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Abstract—We tackle the challenging kinship classification
problem. Different from kinship verification, which tells two
persons have certain Kinship relation or not, kinship classifi-
cation aims to identify the family that a person belongs to.
Beyond age and appearance gap across parents and children,
the difficulties of kinship classification lie in that any data
of the children to be classified are unavailable in advance to
help training. To handle this challenge, an auxiliary database
with complete parents and children modalities is employed
to uncover the parent-children latent knowledge. Specifically,
we propose a Latent Adaptive Subspace learning (LAS) to
uncover the shared knowledge between two modalities so
that the unseen test children are implicitly modeled as latent
factors for kinship classification. Moreover, person-wise and
family-wise constraints are designed to enhance the individual
similarity and couple the parents and children within families
for discriminative features. Comprehensive experiments on two
large kinship datasets show that the proposed algorithm can
effectively inherit knowledge from different databases and
modalities and achieve the state-of-the-art performance.

Keywords-Kinship classification; latent subspace learning;
person-wise and family-wise constraints;

I. INTRODUCTION

Mining relationships between people are a hot topic that
has caught rising attention in the literatures. Kinship is
one of the most obvious among the possible relationships.
Parents pass down genes to their offspring. Inheritance
and resemblance take place. Facial features are doubtlessly
crucial clues of a human heritage, e.g., gender, age, race,
etc. Automatic kinship recognition has been applied in many
emerging applications, such as automatic photo browsing
and organizing, missing children searching and image un-
derstanding efc, which can roughly be divided into two cate-
gories, kinship verification and classification. Different from
kinship verification [1], [2], [3], [4], which tells two persons
have certain kinship relation or not, kinship classification
aims to identify the family that a person belongs to [1], [5],
[4], [6], [7]. Compared with face identification or verification
[8], [9], which aims at recognizing the same person, kinship
classification is more challenging. (1) Age and appearance
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Figure 1: Illustration of the proposed Latent Adaptive Sub-
space framework for kinship classification. Cross knowledge
from the auxiliary database is learned via transfer learning.
The person/family-wise constraint help reduce the intra-
person and intra-family variations.

variations resulting from different ages and various identities
[10], [11] pose intrinsic challenges for kinship recognition;
(2) Kinship classification contains several different relation-
ships within families; (3) There exist limited or even no
training samples for the test subjects [12], which makes it
hard to directly use current face identification or verification
technologies [13], [14], [15].

Traditional kinship classification algorithms [5], [16] build
models to capture the parent-children relationship with com-
plete parents and children data. These models were applied
to the test data that are not involved in training. However, in
the real-world applications that aim to find missing children,
the parents data are available, which could be utilized
to provide more information for the model. To address
challenges of ad-hoc, we employ an auxiliary database with
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both parents and their children for kinship classification.
Generally speaking, we treat face images of parents and
children as two separate modalities. By this means, we could
tackle this challenge by transferring knowledge from one
modality to the other. To this end, missing modality of the
test subjects or children can be implicitly recovered by the
knowledge between parents and children transferred from
the auxiliary database.

Targeting at the kinship classification, we propose a
Latent Adaptive Subspace (LAS) framework by modeling
the test subjects or children as the missing modality during
training (Figure 1). By joining latent factor recovery and the
hierarchical family structure preserving, we build a latent
transfer model with low-rank constraint to adapt knowl-
edge from auxiliary complete database to target database.
Consequently, LAS builds a shared feature subspace for
which knowledge can successfully be transferred between
different families, and then further adapted between parents
and children. The person-wise and family-wise constraints
(Figure 1) within LAS are designed to enhance the indi-
vidual similarity and couple the parents and children within
families for discriminative features. In summary, our major
contributions are highlighted as:

o The complete parent-children family knowledge from
external database is adapted to the target families
through low-rank transfer subspace model. Further-
more, unseen test children are implicitly recovered as
latent factors during model training.

o Features shared between parents and children are
learned through the person-wise and family-wise con-
straints, so that such hierarchical family knowledge
makes the latent adaptive subspace more robust in
recognizing missing children.

o« We evaluate our model on two large kinship datasets
and achieve state-of-the-art performance.

