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The global response of experimental uniaxial tests cannot be homogeneous, be- 

cause of the unavoidable presence of localized deformations, which is always 

preferential from an energetic viewpoint. Accordingly, one must introduce some 

characteristic lengths in order to penalize deformations that are too localized. 

This is what leads to the concept of nonlocal damage models. The nonlocal 

approach employs nonlocal terms in the internal deformation energy in order to 

control the size of the localization region. In phase-field models and, in general, 

in gradient models, dependence of the internal energy upon the first gradient   

of damage is assumed, while in our approach the nonlocality is given by the 

dependence of the internal energy upon the second gradient of the displacement 

field. A discussion of the advantages and challenges of using the gradient of 

damage and of using the second gradient of the displacement field will be ad- 

dressed in the present paper. A variational inequality is formulated and partial 

differential equations (PDEs), boundary conditions (BCs), and Karush–Kuhn– 

Tucker (KKT) conditions will be derived within the framework of 2D strain gra- 

dient damage mechanics. A novel dependence of the stiffness coefficients with 

respect to the damage field will also be discussed. Further, an explicit derivation 

of the damage field evolution in loading conditions will be provided.  Finally,   

a numerical technique based on commercial software has been introduced and 

discussed for a couple of standard problems. 

 
1. Introduction 

1.1. A short overview. The literature on regularized damage laws, or so-called 

phase-field models, when the regularization is performed on the damage variable,  

has become quite intense in these last  ten  years.  It  has  been  proved,  e.g.,  in 

[Lorentz  and  Andrieux  2003],  that  a  regularization  through  the  introduction  of 

the gradient of damage allows one to overcome issues related to localization and 

mesh-dependency. Moreover, rigorous proofs of the convergence of such models 
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towards the Griffith model of brittle fracture have strengthened such choice of regu- 

larization through the gradient of the damage variable; see for example [Ambrosio 

and Tortorelli 1990; Sicsic and Marigo 2013]. Thus, the nonlocality is customarily 

given by the dependence of the internal energy U upon the first gradient of damage 

∇ ω [Marigo 1989; Comi 1999; Pham et al. 2011a; Miehe et al. 2016].     A fully 

nonlocal model, in the Piola-peridynamic framework [dell’Isola et al. 2015a], has 

also been developed in the literature, like in, e.g., [Bažant and Jirásek 2002; Bažant 

and Pijaudier-Cabot 1988]. Another interesting and effective approach is due to 

[Forest 2009]. In the approach presented in this paper the nonlocality is given by    

the dependence of the internal energy upon the second gradient of the displacement 

field. In other words, the internal elastic energy per unit volume U is assumed to be 

a function not only of the strain G, but also of its gradient ∇ G. This approach is not 

new in damage continuum mechanics; see also [Peerlings et al. 2001; Mühlich et al. 

2013; Zybell et al. 2009; Oliver-Leblond et al. 2016]. Beyond the convergence of 

some damage gradient models towards the Griffith model for brittle fracture, the 

main advantage of using the gradient of damage  is  simply  due  to  the  fact  that 

handling the gradient of a scalar (i.e., the damage field) is easier than dealing with  

the gradient of a tensor (i.e.,  the strain).  A first consequence of this fact is that      

the number of constitutive parameters for a damage gradient model is lower than   

that of a strain gradient model, and this will be discussed in more detail in the next 

subsection. In the remainder of this section we investigate and present two main 

advantages  of  using  the  strain  gradient  approach.   First  of  all,  an  interpretation 

of those boundary conditions that are necessary to ensure the uniqueness of the 

solution is guaranteed only for strain gradient models and not for damage gradient 

models. This issue is very important when performing experimental and numerical 

parameter identification. Secondly, regularization in the elastic phase is achieved  

only with strain gradient models and not with damage gradient models. 

1.2. Number of constitutive parameters. Let us consider for simplicity the iso-  

tropic case.  For the strain gradient model the number of constitutive coefficients     

to be identified (in addition to the standard Lamé coefficients) is 5 for the 3D case 

and 4 for the 2D case. For the damage gradient model, in addition to the standard 

Lamé coefficients, we have 1 further parameter. In order to identify the constitutive 

parameters, an experimental procedure is necessary. In this regard, many attempts 

[Placidi et al. 2015; 2017; Rahali et al. 2016] have been exploited in the framework 

of strain gradient elasticity. 

1.3. Interpretation of boundary conditions. In continuum damage mechanics, the 

kinematics  (see  also  Figure  1)  is  defined  by  both  the  displacement  u(X, t) (or 

the placement χ(X, t)) and the damage ω(X, t) fields. In the  damage  gradient 

approach one assumes always natural boundary conditions, as is shown in Figure 2, 
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Figure 1.  Kinematics in continuum damage mechanics. 
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(  ω) ∙ n = 0 
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Figure 2.  Natural boundary conditions for the damage gradient approach. 
 

( ω) ∙ n ≠ 0 

 
 

 

Figure 3. An internal boundary (a line in the present 2D case) is 

depicted, where n is one of its unit normals. The internal boundary 

is chosen in such a way that the projection of the damage gradient 

on the unit normal n is nonzero. 

 

(  ω) ∙ n = ? 
n 

 
 

Figure 4. External boundary conditions for the damage gradient 

approach that guarantee the same solution of the boundary value 

problem represented in Figure 2. 

 
where n is the external unit normal. With these natural boundary conditions, which 

are represented in Figure 2, one obtains a solution in terms of the damage field   

ω(X, t) such that there exists an internal boundary where 

(∇ ω) · n /= 0. (1) 

x 

Bt 

B 
(X,t ),(X,t ) 

X 
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Figure 5.  Domain of the elastic problem defined in (3). 

 
Such an internal boundary is depicted, e.g., in Figure 3. Let us now perform a so-

called Cauchy-cut over the internal boundary represented in Figure 3 and take    the 

left part in such a way that the unit normal n defines its external unit normal.     We 

now take into account the boundary value problem, as in Figure 4, such that the 

solutions of the problems represented in Figures 3 and 4 are the same if restricted  

over the domain of Figure 4. Which kind of boundary conditions should we assume 

for  the  damage  gradient?  If  we  assume  zero  natural  boundary  conditions,  then 

the solutions of the problems in Figures 3 and 4,  restricted over the domain of   

Figure 4, are different. Because of the uniqueness of the solution, in order for the 

problems in Figures 3 and 4 to have the same solution, we should have nonzero 

natural boundary conditions. Thus, in the damage gradient approach one faces the 

problem of interpreting the natural boundary conditions. It is worth noting that the 

interpretation of the extra boundary conditions in the strain gradient approach, in 

terms of the normal gradient of displacement and/or double force and in terms of 

vertex-contact actions, is standard for elastic strain gradient models. 

