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Abstract
Multi-label annotation is challenging since a large
amount of well-labeled training data are required
to achieve promising performance. However, pro-
viding such data is expensive while unlabeled
data are widely available. To this end, we pro-
pose a novel Adaptive Graph Guided Embedding
(AG2E) approach for multi-label annotation in a
semi-supervised fashion, which utilizes limited la-
beled data associating with large-scale unlabeled
data to facilitate learning performance. Specifi-
cally, a multi-label propagation scheme and an ef-
fective embedding are jointly learned to seek a la-
tent space where unlabeled instances tend to be
well assigned multiple labels. Furthermore, a lo-
cality structure regularizer is designed to preserve
the intrinsic structure and enhance the multi-label
annotation. We evaluate our model in both con-
ventional multi-label learning and zero-shot learn-
ing scenario. Experimental results demonstrate that
our approach outperforms other compared state-of-
the-art methods.

1 Introduction
In the real-world scenarios, each individual object could con-
tain tens or hundreds of semantic descriptions, such as col-
ors, materials and shapes. Different from single-label learn-
ing, multi-label learning assigns multiple labels for each
sample [Liu et al., 2017], which is much more challeng-
ing compared with single-label scenario. First, the relevant
datasets [Lampert et al., 2009; Patterson and Hays, 2012;
Wah et al., 2011] are small due to high labeling cost. Second,
the labels follow a long-tailed distribution, that means some
labels show up more frequently than others. The situation
makes label recovery dominated by the major labels, and it
might hurt the label recovery performance. Third, labels such
as stressful, cold and warm are subjectively assigned, and dif-
ferent people hold different standards, and thus the noise and
outliers significantly appear in datasets compared with single
label scenario.

Although the number of well-labeled data is limited, re-
lated unlabeled data are widely accessible. Thus, it is prac-
tical to utilize unlabeled samples to improve the learning
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Figure 1: Framework of our model, where an adaptive affinity graph
S connects pair-wise relations across labeled and unlabeled samples.
A pre-defined graph fully provides local structure information and
accelerates optimization process. A projection P projects data into
a common and distinctive space which also eliminates interruptions
from noise and outliers. P , S, and label matrix F are simultaneously
updated to achieve accurate and robust performance.

performance. Consequently, semi-supervised learning [Zhu
et al., 2003] especially graph-based approach [Zha et al.,
2009] has attracted great attention. However, they still have
limitations that these methods highly depend on the pre-
constructed graph but rarely optimize it online. In addi-
tion, most methods construct graph directly on feature space,
which is sensitive to noise and outliers. Several work uti-
lize adaptive graphs to handle the problem [Nie et al., 2012;
2016]. However, these methods mainly focus on single-label
classification instead of multi-label scenario.

To this end, we propose a novel Adaptive Graph
Guided Embedding (AG2E) for multi-label learning in semi-
supervised fashion. Figure 1 shows the framework of AG2E,
whose core idea is learning a semi-supervised label propaga-
tion and an effective embedding simultaneously to seek a la-
tent space, and thus unlabeled images can be well recovered.
Our main contributions are summarized as follows:

• We seek an adaptive graph to automatically capture the
latent structure of the data. Moreover, a pre-defined
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locality-constrained graph is also utilized to preserve the
intrinsic structure and guide the adaptive graph learning.

• A linear projection is jointly learned to obtain more ef-
fective and distinctive feature representations for better
label propagation. It enhances the accuracy and robust-
ness of our approach.

• Non-trivially, we propose an efficient optimization strat-
egy to solve the model. Experimental results on five
benchmarks demonstrate the effectiveness and the effi-
ciency of our model.

2 Related Works
Related work including Multi-label learning and Semi-
supervised learning are introduced in this section.

Multi-label learning learns patterns, which compose in-
stances associating with multiple labels. It widely exists in
real-world applications, such as visual annotation [Boutell et
al., 2004] and image retrieval [Liu et al., 2018]. It is chal-
lenging since the possible label sets number is tremendous.
The intuitive solution is to consider the task as several single-
label problems. [Boutell et al., 2004] learns several classifiers
responding for each label. However, since latent connections
exist between labels, ignoring the connections would limit the
learning performances. [Godbole and Sarawagi, 2004] pro-
poses to leverage the correlations across labels by adding a
contextual fusion step. [Liu and Tsang, 2015] explores met-
ric learning paradigm to improve accuracy. However, most
methods are in supervised learning scenario. Obtaining suffi-
cient labeled data to achieve acceptable performance is cost-
ing which limits their practical applications.

