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Abstract. In this paper, we formulate a linear elastic second gradient isotropic two-dimensional continuum model accounting
for irreversible damage. The failure is defined as the condition in which the damage parameter reaches 1, at least in one point
of the domain. The quasi-static approximation is done, i.e., the kinetic energy is assumed to be negligible. In order to deal
with dissipation, a damage dissipation term is considered in the deformation energy functional. The key goal of this paper
is to apply a non-standard variational procedure to exploit the damage irreversibility argument. As a result, we derive not
only the equilibrium equations but, notably, also the Karush–Kuhn–Tucker conditions. Finally, numerical simulations for
exemplary problems are discussed as some constitutive parameters are varying, with the inclusion of a mesh-independence
evidence. Element-free Galerkin method and moving least square shape functions have been employed.
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1. Introduction

Material damaging and its consequent loss of material stiffness under loading can be viewed at various
scales, ranging from the atomic to the material, with many intervening scales in the middle including
molecular or crystal structures, grain boundaries and inter-granular layers, granular structures and so
on [18,48,49,77,78]. At each scale, damage manifests in a unique and characteristic mechanism, from
the formation and growth of atomic defects and dislocations in a crystal or molecule, passing through
grain boundary sliding or rupture of inter-granular layers, to more coherent and cooperative phenomena
at larger scales involving a large number of microstructural units [52,53,68–70,74]. For most complex
material systems, the detailed description of these phenomena is beyond the reach of current analysis,
regardless of the intense recent efforts at multiscale modeling. The multiscale methods connecting different
scales have to rely on microstructure descriptions that are not readily available or easily conceived for
complex material systems [17,28,39,71]. Multiscale simulations of macroscale mechanical behavior are
not feasible or desirable for many materials that are suffused with complex, defective structures and
interfaces of varying sizes. Furthermore, most materials offer significant challenges for atomistic modeling
due to their complex composition and structure, since atomic models are practically infeasible at scales
larger than the length of few hundred atoms. The difficulty of atomic models is not only confined to their
high computational cost, but it is also due to the impossibility of specifying atomic structures for the
myriad of material phases and interphases, including their defects.

For these reasons, continuum modeling is, arguably, the most feasible approach to damage modeling of
complex material systems [19,21,22]. Many efforts, based upon continuum mechanics [5,12,55,56,58] and
its various enhancements, have been reported in the literature dealing with damage modeling, as it has
been discussed in an abridged form in authors’ previous works [61,62,78]. The literature on regularized
damage laws and the phase-field models [8,33,76] in which the regularisation is performed on damage
variables has become quite intense in recent years. The reason for a regularization is due to the poor
performances of local damage models when it comes to stress softening and, hence, the way to handle ulti-
mate failure [57,58]. A regularization through the introduction of gradient of damage allows to overcome
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the issues related to stress softening (localization, mesh-dependency) [46]. These models, in some cases,
have been shown to converge to the Griffith model of brittle fracture, thus strengthening the choice of reg-
ularization through the damage variable [3,75]. However, the specification of natural boundary conditions
corresponding to the damage variable may not always have a proper physical interpretation. A similar
approach has been explored in the work of Forest [35], where the regularization procedure performed
by Marigo and coworkers by means of the gradient of damage is applied to the micromorphic case. In
[35], in fact, a variational procedure is shown and, therefore, a compatible set of boundary conditions has
been derived. On the other hand, in the paper of Peerlings et al. [54] no variational procedure is used.
Accordingly, in their case [54], no external double forces nor external vertex forces are considered.

These discussions clearly show that damage modeling of materials and structures remains a challeng-
ing problem that deserves a treatment from a generalized continuum approach founded upon a robust
variational formulation [2,6,14,20,23,26,30,32,60]. The advantages of such an approach are the clear
identification of the damage evolution behavior together with the definition of relevant governing equa-
tions and boundary conditions.

The goal of this paper is to develop, for the first time, a non-standard variational procedure aimed to
obtain simultaneously the second gradient equilibrium equations and the Karush–Kuhn–Tucker conditions
for the present 2D case. This is achieved by generalizing the results that have been obtained previously, by
the first author, for the 1D axial case for damage [61] and plasticity [62]. The derived formulation is used
to establish a numerical approach for showing the evolution of damage in a rectangular plate. Element-
free Galerkin (EFG) method has been used [10,45], and the domain has been discretized into a set of
nodes with Moving Least Square (MLS) shape functions (see also [77,78]). This numerical scheme could
also be implemented by the use of higher continuity shape functions [11,15,16,40,41]. No extrinsic defect
is introduced in the plate, and the damage is shown to evolve from the specified boundary conditions.

We observe that it could be of interest to generalize these results to the modeling of carbon nanotubes
[4], of bones [7,37,42], of cementitious or of granular materials [50,70] (where it is also possible to consider
the anisotropy induced from damage [51]) for quasi-static or for the dynamic cases [13,59,72]. Besides,
this approach could be particularly significant for modeling 2D structures such as pantographic sheets
or fiber textile composites and elastic nets [27,38,43,67,73]. For these structures, the second gradient
or micromorphic continuum models, based upon a variational approach, could be particularly useful not
only for modeling their unique deformation behaviors, that include the formation of finite boundary
layers, but, more importantly, for establishing unambiguous governing equations, boundary conditions
and evolution relationships in the irreversible damage context. It is worth to be noted that even for the
purely elastic case, where no damage nor gradient of damage is necessary, deformation behaviors with
boundary layers are routinely observed [34,44].