1.4. Regularization of the elastic phase. In order to support the claim that a reg- 

ularized scheme is necessary also for the elastic phase, we consider the following 

example (personal communication of Pierre Seppecher).  The number of examples   

of this kind is very large. However, what we show here is simple to conceive and 

deserves a short illustration. Let us find, among all the displacement fields that  

satisfy the boundary conditions 

u/u(O) = ê3, u(∂Q) = 0, (2) 

the solution to the second-gradient elastic problem 

inf 

r

Q

I∇∇ uI2, (3) 

X
2 

X
1 

0 
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r 

= 

2 

ε→0 ln ε 

 

where Q ⊆ �2  is the circle of radius equal to 1 in Figure 5 and ê3  is the out-of-plane 

unit vector. It is possible to prove that the solution to (3)  is 

u = 2 r 2 ln r − r 2 + 1 (4) 

and that the infimum, which is in fact a minimum, is 
r 

I∇∇ uI2 = π 16 . (5) 
 

This means that the energy attained in correspondence of the solution is finite, as  

one would expect. If the energy to be minimized, among all the displacement fields 

satisfying the (2), is of first-gradient type, e.g., it is given by 

 

inf 
Q 
I∇ uI2, (6) 

an explicit analytical solution can still be found and reads as 

ln r 
u lim . (7) 

ε→0 ln ε 

In this case, the infimum is 
r 

 

2π 

I∇ uI = − lim 

 
= 0, (8) 

 

which means that the energy attained in correspondence of the solution is zero, a   

fact that is clearly not reasonable on a physical ground. 

 
2. The variational inequality and the derivation of governing equations 

In order to formulate governing equations for nonstandard models, it is useful to use 

a variational procedure. The reason for such a choice is that the definition of those 

boundary conditions that guarantee uniqueness of the solution is straightforward      

in this way. A variational principle of maximum plastic work has been derived 

already by Hill [1948]. Further contributions are due to,  among others,  [Maier  

1970; Bažant 1980; Bourdin et al. 2008; Pham et al. 2011b; Marigo 1989; Amor      

et al. 2009; Pham and Marigo 2010a; 2010b; Reddy 2011a; 2011b]. 

2.1. Kinematics of the model.  As shown in Figure 1, the kinematics of the model   

is given by the displacement field u, which is an observable state variable 

u : (�2 ⊇ <!, [0, T ]) → �2, (9) 

and by the damage field ω, which is an internal state variable 

ω : (�2 ⊇ <!, [0, T ]) → [0, 1], (10) 

Q 
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12 2 22 
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11,2 , 

2 2 
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with ω = 0 corresponding to the undamaged material and ω = 1 to the failure state. 

Further, we don’t take into account any healing mechanism, and this introduces the 

unilateral (entropic) constraint 

ω̇ ≥ 0. (11) 

2.2. The variational inequality. We assume a total deformation energy functional 

�(u, ω) of the kind which has been discussed so far (i.e., including strain gradient). 

Thus, we evaluate its variation δ�(u, ω, δu, δω). Finally, the variational inequality 

δ�(u, ω, u̇ , ω̇ ) ≤ δ�(u, ω, υ, β) for all υ and for all β ≥ 0 (12) 

is assumed for any admissible virtual velocity fields β and υ. As remarked in 

[Marigo 1989], inequality (12) states that  the  actual  energy  release  rate  is  not 

smaller than any possible one. Thus, it constitutes a kind of principle of maximum 

energy release rate. 

2.3. The total energy functional in the strain gradient damage 2D case.  The to-  

tal energy functional which is here investigated is defined as 

 

�(u, ω) 
<! 

[U(G, ∇ G, ω) − bext · u − mext · ∇ u] d A 
r r 

   
 

 

   
 

 

where  a  standard  second-gradient  elastic  energy,  with  G  the  symmetric  part  of 

the displacement gradient, has been complemented with an isotropic local damage 

dissipation term. The 2D isotropic quadratic internal deformation energy density 

functional accounting for damage is 

U(G, ∇ G, ω) = Ue(G, ∇ G, ω) + 
2 
ω2, (14) 

where k is the resistance to damage. The elastic part Ue(G, ∇ G, ω) of the internal 

energy that is here considered is 

Ue(G, ∇ G, ω) = 2µG2  + 1 λ(G11 + G22)2 + µ(G11
2 + G2 ) 

+ (G11 1
2 + G22 2

2) + 2 A(G12 1
2 + G12 2

2) 

2 
, , , , 

+ 

( 
3 A 

− B + C + 2D (G2 + G22 1
2) 

+ ( A + B − 2C)(G11,1 G12,2 + G12,1 G22,2) 

+ (−4 A + 2B − 4D)(G12,2 G22,1 + G11,2 G12,1) 

+ 

(

− 
A 

− 
B 

+ C + 2D

 

(G11 2 G22 2 + G11 1 G22 1), (15) 

f ext · u, (13) 
[∂∂ <!] 

[t ext · u + τ ext · [(∇ u)n]] ds − 
∂ <! 

− 

f ext · u, (13) 
[∂∂ <!] 

[t ext · u + τ ext · [(∇ u)n]] ds − 
∂ <! 

− 
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where the stiffness coefficients λ, µ,  A,  B, C , and  D all depend upon damage ω. 

The dependence of the elastic coefficients upon damage is illustrated in the next 

subsection. 

2.4. Dependence of the elastic coefficients upon damage. In our model Lamé 

constants are, as it is customarily assumed in  damage  mechanics,  a  decreasing 

function of damage, 

λ = λ0(1 − ω), µ = µ0(1 − ω), (16) 

while second-gradient elastic stiffnesses are increasing with increasing damage, 

A = A0(1+nω),  B = B0(1+nω),   C = C0(1+nω),   D = D0(1+nω),   n ∈ �. 

(17) 

The reason for such a choice is that the state of damage is by itself a kind of   

measure of the microstructures of the continuum. When modeling some classes of 

phenomena (e.g., the behavior of laminate composites, where damage is spreading 

without localizing too much), it is reasonable to conceive a model in which the 

postulated dependencies (17) of A, B, C , and D upon damage are appropriate. For 

further details the reader is referred to the complete formulation in [Placidi 2015; 

2016]. Moreover, in Section 4 some numerical results show the sensitivity of a 

certain solution upon the parameter n. Finally, it is worth noting that, in order to 

study  the fracture  propagation,  equations  (17) should  change.  However,  this will 

be the topic of another work. 

2.5. Derivation of governing partial differential equations. It is possible to prove 

that the variational inequality (12) reduces to the usual balance of momenta when 

arbitrary variations δu and no variations δω, i.e., δω = 0, are considered: 

δ�(u, ω, δu, δω = 0) = 0. (18) 

By applying the localization theorem we get the system of PDEs 

(Si j − Ti jh,h), j + bext − mext  = 0 for all X ∈ <!, (19) 

where stress and hyperstress are defined as 

∂U ∂U  
Si j = , Ti jh = . (20) 

∂Gi j ∂Gi j,h 

2.6. Derivation of boundary conditions. For those points of ∂ <! \ [∂∂ <!] where 

kinematical constraints on u are not given, i.e., where δu /= 0, we have the natural 

boundary conditions t − t ext − mextn = 0. For those points of the ∂ <! \ [∂∂ <!] where 

kinematical constraints on ∇ un are not given, i.e., where δ∇ un /= 0, we have the 

natural boundary conditions τ − τ ext = 0. Finally, for those points of [∂∂ <!] where 
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∂ω 

 

kinematical constraints on u are not given, i.e., where δu /= 0, we have the natural 

boundary conditions  f − f ext = 0. For further details, i.e., for proper definitions of 

the contact actions t , τ , and  f , the reader is referred to the complete formulation    

in [Placidi et al. 2015; Placidi and El Dhaba 2017]. 

