e(fo(X0))]-

Previously mentioned algorithms were designed to solve
general multi-view classification problems. Thus, they
mainly consider label information during the multi-view
alignment. For applications with domain knowledge, e.g.,
kinship verification and action recognition, specific loss func-
tions may be required. For kinship verification, we devel-
oped a Coupled Marginalized Auto-Encoders [Wang et al.,
2016], where two marginalized denoising auto-encoders were
designed for source and target views. To better align two de-
noising auto-encoders, a feature mapping was incorporated
to adapt knowledge across the intermediate and the target
view. Furthermore, the maximum margin criterion is imposed
on the top layer to learn more discriminative representations
across those domains as:

A() = 1P X1 — WP Xolz+

a Y yullPLP X — PB,WP) X3,
k=1

2 ~
R() = 21X~ PP Xil[%,
where y,; € {—1,1} indicates the relationship between the

k-th sample of X7 and the [-th sample of X5, either positive
(1) or negative (-1).
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We also explored the cross-view action recognition prob-
lem in this line by seeking view-specific and view-shared net-
works through novel deep models [Kong et al., 2017]. Specif-
ically, view-specific networks target at capturing unique pat-
terns within each view, and view-shared network aim to en-
code common dynamics across different views. Furthermore,
we explored the incoherence across the two types of net-
works, which is encouraged to remove information redun-
dancy and uncover more discriminant knowledge:

AC) = 3 (IWTW; |2+ Bte(Wi X, LXT W),

i=1

R()=||[WX — XL||2 + ; a|WiXi — X3

Compared with traditional neural networks [Kan et al.,
2016a] and auto-encoder [Andrew et al., 2013], marginal-
ized denoising auto-encoder adopted by [Wang er al., 2016;
Kong et al., 2017; Ding et al., 2015a] is much faster and also
achieves comparable results in many applications. Thus, it is
widely used in various large-scale problems recently.

Discussions: The success of these methods partially lies
in the discriminant features for either face or video anal-
ysis as the methods above primarily concentrate on high-
level feature modeling. Thus, Fisher criterion or fast running
marginalized auto-encoder could be applied. Nonetheless, in
face of unbalanced data across classes, or poor features, these
modeling would fail. Incorporating robustness and end-to-
end discriminant feature learning will be our future research.

In our previous work, we also explored some challenging
problems in multi-view classification, e.g., zero-shot learning
and view-unknown learning problem.

Zero-shot Learning

There is a special case of multi-view learning, i.e., zero-shot
learning (ZSL), which is inspired by the learning mechanism
of human brain. The goal is to classify new categories which
are unobserved during the training process. For instance, one
is able to predict a new species of animal after being informed
what it looks like and how it is different from or similar to
other known animals. Generally, there will be two views in
ZSL, i.e., visual features and semantic features that are highly
coupled. Different from conventional multi-view classifica-
tion, the key of ZSL is to find the mapping across two views
and generalize well to unseen test data.

To this end, we developed an effective Low-rank Embed-
ded ensemble Semantic Dictionary learning to solve zero-
shot learning [Ding et al., 2017], with the main assumption
as the latent semantic dictionary learned from the seen cat-
egories should contain majority information for the unseen
categories. Furthermore, we exploited multiple transferable
dictionaries through ensemble strategy to have a better chance
to recover the latent semantic space for unseen data:

K
A() = Wt - DXSZ .

R(-) =rank(W) — ‘_Zd;H a2(W),

where XV /5 is a random selection of X1 /5 and o (W) is the
i-th smallest singular value.
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When Probe View is Unknown

Traditional multi-view learning approaches targeted at seek-
ing multiple view-specific projections either linear or non-
linear, since they assumed the view information of train-
ing and test data were already accessible in advance. Ac-
tually, we always confront the situations that we have no
prior for the test data’s view information, and therefore, mul-
tiple view-specific projections cannot be used to learn its spe-
cific feature representations. To this end, we proposed to
seek a view-invariant projection to fight off this challenge
in multi-view data learning scenarios [Ding and Fu, 2014;
2017al:

v

AC) = 3 (IZills + allP; = Plly) + Btr(Sw — 1Ss)

i=1
with constraints as PZ-TXj = P'DZ;, PP = I, and
Sw /b is the within-class/between-class scatter matrix defined
on P'D[Zy,---,7Z,]. In our model, we attempt to ad-
dress the semantic gap across multiple views by learning a
shared transformation from multiple view-specific ones. To
achieve this, low-rank reconstruction is explored to bridge
the view-specific features and the view-invariant ones trans-
formed with the collective low-rank subspace. Furthermore,
we adopted a supervised cross-view regularizer to align the
intra-class data across multiple views.

