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Abstract—We tackle the challenging kinship classification
problem. Different from kinship verification, which tells two
persons have certain kinship relation or not, kinship classifi-
cation aims to identify the family that a person belongs to.
Beyond age and appearance gap across parents and children,
the difficulties of kinship classification lie in that any data
of the children to be classified are unavailable in advance to
help training. To handle this challenge, an auxiliary database
with complete parents and children modalities is employed
to uncover the parent-children latent knowledge. Specifically,
we propose a Latent Adaptive Subspace learning (LAS) to
uncover the shared knowledge between two modalities so
that the unseen test children are implicitly modeled as latent
factors for kinship classification. Moreover, person-wise and
family-wise constraints are designed to enhance the individual
similarity and couple the parents and children within families
for discriminative features. Comprehensive experiments on two
large kinship datasets show that the proposed algorithm can
effectively inherit knowledge from different databases and
modalities and achieve the state-of-the-art performance.

Keywords-kinship classification; latent subspace learning;
person-wise and family-wise constraints;

I. INTRODUCTION

Mining relationships between people are a hot topic that

has caught rising attention in the literatures. Kinship is

one of the most obvious among the possible relationships.

Parents pass down genes to their offspring. Inheritance

and resemblance take place. Facial features are doubtlessly

crucial clues of a human heritage, e.g., gender, age, race,

etc. Automatic kinship recognition has been applied in many

emerging applications, such as automatic photo browsing

and organizing, missing children searching and image un-

derstanding etc, which can roughly be divided into two cate-

gories, kinship verification and classification. Different from

kinship verification [1], [2], [3], [4], which tells two persons

have certain kinship relation or not, kinship classification

aims to identify the family that a person belongs to [1], [5],

[4], [6], [7]. Compared with face identification or verification

[8], [9], which aims at recognizing the same person, kinship

classification is more challenging. (1) Age and appearance

∗ indicates equal contribution.

Figure 1: Illustration of the proposed Latent Adaptive Sub-

space framework for kinship classification. Cross knowledge

from the auxiliary database is learned via transfer learning.

The person/family-wise constraint help reduce the intra-

person and intra-family variations.

variations resulting from different ages and various identities

[10], [11] pose intrinsic challenges for kinship recognition;

(2) Kinship classification contains several different relation-

ships within families; (3) There exist limited or even no

training samples for the test subjects [12], which makes it

hard to directly use current face identification or verification

technologies [13], [14], [15].

Traditional kinship classification algorithms [5], [16] build

models to capture the parent-children relationship with com-

plete parents and children data. These models were applied

to the test data that are not involved in training. However, in

the real-world applications that aim to find missing children,

the parents data are available, which could be utilized

to provide more information for the model. To address

challenges of ad-hoc, we employ an auxiliary database with
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both parents and their children for kinship classification.

Generally speaking, we treat face images of parents and

children as two separate modalities. By this means, we could

tackle this challenge by transferring knowledge from one

modality to the other. To this end, missing modality of the

test subjects or children can be implicitly recovered by the

knowledge between parents and children transferred from

the auxiliary database.

Targeting at the kinship classification, we propose a

Latent Adaptive Subspace (LAS) framework by modeling

the test subjects or children as the missing modality during

training (Figure 1). By joining latent factor recovery and the

hierarchical family structure preserving, we build a latent

transfer model with low-rank constraint to adapt knowl-

edge from auxiliary complete database to target database.

Consequently, LAS builds a shared feature subspace for

which knowledge can successfully be transferred between

different families, and then further adapted between parents

and children. The person-wise and family-wise constraints

(Figure 1) within LAS are designed to enhance the indi-

vidual similarity and couple the parents and children within

families for discriminative features. In summary, our major

contributions are highlighted as:

• The complete parent-children family knowledge from

external database is adapted to the target families

through low-rank transfer subspace model. Further-

more, unseen test children are implicitly recovered as

latent factors during model training.

• Features shared between parents and children are

learned through the person-wise and family-wise con-

straints, so that such hierarchical family knowledge

makes the latent adaptive subspace more robust in

recognizing missing children.

• We evaluate our model on two large kinship datasets

and achieve state-of-the-art performance.

II. THE PROPOSED APPROACH

In this section, we first introduce the preliminaries,

then show the latent adaptive subspace learning with

person/family-wise constraint and corresponding solutions.

A. Preliminaries

As stated in the Kinship Classification problem, we may

not have the test children data available during training.