2. Formulation of the problem

2.1. Preliminary definitions

The body B is modeled in the reference configuration as, for the sake of simplicity, a 2-dimensional
continuum and each one of its body points is determined by means of the coordinates X in some frame of
reference. The set of kinematical descriptors for such a model does not contain, as usual, the displacement
field u = u (X, t) only, but it also contains the damage field ω = ω (X, t). The damage state of a material
point X is therefore characterized, at time t and again for the sake of simplicity, by a scalar internal
variable ω, that is assumed to be within the range [0, 1]. The cases ω = 0 and ω = 1 correspond to
the undamaged state and to failure, respectively. Even if, for a certain ω, the behavior is assumed to be
elastic, since ω evolves in time, the behavior is inelastic and is defined by an internal deformation energy
density functional U , which is a real function of the displacement and damage fields, i.e., U (u (·) , ω (·)).
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Let us perform the quasi-static approximation, that is equivalent to say that inertia, i.e., the kinetic
energy, is negligible. We remark that a damaged state with ω > 0 corresponds, in the real material, to
a certain number of missing atomic bonds. We assume the material to be not self-healing and, hence, ω
is assumed to be a non-decreasing function of time. This implies that the transition from undamaged to
damaged states is irreversible and, roughly speaking, the total deformation energy is dissipated as far as
the damage increases its value. In order to handle dissipation, one could employ a Rayleigh dissipation
functional or, simply, consider a dissipation term in U , in the same way as Marigo and his coworkers
[5,12,55,56,58] do in their approach to damage mechanics. With this different approach, the procedure
to find the evolution of the fundamental kinematical fields from the total deformation energy functional,
because of the monotonicity assumption on ω, is not the standard one, in which the first variation of
the total deformation energy is assumed to vanish [9,24,25,29,31,47,63]. One has instead to resort to a
different variational principle [61,62]. We shall address this issue later on in Sect. 2.3.

If we look at the damaged material as a microstructured material, i.e., damage gives a microstructure,
it is meaningful to let the internal deformation energy density depend upon the second gradient of the
displacement. Thus, because of objectivity, the deformation density energy functional is assumed to
be a function of the strain tensor G =

(
FT F − I

)
/2, of its gradient ∇G and of the damage ω, i.e.,

U = U (G,∇G,ω). Here, F = ∇χ, where χ = X + u is the placement function, FT is the transpose of F ,
and ∇ is the gradient operator. For the small displacement approximation that is dealt in this paper, the
strain tensor G is assumed to be equal to E = Sym (H), the symmetric part of the displacement gradient
H = ∇u.

2.2. Total deformation energy functional

The total deformation energy functional E (u, ω) depends on the displacement u and the damage ω:

E (u, ω) =
∫

B

[
U (G,∇G,ω) − bext · u − mext · ∇u

]
dA + (1)

−
∫

∂B

[
text · u + τ ext · [(∇u) n]

]
ds −

∫

[∂∂B]

f ext · u. (2)

In (1–2), n is the unit external normal; the dot (·) indicates the scalar product between vectors or tensors;
bext and mext are the external body force and double force (per unit area), respectively; text and τ ext are
the external force and double force (per unit length), respectively; f ext is the external concentrated force
which is applied on the vertices [∂∂B]. Thus, the last integral in (2) is the sum of the external works
accomplished by the external concentrated forces applied at the vertices. Besides,

∂B =
m⋃

c=1

Σc, [∂∂B] =
m⋃

c=1

Vc.

The boundary ∂B is the union of m regular parts Σc (with c = 1, . . . , m) and the so-called boundary of
the boundary [∂∂B] is the union of the corresponding m vertex-points Vc with coordinates Xc.

2.3. Variational principle

In order to get governing equations for this model, we resort to the variational principle thoroughly
presented in [61,62], where the case of one-dimensional bodies was considered. Thus, we assume that the
motion u (X, t) and ω (X, t) verifies the condition

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, υ, β) , ∀υ, ∀β ≥ 0, (3)
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where υ and β are compatible virtual velocities and dots represent derivation with respect to time. We
remark that in the present quasi-static case the time can be substituted by any other parameter, e.g., by
a loading parameter. Besides, the formulation that is given in (3) is a principle and no prove will be here
furnished. Nevertheless, we will provide in the following mathematical derivations of this principle that
could be used to achieve those numerical simulations that are necessary for its scientific validation. First,
we shall estimate the first variation

δE (u, ω, δu, δω) (4)

=
∫

B

[
∂U

∂Gij
δGij +

∂U

∂Gij,h
δGij,h +

∂U

∂ω
δω − bexti δui − mext

ij δui,j

]
+ (5)

−
∫

∂B

[
texti δui + τ ext

i δui,jnj

]−
∫

[∂∂B]

[
f ext

i δui

]
. (6)

Integrating by parts and assuming the small displacement approximation, we get

δE = −
∫

B

{
δui

[
(σij − Tijh,h),j + bexti − mext

ij,j

]
+ δω

∂U

∂ω

}
(7)

+
∫

∂B

[
δui

(
ti − texti − mext

ij nj

)
+ δui,jnj

(
τi − τ ext

i

)]
(8)

+
∫

[∂∂B]

