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ABSTRACT 

Continuum modeling of finite temperature mechanical behavior of atomic systems 

requires refined description of atomic motions.  In this paper, we identify additional 

kinematical quantities that are relevant for a more accurate continuum description as the 

system is subjected to step-wise loading.  The presented formalism avoids the necessity 

for atomic trajectory mapping with deformation, provides the definitions of the kinematic 

variables and their conjugates in real space, and simplifies local work conjugacy.  The 

total work done on an atom under deformation is decomposed into the work 

corresponding to changing its equilibrium position and work corresponding to changing 

its second moment about equilibrium position.  Correspondingly, we define two 

kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their 

stress conjugates, termed here as static and vibration stresses, respectively. The proposed 

approach is validated using MD simulation in NVT ensembles for fcc aluminum 

subjected to uniaxial extension.  The observed evolution of second moments in the MD 

simulation with macroscopic deformation is inconsistent with the transformation of 

atomic trajectories through the deformation gradient using a generator function.  

Correspondingly, the vibration part of the Piola stress becomes particularly significant at 

high temperature and high tensile strain as the crystal approaches the softening limit.  In 

contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration 

tensor show strong spatial heterogeneity in the vicinity of softening.  More importantly, 

the elliptic distribution of local atomic density transitions to a dumbbell shape, before 

significant non-affinity in equilibrium positions has occurred.  

 

 



 

1. Introduction  

In concurrent as well as hierarchical multiscale modeling, the computation of continuum 

scale quantities including internal energy, entropy, stress, strain and temperature from 

molecular dynamics (MD) simulations is ubiquitous.  For example, in the recent past, 

MD has been used to study the microstructural origins of material failure in metallic 

glass, and the necessity for further investigation into “dynamic heterogeneities” has been 

strongly emphasized (1–4).  In particular, the importance of an atomic level stress 

definition to study the local environment has been stressed (5).  MD has also been used to 

study inter-atomic stress in simulation of ion-beam assisted deposition (2).  The effects of 

cross-sectional shapes of silicon nanowires on their plasticity, stability and deformation, 

particularly with respect to dislocation nucleation, have also been investigated using MD 

simulation (6).  The virial stress has been used in all these applications to calculate the 

atomic-level stress.  Indeed, the virial stress expression is an invaluable computational 

diagnostic tool for evaluation of these continuum scale quantities for the study of several 

material science phenomena (7).  The literature base in this line of research is rather vast 

and the above examples are for illustration only.  In a solid mechanics discrete-to-

continuum homogenization framework where the discrete scale is much larger than the 

atomic scale, for example in granular micromechanics (8–14), thermal vibration of 

particles is not relevant and the virial stress can be derived in a straightforward manner 

using the principles of virtual work (14,15).  However, when the homogenization is from 

atomic to continuum scale at finite temperature, the effect of thermal vibration on the 

stress needs to be quantified.  Finite temperature continuum stress from molecular 

simulation is most often computed using the virial stress expression.  The expression for 



virial pressure was originally proposed by Clausius and Maxwell, based upon the virial 

theorem of Clausius (16). In order to define the virial stress, the continuum space has 

been connected to the discrete scale in two ways: (i) coarse-graining or system-average 

approaches where each material point in the continuum space is composed of a 

sufficiently large number of atoms (9,14,16–28) and (ii) localization approaches where 

the continuum space is of atomic scale resolution and continuum definitions are obtained 

by smearing the influence of individual atoms across the space (7,29–36).  In both (i) and 

(ii), the results can be averaged over a macroscopically small time interval.  The virial 

stress itself has been derived using several approaches, including, term-by-term 

comparison of the balance laws in continuum and atomic scale (32,37–39), the statistical 

mechanics definition of stress (21,40), and computation of the free energy using quasi-

harmonic approximation in reciprocal space (41), or a combination of these approaches.  