Hence, we turn to the help of an auxiliary database Xs with

complete parent-children pair, denoted as {Xs,p, Xs,c}. We

further denote our target database Xt = {Xt,p, Xt,c}, where

Xt,c is blind in the model learning. Specifically, Xs,p ∈
R

d×nps , Xs,c ∈ R
d×ncs , Xt,p ∈ R

d×npt , Xt,c ∈ R
d×nct ,

where d is the original feature dimension and np/cs/t
are

the sample size of the parents/children in auxiliary/target

database, respectively. An illustration of these notations can

be found in Table I.

Table I: Notations
Variable Domain Description

d R Dimension of original features
ns R Number of samples in auxiliary database
nt R Number of samples in target database
p R Dimension of features in subspace

Xs R
d×ns Auxiliary data matrix

Xt R
d×nt Target data matrix

Ys R
p×ns Low-dimensional auxiliary data matrix

P R
d×p Subspace projection

Z R
nt×ns Reconstruction coefficents

L R
p×p Latent factor

Note: nt = npt + nct , ns = nps + ncs .

Traditional kinship classification techniques manage to

build a model from the complete auxiliary database Xs to

capture the parent-children relationship. Inspired by recent

missing modality transfer learning [17], we also attempt to

treat the unseen test data Xt,c as a latent factor. In this

way, complete Xs would assist the knowledge discovery of

Xt when Xt,c is unavailable during training. So far, the

kinship classification turns to solve the problem of how to

adapt knowledge from complete Xs to Xt by uncovering

the latent information of Xt,c. Thus, we propose a latent

adaptive subspace for effective knowledge transfer to tackle

with kinship classification challenge.

B. Latent Adaptive Subspace Learning

Targeting at the kinship classification, we model an adap-

tive subspace learning by jointing latent factor recovery

and hierarchical family structure preserving. Specifically,

we treat the test children as the missing modality and

build a latent transfer model to adapt knowledge from other

complete database. To capture more effective information,

we explore a family-person hierarchical structure to guide

the subspace projection learning. In this way, we could

uncover more knowledge from external database and family-

wise structure to boost the kinship classification.

We first assume the missing modality Xt,c is available

to derive its formulation under the latent adaptive subspace

learning framework. In the beginning, we pre-learn a low-

dimensional feature from all available data Xs,p, Xs,c by

supervised subspace learning methods [18]. This helps to

initialize the projection matrix and achieve stable solutions.

Specifically, we obtain low-dimensional features Ys,p ∈
R

p×nps , Ys,c ∈ R
p×ncs . Then, we could exploit low-rank

transfer learning for both auxiliary and target databases by

seeking a domain-invariant subspace projection P .

Specifically, we assume auxiliary parent/children data

could be reconstructed by target parent/children data, which

are formulated as follows:

min
Zp

rank(Zp), s.t. Ys,p = PTXt,pZp, (1)

min
Zc

rank(Zc), s.t. Ys,c = PTXt,cZc, (2)
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where rank(·) is the rank of a matrix. Zp ∈ R
ntp×nsp and

Zc ∈ R
nct×ncs , which are two low-rank coefficients matrix.

Thus, Eq (1) and Eq (2) can be rewritten as

min
Zs

rank(Zs), s.t. Ys = PTXtZs, (3)

where Ys = [Ys,p Ys,c], Xt = [Xt,p Xt,c], and

Zs =

[
Zp 0
0 Zc

]
.

Obviously, rank(Zs) = rank(Zp) + rank(Zc). Generally,

nuclear norm is exploited to address the rank minimization

NP-hard problem [17], [19] as:

min
Zs

‖Zs‖∗, s.t. Ys = PTXtZs, (4)

where ‖·‖∗ represents the nuclear norm. In this case, Ys can

be spanned by PTXt. However, when the Xt,c is missing in

the training stage, we could follow [17] to deduct our latent

adaptive subspace to use auxiliary database to recover the

missing Xt,c. Thus, the latent factor is able to be recovered

by optimizing the following formulation:

min
Z,L,P

‖Z‖∗ + ‖L‖∗,
s.t. Ys = PTXtZ + LYs, PTP = Ip,

(5)

where Z is a low-rank coefficients matrix, L is a latent

matrix, and P is the learned subspace projection. The

orthogonal constraint PTP = Ip is imposed to avoid some

trivial solutions.