2.7. Derivation of the Karush–Kuhn–Tucker conditions. By choosing υ = u̇  and 

β  = 0  (followed  by  the  choice  β  = 2ω̇  and  then  by  the  choice  β  = ω̇ )  in  the 

variational inequality (12), it is possible to prove, by localization arguments,  that 
∂U  and/or ω̇ (which is always nonnegative, i.e., ω̇ ≥ 0) must vanish for each point X 
of <! and time t 

∂U 

ω̇ = 0 for all X ∈ <!. (21) 

Thus, we are able to derive the so-called Karush–Kuhn–Tucker (KKT) condi-  

tions for damage mechanics simply from the variational principle (12). 

2.8. Comments.  For a fixed ω, the behavior is (linear and) elastic. However, since  

ω evolves (quasistatically), the global behavior is inelastic and the effective Young’s 

modulus is proportional to (1 − ω). This corresponds to a global softening behav-  

ior. Further, given the choice of the dissipation energy (i.e., quadratic dependence 

upon damage), damage will increase from the very beginning and no purely elastic 

behavior is observed as if, e.g., a linear dependence upon damage was assumed.  It    

is crucial, even if redundant, to remark that our model accounts for the fact that 

localization  of  strain  and  damage  consists  of  a  two-way  interaction:  localization 

of strain  implies localization  of damage  and vice versa.  Anyway,  contrarily to  

what  is  done  usually  in  damage  mechanics,  accounting  for  nonlocal  behavior  is 

not encoded in the (local) damage term (indeed this is not a phase field model, i.e., 

nonlocal/gradient damage). Accounting for nonlocal behavior is encoded in the de- 

pendence of the strain energy upon the strain gradient (advantages and challenges    

of this approach were explained in the previous section).  It is possible to show     

that, without nonlocal terms, concentration of stress (strain) leads to a burst of 

damage (up to 1) in these very localized regions. Consequently, the first-gradient 

model works only for moderate levels of mean damage, being unable to capture,     

for instance, the softening process.  Further, since strain gradient terms make us   

“pay” for the localization of strain (stress), they play the role of “limiters” against 

brutal failure. Thus, the model works up to higher levels of mean damage, being   

able to capture the softening process. 

 

3. Solution algorithm in incremental form 

Since ω̇ ≥ 0, KKT conditions (21) imply that 
∂U 

∂ω  
= 0 ∨ ω̇ = 0 for all X ∈ <!. (22) 

∂ω 
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µ0 µ0 λ0 + 2µ0 0 

2 2 2 

0 0 −   0 +  0 

0 −   0 −   0 

<!→� 

 

Then, we define a damage threshold ω(G, ∇ G) such that 

∂U    

(G, ∇ G, ω(G, ∇ G)) = 0. (23) 

With the prescriptions (15) on the functional dependence of the elastic internal 

energy upon the strain and the strain gradient tensors, (14) on the functional depen- 

dence of the dissipation energy upon the entropic damage variable, and (16)–(17)    

on the functional dependence of the first- and second-gradient elastic stiffnesses   

upon the entropic damage variable, we obtain the form for the damage threshold 

ω(X, t) = (u2 + u2 ) + 2 u1 2u2 1 + (u2 + u2 λ 
) + 2 u1 1u2 2 

k 
1,1 

2,2 
k 

, , 
k 

1,2 
1,1 

k 
, , 

A0 − n (u + u2 B0 ) − n (u + u2 C0 ) − n (u + u2 ) 

k 
1,22 

2,11 
k 

1,11 
2,22 

k 
1,12 

2,12 

D B C A − 2n (u1 11u2 12 + u2 22u1 12) − n (u1 11u1 22 + u2 11u2 22) 

k 
, , , , 

k 
, , , , 

B A D − 2n (u1 12u2 11 + u1 22u2 12). (24) 

k 
, , , , 

First of all, an initial condition for both displacement and damage is assigned as 

u(X, 0) = u0(X) = 0 for all X ∈ <!, ω(X, 0) = ω0 = 0 for all X ∈ <!. (25) 

Once the initial condition is assigned, the displacement field ui (X) for the i -th 

step (with i ∈ N) is derived from (18) as 

ui = arg 
u:

min 
2 
�(u, ωi −1), (26) 

and the damage field ωi (X) for the i -th step is derived from (21) as 

ωi = max(ω(Gi , ∇ Gi ), ωi −1), (27) 

where here we intend ui and ωi to be the values, at a certain point, of the dis- 

placement u and damage ω at the time step ti . It is worth noting that an a priori 

discretization of the time variable, that in the present quasistatic case is interpreted   

as an order parameter, must be performed. 

The incremental formulation has been implemented in MATLAB. For simplicity, 

we performed only displacement-controlled numerical experiments and, at each   

step, the  minimization  problem  in  (26)  is  approximated  by  means  of  the  weak 

form package of the FEM software COMSOL Multiphysics. The mesh is triangular, 

and it is Delaunay-tessellated (maximum element size 3.0 × 10−4 m and minimum 

element  size  6.0 × 10−7  m).  When  strain  gradient  constitutive  coefficients  A  = 

B = C = D  = 0 are null,  quadratic Lagrangian shape functions are employed  
while, when they are greater than zero, cubic Hermite shape functions are used. 

The Newton–Raphson method is used to numerically solve the algebraic   system 

∂ω 
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Figure 6. Tensile test (plain plate): reference domain with a 

schematic of BCs (top); vertical displacement of the deformed con- 

figuration for a linear elastic isotropic homogeneous body (bottom) 

is emphasized more than the horizontal displacement. 

 

 

 
L 

 
 

l 

 
 

Figure 7.  Tensile  test  (perforated  plate):  reference  domain  with 

a schematic of BCs (top); vertical displacement of the deformed 

configuration for a linear elastic isotropic homogeneous body (bot- 

tom) is emphasized more than the horizontal displacement. 

 

coming from the Galerkin approximation.  The computational time for each step      

is approximately 40 s with an Intel Core i7-6700HQ CPU at 2.60 GHz and 16 GB 

RAM machine. 

 
4. Tensile tests of plain and perforated plate 

We investigate two simple geometries: a plain rectangle, like the one in Figure 6,   

and a perforated rectangle, like the one in Figure 7. 