In particular, Kuzkin and Krivtsov (38,39,42–45) have derived Piola and Cauchy stress 

expressions from the atomistic scale using comparison of momentum balance between 

scales, and explicitly isolate the contributions to stress from (i) average atomic 

displacements and (ii) thermal vibration.  In their seminal paper, Irving and Kirkwood 

(33) devised a somewhat distinct syncretic approach that utilizes a distribution function in 

phase space for obtaining expressions of the localized continuum quantities as well as 

their derivatives with respect to time.  However, as pointed out by Zimmerman (7), this 

procedure is cumbersome since it requires the integration of a large number of functions 

including an infinite series of differential operators over phase space.  Using a different 

approach, the virial stress has been derived from the Hamiltonian using the statistical 

mechanics definition of stress (see Eq. 4.3.22 in Weiner (41)).  By definition, this method 



involves ensemble averaging of the atomic scale quantities and has been widely used by a 

number of researchers (18,21,22,25,30,46).  In these approaches, either atom-to-atom 

mapping is used between the undeformed and deformed atomic trajectories, or 

alternatively, quasi-harmonic approximation and the theory of small vibration is used to 

calculate the free energy and the corresponding stress conjugate (20,41).  We note that 

approaches where the stress is calculated using comparison of momentum balance 

between discrete and continuous descriptions do not require atom-to-atom mapping 

between undeformed and deformed trajectories.  On the other hand, in these approaches, 

work conjugacy of the obtained stress with rate of deformation or other strain measures 

does not follow spontaneously, as pointed out by Zhou (23).  There are other important 

concerns regarding the equivalence of the virial stress and continuum mechanical stress at 

the boundaries of solids with atomic level inhomogeneity, particularly with respect to 

local stress on surface atoms, which are crucial in analyzing MD simulations of 

nanostructures from a continuum viewpoint (6,47).  In this paper, however, we restrict 

our discussion to crystals which are homogeneous and periodic in the undeformed 

configuration.   

While continuum stress measures have been formulated to account for non-affine 

deformations arising from atomic scale structural disorder (48,49), comparatively little 

attention has been devoted to an investigation of non-affinity due to thermal vibration 

(50–52) and its bearing on the calculation of continuum stress and strain from atomistic 

systems.  Such investigation could be beneficial towards continuum interpretation of 

thermally activated processes, which play a crucial role in important phenomena 

including the onset of yield in crystalline metals (53), rejuvenation of metallic glasses by 



thermal cycling (54), variation of creep mechanism in metals (55–57) and high entropy 

alloys (58) with temperature, elastic properties of crosslinked polymers (59,60) glass 

transition (61) and plastic deformation (62–65) of polymers under temperature and 

moisture gradients.   

In this paper, we have reconsidered the stress calculation for atomic systems in quasi-

static MD simulations.  In particular, we (i) decompose the deformation kinematics of 

each atom based on change in equilibrium position and change in second moments about 

equilibrium positions, (ii) derive the stress measures conjugate to each of these kinematic 

deformation measures, and (iii) present numerical results for MD simulation of uniaxial 

deformation of fcc Aluminum.  In section 2 we derive the expressions defining relevant 

stress tensors for atomic systems in a virtual work framework that includes the atomic 

vibration as an additional kinematic variable. To this end we introduce an atomic 

vibration tensor. As a result, we find a vibration stress tensor conjugate to the vibration 

tensor in addition to the static stress conjugate to the deformation gradient.  For certain 

simple atomic systems, the vibration tensor is shown to be a function of deformation 

gradient.  Consequently, the average Piola stress for a crystalline supercell is derived as a 

conjugate to the overall deformation gradient in section 2.2.  We present our simulation 

and computation procedures in section 3, and numerical results in section 4.   

2. Kinematics and Stress Measures  

2.1. Role of atomic trajectory mapping 

Under ergodicity, the macroscopic Piola stress (41,66) of a system of atoms occupying 

volume, Vo, with distribution function in phase space, ρ, can be defined as follows,  
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where H(q,p,Fij) is the Hamiltonian of the system, q and p are the generalized coordinates 

and momenta, Fij is the deformation gradient,  a

kr t  is the position of the ath atom at time 

t.  Throughout the paper, subscripts have been used to represent the x, y or z coordinate, 

superscripts for the atom number, and angular braces represent the time average. 

Rewriting the Hamiltonian as sum of potential and kinetic energies, Eq. (1) is written as: 

        int

0 0 0

1 1 1
a a a

k k k

gh

gh gh gh

H r t r t K p t
P

V F V F V F

  
  

  
          (2) 

where   int a

kr t is the potential energy of the system,   a

kK p t is the kinetic energy of 

the system, and  a

kp t  is the momentum of atom a.  In such a description, we note that 
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.  The second term of the RHS in Eq. (2) 

also requires similar mapping for the momenta. Thus, the trajectory-to-trajectory 

mapping between the deformed and undeformed configurations is essential in order to 

calculate the stress Pgh.  However, establishing unique trajectory-to-trajectory mapping is 

non-trivial as discussed in Appendix A, therefore we follow an alternative approach in 

this paper. 