C. Learning Discriminative Projection Through
Person/Family-wise Constraint

In all training data, we have M identities. Each identity

contains several samples. Specifically, we have nm samples

for the m-th person, 1 ≤ m ≤ M . Therefore, it is essential

to utilize the person-wise knowledge to make data points

of the same person could still be lying closely in the latent

space. Specifically, we define the person-wise constraint by

enforcing within-person samples to be close to its mean as

follows:

Ωm(P ) =
1

nm

nm∑
i=1

∥∥PTxi − μm

∥∥2

2
, (6)

where μm is the mean of the m-the person and can be cal-

culated by 1
nm

∑nm

i=1 P
Txi. Therefore, we have the person-

wise constraint for all identities as follows:

Ω(P ) =
M∑

m=1
Ωm(P )

=
M∑

m=1

1
nm

nm∑
i=1

∥∥PTxi − μm

∥∥2

2

=
M∑

m=1

1
nm

nm∑
i=1

∥∥∥∥PTxi − 1
nm

nm∑
i=1

PTxi

∥∥∥∥
2

2

=
M∑

m=1
tr(PTWmP ),

(7)

where Wm can be written as following:

Wm =
1

nm

nm∑
i=1

(xi − x̄)(xi − x̄)T, (8)

where x̄ = 1
nm

∑nm

i=1 xi.

However, Eq. (7) only considers the discriminative infor-

mation within each individual person, while ignoring the

family group information.

Actually, the new presentations for each family should

also be very similar, and thus, we could preserve the

discriminative information with each family. For the n-th

family, 1 ≤ n ≤ N ,we have Kn family members. The k-th

member has the center uk, 1 ≤ k ≤ Kn. Specifically, we

attempt to constrain the person-wise mean to be close to

its family-wise mean. In this way, we could enforce family

members to be close with each other in the latent space. We

have the following expression for the family-n as:

Ψn(P ) =
1

Kn

Kn∑
k=1

‖μk − cn‖22 , (9)

where cn is the center of the family and can be calculated

by 1
Kn

∑Kn

k=1 μk.

Therefore, we have the family-wise constraint for all

families as follows:

Φ(P ) =
N∑

n=1
Ψn(P )

=
N∑

n=1

1
Kn

Kn∑
k=1

‖μk − cn‖22

=
N∑

n=1

1
Kn

Kn∑
k=1

∥∥∥∥ 1
nk

nk∑
i=1

PTxi − 1
Kn

Kn∑
k=1

1
nk

nk∑
i=1

PTxi

∥∥∥∥
2

2

=
N∑

n=1
tr(PTFnP ).

(10)

Fn can be expressed as follows:

Fn =
1

Kn

Kn∑
k=1

(xik − x̂ik)(xik − x̂ik)
T, (11)

where xik = 1
nk

∑nk

i=1 xi and x̂ik = 1
Kn

∑Kn

k=1
1
nk

∑nk

i=1 xi.

To this end, we have our final objective function by

seeking an effective projection through latent factor recovery

and discriminative information preserving as follows:

min
Z,L,P

‖Z‖∗ + ‖L‖∗ + βΩ(P ) + γΨ(P ),

s.t. PTP = Ip, Ys = PTXtZ + LYs.
(12)

D. Solving the Optimization Problem

Problem (12) can be solved by some well-known algo-

rithms, e.g., Augmented Lagrange Methods (ALM). How-

ever, the ALM has some complex matrix operations,

e.g.inverse and multiplications, when the relax variables

introduce the quadratic term. These operations are time-

consuming. Hence the first order Taylor expansion like

145



approximation is used to replace the quadratic term which

causes the problem. This leads to a simpler solution. For

clearance, the augmented Lagrangian function of problem

(12) can be written as:

J = ‖Z‖∗ + ‖L‖∗ + βtr(PTWP ) + γtr(PTFP )

+〈Q, Ys − PTXtZ − LYs〉
+μ

2 (‖Ys − PTXtZ − LYs‖2F),
(13)

where μ > 0 is a penalty parameter, Q is the Lagrange

multiplier and 〈, 〉 is the inner product between matrixes.

W =
∑M

m Wm and F =
∑N

n Fn. The last two terms are

merged into quadratic terms and the formulation becomes:

J = ‖Z‖∗ + ‖L‖∗ + tr
(
PT(βW + γF )P

)
+h(Z,L, P,Q, μ)− 1

μ
‖Q‖2F,

(14)

where h(Z,L, P,Q, μ) =
μ

2
(‖Ys−PTXtZ−LYs+Q/μ‖2F).