Discussions: While these methods are promising in the pre-
diction tasks with semantic gap, it usually showcases between
similar visual concepts, e.g., different objects, categories of
animals, or different views of same subject. A more gen-
eral learning paradigm for intelligent recognition targeting at
large semantic gaps will be the future direction.

4 Domain Adaption

The goal of domain adaptation is to transfer knowledge from
well-labeled sources to unlabeled targets, which accounts for
the more general settings that some source views are labeled
while target views are unlabeled. The general setting of do-
main adaptation is that we build a model on both labeled
source data X and unlabeled target data X;. Then we use
the model to predict the unlabeled target data, either the same
data in the training stage or different data. Thus, we have
corresponding transductive domain adaptation and inductive
domain adaption.

To make domain adaption more general, we define vs(vs >
1) source data X; = {X1|Y1,- -, X, Yo, } and v (vy > 1)
unlabeled target data X; = {X, 1|7, , X7} (v =
vs + v¢). The task is to train a model on labeled source and
unlabeled target to predict the label of target data. A fea-
sible and practical way is joint feature learning and domain
alignment to seek more effective domain-invariant space. For
simplicity, we also denote X as the m copy of X = [X;, X¢],
and X as the corruption of X.

Currently, reconstruction error [Ding et al., 2016; Li et al.,
2016; Shao et al., 2014] and Maximum Mean Discrepancy
(MMD) [Ding and Fu, 2017b] are two promising techniques
as the distance measure to compare different distributions of
source and target domains.
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4.1 Transfer Subspace Learning

Subspace learning is the most popular feature learning strat-
egy. Along this line, we proposed a Transfer Subspace Learn-
ing [Shao er al., 2014] by transforming both source and tar-
get data into a domain-invariant subspace, in which each
target sample will be reconstructed by several source sam-
ples from a neighborhood. Furthermore, low-rank constraint
was adopted to guide the reconstruction, and therefore, this
knowledge transfer scheme can preserve the intrinsic struc-
tures of source and target domains. Through an iterative op-
timization way, good alignment across two domains tends to
be guaranteed when the target samples are only remonstrated
by several relevant samples of the source domain in the latent
space, ideally the same-class data. Then the discriminability
in the source domain will be naturally passed on to the target
domain. Specifically, the two parts in [Shao er al., 2014] are
defined as follows with constraint PT P = I,,:

A(-) = IPTX, — PT X, Z||% + Brank(Z),
R(-) = tr(PTX,LX/] P).

Later on, Li et al. developed a domain adaption framework,
which smoothly merges feature selection as well as structure
preservation into a unified model [Li et al., 2016]. Specifi-
cally, the two parts in [Li er al., 2016] are defined as follows
with constraint PT P = L,:

A()=IPTX - PTX.Z|} + BIIZIIE
R() = tr(PTXLX T P) + a|| P21,

which is different from our low-rank transfer learning [Shao
et al., 2014; Ding et al., 2015b] as it explored Frobenius
norm to replace rank constraint and further exploited a fea-
ture selection regularizer on subspace projection. Thus, it can
speed up the optimization without rank constraint, and deploy
group sparsity to seek a more effective subspace. Similarly,
we also explored Frobenius norm to guide the reconstruction
for knowledge transfer to segment human motion in an unsu-
pervised fashion [Wang er al., 2018].