Semi-supervised learning achieves well-trained models
by using a few labeled data as well as a large number of un-
labeled data. A comprehensive survey can be found in [Zhu,
2005]. Graph-based methods achieve high performance by
constructing an affiliate graph to recover labels. [Zhu et
al., 2003] proposes Gaussian random fields and harmonic
function to obtain semi-supervised learning. [Sindhwani and
Belkin, 2005] gives a semi-supervised kernel that is not lim-
ited to unlabeled points, but defined over all input spaces.
[Nie et al., 2012] actively selects training sets to make the
model be independent to initialization process. [Wang et
al., 2018] aims to transfer well-label source video informa-
tion to boost clustering performance on unlabeled target do-
main. However, these methods are highly depended on the
pre-defined affiliate graph. It is difficult and tedious to tune
the graph to an optimized structure. Moreover, real-world
datasets always contain noise and outliers, which could im-
pair the final performance. [Liu et al., 2006] designs a new
scheme to generate an adaptive similarity graph. [Nie et al.,
2016] proposes a graph optimization strategy on unsuper-
vised feature selection scenario. [Nie et al., 2017] designs an
optimal graph in clustering and classification settings. How-
ever, the graphs are optimized in unsupervised manner, which
is hard to involve supervision information to enhance the
learning performance. Moreover, it is still purely based on
the similarity measurement in feature space, which is easily
affected by noise and outliers.

Different from previous work, we deploy an adaptive graph
for semi-supervised multi-label learning. Specifically, adap-
tive graph is more flexible to capture the intrinsic data struc-
ture and accurately predict the labels. Meanwhile, an effec-
tive embedding is jointly learned to align the different dis-
tribution data in a low-dimensional but distinctive common
space.

3 The Proposed Approach
3.1 Notations
Assume we have labeled data Xl and Yl. Xl ∈ Rd×nl is
the labeled feature matrix, where each column xi is an in-
stance, nl is the sample number, d is the feature dimension.
Yl ∈ Rdl×nl is the label matrix, where dl denotes the label di-
mension. Xu ∈ Rd×nu represents unlabeled feature matrix,
where nu is the instance number. Our approach aims to uti-
lizeXl, Yl, andXu to jointly seek an effective transformation
for better feature extraction and recover the multiple labels of
Xu.

3.2 AG2E Approach
AG2E approach enlarges the multi-label distribution by uti-
lizing the labeled data to the unlabeled data through an adap-
tive graph. Previous methods usually achieve label propa-
gation based on pre-defined adjacency matrix [Guo et al.,
2016]. This strategy assumes samples which are close in fea-
ture space shall share the similar labels. The objective func-
tion is shown below:

min
F

∑
i,j

‖fi − fj‖22sij , s.t. Fl = Yl, (1)

where fi and fj are the corresponding labels of i-th and j-th
instances. F = [Fl, Fu], where Fl ∈ Rdl×nl , Fu ∈ Rdl×nu

are the recovered label matrices of Xl and Xu. We set Fl =
Yl since Fl is expected to be the same as the ground truth
Yl. S ∈ Rn×n is the similarity matrix, where n = nl + nu.
Each entry sij is the similarity metric between feature points
xi and xj . Several methods are proposed to obtain S such as
[Ng et al., 2001; Ding and Fu, 2014; Wang et al., 2018], with
the definition as follows:

sij =

 e−‖xi−xj‖22/2δ
2

, if xi ∈ NK(xj)
or xj ∈ NK(xi),

0, otherwise,
(2)

where NK(xi) denotes the K-nearest neighbors of xi. And
1 ≤ (i, j) ≤ n. The quality of S affects learning perfor-
mance significantly. If S is obtained directly in feature space,
it is challenging for S to reveal the intrinsic structure within
the data since the noise and outliers are high. To this end,
we propose an adaptive graph instead of a fixed graph. Our
approach obtains the similarity matrix and simultaneously re-
covers the labels to achieve the best results. Compared with
fixed graph, adaptive graph could be more robust and accu-
rate. We extend Eq. (1) and utilize label correlation infor-
mation to learn an adaptive graph in learning process. The
objective function is shown as below:

min
F,S

∑
i,j

‖fi − fj‖22sij + µ
∑
i,j

‖xi − xj‖22sij ,

s.t. Fl = Yl, S ≥ 0.
(3)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2799



where ‖xi − xj‖22sij constrains the graph optimization that
similar features correspond to high similarities and vice versa.
µ is a trade-off parameter to balance weights between feature
space and label space. F and S are optimized simultaneously.