2.2. Average stress in a supercell 

Considering a crystalline supercell made of N atoms of a solid material, with boundaries 

deformed according to a specified deformation gradient, we recognize that the work done 

on the system, -dW, represents the work done in changing the equilibrium positions of the 

atoms, as well as the work done in changing the second moment about equilibrium 



positions.  The total potential energy of the system inttotal ext     is the sum of the 

energy of interaction of the atoms of the system with themselves ( int ) as well as with an 

external agency ( ext ) that is responsible for deforming the system.   

At a constant temperature T, the total virtual work done on a single atom, a, can be 

written as: 
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               (3) 

Where 
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 is the external force acting on the atom and 

a

ir is the infinitesimal 

perturbation to  a

ir t .  In a step-wise deformation process, at any step, the total potential 

energy can be taken as harmonic for small perturbations about the equilibrium position 

leading to the following approximation: 
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is the local stiffness or force constant when atoms a and b are at their equilibrium 

positions.  On the other hand, the internal force on atom a, under a general state of strain, 

and at any general position in its trajectory, defined as 
int

int,a

i a

i

f
r


 


, is more accurately 

estimated as follows using a quasi-harmonic assumption.  We remark that a similar 

approximation to the second order has been adopted (38,39) in approximating the force 

on the atom at its instantaneous position.  However, in (39) and (38), the atomistic-to-



continuum bridging was performed using comparison of momentum balance, while we 

perform the same using equivalence of virtual work at the two scales.   
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            (5) 

is the local stiffness or force constant with respect to the internal potential.  Substituting 

for
,inta

if  and using Eq. (4) in Eq. (3) we get,  
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Now defining the second moment about equilibrium atomic positions for atoms a and b 

as 
a b

ab a b
i jij i jr r r r   , the first variation of ab

ij  can be written as  

a b a b
ab a b a b

i j i jij i j i jr r r r r r r r        .   

From Eq. (6), the total work done on all the atoms can be written as follows (see 

Appendix B for details): 
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We assume 
,total ab

klk and 
int,ab

klk to be equal; therefore the second term of Eq. (7) reduces to 

zero. Further, we rewrite: 
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where ,0ab

ijk  are the force constants at zero temperature (see step 4 of section 3.1 for 

calculation procedure) and 
,ab T

ijk  are the force constants at a finite temperature T (see 

section 3.3 for calculation procedure).  We note that ,0ab

ijk represents the change in force 

constants caused solely by the change in atomic equilibrium positions, while 

,ab T

ijk represents the total change in force constants due to the change in atomic 

equilibrium positions as well as the change in atomic trajectories.  Therefore, Eq. (8) can 

be rewritten as: 
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where we introduce ab

mnG  as the normalized second moment about equilibrium atomic 

position for atoms a and b, which we henceforth refer to as the vibration tensor.  The 

normalization factor 
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  where ma is the mass of atom a, ωD is the Debye 

frequency of the material under study at 0% strain, kB is the Boltzmann constant, and T is 

the temperature.  
0
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  is the average vibration tensor in the supercell 

representing interaction between an atom and its cth neighbor, and n represents the 

neighbor number up to which the interaction is significant.  ijF is the deformation 

gradient in the supercell assumed to be uniform so that the change in atomic equilibrium 

positions is affine.  We now substitute: (a) 
a a

i ij jr F R , (b)  ab ab

mn mnG K  , and (c) Eq. 

(9) in Eq. (7) to obtain: 
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We note that Eq. (10) represents the change in free energy of the system at constant 

temperature.  Under the condition of affine transformation inside a supercell whose 

primitive cell contains only one atom, we can assume a uniform Fij and a uniform 0c

klG  

inside the supercell, where 0c

klG  is defined between any atom (all atoms are equivalent) 

and its cth neighbor.  Then, Eq. (10) can be decomposed into two parts: (a) the change in 

free energy due to change in equilibrium positions of atoms and (b) the change in free 

energy due to change in the second moments about equilibrium atomic positions.  They 

can be represented as: 
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where n is the neighbor number beyond which the terms 
0n

ij  are insignificant.  From Eq. 