δui

(
fi − f ext

i

)
, (9)

where the so-called contact force t, contact double force τ and contact vertex force f have been defined
as

ti = (σij − Tijh,h) nj − Pka (TihjPahnj),k , τi = Tijknjnk, fi = TihjVhj , (10)

where P is the tangential projector operator (Pij = δij − ninj), V is the vertex operator

Vhj = νl
hnl

j + νr
hnr

j , (11)

ν is the external tangent unit vector. The superscripts l and r, respectively, refer, roughly speaking, to
the left and right side of a certain vertex-point Vc. The stress tensor σ and the hyper stress tensor T are
defined as

σij =
∂U

∂Gij
, Tijh =

∂U

∂Gij,h
. (12)

It is worth to be noted that, by looking at the first addend of (8), the external part text + mextn of the
dual of the virtual displacement δu is not equal to the external force per unit length text.

2.3.1. Reduction to the standard variational principle. Let us verify that the variational principle
expressed in (3) reduces to the usual one, i.e., δE = 0 for arbitrary variations δu, when no variation
δω is considered. Namely, we want to check that

δE (u, ω, δu, 0) = 0. (13)

Let us choose υ = u̇ + υ, with arbitrary υ, and β = ω̇ in (3). We get

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, u̇ + υ, ω̇) . (14)

Let us choose υ = u̇ − υ, with arbitrary υ, and β = ω̇ in (3). We get

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, u̇ − υ, ω̇) . (15)
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Since the first variation of a functional is a linear function of the admissible variations, (14) implies

δE (u, ω, υ, 0) ≥ 0, (16)

and (15) implies
δE (u, ω, υ, 0) ≤ 0. (17)

Combining (16) and (17) we obtain
δE (u, ω, ῡ, 0) = 0 ∀υ. (18)

By applying the localization theorem to (18), we get

(σij − Tijh,h),j + bexti − mext
ij,j = 0 ∀X ∈ B. (19)

For those points of ∂B\ [∂∂B] where we do not have the kinematical constraints δui = 0, we have the
natural boundary conditions ti − texti − mext

ij nj = 0. For those points of the ∂B\ [∂∂B] where we do not
have the kinematical constraints δui,jnj = 0, we have the natural boundary conditions τi − τ ext

i = 0.
Finally, for those points of [∂∂B] where we do not have the kinematical constraints, δui = 0, we have the
natural boundary conditions fi − f ext

i = 0.

2.3.2. Exploiting the non-standard argument. Let us choose υ = u̇ and β = 0 in (3). We get

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, u̇, 0) . (20)

Let us choose υ = u̇ and β = 2ω̇ in (3). We get

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, u̇, 2ω̇) . (21)

Since the first variation of a functional is a linear function of the admissible variations, (20) implies

δE (u, ω, 0, ω̇) ≤ 0, (22)

and (21) implies
δE (u, ω, 0, ω̇) ≥ 0. (23)

Combining (22) and (23), we obtain
δE (u, ω, 0, ω̇) = 0 (24)

and, therefore, from (7)–(9) and (24) ∫

B

∂U

∂ω
ω̇ = 0. (25)

Let us choose υ = u̇ in (3). We get

δE (u, ω, u̇, ω̇) ≤ δE (u, ω, u̇, β) ∀β ≥ 0. (26)

By linearity, we easily see that
δE (u, ω, 0, β − ω̇) ≥ 0 ∀β ≥ 0. (27)

Reminding (24) and using again linearity, (27) reads as

δE (u, ω, 0, β) ≥ 0 ∀β ≥ 0

and, therefore, ∫

B

∂U

∂ω
β ≥ 0 ∀β ≥ 0. (28)

Now, let Ωγ(X) ⊂ R
2 a family, parameterized over γ ∈ R

+, of bounded neighborhoods of X ∈ B, such
that diam Ωγ(X) = γ. Besides, let βγ : B → R

+ a family of functions, parameterized over γ ∈ R
+,

defined as

βγ(X) =

{
0 if X /∈ Ωγ(X)
1 if X ∈ Ωγ(X).

(29)
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Clearly, for each γ ∈ R
+, βγ defined in (29) fulfills the positive definiteness required to β in (28). Hence,

we have
∫

B

∂U

∂ω
βγ ≥ 0, γ ∈ R

+

and, letting γ → 0+, we finally get

∂U

∂ω
≥ 0 ∀X ∈ B. (30)

Since by hypothesis ω̇ ≥ 0 and by (30) ∂U
∂ω ≥ 0 ∀X ∈ B, in order to fulfill the relation (25)

∫

B
∂U
∂ω ω̇ = 0,

we get that ∂U
∂ω and/or ω̇ must vanish for each point X of B and time t:

∂U

∂ω
ω̇ = 0. (31)

Thus, we have derived the so-called Karush–Kuhn–Tucker (KKT) conditions for damage mechanics simply
from the variational principle given in (3).

2.4. Consequence of using a 2D isotropic quadratic internal deformation energy density functional
accounting for damage

A general form of the elastic part Ue of the internal deformation energy density functional U of a 3D
isotropic second gradient elastic material is provided in [47]. We have

Ue (G,∇G) =
λ

2
GiiGjj + μGijGij + 4α1Gii,jGjh,h + α2Gii,jGkk,j (32)

+ 4α3Gij,iGkj,k + 2α4Gij,kGij,k + 4α5Gij,kGik,j ,

where λ , μ, α1, α2, α3, α4, α5 ∈ R are independent parameters; λ and μ are referred to as the Lamé
parameters (that can be easily related to the Young modulus Y and to the Poisson ratio ν) and this
choice is clear by looking at (32) without (additive) strain gradient terms. The parameters λ, μ, αi do
not depend upon the strain tensor and/or its gradient while, nevertheless, they are functions of X ∈ B
and t, i.e., they are scalar fields depending upon time.