However, directly learning S in feature space would in-
volve errors due to high-level noise and label outliers. There-
fore, we jointly seek a linear projection P ∈ Rr×d to
project original features into a low-dimensional common
space, where r regulates the space dimension [Ding and Fu,
2014]. By this way, the graph quality would be improved,
which would help the label recovery performance. The ex-
pression is below:

min
F,P,S

∑
i,j

‖fi − fj‖22sij + µ
∑
i,j

‖Pxi − Pxj‖22sij

= tr(FLSF>) + µtr(PXLSX>P>),
s.t. Fl = Yl, S ≥ 0,

(4)

where tr(·) indicates the trace of a matrix. LS is graph
Laplacian matrix [Merris, 1994], where LS = DS − S+S>

2 .
And DS ∈ Rn×n is a diagonal matrix and each element
DSii =

∑
j
sij+sji

2 . µ is the trade-off parameter. Simply
learning S cannot obtain clear local structure information of
the data. Thus, we propose to further utilize a pre-defined
graph S̄ associating with a structure regularizer to pull S be
close to S̄. By this strategy, our model can obtain the detailed
locality structure from S̄ and still learn an accurate and robust
graph S at the same time. Moreover, S̄ guides the optimiza-
tion process which could reduce the computational cost. The
objective function is below:

min
F,P,S

tr(FLSF>) + µtr(PXLSX>P>) + λ‖S − S̄‖2F,
s.t. Fl = Yl, S ≥ 0.

(5)
Eq. (5) contains a simple solution that only the points of

nearest data are assigned as 1 which could eliminate the learn-
ing performance. Thus, we further supplement constraints.
First, S1 = 1, where 1 is a all-one vector. It means that the
sum of S entries in each row is 1. Second, PXHX>P> = I
(I is an identity matrix), and it implies and introduces ad-
ditional data discriminating ability into our model. Third,
H = I − 1

n I where I ∈ Rn×n is all-one matrix. Then, the
objective function can be written as follow:

min
F,P,S

tr(FLSF>) + µtr(PXLSX>P>) + λ‖S − S̄‖2F,

s.t. Fl = Yl, PXHX
>P> = I, S1 = 1, S ≥ 0.

(6)

3.3 Optimization
Since we have three variables to be optimized in Eq. (6), we
adopt the popular method, i.e., Alternative directions method
of multipliers (ADMM) [Ding and Fu, 2014; Boyd et al.,
2011], to obtain our solution. Specifically, we iteratively opti-
mize each variable by fixing other variables. In the optimiza-
tion process, other variables are fixed and update one each
time until it converges.

Update F: While other variables are fixed, the equation
can be rewritten as follows:

min
F

tr(FLSF>), s.t. Fl = Yl. (7)

The differentiate of Eq. (7) is shown below:

FLS = 0 ⇒ [Fl Fu]

[
Lll Llu
Lul Luu

]
⇒
{
FlLll + FuLul = 0
FlLlu + FuLuu = 0.

(8)

Then we have Fu = −FlLluL−1uu . Since we set Fl = Yl,
thus F can be updated as Fu = −YlLluL−1uu .

Update S: Since S is difficult to optimized directly. We fix
other variables and optimize S row by row. The equation can
be written as follow:

min
S

tr(FLSF>) + µtr(PXLSX>P>) + λ‖S − S̄‖2F,
s.t. S1 = 1, S ≥ 0.

(9)
We separately discuss the equations. The first term can be

written as follow:∑
i

‖fi − fj‖22sij =
∑
i

ais>i , (10)

where ai = {aij , 1 ≤ j ≤ n} ∈ R1×n with aij = ‖fi−fj‖22,
si is the i-th row of S. We obtain the same format of the
second term as follow:∑

i

µ‖Pxi − Pxj‖22sij = µ
∑
i

bis>i , (11)

where bi = {bij , 1 ≤ j ≤ n} ∈ R1×n with bij = ‖Pxi −
Pxj‖22. For the third term, we can write the format as follow:

λ‖S − S̄‖2F = λtr((S − S̄)(S − S̄)>)
= λtr(SS> − 2S̄S> + S̄S̄>).