Numerical simulations have been performed with the constitutive coefficients 

illustrated in Table 1, where the Lamé coefficients λ and µ depend in the standard 

way upon the Young’s modulus and Poisson’s ratio given in Table 1.  Further,    L 
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0  0  2  2  2
 α  

 
0 

0 

α0  
4 

α0 
5 

 

Young’s modulus (Y ) 

75 GPa 
Poisson’s ratio 

0.11 
k 

75 kPa 
L l 

20 mm 30 mm 

α0, α0, α0, α0 
1 2 3 4 

m · Y · 1 mm2 
α0 

α0
5
2 

1 
/ 

n 

0 or 1 
d 

0.33 mm 

Table 1.  Numerical values which are used in simulations. 

Figure  8.  Tensile  test  (plain  plate):   m  =  0.   S11 (Pa)  (right 

side midpoint) versus G11 (right side midpoint) (blue); S11 (Pa) 

(right  side  midpoint)  versus  G22  (right  side  midpoint)  (orange); 

l = 30 mm; m = 0; n = 1. 

 

Figure 9. Tensile test (plain plate): m = 0. Color map of ω at  

failure point; l = 30 mm; m = 0; n = 1. No boundary layer. Burst 

of damage in very localized zones. 

and l are the lengths of the sides  of  the  rectangle  and  the  undamaged  second- 

gradient stiffnesses A0, B0, C0, and D0 are related to the 5 Mindlin’s 3D coef-  

ficients illustrated in Table 1 as 

 
A0 

 1 
 

 B0 
 

 
 

8  2  8  4  8  α2  

 

C0 
 = 

2  1  1  3  5  α3  . (28) 

0 

 
 

0 

D 
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Figure 10.  Tensile test (plain plate):  m = 0.05.  S11 (Pa) versus  

G11  (blue);  S11 (Pa) versus  G22  (orange); l  = 30 mm; m = 0.05; 

n = 1. This graphic shows strain-gradient-enabled softening. 

 

Figure 11.  Tensile test (plain plate): m = 0.05.  Color map of  ω 

at failure point; l = 30 mm; m = 0.05; n = 1. 

Moreover, as is shown in Table 1, m is the (nondimensional) weight of second- 

gradient terms in the internal strain energy.  Further, the parameter n, introduced      

in the constitutive assumptions (17), determines the effect of damage on the mi- 

crostructure; i.e., damage can either affinely magnify (n > 0) or affinely sh
√
rink 

(n < 0) the square of the characteristic length that is, in millimeters, given by m. 

Finally, d is the diameter of the circular hole appearing in Figure 7. We make clear 

that the abscissa of the stress-strain plots which will be shown in the sequel is not 

equal to the ratio of the imposed displacement u to l (i.e., it is not the global strain), 

but it is in fact the value of G11 at the midpoint of the right side of the rectangular 

domain, i.e., the local strain. 

In Figure 8, the stress-strain relationship for the tensile simulation of a plain    

plate is shown for a first gradient continuum, which means for m = 0.  A slight     
loss of material stiffness is observed, which however does not lead to any decrease 

in stress as strain increases.  In Figure 9, a contour plot of the damage variable         

is shown at failure point,  in the same example.      We  remark that the absence of 
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Figure 12.  Tensile  test  (plain  plate):  m  = 0.05.  Color  map  of 

S11 (Pa)  (left),  S12 (Pa)  (center),  S22 (Pa)  (right)  at  failure  point; 

l = 30 mm; m = 0.05; n = 1. 

 

Figure 13.  Tensile test (perforated plate): m = 0.05. S11 (Pa) ver- 

sus G11 (blue); S11 (Pa) versus G22 (orange); l = 30 mm; m = 0.05; 

n = 1. This graphic does not exhibit softening. The value of m 

required to have softening is relatively much higher. 

 
nonlocal contributions to the internal strain energy density, which would prevent 

strain localization,  results in the absence of any boundary layer and,  thus,  in a   

burst  of  damage  in  very  localized  zones.   This  fact  leads  to  mesh  dependency 

as, whatever the  finite  element  characteristics  (size  and  geometry  of  mesh  and 

shape function), the first failure is always observed in one single finite element. In 

Figure 10, which represents the stress-strain diagram for the experiment in Figure 6 

and for m = 0.05, a loss of material stiffness is observed as well. Since the increase 

of damage due to localization is slowed down by the presence of second-gradient 

contributions, failure of the material occurs well after that in the case of m = 0 and a 

stationary point of the stress-strain relationship is observed for a longitudinal strain 

corresponding to approximately G11  = 5.8 × 10−4.  In Figure 11, a contour  plot 

of the damage variable is shown at failure point for the same example. We remark 

that the presence of nonlocal contributions to the internal strain energy density 
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Figure 14.  Tensile  test (perforated plate):  m = 0.05.  Color map  

of ω at failure point; l = 30 mm; m = 0.05; n = 1. This graphic is 

coherent with well known analytical results in the theory of first- 

gradient linear homogeneous isotropic elasticity. 

 

Figure 15.  Tensile test (perforated plate):  m = 0.05.  Color map  

of S11 (Pa) (left), S12 (Pa) (center), S22 (Pa) (right) at failure point;    

l = 30 mm; m = 0.05; n = 1. 

 
prevents strain localization and mesh dependency is not observed since the regions 

with the highest value of damage at the left corners of the specimen are larger       

than the size of a single finite element.  In Figure 12 the contour plots at failure    

point of the components of the stress tensor are shown.  Figures 13, 14, and 15    

show, respectively, the stress-strain curve, the damage contour plot at failure point, 

and the contour plots of the components of the stress tensor for the test described     

in Figure 7, when m = 0.05. As is clear from Figure 14, failure  occurs  at  the 

intersection of the transversal axis of the rectangular specimen with the perimeter    

of the internal circular void and mesh dependency is again avoided by the pres-     

ence of second-gradient contributions. Still, the characteristic length introduced by 

means of second gradient is not sufficiently large to limit the increase of damage     

up to failure and, thus, to see a change of sign in the derivative of the  stress-strain 
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Figure 16.  Tensile  test  (plain  plate):  m  = 0.1.  S11 (Pa)  versus 

G11  (blue);  S11 (Pa)  versus  G22  (orange);  l  = 30 mm;  m  = 0.1; 

n = 1. This graphic shows a softening behavior and a snap-back- 

like transition due to localized elastic unloading at the right side     

of the reference domain. 
 

Figure 17. Tensile test (plain plate): m = 0.1. Color map of ω at 

failure point; l = 30 mm; m = 0.1; n = 1. 

 
relationship. In Figure 16, the stress-strain curve is shown for the test in Figure 6, 

when m = 0.1. Clearly, in this case the weight of the second-gradient contribution    

is sufficiently high to see a decrease of stress as strain increases. It is also relevant 

that, for such value of m, a snap-back like transition, due to elastic unloading of     

the region of the specimen adjacent to the right side, occurs. Indeed, as shown in 

Figure 17, failure occurs at a banded region in the middle of the specimen.  It is  

worth remarking that this phenomenon is not a snap-back in the proper sense of      

the word, because there is no instability involved in the process. In Figure 20 the 

contour plot of damage at failure point is shown for the same experiment and for       

a different width of the rectangular specimen, in order to show that the position of  

the damage band remains unchanged.  This evidence is highlighted in Figure 18.      