When the specialization of (32) to the plane strain case (u1,3 = u2,3 = u3 = 0) is considered, we have

Ue (G,∇G) = 2μ G12
2 + λ G11G22 +

(
λ

2
+ μ

)
G11

2 +
(

λ

2
+ μ

)
G22

2

+
(

3A

2
− B + C + 2D

)
G2

11,2 +
(

−A

2
− B

2
+ C + 2D

)
G11,2G22,2 +

+ (−4A + 2B − 4D) G11,2G12,1 + 2A
(
G12,1

2 + G12,2
2
)

+ (A + B − 2C) G11,1G12,2 +
(

3A

2
− B + C + 2D

)
G22,1

2

+
(

−A

2
− B

2
+ C + 2D

)
G11,1G22,1 + (−4A + 2B − 4D) G12,2G22,1

+ (A + B − 2C) G12,1G22,2 +
B

2
(
G11,1

2 + G22,2
2
)
, (33)
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that is equivalent to that used in [63,66] and where

⎛

⎜
⎜
⎝

A
B
C
D

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 2 2 2
8 2 8 4 8
2 1 1 3 5
3 1 2 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

α1

α2

α3

α4

α5

⎞

⎟
⎟
⎟
⎟
⎠

, (34)

We now include the damage ω, according with [61], by adding a quadratic damage-term in the internal
energy

Ue (G,∇G) → U (G,∇G,ω) = Ue (G,∇G) +
k

2
ω2, (35)

where k is the resistance to damage and, by assuming an explicit dependence of the parameters
λ, μ, α1, α2, α3, α4, α5 upon the damage ω, we have

λ = λ0 (1 − ω) , μ = μ0 (1 − ω) (36)
αi = α0

i (1 + nω) , n ∈ R, i = 1, 2, 3, 4, 5. (37)

Defining from (34) the undamaged second gradient 2D elastic coefficients,

⎛

⎜
⎜
⎝

A0

B0

C0

D0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0 0 2 2 2
8 2 8 4 8
2 1 1 3 5
3 1 2 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

α0
1

α0
2

α0
3

α0
4

α0
5

⎞

⎟
⎟
⎟
⎟
⎠

,

when the specialization of (32) to the plane strain case is considered, we have that (37)3 reads as
⎛

⎜
⎜
⎝

A
B
C
D

⎞

⎟
⎟
⎠ = (1 + nω)

⎛

⎜
⎜
⎝

A0

B0

C0

D0

⎞

⎟
⎟
⎠ . (38)

It is worth to be noted that in the general 2D case one might directly assume (38) instead of (37). In
(37), the parameter n is a weight for the damage which ranges from −1 to infinite, i.e., n ∈ [−1,+∞).
The case n = −1 is related to fracture because in this case no elastic energy can be accumulated in
the completely cracked region [65]. Besides, n = 0 means that coefficients αi’s are independent of ω.
This corresponds to the case where the damage does not affect the characteristic length scales of the
material. The case of large value of the parameter n is connected to diffused damaged materials, and
it is associated with an increase of material characteristic length while the overall material undergoes
softening. The functions relating the second gradient coefficients with the damage parameter are based
on some constitutive assumptions that should be determined by experiments that need to be conceived.
However, the second gradient coefficients, as well as damage, are a measure of the microstructure.

For example, let us assume that in an initially homogeneous material with no microstructure, some
distributed defects are added as the material is subjected to loading. We therefore can interpret the new
material not only as a damaged one (of course) but also as a material with microstructures. For example,
it is clear that the first homogeneous material does not have a dynamic dispersive behavior and the
second damaged (or microstructured) one has a dispersive behavior at least for some frequency range.
The correlation between microstructured and strain gradient materials is widely accepted. Thus, damage
can be interpreted as an amplifier of the microstructure and, in our opinion, it is reasonable that, at least
in some cases, second gradient coefficients increase with damage and, accordingly, we consider n > 0. The
cases in which n < 0 indicates a localization into fracture, that deserves as well to be studied. We will
nevertheless show, in Figs. 3 and 5, simulations for selected values of the cases n > 0, n = 0 and n < 0.
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The above formulation precludes any elastic phase. However, the dissipation energy could be refor-
mulated in a manner which includes an elastic phase by adding in (35) a linear term in ω, as it is shown
in the paper [62] dealing with the 1D case. Besides, in the formulation (36) only stress softening process
is included. It would be possible to have a stress hardening by incorporating some induced anisotropic
effects which are, however, excluded by the present isotropic formulation.

We remark that, due to (37) or to (38), the model presented so far in this paper does not apply to fail-
ure. Indeed, for ω = 1 (and, given that U is continuous with respect to ω, the forthcoming statement is true
in a left neighborhood of ω = 1) the deformation energy functional U is not necessarily positive definite.
It is for this reason that, in this paper, all numerical simulations are stopped one step before the failure.