(12), the average static stress in the supercell is defined as: 
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and the average vibration stress in the supercell corresponding to the atom-neighbor pair 

between an atom and its cth neighbor is defined as: 
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where V0 is the underformed volume of the supercell.  For crystals with only one atom in 

the primitive cell, within the elastic regime, a constitutive relationship of the 

form  0 ,c

ij ijG f F T can be defined.   Under this condition, it is possible to express 

0

0

c

ijc

ij kl

kl

G
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.  Therefore, both the static and vibration stresses from Eqs. (13) and 

(14) may be viewed as conjugate to ijF and the average Piola stress in the supercell can be 

written as the following sum: 
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In Eq. (15), the static part of the average Piola stress is given as: 
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while the vibration part of the average Piola stress is: 
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In general, a relationship of the form  0 ,c

ij ijG f F T is difficult to specify except for the 

case of homogeneous crystal with affine transformation.  Comparing Eqs. (16) and (17)

with the Mie-Gruneisen equation (67), the first term of Eq. (16) is similar to the “cold 

pressure”, while the second term of Eq. (16), as well as the term in Eq. (17) are similar to 

the thermal pressure contribution, represented by the Gruneisen coefficient.  We follow a 

similar approach as (38,39) in connecting the kinematics of the discrete system to 

continuum deformation, but compute the stress measures using equality of virtual work at 

continuum and atomic scales, rather than using momentum balance comparison between 

scales.   



We note here that the second term of Eq. (16) bears resemblance to the kinetic 

contribution, typically arising from thermal vibrations, of the stress tensor defined by 

Hardy (32).  It is noteworthy that in an ideal harmonic solid, the thermal stress does not 

contribute to work done. It is clear from Eq. (16) that the second term will vanish for 

such ideal cases.  However in the classical formulations, such as that in Hardy, it is not 

clear under what conditions the kinetic contributions vanish.  Consequently, the work 

conjugacy aspects of the kinetic contribution term in classical formulation needs careful 

reexamination (23).    

3. Numerical Simulations 

3.1. Molecular Dynamics simulation of fcc Aluminum under uniaxial tension 

The derived formulation was evaluated using results from MD simulations.  The 

simulation was performed using LAMMPS code (68) on a periodic supercell made of 10 

X 10 X 10 primitive unit cells of face-centered cubic Aluminum using an embedded atom 

method (EAM) (69) potential.  The triclinic non-orthogonal supercell contained 1000 

atoms.  Periodic boundary conditions (PBC) were used for the simulation in the three 

Cartesian directions to simulate an infinite crystal.  The x, y and z axes were chosen to lie 

along the [100], [010] and [001] crystallographic directions. The simulation was 

performed in the following steps: 

1. The supercell was first relaxed to zero stress state (P = 0) in the NPT ensemble 

using 0.5x106 time-steps with a time period of 1 fs.  A Nose-Hoover thermostat 

was used to maintain the temperature at T = 300 K. The centroid of the supercell 

is maintained at a constant value for each time step.  The dimensions of the 

supercell under zero-stress conditions were estimated using time-average.   



2. Simulations were then performed at the same temperature (300 K) at different 

tensile uniaxial strains of 0% to 11.7505% in the NVT ensemble.  The deformed 

supercell at each strain-level was relaxed using 0.5x106 time-steps with a time 

period of 1 fs (the number of time-steps used was found to achieve converged 

results).  The strain measure used is the Green strain given as  
1

2
ij ki kj ijF F   .  

The lateral strains 
22 33 0   and the shear strains

12 23 31 0     .  The strain 

11 was applied along the [100] crystallographic direction (x axis or 1 direction) 

and the corresponding deformed edge vectors of the simulation box were 

computed for each axial strain.  The position of every atom was recorded at every 

time-step of the simulation. In addition, the second moments, ab

ij , were 

computed at each atom with respect to itself and all its 999 neighbors.   

3. For simulation at each strain-level, the atomic average 0

1

1 N
b ab

ij ij

aN
 



  over all the 

atoms was computed using an additional 2.0x106 time-steps beyond convergence. 