(12)

To minimize ‖S − S̄‖2F, we have the following format:

min
S
λ‖S − S̄‖2F = min

S
λtr(SS> − 2S̄S>),

s.t. S1 = 1, S ≥ 0.
(13)

Following the same strategy, we can convert the term in
Eq. (13) into the following format:

λtr(SS> − 2S̄S>) = λ
∑
i

(
sis>i − 2λs̄is>i

)
. (14)

Then we can transform the objective function into the fol-
lowing format:

min
si

∑
i

(ais>i + µbis>i + λ(sis>i − 2s̄is>i ))

=
∑
i

(λsis>i + (ai + µbi − 2λs̄i)s>i ),

s.t. si1 = 1, si ≥ 0.

(15)

The optimization problem of Eq. (15) is simple and the
accelerated projected gradient approach is utilized to linearly
solve the problem. The core process of the projected gradient
approach is solving the proximal equation shown below:

min
z≥0

1
2‖z − c‖

2
2, s.t. z1 = 1. (16)

The KKT approach is used to solve this proximal problem.
After each si is solved, we concatenate the result together and
obtain the updated graph S.
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Update P: While other variables are fixed, we can obtain
the equation shown below:

P = arg min
P>XHX>P=I

µ tr(PX(I − S)X>P>)

= arg min
P>XHX>P=I

tr(P [µX(I − S)X>]P>),
(17)

and the generalized Eigen-decomposition approach can be
used to solve Eq. (17) as shown in Eq. (18).(

µX(I − S)X>
)
ρ = γXHX>ρ, (18)

in which γ is the eigenvalue corresponding to the eigenvector
ρ for Eq. (18). Specifically, we could achieve p eigenvectors
ρi(i = 0, 1, · · · , p − 1), given by the minimum eigenvalue
solutions to the generalized Eigen-decomposition problem.
Thus, we have P = [ρ0, · · · , ρp−1]>.

3.4 Discussion
We iteratively optimize all variables until the objective func-
tion is convergent. Specifically, Fu is initialized through
Eq. (1) and it reduces iteration times and avoids local opti-
mal solution.

There are two time consuming optimization steps. The first
is updating F , which uses Bartels Stewart algorithm and the
complexity is O(n3). The second is updating P and its Eigen-
decomposition process costs O(d3). These steps can be re-
duced to O(d2.37) using Coppersmith-Winograd algorithm
[Coppersmith and Winograd, 1987]. Then the total compu-
tational complexity is O(td2.37 + tn2.37) where t is the iter-
ation number. Since the initialization approach reduces the
iteration times significantly, thus, our model is applicable to
large-scale real-world applications.

4 Experiment
Evaluation datasets, experimental settings, results and discus-
sions are introduced in this section.

4.1 Datasets
Three image, one acoustic and one emotion datasets are eval-
uated in our experiments. Brief introductions are as follows:

SUN Dataset [Patterson and Hays, 2012] is a large-scale
scene multi-label dataset. There are 14, 000 images come
from 700 classes. Each instance contains a 102-dimensional
label vector with averagely 6.3 labels. The label entries are
continuous values range in [0, 1].

CUB Dataset [Wah et al., 2011] contains bird 11, 788 im-
ages captured from 200 species. All images are extracted to
312-dimensional attribute labels. Each instance has roughly
28 annotations. The label entries are binary values (0 or 1).

AWA Dataset [Lampert et al., 2014] contains more than
30, 000 images from 50 animals. Each label vector contains
85 continuous values range from 0 to 120 corresponding to 85
semantic attribute labels such as habits, colors, and shapes.
Each instance has roughly 15 labels.

BIRD Dataset [Briggs et al., 2013] is an acoustic dataset,
which contains 645 ten-second audio recordings from 19
species of bird. Each recording is labeled by several experts
along with their confidence.

EMO Dataset [Trohidis et al., 2008] is designed to eval-
uate automated music emotion detection methods. It collects
songs from 233 musical albums and conducted to a set of 30-
seconds 593 songs with 6 clusters of music emotions. Sound
clips were annotated by experts in music.

4.2 Experimental Setup
For image datasets, we utilize Very Deep Convolution Net-
works [Simonyan and Zisserman, 2014] to extract 4, 096-
dimensional features. For BIRD dataset, we directly use the
features provided by [Briggs et al., 2013]. For EMO dataset,
we utilize both Rhythmic and Timbre features provided by
[Trohidis et al., 2008]. In Multi-label annotation setting, we
randomly and evenly split samples into labeled and unlabeled
subset. We run our model five times with the randomly gen-
erated subsets and report the average performance. 5-fold
cross-validation is utilized to select the parameters µ and λ.
ris empirically set to 120. While since EMO dataset contains
72-dimensional features, we manually set r = 50 for EMO
dataset. The parameter sensitivity will be discussed in the
following sections. Our approach is compared with several
state-of-the-art multi-label learning methods, with the brief
introductions as follows:

Least Squares Regression (Regression) is a ridge regres-
sion method, partial subset of tags labels are utilized to learn
a graph and recovery the tags.