II. THE PROPOSED APPROACH

In this section, we first introduce the preliminaries,
then show the latent adaptive subspace learning with
person/family-wise constraint and corresponding solutions.

A. Preliminaries

As stated in the Kinship Classification problem, we may
not have the test children data available during training.
Hence, we turn to the help of an auxiliary database X with
complete parent-children pair, denoted as {X ,, X .}. We
further denote our target database X; = {X; ,, X; .}, where
Xi, is blind in the model learning. Specifically, X, , €
Rdxnps,Xs’c c RdxnCS,Xt,p c Rdxn”,Xt,c c Rdxnﬂt,,
where d is the original feature dimension and n,/.  are
the sample size of the parents/children in auxiliary/target
database, respectively. An illustration of these notations can
be found in Table I.
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Table I: Notations

[ Variable Domain _ Description |
d R Dimension of original features
N R Number of samples in auxiliary database
ny R Number of samples in target database
P R Dimension of features in subspace
X, R™s  Auxiliary data matrix
X, R¥*™  Target data matrix
Y, RP*™s Low-dimensional auxiliary data matrix
P RY*P Subspace projection
Z R™>*™  Reconstruction coefficents
L RP*P  Latent factor

Note: ny = np, + Ney s s = Np, + Ny -

Traditional kinship classification techniques manage to
build a model from the complete auxiliary database X to
capture the parent-children relationship. Inspired by recent
missing modality transfer learning [17], we also attempt to
treat the unseen test data X, . as a latent factor. In this
way, complete X¢ would assist the knowledge discovery of
X; when X, . is unavailable during training. So far, the
kinship classification turns to solve the problem of how to
adapt knowledge from complete X to X, by uncovering
the latent information of X; .. Thus, we propose a latent
adaptive subspace for effective knowledge transfer to tackle
with kinship classification challenge.

B. Latent Adaptive Subspace Learning

Targeting at the kinship classification, we model an adap-
tive subspace learning by jointing latent factor recovery
and hierarchical family structure preserving. Specifically,
we treat the test children as the missing modality and
build a latent transfer model to adapt knowledge from other
complete database. To capture more effective information,
we explore a family-person hierarchical structure to guide
the subspace projection learning. In this way, we could
uncover more knowledge from external database and family-
wise structure to boost the kinship classification.

We first assume the missing modality X, . is available
to derive its formulation under the latent adaptive subspace
learning framework. In the beginning, we pre-learn a low-
dimensional feature from all available data X ,, X . by
supervised subspace learning methods [18]. This helps to
initialize the projection matrix and achieve stable solutions.
Specifically, we obtain low-dimensional features Y, €
RP*™rs Y, . € RP*™es. Then, we could exploit low-rank
transfer learning for both auxiliary and target databases by
seeking a domain-invariant subspace projection P.

Specifically, we assume auxiliary parent/children data
could be reconstructed by target parent/children data, which
are formulated as follows:

Yop = P1 Xt 2y,

minrank(Z,), = s.t.

P

)

minrank(Z.), st Yi.=P'X;.Z.,

c

€]



where rank(-) is the rank of a matrix. Z, € R™%»*"sr and
Z. € RMeXMes which are two low-rank coefficients matrix.
Thus, Eq (1) and Eq (2) can be rewritten as

r%inrank(Zs), st. Y, =PvX,Z,, (3)

where Yy =Y, , Y, . Xy =[X;, X, and

— ZP 0
z=|% 2|
Obviously, rank(Zy) rank(Z,) + rank(Z.). Generally,
nuclear norm is exploited to address the rank minimization

NP-hard problem [17], [19] as:

“4)

where ||-||. represents the nuclear norm. In this case, Y; can
be spanned by PT X,. However, when the X}, is missing in
the training stage, we could follow [17] to deduct our latent
adaptive subspace to use auxiliary database to recover the
missing X; .. Thus, the latent factor is able to be recovered
by optimizing the following formulation:

I‘%inHZSH*, st. Y, =PTX,Z,,

poin || Z]|. + [[L].,
st. Y, =PTX,Z+LY,, PP=1I,

&)

where Z is a low-rank coefficients matrix, L is a latent
matrix, and P is the learned subspace projection. The
orthogonal constraint PTP = I, is imposed to avoid some
trivial solutions.