Furthermore, Tsai et al. particularly addressed the prac-
tical and challenging scenario of imbalanced cross-domain
data [Tsai et al., 2016]. That is, the label numbers across do-
mains are not assumed to be the same. To solve the above task
of imbalanced domain adaptation, they proposed a novel al-
gorithm of domain-constraint transfer coding with constraint
PTXLiXTP =1,

A()=IPTX, = PTX.Z|} + BIIL © Z]f%,

which is able to exploit latent sub-domains within and across
data domains, and learns a common feature space for joint
adaptation and classification purposes. © is element-wise
matrix multiplication.

The downside of previous works is they all ignored con-
ditional distribution, which motivates us to jointly consider
marginal and conditional distributions by a robust knowledge
transfer metric [Ding and Fu, 2017b]. Specifically, we ex-
ploit knowledge transfer to mitigate the domain shift in two
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directions, i.e., sample space and feature space (Note that
M = PPT is a semi-positive definite matrix):

A() = tr(SM), R() = || X — MX|2 + arank(M),

where S is domain/class-wise mean difference matrix. Sim-
ilarly, we also boost the our previous reconstruction-based
domain adaptation models through conditional distribution
matching and adopt a pre-defined or iterative-updated struc-
ture matrix to guide the reconstruction coefficients learning
in [Ding et al., 2015a; 2016; Ding and Fu, 2018].

Missing Modality Transfer Learning

An interesting problem in multi-modality learning is lack
of target data, i.e., one specific modality, in training stage.
Fortunately, we can borrow the knowledge from a complete
multi-modality dataset and model it as domain adaptation
in two directions, i.e., cross-modality and cross-dataset. To
that end, we designed a novel framework by exploring two-
directional transfer [Ding ef al., 2014; 2015b], each of which
is defined as follows with constraint PT P = L,:

AC) = 1Yy = PTXZ + WY E + a1 2]l + [[W]).),
R() = ||P2.1 + Btx(PTLP),

where a latent factor W is generated to seek the underlying
structure of the missing modality from the observed modal-
ities. Thus, we iteratively consider two-directional transfer,
which allows the knowledge transfer across both modalities
and databases to mitigate the missing modality. Note this may
be conceptually similar to zero-shot learning, or domain gen-
eralization while we are able to refer to an auxiliary dataset
in this case.

Incomplete Multi-Source Transfer Learning

In recent problems, multiple sources may account for knowl-
edge adaption, however, each one may not contain complete
categories information compared to the target domain. Sim-
ply merging multiple sources as a whole would result in infe-
rior output because of the large discrepancy within multiple
sources. Thus, we aim to explore better knowledge trans-
fer from incomplete multiple sources to boost the learning
task for target domain [Ding et al., 2016]. Finally, we devel-
oped an incomplete multi-source transfer subspace learning
algorithm from through two directions, one is cross-domain
knowledge transfer from each source to target domain, where
we deploy a latent low-rank transfer scheme [Ding et al.,
2015b; 20141 to implicitly recover the missing categories in
each source; and the other is cross-source knowledge transfer
to joint multi-source information effectively, where we design
an unsupervised graph term to couple multiple sources in or-
der to compensate for incomplete categories from one source
to another. With the orthogonal constraint PP = I,, we
have the two terms as:

Vg

AC) =3 (1Zills + Wil + ol Z; — Lil %

=1

+ B|IPT Xy = Y Z; — W;PT X4|%)

R() =Y (Ys,ZLZY,) + tx(PT X, LX, P).
i=1
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Discussions: As widely discussed along with subspace learn-
ing, kernelization and tensorlization are better counterparts
for non-parametric and multi-linear modeling. While deep
learning plays key roles in methods above, they will not work
well given limited data. Thus, there is a need to develop
kernel or tensor methods in this line. In addition, most of
transfer subspace learning in this vein requires large matrices
products and eigen-decomposition, which imposes additional
computing load with large dataset. Thus, algorithm acceler-
ating would benefit the deployment in the real-world applica-
tions, especially when dealing with large-scale data.

4.2 Deep Domain Adaption

Recently, we explored a stacked deep low-rank coding frame-
work [Ding et al., 2015a] for knowledge transfer. Specif-
ically, for each layer, we obtained discriminative low-rank
coding with the guidance of marginalized denoising strategy
and an iterative structured term. Hence, both marginal and
conditional differences across two domains can be well miti-
gated. The two parts for each layer are defined as follows:

A() = WX - WX Z||§ + ol Z||. + B||Z — L|E,
R() =tr[(X - WX) (X - WX)],

where we could further achieve next-layer coding with the
learned previous-layer coding in a layer-wise fashion.