Semi-Supervised Multi-Label Dimensionality Reduc-
tion (SSMLDR) [Guo et al., 2016] designs a special label
propagation method, which transfers the multi-label informa-
tion across labeled and unlabeled data.

FastTag [Chen et al., 2013] utilizes two linear mappings
that are co-regularized in a joint convex loss function. It is
able to infer the full list of incomplete tags.

Multi-Label with a Mixed Graph (ML-PGD) [Wu et al.,
2015] proposes a uniform approach of label dependencies by
generating a graph based on hierarchy structure. This ap-
proach simultaneously considers the class co-occurrence as
well as the sample-level similarity as non-directive edges.
The hierarchy-free version is called ML-PGD.

4.3 Performance Comparison
We utilize the same metrics adopted in [Guillaumin et al.,
2009] for fair comparison. In our experiments, we report av-
eraged performance across all instances. To evaluate the re-
sult easier, we calculate the F1-score where F1 = 2P×RP+R and
the non-zero recall number N-R. In all metrics, higher values
indicate better performances.

The results shown in Table 1 indicate that the proposed
AG2E approach obtains the highest performance in most of
the metrics. Our approach leads to a 3.5% improvement on
precision, 6% on recall. The results demonstrate the robust-
ness and high accuracy of our approach. Furthermore, our
approach is general, which is not limited for image datasets.
Our approach fails to achieve significant improvements in
AWA dataset, where we consider that AWA dataset labels are
continuous value range between 0 to more than 100 with dif-
ferent metrics across class labels. It allows our model to learn
an inaccurate affinity graph. While least squares approach
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Figure 2: Sample images of recovered labels from SUN dataset. Each image contains several semantic labels. Black fonts denote correct
labels. Red fonts denote incorrect labels and blue fonts denote true labels based on our judgments but don’t exist in the ground truth labels.

Dataset Method Prec Recall F1 N-R

SUN

Regression 0.6318 0.1504 0.2429 101
SSMLDR 0.5625 0.1239 0.2031 68
FastTag 0.6187 0.1473 0.2379 101

ML-PGD 0.7218 0.1521 0.2513 100
AG2E (Ours) 0.7460 0.1625 0.2669 102

CUB

Regression 0.2183 0.0247 0.0443 162
SSMLDR 0.2162 0.0399 0.0674 164
FastTag 0.3231 0.0496 0.0860 163

ML-PGD 0.3029 0.0448 0.0781 132
AG2E 0.3351 0.0525 0.0908 194

AWA

Regression 0.8198 0.0819 0.1489 75
SSMLDR 0.8085 0.0948 0.1698 74
FastTag 0.7848 0.0857 0.1545 67

ML-PGD 0.5283 0.0631 0.1127 45
AG2E 0.7745 0.1285 0.2204 72

EMO

Regression 0.3793 0.9114 0.5357 6
SSMLDR 0.3556 0.8965 0.5093 6
FastTag 0.3833 0.9459 0.5456 6

ML-PGD 0.3784 0.9265 0.5373 6
AG2E 0.3995 0.9714 0.5762 6

BIRD

Regression 0.0764 0.3726 0.1268 13
SSMLDR 0.0709 0.3465 0.1178 12
FastTag 0.1005 0.3783 0.1601 16

ML-PGD 0.0809 0.3883 0.1338 15
AG2E 0.1021 0.4529 0.1653 17

Table 1: Comparison of our approach with other methods

finds a mapping to recover the label values rather than labels,
thus it is less affected by this situation.

4.4 Training Data Analysis
To analyze the source data, we randomly remove partial la-
beled samples and train our model based on 10%, 20% to
100% of the data. Each setting is tested 5 times and we re-
port the average performance. The results are shown in Fig-
ure 3, where we notice that our approach cannot achieve the
best performance if only 10% to 20% data is available. As
the training sample increases, our approach stably improves
the accuracy and achieves the best performance. Moreover,
our approach still has potential improvements if more labeled
data are available. We assume that since our model mainly
depends on P and S, and it cannot perform well if any of
the two variables are not well trained. Due to this reason, a
minimal number of labeled samples are required to achieve
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Figure 3: Label recovery performance based on partial of the train-
ing set. The results denote that our approach can achieve the best
performance if more than 30% of training data are available.

accurate performance.