The explicit form, with respect to damage, of the density of the deformation internal energy (35) is
derived from (33) and (38).

Plugging such an explicit form in (19) and using (12), in the case of no external distributed actions,
i.e., in the case bext = mext = 0, we get the two PDEs of the problem.

In Sect. 2.3, we have proved that, for each point X of B and time t, ∂U
∂ω or/and ω̇ must vanish. From

the condition (31) we get

ω (X, t) =
λ0 + 2μ0

k

(
u2
1,1 + u2

2,2

)
+ 2

μ0

k
u1,2u2,1 + 2

λ0

k
u1,1u2,2

+
μ0

k

(
u2
1,2 + u2

1,1

)− 2n
D0

k
(u1,11u2,12 + u2,22u1,12)

−n
A0

k

(
u2
1,22 + u2

2,11

)− n
B0

k

(
u2
1,11 + u2

2,22

)− n
C0

k

(
u2
1,12 + u2

2,12

)
+

−n
B0 − C0 + A0

k
(u1,11u1,22 + u2,11u2,22) +

−2n
B0 − A0 − D0

k
(u1,12u2,11 + u1,22u2,12) . (39)

If ω (X, t) computed by using (39) is such that ω̇ < 0 then ω̇ = 0. This provides a useful tool to numerically
compute the field ω (X, t) . Indeed, fixed X ∈ B and for each time step t, the following condition must be
verified

ω (X, t) ≥ ω (X, t − Δt) .

If this is not the case, then

ω (X, t) = ω (X, t − Δt) .

3. Numerical examples

In this section, we study the case of a rectangular body (see Fig. 1 (top)) with sides of length L and
2l. This choice is motivated by the fact that since all the boundaries are straight, the external normals
(for each side) do not depend on the space-coordinate X. Therefore, boundary conditions are simplified.
Moreover, the set [∂∂B] of the vertices is non-empty. Boundary conditions are shown in Fig. 1 (bottom)
for tension (bottom-left) and shear (bottom-right) and derived in the following subsection.

3.1. Side and vertex boundary conditions

For side S1 (with normal unit vector ni = −δi1 ), we have essential boundary conditions for displacement
and natural boundary conditions for normal displacement gradient:

u1 (0, y) = 0, u2 (0, y) = 0, , ∀y ∈ [−l, l]

τi (0, y) = τ ext,S1
i (y) = 0 ∀y ∈ [−l, l], i = 1, 2, (40)
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Fig. 1. Definition of the frame of reference and classification of the sides and of the vertices of the body B (top). External
forces and constraints in the tension (bottom-left) and shear (bottom-right) cases

For side S2 (with normal unit vector ni = δi2 ), we have natural conditions for both displacement and
normal displacement gradient,

ti (x, l) = text,S2
i (x) = 0, ∀x ∈ [0, L], i = 1, 2,

τi (x, l) = τ ext,S2
i (x) = 0, ∀x ∈ [0, L], i = 1, 2, (41)

For side S3 (with normal unit vector ni = δi1 ), we have natural boundary conditions for normal dis-
placement gradient

τi (L, y) = τ ext,S3
i (y) = 0, ∀y ∈ [−l, l], i = 1, 2, (42)

and for the tension case an essential boundary condition for horizontal displacement and a natural bound-
ary condition for vertical displacement,

u1 (L, y) = u, t2 (L, y) = text,S3
2 (y) = 0, ∀y ∈ [−l, l], (43)

while for the shear case an essential boundary condition for vertical displacement and a natural boundary
condition for horizontal displacement,

u2 (L, y) = υ, t1 (L, y) = text,S3
1 (y) = 0, ∀y ∈ [−l, l]. (44)

For side S4 (with normal unit vector ni = −δi2 ), we have natural boundary conditions for both displace-
ment and normal displacement gradient,

ti (x,−l) = text,S4
i (x), τi (x,−l) = τ ext,S4

i (x), ∀x ∈ [0, L], i = 1, 2. (45)

As far as vertices are concerned, we consider only natural boundary conditions, since essential ones
have been already analyzed. Vertices V2 and V3 do have natural boundary conditions in the vertical
direction for the tension case,

fV2
2 = f ext,V2

2 = 0, fV3
2 = f ext,V3

2 = 0, (46)
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Fig. 2. S11 versus Gav
11 (positive strain) and Gav

22 (negative strain) for the tension numerical experiment. Parameters: Y = 75
GPa, Poisson’s ratio 0.11, k = Y E-6 and n = 1. Second gradient coefficients are set differently for each picture: in the top-
left picture, the simulation has been done with a first gradient model, i.e., α0

i = 0.0 Y (i = 1, . . . , 5); top-right: α0
i = 0.01 Y

(i = 1, . . . , 4), α0
5 = 0.01 Y/2; bottom-left: α0

i = 0.05 Y (i = 1, . . . , 4), α0
5 = 0.05 Y/2; bottom-right: α0

i = 0.1 Y (i = 1, . . . , 4),

α0
5 = 0.1 Y/2. In the bottom-left picture, a convergence analysis has been performed by using mesh sizes 15 × 10 (blue

positive, green negative), 30×20 (orange positive, light blue negative, the same colors as in the other pictures of this figure)
and 60 × 40 (gray positive, yellow negative) (color figure online)

and in the horizontal direction for the shear case,

fV2
1 = f ext,V2

1 = 0, fV3
1 = f ext,V3

1 = 0. (47)

3.2. Numerical results

We now present some numerical results obtained by solving the system of coupled PDE’s on the rect-
angular domain (l = 10 mm, L = 30 mm) in Fig. 1 (bottom-left) (or bottom-right) with the coupled
boundary conditions (40), (41), (42), (43) (or (44)), (45) and (46) (or 47). The solution algorithm will
be explained in the next subsection. Of course, at time t = 0, the damage ω has to be initialized; we
consider the initially undamaged case ω(X, 0) = 0.