C. Learning Discriminative
Person/Family-wise Constraint

Projection Through

In all training data, we have M identities. Each identity
contains several samples. Specifically, we have n,, samples
for the m-th person, 1 < m < M. Therefore, it is essential
to utilize the person-wise knowledge to make data points
of the same person could still be lying closely in the latent
space. Specifically, we define the person-wise constraint by
enforcing within-person samples to be close to its mean as
follows:

1 & 2
U (P) = — > [|P i = i (©)
ftm
where i, is the mean of the m-the person and can be cal-
culated by % S PTa,;. Therefore, we have the person-
wise constraint for all identities as follows:

M
> Qm(P)

m=1

M 1 Nom T 5
z N Z HP i —/LmH2
m=1 i=1

Mom,

M n
2 a2
m=1 i=1

M
S ot (PTW,, P),
m=1

Q(P)

2 (D
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g
T, .. 1 T, ..
P.’L'zfmgpl'z
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2

145

where W,,, can be written as following:

1

N

D (@i— )i - )",

i=1

®)

where 2 = -L S0 ;.

However, ]énq (7) only considers the discriminative infor-
mation within each individual person, while ignoring the
family group information.

Actually, the new presentations for each family should
also be very similar, and thus, we could preserve the
discriminative information with each family. For the n-th
family, 1 < n < N,we have K,, family members. The k-th
member has the center u,, 1 < k < K,,. Specifically, we
attempt to constrain the person-wise mean to be close to
its family-wise mean. In this way, we could enforce family
members to be close with each other in the latent space. We
have the following expression for the family-n as:

K.
| K
Va(P) = 7 > "l — cnll )
" k=1

where ¢, is the center of the family and can be calculated
Kn
by 1% Dokl M-
Therefore, we have the family-wise constraint for all
families as follows:

N
B(P) = 3 0, (P)
=1
"N 1 K. ,
=2 = 2 e —enll
n=1"" k=1
N K, ng n ng 2
SPEC EREE TS R )
n=1""k=1]""*i=1 " g=1 =1 9
N
=Y tr(PTF,P)
n=1
(10)
F,, can be expressed as follows:
1 K,
Fo= 2= (i —du)(ws —2)T, (D)
" k=1
S K,
where z;;, = i SOk @ and dy, = 1% S i SOk @

To this end, we have our final objective function by
seeking an effective projection through latent factor recovery
and discriminative information preserving as follows:

min | Z]1. + [[Lll, + BAP) + ¥ (P),
st. P'P=1, Y,=PTX,Z+ LY..

12)

D. Solving the Optimization Problem

Problem (12) can be solved by some well-known algo-
rithms, e.g., Augmented Lagrange Methods (ALM). How-
ever, the ALM has some complex matrix operations,
e.g.inverse and multiplications, when the relax variables
introduce the quadratic term. These operations are time-
consuming. Hence the first order Taylor expansion like



approximation is used to replace the quadratic term which
causes the problem. This leads to a simpler solution. For
clearance, the augmented Lagrangian function of problem
(12) can be written as:
T = 2]+ |IL]l« + Btr(PTWP) + 1tx(PTFP)

+<Q7 Ys - PTXtZ - LYS>

13)
where p > 0 is a penalty parameter, () is the Lagrange
multiplier and (,) is the inner product between matrixes.
W = Zf\f Wy, and F = Ziv F,. The last two terms are
merged into quadratic terms and the formulation becomes:

T = 12|« +IIL|l + tx(PT(BW +1F)P)

1 14
+H(Z,L.P.Qup) - L@, (1

where h(Z, L, P, Q, 1) = £ (| Vo= P X, Z~ LY, +Q/u[}3).
We follow the traditional ALM to not only solve the new
formulation is over Z, L and P jointly, but also solve each
of them by fixing the rest. Thus, one subproblem is solved
at one time. The term h is approximated using the first
order expansion of one variable, assuming other variables

are constant. With iteration ¢ + 1 (¢ > 0), we have:
Update Z:

260 = argmin |2, + h(Z, 10, PO, QW) )
Z

— argmin ——||Z]l, + <1 Z — 2® + V23,
z Nz 2

(15)
where Vzh is the gradient of h(-) with respect to Z,
which can be written as Vzh(Z®, L® PO QW 1)
XTPOY, — PO X, 20 — LOY, + QW /), n.
|P®" X,||2. Problem (15) is solvable using the singular
value thresholding (SVT) operator [20].
Update L:

LEH) = argmin ], + h(ZE+D, L, PO, QW p)
L

1 1
= argmin — || L. + 5 [|IL — L™ + V. A|3,
L M 2
(16)

where similarly, the gradient Vih

VL A(ZED, LO, PO QW, ) s (Y, — POTXITY —

LOY, +QW/u)Y, m = [|Ys]3.

Update P:

PO = argmin a|| P21 + Str(PTMP) 4+ ytr(PTUP)
PTP=I,

M —
FE (PO — PTX, 20|,

where P®) =Y, — LOADY, + Q®) /u, which can be re-
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Algorithm 1 Latent Adaptive Subspace Learning

Input: X, X¢,v,8,Ys, Wi, Fp,

Initialize: L(®) =0, 2(®) =0,Q(® =0,
pu=10"%e=10"%p=1.2,
maxIter = 30, max,, = 106, ¢ = 0.

while not converged or ¢ < maxIter do
1. Update Z(*+1) by fixing others according to (15);
2. Update L(t+1) by fixing others according to (16);
3. Update P(t+1) by fixing others according to (17);
4. Update the multipliers Q(*+1)
Q(t+1) =Q® 4+ w(Ys — p(t+1)Tth<t+1)
—L(t+1)Ys)§
5. Update p using o = min(pp, max;, );
6. Check converge using conditions
s — P(t+1)TXtZ(t+1) _ L(t+1)YsH<x; <e
Tot=t+1.
end while
output: P, Z, L

written into the equivalent problem [21]:

P+ = argmin tr(PT(BW +~yF)P)
PTP=I, (1 7)
+L(I1PO - PTX, 203,

Due to theorthogonal constraints, we address the difficult
non-convex problem (17) using a gradient descent optimiza-
tion procedure [22]. The gradient of J w.r.t P is first calcu-
lated as 9L = (28W +2vF +puX, 2D (X, Z¢D)T) P —
pX, 200y, — LYY, + QW /)T, Then the skew-
symmetric matrix is calculated and P is optimized until
Armijo-Wolfe conditions meet.

The procedure of the solutions is shown in Algorithm
1. The parameters ¢, max,, p, i and maxlter are set
empirically. The parameters v, 5 are tuned using grid search.
For the initialization of Yy, we aim to preserve family-wise
and person-wise knowledge so that we adopt the following
expression:

Y, = argmintr(YsT([)’W + 'yF)Ys), st YIY, =1,

Y,

s

E. Complexity Analysis

Assume X, and X; are d X n matrixes, and P is a
d x p matrix (p < d), then time-consuming components
of Algorithm 1 have: 1) Subspace optimization in Line 3
and 2) Trace norm computation in Line 1.

For the computation complexity, the SVD computation in
Line 1 takes O(n?), and it can be improved to O(rn?) by
accelerations of SVD, where r is the rank of the low-rank
matrix Z. For Line 3, since we calculate the gradient descent
of P first, it usually costs O(d?p). The skew-symmetric
matrix calculation also takes O(d?p). Consider this step
would cost ¢; iterations to converge, the complexity of Line
3 is O(t1d?p). In total, the whole time complexity would be
O(ty(t1d?p + rn?)) if there are t, iterations in Algorithm
1.



III. EXPERIMENTS

In this section, the datasets and experimental settings
are introduced first. The influence of model parameters
and convergence is discussed later, followed by results and
analysis on two large kinship datasets.

A. Datasets and Experimental Settings

Experiments are conducted on two kinship datasets, Fam-
ilies In the Wild (FIW) and Family 101 (FM101).
Families In the Wild (FIW) [4] is the largest kinship
recognition dataset up to date. 276 families that have more
than six family members are utilized. These family members
are split into two parts, parents and children. The children
part consists of the last generation of each family while the
parents part is the rest family members. All 276 families
are divided into auxiliary and target database randomly
and equally. Thus, we have 138 families for the auxiliary
database and the rest 138 families for the target database. In
auxiliary database, parents have 2,612 images and children
have 1,730 images. In target database, parents have 2,480
images and children have 1,832 images.