4.5 Image Sample Annotations

Figure 2 shows samples of SUN dataset and their correspond-
ing recovered labels. Considering in some cases there are
more than 15 labels from some instances, we only show the
labels which have top highest scores in the recovered labels.
The red font denotes incorrect labels. And the blue font de-
notes labels recovered by our approach. These labels don’t
exist in ground truth, however, they are still reasonable based
on our judgments. From the result, we conclude that our ap-
proach is effective, which reliably recovers the vast majority
of labels in high accuracy. Moreover, our model also recovers
missing labels in the original datasets. This property is cru-
cial and useful in real-world applications since missing labels
and outliers always happen in existing datasets.
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Figure 4: Parameter sensitivity evaluations on SUN dataset. (a) Annotation performance with different projection sizes r. (b) Annotation
performance with different µ. (c) Annotation performance with different pre-defined graph constraint parameter λ. From the figures, we can
see that our approach is parameter insensitive and the performance is stable when r > 30.

Approaches SUN CUB AWA
Labeled data 65.20 27.24 52.31
Regression 65.00 27.21 52.33
SSMLDR 66.00 32.19 53.64
FastTag 64.00 27.18 54.32

ML-PGD 65.40 28.48 54.93
AG2E (Ours) 67.40 32.53 55.71

Table 2: Zero-shot Classification Accuracy (%)

4.6 Zero-shot Learning
We extend our approach to Zero-Shot Learning (ZSL) sce-
nario [Lampert et al., 2009; Antol et al., 2014; Ding et al.,
2017]. ZSL tries to recognize classes which do not exist in
the training set. To achieve this goal, middle level seman-
tic information is utilized to align unseen classes and visual
features. It is a more challenging task due to the larger dis-
tribution gap across classes. In our experiments, each sample
is assigned for one class label and several attribute labels. In
experiments, we split the dataset into three subsets including
labeled set, unlabeled set and test set. Test set contains non-
overlapped classes compared with other two sets. Our ap-
proach recovers the labels of the test data and jointly trains
a classifier based on the recovered labels to recognize the
classes. We normalize the AWA feature vector yi based on
equation zi = yi/max(yi) where zi is the normalized label.
In the implementation, we calculate S̄ based on class labels.
That means s̄ij = 1 if xi and xj belong to the same class, and
otherwise s̄ij = 0. KNN is used to classify unseen classes.

The experimental results are shown in Table 2. We observe
that the recovered labels can improve the ZSL performance
except from linear regression. Since linear regression only
recovers labels without considering the existence of missing
labels or inner connections. Thus, the performance is as the
same as only based on labeled data. Compared with other
methods, our method obtains the highest performance in all
three datasets. Since the visual feature distributions of seen
and unseen classes have larger difference, the result denotes
that our AG2E model can obtain more general and compatible
feature structures from limited labeled and unlabeled data. It

is more accurate and robust than other methods.

4.7 Parameter Analysis
Our approach contains three major parameters, i.e., projec-
tion size r, trade-off parameters µ and λ. λ constraints the
similarity level between S and S̄. µ balances the weight of
projected feature space and label space. We adopt different
values to evaluate the performance on SUN dataset. The re-
sults are shown in Figure 4. We observe that our approach
can achieve accurate results when r ≥ 50, µ is in the range
of [100, 500] and λ is in the range of [100, 500]. r ≥ 50 is
required since the learned feature space needs to have enough
dimension to make the samples distinctive enough to repre-
sent diverse samples. From the experimental results, we con-
clude that the parameter ranges are wide and our approach is
robust and parameter insensitive.

5 Conclusion
In this work, we designed an Adaptive Graph Guided Embed-
ding (AG2E) approach in semi-supervised multi-label learn-
ing scenario. AG2E utilized limited labeled data associating
with unlabeled data to improve multi-label learning perfor-
mance. In our model, a label propagation and an effective em-
bedding were jointly learned to seek a latent space, where un-
labeled information can be fully utilized. Moreover, a locality
structure regularizer was explored to preserve intrinsic infor-
mation and accelerate the optimization procedure. Extensive
experimental results demonstrated that our approach was ef-
fective and outperformed other methods on several datasets.
Our model was robust and parameter insensitive. In the fu-
ture, more experiments for large-scale image annotation, im-
age retrieval and other applications will be evaluated.
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