We follow the traditional ALM to not only solve the new

formulation is over Z, L and P jointly, but also solve each

of them by fixing the rest. Thus, one subproblem is solved

at one time. The term h is approximated using the first

order expansion of one variable, assuming other variables

are constant. With iteration t+ 1 (t ≥ 0), we have:

Update Z:

Z(t+1) = argmin
Z

‖Z‖∗ + h(Z,L(t), P (t), Q(t), μ)

= argmin
Z

1

ηzμ
‖Z‖∗ + 1

2
‖Z − Z(t) +∇Zh‖2F,

(15)

where ∇Zh is the gradient of h(·) with respect to Z,

which can be written as ∇Zh(Z
(t), L(t), P (t), Q(t), μ) =

XT
t P

(t)(Ys − P (t)TXtZ
(t) − L(t)Ys + Q(t)/μ), ηz =

‖P (t)TXt‖22. Problem (15) is solvable using the singular

value thresholding (SVT) operator [20].

Update L:

L(t+1) = argmin
L

‖L‖∗ + h(Z(t+1), L, P (t), Q(t), μ)

= argmin
L

1

ηlμ
‖L‖∗ + 1

2
‖L− L(t) +∇Lh‖2F,

(16)

where similarly, the gradient ∇Lh =

∇Lh(Z
(t+1), L(t), P (t), Q(t), μ) is (Ys − P (t)TX

(t+1)
t −

L(t)Ys +Q(t)/μ)Y T
s , ηl = ‖Ys‖22.

Update P :

P (t+1) = argmin
PTP=Ip

α‖P‖2,1 + βtr(PTMP ) + γtr(PTΨP )

+
μ

2
(‖P̄ (t) − PTXtZ

(t+1)‖2F,

where P̄ (t) = Ys − L(t+1)Ys + Q(t)/μ, which can be re-

Algorithm 1 Latent Adaptive Subspace Learning

Input: Xs, Xt, γ, β, Ys,Wm, Fn

Initialize: L(0) = 0, Z(0) = 0, Q(0) = 0,

μ = 10−6, ε = 10−6, ρ = 1.2,

maxIter = 30,maxμ = 106, t = 0.

while not converged or t ≤ maxIter do
1. Update Z(t+1) by fixing others according to (15);

2. Update L(t+1) by fixing others according to (16);

3. Update P (t+1) by fixing others according to (17);

4. Update the multipliers Q(t+1)

Q(t+1) = Q(t) + μ(Ys − P (t+1)TXtZ(t+1)

−L(t+1)Ys);

5. Update μ using μ = min(ρμ,maxμ);

6. Check converge using conditions

‖Ys − P (t+1)TXtZ(t+1) − L(t+1)Ys‖∞ < ε.

7. t = t+ 1.

end while
output: P,Z, L

written into the equivalent problem [21]:

P (t+1) = argmin
PTP=Ip

tr
(
PT(βW + γF )P

)

+
μ

2
(‖P̄ (t) − PTXtZ

(t+1)‖2F,
(17)

Due to theorthogonal constraints, we address the difficult

non-convex problem (17) using a gradient descent optimiza-

tion procedure [22]. The gradient of J w.r.t P is first calcu-

lated as ∂J
∂P = (2βW +2γF +μXtZ

(t+1)(XtZ
(t+1))T)P −

μXtZ
(t+1)(Ys − L(t+1)Ys + Q(t)/μ)T. Then the skew-

symmetric matrix is calculated and P is optimized until

Armijo-Wolfe conditions meet.

The procedure of the solutions is shown in Algorithm
1. The parameters ε, maxμ, ρ, μ and maxIter are set

empirically. The parameters γ, β are tuned using grid search.

For the initialization of Ys, we aim to preserve family-wise

and person-wise knowledge so that we adopt the following

expression:

Ys = argmin
Ys

tr
(
Y T
s (βW + γF )Ys

)
, s.t. Y T

s Ys = Ip.

E. Complexity Analysis

Assume Xs and Xt are d × n matrixes, and P is a

d × p matrix (p 	 d), then time-consuming components

of Algorithm 1 have: 1) Subspace optimization in Line 3

and 2) Trace norm computation in Line 1.

For the computation complexity, the SVD computation in

Line 1 takes O(n3), and it can be improved to O(rn2) by

accelerations of SVD, where r is the rank of the low-rank

matrix Z. For Line 3, since we calculate the gradient descent

of P first, it usually costs O(d2p). The skew-symmetric

matrix calculation also takes O(d2p). Consider this step

would cost t1 iterations to converge, the complexity of Line

3 is O(t1d
2p). In total, the whole time complexity would be

O(t2(t1d
2p + rn2)) if there are t2 iterations in Algorithm

1.
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III. EXPERIMENTS

In this section, the datasets and experimental settings

are introduced first. The influence of model parameters

and convergence is discussed later, followed by results and

analysis on two large kinship datasets.