In Figure 19 contour plots of the components of the stress tensor are shown. In  

Figure 21, the contour plot of damage at failure point for the test in Figure 6, 
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Figure 18. Tensile test (plain plate): m = 0.1. Color map of ω at 

failure point; l = 30 mm; m = 0.1; n = 1. 

 

Figure  19.  Tensile  test  (plain  plate):  m  = 0.1.   Color  map  of 

S11 (Pa)  (left),  S12 (Pa)  (center),  S22 (Pa)  (right)  at  failure  point; 

l = 30 mm; m = 0.1; n = 1. 

 

Figure 20. Tensile test (plain plate): m = 0.1. Color map of ω at 

failure point; l = 40 mm; m = 0.1; n = 1. 

when m = 0.1, is shown for n = 0, i.e., the second-gradient coefficients (or the 

microstructure) are not sensitive at all to the internal state of damage.     It is clear 
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Figure 21. Tensile test (plain plate): m = 0.1. Color map of ω at 

failure point; l = 40 mm; m = 0.1; n = 0. 

 

Figure 22. Tensile  test  (plain  plate):  m  = 0.1.  S11 (Pa)  versus 

G11; l = 30 mm; m = 0.1; n = 1. This graphic shows dependence 

of  the  system  upon  the  path  (loading-unloading).   The  measure 

of the area inside the cycle is roughly equal to the dissipated en- 

ergy. After the unloading, the specimen comes back to the initial 

unstressed configuration. No plastic effect is taken into account. 

 
that the main difference between Figures 17 and 21 is the shape of the damage band. 

The two figures were obtained under the same conditions, reported in their captions, 

except for the value of n. The damage band is distorted for n = 0. In Figures 23,    

24, and 25 the stress-strain curve, the damage contour plot at failure point, and       

the contour plot of the components of the stress tensor for the test described in   

Figure  6  (with  m  = 1)  are  shown,  respectively.  As  is  clear  from  Figure  23,  in 

this  case  no  snap-back-like  transition  is  observed.   This  is  due  to  the  fact  that 

the region of the specimen subject to elastic unloading does not include the point 

where stress and strain are evaluated in Figure 23, i.e., the middle point of the right 

side, since, as shown in Figure 24, the damage band touches the right boundary of  

the specimen. In Figure 22 dependence of the system upon the path is shown in a 

loading-unloading cycle for the data reported in the caption. Since no plastic effects 
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Figure 23. Tensile test (plain plate): m = 1. S11 (Pa) versus G11 

(blue); S11 (Pa) versus G22  (orange); l = 30 mm; m = 1; n = 1.  

This graphic shows strain-gradient-enabled softening. 

 

Figure 24. Tensile test (plain plate): m = 1. Color map of ω at 

failure point; l = 30 mm; m = 1; n = 1. 

 

Figure 25. Tensile test (plain plate): m = 1. Color map of S11 (Pa) 

(left), S12 (Pa) (center), S22 (Pa) (right) at failure point; l = 30 mm; 

m = 1; n = 1. 

 
are taken into account in the model, after the unloading the specimen comes back to 

the initial unstressed configuration. Finally, in Figures 26 and 27 mesh-dependency 
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Figure 26.  S11 (Pa) versus G11  (left);  S11 (Pa) versus G22  (right);   

l = 30 mm; m = 0.1; n = 1. Mesh-dependency study for the tensile 

test (plain plate). The mesh is triangular and Delaunay-tessellated. 

Maximum and minimum element sizes are expressed in meters. 
 

Figure 27.  S11 (Pa) versus G11  (left);  S11 (Pa) versus G22  (right);   

l = 30 mm; m = 1; n = 1. Mesh-dependency study for the tensile 

test (plain plate). The mesh is triangular and Delaunay-tessellated. 

Maximum and minimum element sizes are expressed in meters. 

 

parametric studies, parametrized over the element size, are reported, respectively,   

for m = 0.1 and m = 1, in the case of the test in Figure 6. 

The size of the load parameter step foiui has been tuned in order to avoid step- 

dependent simulations.  The step size can be higher, still keeping a good accuracy    

in the numerical solution, when the specimen is in a regime which resembles the 

elastic one, i.e., when the stress-strain dependence is very close to linear, while 

damage increase is overestimated to a certain extent when the step size is too large. 

In that case, the load-parameter step has been decreased accordingly. 

 
5. Conclusion and outlooks 

Continuum damage mechanics, because of the presence of strain localization, de- 

serves a nonlocal generalization. Advantages and challenges of the incorporation of 

nonlocal effects, by including either the gradient of damage or the second gradient 
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of displacement in the internal strain energy, have been discussed. In this paper we 

have exploited the case of a damage continuum isotropic two-dimensional strain 

gradient model. In order to obtain a well posed system of PDEs, BCs, and KKT 

conditions, a variational approach has been used.  Indeed, what is worth remarking   

is that the variational approach developed in this work allows us to recover not     

only the relevant governing equations and an incremental damage evolution law,     

but also boundary conditions which lead to a well posed problem [dell’Isola et al. 

2015b; dell’Isola and Placidi 2011; dell’Isola et al. 2015a; Piola 2014]. We have 

shown that, in the present model, the regularizing effect of the strain gradient terms 

results, most of the time, in an irreversible softening behavior (i.e., the derivative      

of stress with respect to strain becomes negative) and, sometimes, even in a kind of 

snap-back-like transition due to localized elastic unloading. This localized elastic 

unloading,  in the examples that have  been shown,  clearly arises from the verti-  

cally banded damage leading to failure, very likely formed by the propagation and 

combination of damage from the upper- and lower-left corners. In fact, along this 

damage band the material is relaxed very much in comparison to other regions of   

the specimen, i.e., the stiffness, there, is much lower than in other regions. Hence, 

this region is elongating much more than other regions which, in order to keep        

the global strain as the one assigned by boundary conditions, are shrunk. We have 

shown that the position of the damage band depends upon m, which weights the 

second-gradient contribution to the strain energy, and its shape depends upon n,  

which relates such contribution to damage. No snap-back-like transition due to 

localized elastic unloading at the right side of the reference domain occurs when the 

damage band touches the right boundary. Simulations were performed also using 

quadratic Lagrange elements (instead of Hermite cubic elements, for m >0) and 

squared  meshes  (instead  of  triangular  Delaunay-tessellated  meshes),  confirming 

the reliability of the results in such a numerically challenging task. 

The outlooks of this work are the following. First of all, it would be interesting    

to exploit the 3D case, in order to understand if geometrical effects due to a higher 

domain dimensionality could give rise to qualitatively different damage patterns. 