Most recently, deep domain adaptation [Long e al., 2015;
Rozantsev et al., 2018] targeted at improving the feature
adaptation ability in the top layers of DNNs by explicitly mit-
igating the domain shift. Therefore, they are able to achieve
feed-forward architectures, which are applicable to the tar-
get domain without being harmed by the domain mismatch.
Specifically, they adopt the deep architectures, e.g., AlexNet,
GoogLeNet, ResNet, with domain alignment constraint (e.g.,
MMD or CORAL [Sun et al., 2016]) at the top layers. More-
over, cross-entropy loss on the labeled source data is often
adopted as the feature learning regularizer.

Domain Generalization

Existing domain adaptation algorithms all assumes that tar-
get data are still available for training although they are un-
labeled. However, it would always happen in reality that the
target data are totally inaccessible in advance. This is ex-
tremely challenging since we have no prior knowledge of
the target domain. To fight off this issue, we developed a
deep domain generalization algorithm by seeking consistent
knowledge from multiple available source domains, where
we explored a structured low-rank reconstruction to guide the
knowledge transfer from each source to the unseen target do-
main as follows:

A() =) IHi~HZ|§ + 2] +allZ - L},

where we designed multiple domain-specific DNNs to learn
the rich knowledge within multiple source domains, and si-
multaneously a domain-shared DNNs to capture the com-
mon information across multiple sources. In this way, such
a domain-shared DNN is still valid to unseen target domain.

Discussion: There is always a debate in this line whether an
end-to-end deep learning paradigm is needed. While some
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research reports better results using end-to-end training, the
performance is evaluated on small-scale datasets. Domain
adaptation usually offers small amount of target data, either
labeled or not, and thus, fine-tuning across large semantic
gaps may not work well. Therefore, deep features with con-
ventional domain adaptation methods is not a bad choice.

5 Conclusions and Future Work

In this paper, we presented a comprehensive survey on ro-
bust data representation for multi-view learning and domain
adaptation problems. We identified the shared and distinct
terms across multi-view learning and domain adaptation, and
lead a detailed discussion including our recently proposed
algorithms for multi-view clustering, multi-view classifica-
tion and domain adaptation in general, and zero-shot learn-
ing, view-unknown learning, missing modality learning, and
incomplete multi-source learning in particular. This would
benefit the Al community in both industry and academia from
literature review to future directions. Despite the recent ad-
vances, in future research, we will focus on the following
factors: imbalanced, incomplete, and large-scale datasets, as
identified in our previous discussions:

First, large-scale multi-view image retrieval needs many
image pairs across views to learn correspondence. But both
the probe and reference images are not under control in terms
of both quality and quantity. For example, in forensic face
recognition, we have a single sketch face as reference to re-
trieve RGB faces from surveillance cameras, and enrolled
face images from police department. The sketch needs to be
converted to common feature first and then compared against
RGB faces. The single sketch and many other RGB faces
from different persons, with varied quality and numbers pose
an extreme unbalanced learning.

Second, how to adapt the knowledge from existing large-
scale public datasets to new domains or problems where train-
ing samples are few? This is extremely critical for prob-
lems that need knowledge extrapolation. This is essentially
a “compound” of few-shot learning and domain adaptation.
We still take face recognition as an example, where we intend
to extend the well-trained face recognition algorithms for day
time to night light under poor illuminations. We may only
given few images per person in night time, which accounts
for the extremely incomplete multi-view data.

Finally, generalizing the discussed methods to large-scale
datasets in the wild is the ultimate goal as most of them re-
quire intensive computing in numerical optimization, e.g.,
O(n?) where n is number of the samples. We may refer to ex-
isting efficient solutions for eigen-decomposition that shrink
it down to O(n?) under mild condition, or other heuristics in-
cluding “divide and conquer”. We will dedicate to the toolbox
development and benchmarks for robust multi-view represen-
tation learning in this line.
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