4. Each of the relaxed strained system at 300 K from step 2 was then quenched to ~0 

K in the NVT ensemble.  A quadratic polynomial 

    
2 2

a b a b a b

i j i j i jA Br Cr Dr r E r F r        

was fit to the resultant potential energy surface for perturbations of atoms a and b 

in the range of -0.05 Å to +0.05 Å,  Subsequently, the zero temperature force 

constants, , 0ab

ijk , were computed at 5 representative atoms which were sufficiently 

far from the boundaries of the simulation box. Stiffness tensors including the self-



interaction as well as the 78 nearest neighbor interactions (b = 0 to 78) were 

computed.   

5. The virial stress values at each strain at 300 K were calculated using the 

LAMMPS “compute stress per atom” command, summed over all atoms, and 

averaged over an additional 0.5x106 time-steps beyond convergence.  The 

computed virial Cauchy stress is then transformed to the virial Piola stress 

denoted in the subsequent discussion as 
Virial

ijP .   

The term  int,

0

1 a a

jif R
V

  in Eq.(16) was approximated using the “compute 

stress/atom” command in LAMMPS at 0 K and summing up the per-atom stress 

over all atoms and appropriately normalizing with the system volume.   

3.2. Phonon frequencies and total stiffness tensor calculations 

The phonon frequencies of a periodic crystal can be calculated using several different 

approaches (41,70,71).  Here, we employ the method by Kong (70), in which the phonon 

frequencies can be directly computed from MD trajectories.  For a pure crystal whose 

primitive cell consists of a single atom, the Green’s functions in reciprocal space can be 

written in the form (see Appendix C): 

°  
 

,

1
a b

iq r r
ab

ij ij

a b

G q e
N


  

 
r r r

r
             (18) 

Where N is the number of atoms in the supercell and q
r

 is the wavevector.  Clearly, the 

Green’s functions in reciprocal space are the forward Fourier transformations of the 

second moments, ab

ij , about equilibrium atomic positions.  Under conditions where 

every atom is identical in a periodic lattice, Eq. (18) reduces to 



°  
 0

0
biq r rb

ij ij

b

G q e
  


r r rr

,  

where 0

1

1 N
b ab

ij ij

aN
 



  is the atomic average of the second moments between an atom and 

its bth neighbor.   

The Fourier transform of the force constant matrix is obtained from the reciprocal space 

Green’s function as %  °  
1

ij ijBk q k T G q
 

  

r r
, from which the dynamical matrix is 

obtained as   % 
1

ijijD q k q
m


r r

, whose eigenvalues are the phonon frequencies 
i . The 

inverse Fourier transform of % ijk q
r

are used to calculate the finite temperature force 

constants ,ab T

ijk .   

3.3. Local deformation gradient calculations 

The deformation gradient at the site of each atom was calculated by minimizing the 

following sum of the squared error using the approach and weight functions proposed by 

Gullet et al. (31) 

  
1

N
m mn m mn mn m mn n

i ij j i ik k

n

e x F X x F X w


                 (19) 

Where 
me is the weighted error in position of atom m, 

mn

ix is the vector from the mean 

position of atom m to the mean position of atom n in the deformed configuration, 
mn

jX is 

the same vector in the undeformed configuration, 
m

ijF is the deformation gradient at the 

site of atom m, and 
nw are the weight functions used to weight the error contribution for 

the atomic pair (m,n).  The weight functions are inversely proportional to the distance 



between atoms m and n.  The cut-off radius proposed by Gullet et al. (31) is assigned 

based on the spread of 
0b

ij  (the implementation is discussed later in sections 4.1 and 4.5). 

4. Results and discussion 

In the discussion of the results, the kinematics of deformation is described at 300 K, 

while for the discussion of stress; results are also presented at 750 K to highlight the 

contribution of the vibration stress to the free energy of deformation. 