Then, in order to fit experimental data, it is necessary to develop methods for the 

experimental and/or theoretical characterization of the constitutive coefficients re- 

lated to damage.  Having a theoretical characterization of such coefficients would    

be ideal, because it would yield the identification of model parameters related to 

damage less costly. A promising approach to achieve this goal is to use identifi-  

cation methods based on granular micromechanics [Misra and Singh 2015; 2013], 

where some kind of damage mechanisms are modeled at the microlevel. Another 

important line of research that could be potentially pursued starting from this pa-    

per would deal with the extension of the present work in order to include plastic 

phenomena [Contrafatto and Cuomo 2002]. A further numerical campaign has  to 
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be carried out in order to better investigate the variety of phenomena that can be 

exhibited by this model. There are a number of research questions which are still 

open; e.g., does higher m with 0.05 < m < 0.1 always imply rightmost damage 

band? In any case, on the basis of the results shown in this paper, we can formulate 

several research hypotheses. A better understanding of the simple model studied 

in this paper could allow significant advancements for the development of a more 

involved model including, e.g., anisotropy, large deformations, plasticity, different 

dissipated energy, etc., based upon the same working principle, and that will be 

the subject of further investigations. We observe that it could be of interest to 

generalize the results of this paper, e.g., to the modeling of damaging processes 

in bone tissues [Andreaus et al. 2015; 2014; Giorgio et al. 2016a; 2016b] and    

of cementitious and granular materials [Misra and Singh 2015; 2013; Yang and 

Misra 2012; Yang et al. 2011]. Finally, this approach could be especially useful 

also for the modeling of damage in 2D structures such as pantographic sheets, fiber 

textile composites, and elastic nets [Spagnuolo et al. 2017; Turco et al. 2017; 2016; 

dell’Isola et al. 2016; Eremeyev et al. 2017; Battista et al. 2015]. 

 

Acknowledgements 

Misra was supported by United States NSF grant CMMI 1727433. This work was 

also supported by a grant from the Government of the Russian Federation (contract 

number 14.Y26.31.0031). 
 

References 

[Ambrosio and Tortorelli 1990] L. Ambrosio and V. M. Tortorelli, “Approximation of functionals 

depending on jumps by elliptic functionals via r-convergence”, Comm. Pure Appl. Math. 43:8 

(1990), 999–1036. 

[Amor et al. 2009] H. Amor, J.-J. Marigo, and C. Maurini, “Regularized formulation of the varia- 

tional brittle fracture with unilateral contact: numerical experiments”, J. Mech. Phys. Solids 57:8 

(2009), 1209–1229. 

[Andreaus et al. 2014] U. Andreaus, I. Giorgio, and T. Lekszycki, “A 2-D continuum model of a 

mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under 

load slowly variable in time”, Z. Angew. Math. Mech. 94:12 (2014), 978–1000. 

[Andreaus et al. 2015] U. Andreaus, I. Giorgio, and A. Madeo, “Modeling of the interaction between 

bone tissue and resorbable biomaterial as linear elastic materials with voids”, Z. Angew. Math. Phys. 

66:1 (2015), 209–237. 

[Battista et al. 2015] A. Battista, C. Cardillo, D. Del Vescovo, N. L. Rizzi, and E. Turco, “Frequency 

shifts induced by large deformations in planar pantographic continua”, Nanomech. Sci. Tech. 6:2 

(2015), 161–178. 

[Bažant 1980]  Z. P. Bažant, “Work inequalities for plastic fracturing materials”, Int. J. Solids Struct. 

16:10 (1980), 873–901. 

[Bažant and Jirásek 2002] Z. P. Bažant and M. Jirásek, “Nonlocal integral formulations of plasticity 

and damage: survey of progress”, J. Eng. Mech. 128:11 (2002), 1119–1149. 

http://dx.doi.org/10.1002/cpa.3160430805
http://dx.doi.org/10.1002/cpa.3160430805
http://dx.doi.org/10.1016/j.jmps.2009.04.011
http://dx.doi.org/10.1016/j.jmps.2009.04.011
http://dx.doi.org/10.1002/zamm.201200182
http://dx.doi.org/10.1002/zamm.201200182
http://dx.doi.org/10.1002/zamm.201200182
http://dx.doi.org/10.1007/s00033-014-0403-z
http://dx.doi.org/10.1007/s00033-014-0403-z
http://dx.doi.org/10.1615/NanomechanicsSciTechnolIntJ.v6.i2.50
http://dx.doi.org/10.1615/NanomechanicsSciTechnolIntJ.v6.i2.50
http://dx.doi.org/10.1016/0020-7683(80)90055-4


98 LUCA PLACIDI, EMILIO BARCHIESI AND  ANIL  MISRA 
 

 

[Bažant and Pijaudier-Cabot 1988] Z. P. Bažant and G. Pijaudier-Cabot, “Nonlocal continuum dam- 

age, localization instability and convergence”, J. Appl. Mech. 55:2 (1988), 287–293. 

[Bourdin et al. 2008] B. Bourdin, G. A. Francfort, and J.-J. Marigo, “The variational approach to 

fracture”, J. Elasticity 91:1-3 (2008), 5–148. 

[Comi 1999] C. Comi, “Computational modelling of gradient-enhanced damage in quasi-brittle ma- 

terials”, Mech. Cohesive-Frictional Mat. 4:1 (1999), 17–36. 

[Contrafatto and Cuomo 2002] L. Contrafatto and M. Cuomo, “A new thermodynamically consistent 

continuum model for hardening plasticity coupled with damage”, Int. J. Solids Struct. 39:25 (2002), 

6241–6271. 

[dell’Isola and Placidi 2011] F. dell’Isola and L. Placidi, “Variational principles are a powerful tool 

also for formulating field theories”, pp. 1–15 in Variational models and methods in solid and fluid 

mechanics, edited by F. dell’Isola and S. Gavrilyuk, CISM Courses and Lect. 535, Springer, 2011. 

[dell’Isola et al. 2015a] F. dell’Isola, U. Andreaus, and L. Placidi, “At the origins and in the vanguard 

of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still 

topical contribution of Gabrio Piola”, Math. Mech. Solids 20:8 (2015), 887–928. 

[dell’Isola et al. 2015b] F. dell’Isola, P. Seppecher, and A. Della Corte, “The postulations à la 

d’Alembert and à la Cauchy for higher gradient continuum theories are equivalent: a review of 

existing results”, Proc. A. 471:2183 (2015), art. id. 20150415. 

[dell’Isola et al. 2016] F. dell’Isola, I. Giorgio, M. Pawlikowski, and N. L. Rizzi, “Large deforma- 

tions of planar extensible beams and pantographic lattices: heuristic homogenization, experimental 

and numerical examples of equilibrium”, Proc. A 472:2185 (2016), art. id. 20150790. 

[Eremeyev et al. 2017] V. A. Eremeyev, F. dell’Isola, C. Boutin, and D. Steigmann, “Linear pan- 

tographic sheets: existence and uniqueness of weak solutions”, J. Elasticity (online publication 

November 2017). 