All the following simulations were performed setting the Poisson’s ratio to 0.11, the resistance to
damage k = Y E-6, with Y = 75 GPa and, except for Figs. 3, 4 and 5, n = 1.

In Figs. 2 and 3 (or in Fig. 6), averaged stress S11(or S12) versus averaged strain Gav
11 (positive) and

Gav
22 (negative) (or Gav

12) is plotted for A0, B0, C0 and D0 corresponding to those α0
i ’s (i = 1, . . . , 5) made

explicit in the captions. It is worth to be noted that S11, Gav
11 and Gav

22 are all averages over the side S3,
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Fig. 3. S11 versus Gav
11 (positive strain) and Gav

22 (negative strain) for the tension numerical experiment. Parameters: Y = 75

GPa, Poisson’s ratio 0.11, k = Y E-6, α0
i = 0.05 Y (i = 1, . . . , 4) and α0

5 = 0.05 Y/2 . Orange (light blue), gray (gray) and
blue (green) positive (negative) strain correspond, respectively, to the cases n = 1, n = 0 and n = −1, respectively (color
figure online)

which are defined as follows,

S11 = 1
2 l t

∫

S3

σ11, S12 = 1
2 l t

∫

S3

σ12,

Gav
11 = 1

2l

∫

S3

G11, Gav
22 = 1

2l

∫

S3

G22, Gav
12 = 1

2l

∫

S3

G12.

We notice that, in the top-left picture of Fig. 2, S11 is plotted for those values of A0, B0, C0 and D0

corresponding to α0
i = 0.0 Y (i = 1, . . . , 5), which corresponds to the case in which the deformation

energy density depends only upon the first gradient ∇u of the displacement field. We further remark that
coefficients α0

i (i = 1, . . . , 5) change their values in the other pictures of Fig. 2, as shown in the caption.
Thus, second gradient terms in the deformation energy density functional U , as far as α0

i (i = 1, . . . , 5)
increases, increasingly acquire relative importance and significance with respect to first gradient terms.
This yields in turn smoother (i.e., more regular) solutions and improved convergence of the numerical
scheme. Indeed, increasing the values of α0

i (i = 1, . . . , 5), the average stress S11 can be computed for
higher (smaller) values of the averaged strain Gav

11 (Gav
22). We notice that, moreover, this fact unveils

the emergence of a plateau in stress–strain curves, which was expected because of the stress softening
behavior we have imposed in (36). Finally, for the two pictures at the bottom of Fig. 2, we observe a
snap-back like transition due to elastic unloading. It is worth to be noted the this snap-back behavior is
not due to any instability effect. The reason is that the stiffness reduction produces in this case an elastic
unloading inducing a decreasing stress and a decreasing strain with increasing values of applied boundary
displacement u. In the bottom-left picture of Fig. 2 the results from different discretization density (mesh
size) have been shown as described in the caption. The results with different mesh sizes virtually overlap,
except for the snap-back like transition due to elastic unloading part, that could be affected by the
convergence error in the Newton’s iterative scheme. In Fig. 3, we show a parametrization with respect to
n. In Fig. 2, we used the best regularizing effect of the case n = 1. In Fig. 3, the stress–strain curve is
shown together with the less regularizing cases related to n = 0 and n = −1.

In this form, the results virtually overlap, except for the snap-back like transition phase, that occurs
only if the second gradient elastic contribution is emphasized from damage, i.e., in the case n = 1. the
reason is that the higher the n the smoother is the simulation. Thus, for the same reason, the farther is
the ending-failure point.

Generally, we report that for the lowest values of stress the damage is relatively small and uniform
throughout the domain while, for the highest values of stress (corresponding to the highest absolute values
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Fig. 4. Contour plot of the damage parameter ω one step before the failure, i.e., at u = ufin for the tension numerical
experiment. Parameters: Y = 75 GPa, Poisson’s ratio 0.11, k = Y E-6 and n = 1. From the left-hand side to the right-
hand side, we have an increasing value of second gradient parameters, i.e., left: α0

i = 0.0 Y (i = 1, . . . , 5), ufin = 13.60

µm; center-left: α0
i = 0.01 Y (i = 1, . . . , 4), α0

5 = 0.01 Y/2, ufin = 15.88 µm; center-right: α0
i = 0.05 Y (i = 1, . . . , 4),

α0
5 = 0.05 Y/2, ufin = 17.56 µm; right: α0

i = 0.1 Y (i = 1, . . . , 4), α0
5 = 0.1 Y/2, ufin = 17.61 µm

Fig. 5. Contour plot of the damage parameter ω one step before the failure for the tension numerical experiment. Parameters:
Y = 75 GPa, Poisson’s ratio 0.11, k = Y E-6, α0

i = 0.05 Y (i = 1, . . . , 4) and α0
5 = 0.05 Y/2. From the left to right, we have