A. Datasets and Experimental Settings

Experiments are conducted on two kinship datasets, Fam-

ilies In the Wild (FIW) and Family 101 (FM101).

Families In the Wild (FIW) [4] is the largest kinship

recognition dataset up to date. 276 families that have more

than six family members are utilized. These family members

are split into two parts, parents and children. The children

part consists of the last generation of each family while the

parents part is the rest family members. All 276 families

are divided into auxiliary and target database randomly

and equally. Thus, we have 138 families for the auxiliary

database and the rest 138 families for the target database. In

auxiliary database, parents have 2,612 images and children

have 1,730 images. In target database, parents have 2,480

images and children have 1,832 images.

Family 101 (FM101) [5] contains 101 different family trees,

including 206 nuclear families, 607 individuals. Similar to

FIW, we re-label all family members into two parts, parents

and children. Then 50 families are randomly selected as the

auxiliary database and the rest 51 families are used for the

target database. In auxiliary database, parents have 2,308

images and children have 2,224 images. In target database,

parents have 3,396 images and children have 5,413 images.

We do face detection and facial points detection using

MTCNN [23] for all the images in these datasets. Then

face alignment is employed before feeding these faces into

deep Convolutional Neural Networks(CNNs) for feature ex-

traction. Three state-of-the-art deep face models (Centerface

[15], VGGFace [14], DSDA [24]) are utilized to extract deep

face features. These features are used for comparisons and

the inputs for subspace learning methods. For Centerface,

we use the alignment method provided by authors. For

VGGFace and DSDA, we tried different alignment methods

and reported the best result. The nearest-neighbor classifier

with Euclidean distance metric is exploited for classification

to evaluate the ability of different face representations.

We adopt the standard Cumuative Match Characteristic

(CMC) curve as the performance measurement for kinship

classification. The recognition rate is defined as the propor-

tion of queries correctly matched to a corresponding gallery

entity and it is displayed as a function of the rank.

B. Parameter and Convergence Analysis

Parameters analysis is conducted on FIW dataset with

deep face features from Centerface[15]. We observe a stable

range for parameters β and γ in term of the recognition rate.

The hyper parameter β dominates the intra-person variations

and the other hyper parameter γ controls the intra-family

variations. Both of them are essential to our model. We

conduct two experiments to investigate the sensitiveness of

two parameters.

In the experiment of parameter β, we fix γ to 0.02 and

vary β from 0 to 0.02. The recognition rates of rank 10, 30

and 50 are shown in Figure 2a. We can see that the results

of small β are very stable and show small improvements.

But the recognition rate drops when it gets larger. This is

brought from that the original face features have a very good

representation ability of each person. The term Eq. (7) aims

to reduce the intra-person variations. It has the same goal

with the original face identification task [15], [24], [14].

But these deep features were learned from large scale face

data and already have very small intra-person variations.

Large β makes the model overfit to the training data and

this leads to bad generalization ability. We fix β to 0.003 in

all experiments in section III-C.

In the experiment of parameter γ, we fix β to 0.003 and

vary γ from 0 to 4. The results are shown in Figure 2b with

the log scale. It is very clear that simply using the person-

wise constraint with little family information incorporated

(in these cases, γ is set to small values) is not a good choice,

leading to poor recognition performance. Properly choosing

the value of can improve the recognition accuracy of the

learned subspace projection P in Eq. (7). The recognition

performance remains stable with γ at the near range of 0.02

and starts dropping when γ is larger than 0.04. But even the

performance drops, the recognition rate is still better than

these small γ. In section III-C, we fix γ to 0.02.

We also test the convergence with the objective value

(Eq. (12)) over different iterations. From Figure 2c, we can

observe our method converges after about 20 iterations. We

set maximum iteration to 30 as the default setting.

C. Kinship Classification

In this section, we compare with several state-of-the-art

face recognition algorithms and subspace learning methods,

including: Centerface [15] , VGGFace [14], DSDA [24],

LAC [17] and SRRS [25]. We directly extract deep face

features from Centerface, VGGFace and DSDA models on

target data for testing. For subspace learning methods LAC

and SRRS, deep face features from Centerface are taken as

input and a subspace is learned from each method. The CMC

curves are shown in Figure 3a and Figure 3b. Matching rate

comparisons of FIW and FM101 are reported in Table II.