[Forest 2009] S. Forest, “Micromorphic approach for gradient elasticity, viscoplasticity, and dam- 

age”, J. Eng. Mech. 135:3 (2009), 117–131. 

[Giorgio et al. 2016a] I. Giorgio, U. Andreaus, and A. Madeo, “The influence of different loads on 

the remodeling process of a bone and bioresorbable material mixture with voids”, Contin. Mech. 

Thermodyn. 28:1-2 (2016), 21–40. 

[Giorgio et al. 2016b] I. Giorgio, U. Andreaus, D. Scerrato, and F. dell’Isola, “A visco-poroelastic 

model of functional adaptation in bones reconstructed with bio-resorbable materials”, Biomech. 

Model. Mechanobiol. 15:5 (2016), 1325–1343. 

[Hill 1948] R. Hill, “A variational principle of maximum plastic work in classical plasticity”, Quart. 

J. Mech. Appl. Math. 1:1 (1948), 18–28. 

[Lorentz and Andrieux 2003] E. Lorentz and S. Andrieux, “Analysis of non-local models through 

energetic formulations”, Int. J. Solids Struct. 40:12 (2003), 2905–2936. 

[Maier 1970] G. Maier, “A minimum principle for incremental elastoplasticity with non-associated 

flow laws”, J. Mech. Phys. Solids 18:5 (1970), 319–330. 

[Marigo 1989] J. J. Marigo, “Constitutive relations in plasticity, damage and fracture mechanics 

based on a work property”, Nuclear Eng. Des. 114:3 (1989), 249–272. 

[Miehe et al. 2016] C. Miehe, F. Aldakheel, and A. Raina, “Phase field modeling of ductile frac- 

ture at finite strains: a variational gradient-extended plasticity-damage theory”, Int. J. Plasticity 84 

(2016), 1–32. 

[Misra and Singh 2013] A. Misra and V. Singh, “Micromechanical model for viscoelastic materials 

undergoing damage”, Contin. Mech. Thermodyn. 25:2-4 (2013), 343–358. 

http://dx.doi.org/10.1115/1.3173674
http://dx.doi.org/10.1115/1.3173674
http://dx.doi.org/10.1007/s10659-007-9107-3
http://dx.doi.org/10.1007/s10659-007-9107-3
http://dx.doi.org/10.1016/S0020-7683(02)00470-5
http://dx.doi.org/10.1016/S0020-7683(02)00470-5
http://dx.doi.org/10.1007/978-3-7091-0983-0_1
http://dx.doi.org/10.1007/978-3-7091-0983-0_1
http://dx.doi.org/10.1177/1081286513509811
http://dx.doi.org/10.1177/1081286513509811
http://dx.doi.org/10.1177/1081286513509811
http://dx.doi.org/10.1098/rspa.2015.0415
http://dx.doi.org/10.1098/rspa.2015.0415
http://dx.doi.org/10.1098/rspa.2015.0415
http://dx.doi.org/10.1098/rspa.2015.0790
http://dx.doi.org/10.1098/rspa.2015.0790
http://dx.doi.org/10.1098/rspa.2015.0790
http://dx.doi.org/10.1007/s10659-017-9660-3
http://dx.doi.org/10.1007/s10659-017-9660-3
http://dx.doi.org/10.1007/s00161-014-0397-y
http://dx.doi.org/10.1007/s00161-014-0397-y
http://dx.doi.org/10.1007/s10237-016-0765-6
http://dx.doi.org/10.1007/s10237-016-0765-6
http://dx.doi.org/10.1093/qjmam/1.1.18
http://dx.doi.org/10.1016/S0020-7683(03)00110-0
http://dx.doi.org/10.1016/S0020-7683(03)00110-0
http://dx.doi.org/10.1016/0022-5096(70)90002-5
http://dx.doi.org/10.1016/0022-5096(70)90002-5
http://dx.doi.org/10.1016/0029-5493(89)90105-2
http://dx.doi.org/10.1016/0029-5493(89)90105-2
http://dx.doi.org/10.1016/j.ijplas.2016.04.011
http://dx.doi.org/10.1016/j.ijplas.2016.04.011
http://dx.doi.org/10.1007/s00161-012-0262-9
http://dx.doi.org/10.1007/s00161-012-0262-9


A STRAIN GRADIENT VARIATIONAL APPROACH TO   DAMAGE 99 
 

 

[Misra and Singh 2015] A. Misra and V. Singh, “Thermomechanics-based nonlinear rate-dependent 

coupled damage-plasticity granular micromechanics model”, Contin. Mech. Thermodyn. 27:4-5 

(2015), 787–817. 

[Mühlich et al. 2013] U. Mühlich, L. Zybell, G. Hütter, and M. Kuna, “A first-order strain gradient 

damage model for simulating quasi-brittle failure in porous elastic solids”, Arch. Appl. Mech. 83:6 

(2013), 955–967. 

[Oliver-Leblond et al. 2016] C. Oliver-Leblond, H. Dumontet, and D. Kondo, “A micro-mechanics 

based strain gradient damage model: formulation and solution for the torsion of a cylindrical bar”, 

Eur. J. Mech. A Solids 56 (2016), 19–30. 

[Peerlings et al. 2001] R. H. J. Peerlings, M. G. D. Geers, R. de Borst, and W. A. M. Brekelmans,  

“A critical comparison of nonlocal and gradient-enhanced softening continua”, Int. J. Solids Struct. 

38:44-45 (2001), 7723–7746. 

[Pham and Marigo 2010a] K. Pham and J.-J. Marigo, “Approche variationnelle de l’endommage- 

ment, I: Les concepts fondamentaux”, C. R. Mécanique 338:4 (2010), 191–198. 

[Pham and Marigo 2010b] K. Pham and J.-J. Marigo, “Approche variationnelle de l’endommage- 

ment, II: Les modèles à gradient”, C. R. Mécanique 338:4 (2010), 199–206. 

[Pham et al. 2011a] K. Pham, H. Amor, J.-J. Marigo, and C. Maurini, “Gradient damage models and 

their use to approximate brittle fracture”, Int. J. Damage Mech. 20:4 (2011), 618–652. 

[Pham et al. 2011b] K. Pham, J.-J. Marigo, and C. Maurini, “The issues of the uniqueness and the 

stability of the homogeneous response in uniaxial tests with gradient damage models”, J. Mech. 

Phys. Solids 59:6 (2011), 1163–1190. 

[Piola 2014] G. Piola, The complete works, I, edited by F. dell’Isola et al., Advanced Structured 

Materials 38, Springer, 2014. 

[Placidi 2015] L. Placidi, “A variational approach for a nonlinear 1-dimensional second gradient 

continuum damage model”, Contin. Mech. Thermodyn. 27:4-5 (2015), 623–638. 

[Placidi 2016] L. Placidi, “A variational approach for a nonlinear one-dimensional damage-elasto- 

plastic second-gradient continuum model”, Contin. Mech. Thermodyn. 28:1-2 (2016), 119–137. 