Family 101 (FM101) [5] contains 101 different family trees,
including 206 nuclear families, 607 individuals. Similar to
FIW, we re-label all family members into two parts, parents
and children. Then 50 families are randomly selected as the
auxiliary database and the rest 51 families are used for the
target database. In auxiliary database, parents have 2,308
images and children have 2,224 images. In target database,
parents have 3,396 images and children have 5,413 images.

We do face detection and facial points detection using
MTCNN [23] for all the images in these datasets. Then
face alignment is employed before feeding these faces into
deep Convolutional Neural Networks(CNNs) for feature ex-
traction. Three state-of-the-art deep face models (Centerface
[15], VGGFace [14], DSDA [24]) are utilized to extract deep
face features. These features are used for comparisons and
the inputs for subspace learning methods. For Centerface,
we use the alignment method provided by authors. For
VGGFace and DSDA, we tried different alignment methods
and reported the best result. The nearest-neighbor classifier
with Euclidean distance metric is exploited for classification
to evaluate the ability of different face representations.

We adopt the standard Cumuative Match Characteristic
(CMC) curve as the performance measurement for kinship
classification. The recognition rate is defined as the propor-
tion of queries correctly matched to a corresponding gallery
entity and it is displayed as a function of the rank.

B. Parameter and Convergence Analysis

Parameters analysis is conducted on FIW dataset with
deep face features from Centerface[15]. We observe a stable
range for parameters (3 and -y in term of the recognition rate.
The hyper parameter 5 dominates the intra-person variations
and the other hyper parameter v controls the intra-family
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variations. Both of them are essential to our model. We
conduct two experiments to investigate the sensitiveness of
two parameters.

In the experiment of parameter /3, we fix v to 0.02 and
vary 3 from 0 to 0.02. The recognition rates of rank 10, 30
and 50 are shown in Figure 2a. We can see that the results
of small § are very stable and show small improvements.
But the recognition rate drops when it gets larger. This is
brought from that the original face features have a very good
representation ability of each person. The term Eq. (7) aims
to reduce the intra-person variations. It has the same goal
with the original face identification task [15], [24], [14].
But these deep features were learned from large scale face
data and already have very small intra-person variations.
Large 8 makes the model overfit to the training data and
this leads to bad generalization ability. We fix 8 to 0.003 in
all experiments in section III-C.

In the experiment of parameter -, we fix 5 to 0.003 and
vary v from O to 4. The results are shown in Figure 2b with
the log scale. It is very clear that simply using the person-
wise constraint with little family information incorporated
(in these cases, vy is set to small values) is not a good choice,
leading to poor recognition performance. Properly choosing
the value of can improve the recognition accuracy of the
learned subspace projection P in Eq. (7). The recognition
performance remains stable with «y at the near range of 0.02
and starts dropping when + is larger than 0.04. But even the
performance drops, the recognition rate is still better than
these small ~. In section III-C, we fix v to 0.02.

We also test the convergence with the objective value
(Eq. (12)) over different iterations. From Figure 2¢, we can
observe our method converges after about 20 iterations. We
set maximum iteration to 30 as the default setting.

C. Kinship Classification

In this section, we compare with several state-of-the-art
face recognition algorithms and subspace learning methods,
including: Centerface [15] , VGGFace [14], DSDA [24],
LAC [17] and SRRS [25]. We directly extract deep face
features from Centerface, VGGFace and DSDA models on
target data for testing. For subspace learning methods LAC
and SRRS, deep face features from Centerface are taken as
input and a subspace is learned from each method. The CMC
curves are shown in Figure 3a and Figure 3b. Matching rate
comparisons of FIW and FM101 are reported in Table II.

From the results, we can see that all methods have better
performance in FM101 than FIW. This observation results
from: 1) FM101 has less families than FIW. For test data,
FM101 has 51 families while FIW has 136 families. 2) The
average number of images for each family in FM101 is 132
which is larger than the average number 31 in FIW.