shown, respectively, the cases corresponding to n = −1, n = 0 and n = 1. The scale is the same of Fig. 4

of the averaged strains Gav
11 and Gav

22 for which solutions are computed and shown in Fig. 4), the damage is
concentrated at the left corners of the domain. We notice that the difference between the damage peaks,
that are almost equal to unity since the contour plots are shown in Fig. 4 one step before the failure,
at the left corners and the damage in the surrounding areas of the domain is smaller as second gradient
terms in the deformation energy density gain significance. This is shown in Fig. 4, where the values of
second gradient parameters increase their values from the picture at the left side to that at the right
side and is coherent with the fact that the higher is the second gradient contribution, the smoother is
the solution. We also remark that, for the lowest values of the second gradient parameters, two bands at
45◦ with respect to the axial direction propagate from the two left corners. The two bands intersect in
the middle of the sample and a damaged island region appears. Moreover, for the larger values of second
gradient coefficients the bands are so large that the damaged regions are no more neatly distinguishable
from the rest of the sample and no island is visible at the step before failure that is shown in Fig. 4.

For the case corresponding to α0
i = 0.05 Y (i = 1, . . . , 4) and α0

5 = 0.05 Y/2, we show in Fig. 5 contour
plot of the damage parameter ω, one step before the failure, for the tension numerical experiment and
for different values of the parameter n, as shown in the caption. Even in this case, the two shear bands
are visible only for the negative value of the parameter n. It is worth to be noted that the third contour
plots of Figs. 4 and 5 are the same.

Figures 6 and 7 are the analogous, for the shear case, to Figs. 2, 3, 4 and 5. In Fig. 6, a change in the
qualitative behavior of the test is visible as far as the second gradient parameters are increased. In the
shear case of Fig. 6, the competition between the softening behavior and the snap-back like transition
due to elastic unloading is more evident. Even in this case, it is worth to be noted the this snap-back
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Fig. 6. S12 versus Gav
12 for the shear numerical experiment. Parameters: Y = 75 GPa, Poisson’s ratio 0.11, k = Y E-6

and n = 1. Second gradient coefficients are set differently for each picture: In the top-left picture, the simulation has been

performed with a first gradient model, i.e., α0
i = 0.0 Y (i = 1, . . . , 5); top-right: α0

i = 0.01 Y (i = 1, . . . , 4), α0
5 = 0.01 Y/2;

bottom-left: α0
i = 0.05 Y (i = 1, . . . , 4), α0

5 = 0.05 Y/2; bottom-right: α0
i = 0.1 Y (i = 1, . . . , 4), α0

5 = 0.1 Y/2

behavior is not due to any instability effect. The reason again is that the stiffness reduction produces an
elastic unloading inducing a decreasing stress and a decreasing strain with increasing values of applied
boundary displacement υ.

In Fig. 7 ,contour plots of the damage parameter, in the shear case, are shown. The same comments
on the relevance of the second gradient coefficients can be done, even though no shear bands are being
observed.

3.3. Solution algorithm

The model is new and clearly there are no available commercial finite element solvers for it. Moreover,
also the implementation of KKT conditions in those solvers able to manage higher-order gradient models
is not standard. For these reasons, an in-house code based on element-free Galerkin (EFG) method has
been employed for our numerical calculations [10,45]. In the EFG method, the domain is discretized into
a set of nodes and moving least square (MLS) shape functions are used as the trail and the test functions.
For the 2D case, the MLS approximation is expressed as
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Fig. 7. Contour plot of the damage parameter ω one step before the failure, i.e., at υ = υfin for the shear numerical
experiment. Parameters: Y = 75 GPa, Poisson’s ratio 0.11, k = Y E-6 and n = 1. From the left to the right, we have an

increasing value of second gradient parameters, i.e., left: α0
i = 0.0 Y (i = 1, . . . , 5), υfin = 10.0µm; center-left: α0

i = 0.01 Y

(i = 1, . . . , 4), α0
5 = 0.01 Y/2, υfin = 12.6 µm; center-right: α0

i = 0.05 Y (i = 1, . . . , 4), α0
5 = 0.05 Y/2, υfin = 14.4 µm;

right: α0
i = 0.1 Y (i = 1, . . . , 4), α0

5 = 0.1 Y/2, υfin = 15.3 µm

{u}2×1 = [Φ]T2×2n {Us}2n×1 (48)

where Us is the vector collecting the nodal displacements within the influence domain, and ΦT (x) is the
matrix of MLS shape functions corresponding to n nodes in the influence domain of the sampling point
x, written as

[Φ]T2×2n = [p]T2×2n [A]−1
12×12 [B]12×2n . (49)

The matrix p is formed of the monomial terms of the quadratic basis as

[p]T2×12 =
[
1 x y x2 xy y2 0 0 0 0 0 0
0 0 0 0 0 0 1 x y x2 xy y2

]
(50)

and the matrix A and vector B are given as

[A]12×12 =

[
n∑

i=1

wi (x, y) [p (xi, yi)]12×2 [p (xi, yi)]
T
2×12

]

(51)

[B]12×2n =
[
w1 (x, y) [p (x1, y1)]12×2 w2 (x, y) [p (x2, y2)]12×2 . . .