[Placidi and El Dhaba 2017] L. Placidi and A. R. El Dhaba, “Semi-inverse method à la Saint-Venant 

for two-dimensional linear isotropic homogeneous second-gradient elasticity”, Math. Mech. Solids 

22:5 (2017), 919–937. 

[Placidi et al. 2015] L. Placidi, U. Andreaus, A. Della Corte, and T. Lekszycki, “Gedanken exper- 

iments for the determination of two-dimensional linear second gradient elasticity coefficients”, Z. 

Angew. Math. Phys. 66:6 (2015), 3699–3725. 

[Placidi et al. 2017] L. Placidi, U. Andreaus, and I. Giorgio, “Identification of two-dimensional 

pantographic structure via a linear D4 orthotropic second gradient elastic model”, J. Eng. Math. 

103 (2017), 1–21. 

[Rahali et al. 2016] Y. Rahali, I. Goda, and J. F. Ganghoffer, “Numerical identification of classical 

and nonclassical moduli of 3D woven textiles and analysis of scale effects”, Compos. Struct. 135 

(2016), 122–139. 

[Reddy 2011a] B. D. Reddy, “The role of dissipation and defect energy in variational formulations 

of problems in strain-gradient plasticity, I: Polycrystalline plasticity”, Contin. Mech. Thermodyn. 

23:6 (2011), 527–549. Erratum in 24:1 (2012), 79. 

[Reddy 2011b] B. D. Reddy, “The role of dissipation and defect energy in variational formulations 

of problems in strain-gradient plasticity, II: Single-crystal plasticity”, Contin. Mech. Thermodyn. 

23:6 (2011), 551–572. 

http://dx.doi.org/10.1007/s00161-014-0360-y
http://dx.doi.org/10.1007/s00161-014-0360-y
http://dx.doi.org/10.1007/s00419-013-0729-6
http://dx.doi.org/10.1007/s00419-013-0729-6
http://dx.doi.org/10.1016/j.euromechsol.2015.10.001
http://dx.doi.org/10.1016/j.euromechsol.2015.10.001
http://dx.doi.org/10.1016/S0020-7683(01)00087-7
http://dx.doi.org/10.1016/j.crme.2010.03.009
http://dx.doi.org/10.1016/j.crme.2010.03.009
http://dx.doi.org/10.1016/j.crme.2010.03.012
http://dx.doi.org/10.1016/j.crme.2010.03.012
http://dx.doi.org/10.1177/1056789510386852
http://dx.doi.org/10.1177/1056789510386852
http://dx.doi.org/10.1016/j.jmps.2011.03.010
http://dx.doi.org/10.1016/j.jmps.2011.03.010
http://dx.doi.org/10.1007/978-3-319-00263-7
http://dx.doi.org/10.1007/s00161-014-0338-9
http://dx.doi.org/10.1007/s00161-014-0338-9
http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1177/1081286515616043
http://dx.doi.org/10.1177/1081286515616043
http://dx.doi.org/10.1007/s00033-015-0588-9
http://dx.doi.org/10.1007/s00033-015-0588-9
http://dx.doi.org/10.1007/s10665-016-9856-8
http://dx.doi.org/10.1007/s10665-016-9856-8
http://dx.doi.org/10.1016/j.compstruct.2015.09.023
http://dx.doi.org/10.1016/j.compstruct.2015.09.023
http://dx.doi.org/10.1007/s00161-011-0194-9
http://dx.doi.org/10.1007/s00161-011-0194-9
http://dx.doi.org/10.1007/s00161-011-0195-8
http://dx.doi.org/10.1007/s00161-011-0195-8


100 LUCA PLACIDI, EMILIO BARCHIESI AND  ANIL  MISRA 
 

 

[Sicsic and Marigo 2013] P. Sicsic and J.-J. Marigo, “From gradient damage laws to Griffith’s theory 

of crack propagation”, J. Elasticity 113:1 (2013), 55–74. 

[Spagnuolo et al. 2017] M. Spagnuolo, K. Barcz, A. Pfaff, F. dell’Isola, and P. Franciosi, “Qualitative 

pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments”, Mech. 

Res. Comm. 83 (2017), 47–52. 

[Turco et al. 2016] E. Turco, F. dell’Isola, N. L. Rissi, R. Grygoruk, W. H. Müller, and C. Liebold, 

“Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence”, Mech. 

Res. Comm. 76 (2016), 86–90. 

[Turco et al. 2017] E. Turco, M. Golaszewski, I. Giorgio, and F. D’Annibale, “Pantographic lattices 

with non-orthogonal fibres: experiments and their numerical simulations”, Comp. B 118 (2017), 

1–14. 

[Yang and Misra 2012] Y. Yang and A. Misra, “Micromechanics based second gradient continuum 

theory for shear band modeling in cohesive granular materials following damage elasticity”, Int. J. 

Solids Struct. 49:18 (2012), 2500–2514. 

[Yang et al. 2011] Y. Yang, W. Y. Ching, and A. Misra, “Higher-order continuum theory applied to 

fracture simulation of nanoscale intergranular glassy film”, J. Nanomech. Micromech. 1:2 (2011), 

60–71. 

[Zybell et al. 2009] L. Zybell, U. Mühlich, and M. Kuna, “Constitutive equations for porous plane- 

strain gradient elasticity obtained by homogenization”, Arch. Appl. Mech. 79:4 (2009), 359–375. 

Received 4 Oct 2017. Accepted 26 Apr 2018. 

LUCA   PLACIDI:     luca.placidi@uninettunouniversity.net 
Facoltà di Ingegneria, Università Telematica Internazionale Uninettuno, Roma, Italy 

EMILIO  BARCHIESI: barchiesiemilio@gmail.com 
Dipartimento di Ingegneria Strutturale e Geotecnica, Università degli Studi di Roma “La Sapienza”, 
Roma, Italy 

ANIL MISRA:  amisra@ku.edu 
Civil, Environmental and Architectural Engineering Department, University of Kansas, 
Lawrence, KS, United States 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

M ∩ M 

msp 

http://dx.doi.org/10.1007/s10659-012-9410-5
http://dx.doi.org/10.1007/s10659-012-9410-5
http://dx.doi.org/10.1016/j.mechrescom.2017.05.005
http://dx.doi.org/10.1016/j.mechrescom.2017.05.005
http://dx.doi.org/10.1016/j.mechrescom.2016.07.007
http://dx.doi.org/10.1016/j.compositesb.2017.02.039
http://dx.doi.org/10.1016/j.compositesb.2017.02.039
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.024
http://dx.doi.org/10.1016/j.ijsolstr.2012.05.024
http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000030
http://dx.doi.org/10.1061/(ASCE)NM.2153-5477.0000030
http://dx.doi.org/10.1007/s00419-008-0238-1
http://dx.doi.org/10.1007/s00419-008-0238-1
mailto:luca.placidi@uninettunouniversity.net
mailto:barchiesiemilio@gmail.com
mailto:amisra@ku.edu
http://memocs.univaq.it/
http://msp.org/