For FIW, compared with three kinds of deep face features,
we could notice that Centerface, VGGFace and DSDA
have similar performance on FIW. Thus we take deep face
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Figure 2: Parameters and convergence analysis. The recognition rate is calculated with rank 10, 30 and 50. Each parameter
is evaluated by fixing others. Objective value decreases quickly and the model converges after about 20 iterations.

features from Centerface as the input for subspace learning
for other methods. This is due to the Centerface features
have less dimension (1,024 compared with 4,096 in VG-
GFace and DSDA). Compared with either face recognition
algorithms (Centerface, VGGFace and DSDA) or subspace
learning methods (LAC and SRRS), our approach achieves
the best performance. LAC gained some improvement from
Centerface features due to it also tried to recover the unseen
children modality in target database which is similar to us.
But it did not incorporate the identity information and the
family constraint. Thus, we can see that an auxiliary database
with complete parents and children data and the person-wise
family-wise constraint do help on learning a better subspace
to represent faces in one family.

Similar observations can be found on FM101 results. But
on FM101, Centerface shows superiority compared with
VGGFace and DSDA. We think this is due to the different
generalization ability of these features on this dataset. Then
we also take the deep face features as the input for subspace
learning since it has better performance. Our approach also
beat other competitors. This demonstrated that the learned
subspace features are good at kinship classification again.

Some samples for kinship classification are shown in
Figure 4. From the top 10 candidates of each query face
image, we can observe that our model can handle the
large appearance variations between parents and children.
Especially, in the first, fourth and fifth rows, our model
returns the query’s different parents at the same time. We
also see that there are some near-duplicated and wrong
labeled faces in these kinship datasets. For examples, in the
second row, the second, third and fifth results in the top 10
candidates are almost the same face. Similar findings are
found in the fourth row. Two Tom Hanks faces are exactly
the same image but exist as different images in the dataset.
The last row is all correct due to the query image is wrong
labeled as Cameron Douglas but actually is Michael Douglas
that is exactly the same person in returned results.
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Table II: Matching rate comparison on FIW and FM101.
\ [ Rank [ 10 20 30 40 50 |
Centerface [15] | 0.2285 0.3305 04008 04610 0.5162
VGGFace [14] 0.2313  0.3400 0.4119 04660 0.5111
DSDA [24] 0.2324  0.3344 04069 0.4660 0.5106
FIW LAC [17] 0.2586  0.3629 0.4404 0.5056  0.5563
SRRS [25] 0.2285 0.3305 03974 04615 0.5173
NRML [2] 0.2252  0.3300 03974 04615 0.5151
DML [6] 0.2514  0.3690  0.4504  0.5006  0.5475
Ours 0.3166  0.4353  0.5256 0.5920 0.6371
Centerface [15] | 0.6401 0.7222 0.7746  0.8077  0.8301
VGGFace [14] 0.6031 0.6881 0.7404 0.7815 0.8089
DSDA [24] 0.5904 0.6635 0.7015 0.7289  0.7507
EMI01 LAC [17] 0.6787 0.7624  0.8106  0.8393  0.8548
SRRS [25] 0.6393  0.7224  0.7741 0.8070  0.8313
NRML [2] 0.6361 0.7206 0.7722 0.8080  0.8298
DML [6] 0.6267 0.7111  0.7591  0.7939  0.8193
Ours 0.7006 0.7876 0.8319 0.8585 0.8794
< ~90
360 I
5 [
© 50 // 4 % 80
T = T 70
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(a) CMC curves on FIW. (b) CMC curves on FM101.

Figure 3: CMC curves with different methods: a) results on
FIW. b) results on FM101.

IV. CONCLUSION

In this paper, we proposed a Latent Adaptive Subspace
framework by modeling the test children as the missing
modality. Complete parent-children family knowledge from
external databases was adapted to the target families through
low-rank transfer subspace model. The core idea of LAS
was to build a shared feature subspace such that knowledge
can be successfully transferred between different families
and between parents and children. A person-wise constraint



Figure 4: Samples for Kinship classification. The first left
column is the query children. The rest columns are the top
10 results. Correct results are with green border. Error results
are with red border. Top three rows are from FIW and bottom
three rows are from FM101.

and a family-wise constraint were introduced to enhance
the individual similarity and couple the parents and children
within families for discriminative features.
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