. . . wn (x, y) [p (xn, yn)]12×2

]
. (52)

The weight functions wi(x, y) are specified as the product of 1D cubic splines in the x- and y- directions

wi(x, y) = wix(x)wiy(y). (53)

The x-direction cubic spline is given as (and the y-direction cubic spline is similarly defined)

wix(x, y) =

⎧
⎪⎨

⎪⎩

2
3 − 4r2ix + 4r3ix rix ≤ 0.5
4
3 − 4rix + 4r2ix − 4

3r3ix 0.5 < rix ≤ 1
0 rix ≥ 1

(54)

where rix = |x−xi|
dsx

, |x − xi| is the distance from node xi to the sampling point x and the x-dimension of
the rectangular influence domain dsx = βdcx (with β = 3) in which dcx is the x-nodal spacing.

Substituting Eq. (48) into the weak form of the partial differential equations will result in the following
system of algebraic equations [77,78]

[
Kps + Kps

] {Us} =
{
Fp + F p

}
. (55)
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In Eq. (55), the terms with bar arise from the penalty method used to implement the displacement
boundary conditions. The stiffness matrices Kps, Kps and the force vectors Fp, F p are given as

[Kps]2n×2n =
∫

B
[∂Φ]2n×3 (1 − ω) [D]3×3 [∂Φ]T3×2n (56)

+
[
∂2Φ

]
2n×8

(1 + nω) [D]8×8

[
∂2Φ

]T
8×2n

[
Kps

]
2n×2n

= −
∫

∂B
α [Φ]2n×2 [Φ]T2×2n (57)

{Fp}2n×1 =
∫

∂B
[Φ]2n×2 {t}2×1 + [∂Φ]2n×3 [n]3×2 {τ}2×1 (58)

+
∫

∂∂B
[Φ]2n×2 {f}2×1

{
F p

}
2n×1

= −
∫

∂B
α [Φ]2n×2 [u]2×1 . (59)

In Eq. (56), the elasticity matrices [D] and [D] are obtained from Eq. (33) and the expression for ω is
given in Eq. (39). The penalty parameter, α, is determined as 106 times the maximum diagonal element of
the elastic global stiffness matrix. Clearly, the obtained algebraic system in Eq. (55) is nonlinear and it is
solved using Newton’s approach. The efficiency of the present method has been shown in the bottom-left
picture of Fig. 2, where the result has been shown from different discretization density (mesh size). We
remark that in element-free Galerkin scheme we are using, we do not have a mesh in same sense as Finite
Element.

4. Summary and conclusions

A variational formulation of damage mechanics in the case of linear elastic second gradient isotropic
continua in the small deformation context has been developed. In the presented approach, the total
deformation energy functional is taken to depend not only upon the displacement field but also upon the
damage field. Since damage represents an irreversible phenomenon, a non-standard variational principle is
proposed which, remarkably, leads to the so-called Karush–Kuhn–Tucker (KKT) optimality conditions for
damage evolution. The developed variational procedure is particularized for the 2D case and an expression
for the energy density functional, accounting for damage, is provided. For the 2D case, the constitutive
parameters are selected along with the relevant conditions for positive definiteness of the energy density
function. A more reliable identification procedure [36,63,64] still needs to be implemented. The governing
PDE’s and the explicit expression for damage evolution are derived. Boundary conditions are identified
and expounded through two particular examples of a plate subjected to in-plane external loadings. The
examples clearly illustrate the relevant boundary conditions for the second gradient continua, particularly
with respect to the conditions associated with boundary gradients and vertices at boundary intersections.
Finally, we present numerical simulations to illustrate the applicability of the derived formulation.

The simulation results show that as the second gradient terms increase in significance, the achieved
solution is smoother. In particular, we have shown that the case n > 0 increases the stability of the
simulations with respect to the case n < 0 and it is compatible, in the analyzed case, with the snap-back
like transition phase due to the elastic unloading effect (see Fig. 3). In addition, in Fig. 5 we have shown
that for n < 0 the reduction of the characteristic length induces a more clear strain localization. Clearly,
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the sign of the parameter n cannot be deduced by any physical or abstract principle, but it should be
determined from experimental measurements.

Indeed, it is remarkable that very little attention has been paid in the literature to the case of diffused
damage (n > 0) which results in further microstructural development and increase in second gradient
parameters while the material experiences an overall softening. Such a case of material behavior has been
widely ignored in favor of the traditional case of localizing damage and fracture. To this end, the damage
model derived in the present work could serve as an impetus for experimentalists to reassess measured
outcomes of material damage from a general viewpoint, particularly in disordered material systems for
which there are no adscititious conditions for development of localization. It is in fact intriguing to
consider the case of n > 0 material when the damage ω reaches 1, such that the material is now reduced
to a purely second gradient material characterized by many internal floppy modes. Such materials are
not beyond the realm of imagination (or reality) [1]. In this sense, the presented work represents a first,
albeit significant, step toward a broader damage theory.

It is interesting to observe that the damage, in these systems, initiates at the boundary due to the
peculiar boundary conditions. Such boundary effects have implications upon interpretation of experi-
mental measurements, wherein the results could be affected by the ability to precisely control boundary
conditions or the interactions of the boundary conditions with intrinsic material defects. The presented
second gradient continuum approach is attractive since it has the ability to consider the effects of the
underlying microscale damage mechanism that are typically beyond reach of the available approaches.
Furthermore, the variational approach developed in this work allows us to recover not only the relevant
governing equations and the damage evolution relationship but also unambiguous boundary conditions.
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