4.1. Validation of MD simulations 

Figure 1 shows the phonon dispersion at 0% strain obtained from the second moments 

about equilibrium atomic position using the procedure described in section 3.3.  The 

predictions closely match the trend of the experimental data (72) for the phonon 

dispersion curves validating the second moment calculations.  We note that the 

magnitudes of the computed frequencies are somewhat smaller than the experimental 

values since our simulation is at 300 K, while the experimental data (72) was measured at 

80 K. 

 
Figure 1 Phonon dispersion curves computed from the second moments about equilibrium atomic position  

 

4.2. Adequacy of quasi-harmonic approximation 



The percent difference between the terms int int  and int,

1 1

N N
ab ab

ij ij

a b

k 
 

 provides an 

indication of the adequacy of the quasi-harmonic approximation of the internal potential 

as shown in Figure 2, where int refers to the internal energy of the system with all the 

atoms fixed at their equilibrium positions.  ,0

1 1

N N
ab ab

ij ij

a b

k 
 

 is the vibrational part of the 

potential energy resulting from a zero temperature estimation of the force constants.  It is 

seen that the error in energy estimation contributed by ,0

1 1

N N
ab ab

ij ij

a b

k 
 

  is positive and 

increases with deformation from 5.0% to 17.7%.  Accounting for finite temperature using 

,

1 1

N N
ab T ab

ij ij

a b

k 
 

 brings down the error, which varies from -2.6% to -4.7% under 

deformation.  It is interesting to see that using int, ,0ab ab

ij ijk k , the total potential energy is 

overestimated if only the contribution from the zero temperature force constants is 

considered, while use of the finite temperature force constants underestimates the total 

potential energy.  The implications on the stress calculation are discussed in section 4.4. 

 



Figure 2 Percentage error in quasi-harmonic approximation versus continuum scale deformation gradient  

 

4.3. Variation in the second moments with loading 

Figure 3(a) shows the variation of the atomic average of the self-interaction second 

moments of atoms about equilibrium position, that is 
00

1

1 N
pp

ii ii

ppN
 



  (where N is the 

number of atoms and no summation on repeated index i is imposed), with applied 

deformation gradient.  As expected, the value of 00

ii  is isotropic at 0% strain.  We 

observe that as the applied tensile strain increases, the second moment becomes 

anisotropic and has higher amplitude in the direction of loading.  Further, we observe that 

the change is solely due to deformation of the system since the temperature is kept 

constant.   

We note here that the introduced method in section 2.2 does not require the postulation of 

generator functions as in some other attempts (21,22).  As discussed in Appendix A, 

unique and general generator function for canonical ensemble may not be easily obtained.   

For generator functions that lead to affine transformations of trajectories, the second 

moment takes the form ab ab

ij im jk mkF F   , where ab

mk are the second moments before 

deformation.  The second moments for this case are also shown in Figure 3(a).  The 

variation of mean square displacement 
00

ii  from the MD simulation is clearly 

significantly different compared to that from the generator function.  Remarkably, the 

affine mapping approach predicts no change in
00

22  and
00

33  with loading, which is clear 

contrast to that in the MD simulation.  To further illustrate these differences, in Figure 

3(b) we plot the atom-wise maps of the 11 component of the vibration tensors obtained 



from the affine mapping approach and the MD simulations at 11.7505% strain.  The 

atom-wise map of 11

aF  used to calculate ,

11

aa affineG  is also shown in Figure 3(b).  We observe 

a remarkable difference in the vibration tensor calculated in the MD simulations versus 

that obtained as a consequence of affine mapping assumption applied locally to each 

atom.  We remark that the transition from affine to non-affine displacements of atomic 

equilibrium position takes place between 11.75% and 11.7505% strain.  In addition, we 

note that the histogram of 11

aF  still retains some resemblance to a bell-curve and ,

11

aa affineG  

is still normally distributed, while the histogram of 
,

11

aa MDG has completely deviated from a 

normal distribution.  We further observe that in transitioning through the softening 

regime, the local values of 
,

11

aa MDG  at the site of atoms in the region of localized non-

affine deformation undergo an increase several times larger than
,

11

aa affineG .  These observed 

discrepancies emphasize the need for additional local kinematic descriptors that can 

capture the effect of evolving vibrations under deformation.   Some researchers (51,52) 

have pointed out that thermal vibrations can cause non-affine displacements even in a 

homogeneous crystal, leading to fluctuation-driven instability.  Further, we note that the 

change in 
00

ii with strain is non-linear and is well-fit (R2=0.999) using a cubic curve.   



 
Figure 3 (a) Variation in second moments with continuum scale deformation gradient: comparison of 

observations from MD with those computed using F as the trajectory-to-trajectory mapping function, and 

(b) Atom-wise maps and histograms for 11 component of local deformation gradients and vibration tensors 

at 11.7505% strain obtained from affine transformations and the MD simulations. 