From the results, we can see that all methods have better

performance in FM101 than FIW. This observation results

from: 1) FM101 has less families than FIW. For test data,

FM101 has 51 families while FIW has 136 families. 2) The

average number of images for each family in FM101 is 132

which is larger than the average number 31 in FIW.

For FIW, compared with three kinds of deep face features,

we could notice that Centerface, VGGFace and DSDA

have similar performance on FIW. Thus we take deep face
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Figure 2: Parameters and convergence analysis. The recognition rate is calculated with rank 10, 30 and 50. Each parameter

is evaluated by fixing others. Objective value decreases quickly and the model converges after about 20 iterations.

features from Centerface as the input for subspace learning

for other methods. This is due to the Centerface features

have less dimension (1,024 compared with 4,096 in VG-

GFace and DSDA). Compared with either face recognition

algorithms (Centerface, VGGFace and DSDA) or subspace

learning methods (LAC and SRRS), our approach achieves

the best performance. LAC gained some improvement from

Centerface features due to it also tried to recover the unseen

children modality in target database which is similar to us.

But it did not incorporate the identity information and the

family constraint. Thus, we can see that an auxiliary database

with complete parents and children data and the person-wise

family-wise constraint do help on learning a better subspace

to represent faces in one family.

Similar observations can be found on FM101 results. But

on FM101, Centerface shows superiority compared with

VGGFace and DSDA. We think this is due to the different

generalization ability of these features on this dataset. Then

we also take the deep face features as the input for subspace

learning since it has better performance. Our approach also

beat other competitors. This demonstrated that the learned

subspace features are good at kinship classification again.

Some samples for kinship classification are shown in

Figure 4. From the top 10 candidates of each query face

image, we can observe that our model can handle the

large appearance variations between parents and children.

Especially, in the first, fourth and fifth rows, our model

returns the query’s different parents at the same time. We

also see that there are some near-duplicated and wrong

labeled faces in these kinship datasets. For examples, in the

second row, the second, third and fifth results in the top 10

candidates are almost the same face. Similar findings are

found in the fourth row. Two Tom Hanks faces are exactly

the same image but exist as different images in the dataset.

The last row is all correct due to the query image is wrong

labeled as Cameron Douglas but actually is Michael Douglas

that is exactly the same person in returned results.

Table II: Matching rate comparison on FIW and FM101.
Rank 10 20 30 40 50

FIW

Centerface [15] 0.2285 0.3305 0.4008 0.4610 0.5162

VGGFace [14] 0.2313 0.3400 0.4119 0.4660 0.5111

DSDA [24] 0.2324 0.3344 0.4069 0.4660 0.5106

LAC [17] 0.2586 0.3629 0.4404 0.5056 0.5563

SRRS [25] 0.2285 0.3305 0.3974 0.4615 0.5173

NRML [2] 0.2252 0.3300 0.3974 0.4615 0.5151

DML [6] 0.2514 0.3690 0.4504 0.5006 0.5475

Ours 0.3166 0.4353 0.5256 0.5920 0.6371

FM101

Centerface [15] 0.6401 0.7222 0.7746 0.8077 0.8301

VGGFace [14] 0.6031 0.6881 0.7404 0.7815 0.8089

DSDA [24] 0.5904 0.6635 0.7015 0.7289 0.7507

LAC [17] 0.6787 0.7624 0.8106 0.8393 0.8548

SRRS [25] 0.6393 0.7224 0.7741 0.8070 0.8313

NRML [2] 0.6361 0.7206 0.7722 0.8080 0.8298

DML [6] 0.6267 0.7111 0.7591 0.7939 0.8193

Ours 0.7006 0.7876 0.8319 0.8585 0.8794
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Figure 3: CMC curves with different methods: a) results on

FIW. b) results on FM101.

IV. CONCLUSION

In this paper, we proposed a Latent Adaptive Subspace

framework by modeling the test children as the missing

modality. Complete parent-children family knowledge from

external databases was adapted to the target families through

low-rank transfer subspace model. The core idea of LAS

was to build a shared feature subspace such that knowledge

can be successfully transferred between different families

and between parents and children. A person-wise constraint
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Figure 4: Samples for Kinship classification. The first left

column is the query children. The rest columns are the top

10 results. Correct results are with green border. Error results

are with red border. Top three rows are from FIW and bottom

three rows are from FM101.

and a family-wise constraint were introduced to enhance

the individual similarity and couple the parents and children

within families for discriminative features.
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