 

Figure 4(a), (b) and (c) show that the inter-atomic second moments 
0

11

b , 
0

22

b  and 
0

33

b all 

increase non-linearly with applied strain for all the first 12 nearest neighbors (b = 1 to 

12).  For 
0

11

b , the increase in the neighbors lying in the (010) and  (001) crystallographic 



planes (yx and xz Cartesian planes) is similar, and greater than those lying in the (100) 

plane (yz plane).  The values of 0

11

b  are significantly different from those predicted by an 

affine trajectory transform.  For 0

22

b  and 0

33

b , the largest values are for the neighbors 

lying in the (100) plane (yz plane) followed by those in the (010) and (001) (xy and xz) 

planes.  It is interesting that the affine transformation does not predict a change in the 

interatomic second moments 0

22

b  and 0

33

b  with applied deformation, while the results 

from the MD simulation show a significant change.   Figure 4(d) shows the variation in 

the off-diagonal 
0b

ij values with deformation gradient.  Notably, the
0

12

b , 
0

23

b  and 

0

13

b values are only significant for the neighbors in the (001) (xy), (100) (yz) and (010) 

(xz) planes.  Figure 4(d) also shows that the off-diagonal 
0b

ij  values change more 

significantly for the 23 components as compared to 12 and 13 components.  The minimal 

change in the 12 and 13 components agrees with the prediction of the affine mapping 

approach.  However, for the 23 components the affine approach is completely incorrect.  

All the changes in inter-atomic second moments follow the symmetry break due to the 

strain applied along the [100] direction.  Overall, it is clear that application of strain 

reduces the crystal symmetry, and affects the local potential landscape, which leads to the 

observed trends in
0b

ij .  The underlying reason for the inconsistency between the second 

moments predicted by the simulation and by the affine mapping approach is that the 

affine approach does not account for the local changes in potential landscape.   



 
Figure 4 Variation in 

0b

ij  for the first 12 nearest neighbors  

 

4.4. Finite temperature stress  

Figure 5(a) shows a plot of the static stress 11

TP , vibration stress 11

QP , total Piola stress 

11P in the 1-direction, computed using Eqs. (16), (17) and (15) respectively, and 11

VirialP  

obtained from LAMMPS, plotted against the deformation gradient at two temperatures of 

300 K and 750 K.  We find that 11 11 11

Virial TP P P  , however the difference between 11

TP , 

11

VirialP and 11P  is minimal at 300 K, and the magnitude of the vibration stress 11

QP  is only 

about 3% that of 11P .  The agreement is interesting, given the difference in stress 

calculation procedures; while the stress in LAMMPS is derived from kinetic and potential 

contributions using the affine trajectory transformation, the stress we derive in section 2.2 

is based on work done under a quasi-static deformation.  At the higher temperature of 750 

K, 11P  is about 40% lower than 11

VirialP at 8% tensile strain; the magnitude of the vibration 

stress 11

QP is about 27% of the magnitude of 11P .  The agreement at 300 K appears to be 



purely coincidental and further examination for complex systems is needed to verify its 

generality.   

It is notable that 11

VirialP can be shown to be the exact work conjugate of the deformation 

gradient under the assumption that a canonical transform generator function, causing an 

affine transformation of thermal trajectories, holds true (22).  Further, we note that in the 

case where this assumption does not hold, 11

VirialP does not completely capture the free 

energy change.  Therefore, the differences between 11P and 11

VirialP , as well as the 

significance of 11

QP can be related to the deviation of 
00

ii from affine behavior, discussed 

in section 4.3.  The affine transformation of trajectories under-predicts the contribution of 

thermal vibration and thus over-predicts the stress.  Observing the results described in 

section 4.2, it is likely that a more exact estimate of the stress lies between 11P and 11

TP . 

At low strain-levels and low temperatures, the vibration stress can be assumed to be 

insignificant; however at high temperatures and high strains, the vibration stress increases 

to significant levels, steeply increasing in magnitude as the strain nears the softening 

point.  On a related note, it has been suggested that elastic instability may be preceded by 

instabilities in vibration modes driven by thermal fluctuations (51,52,73).  As discussed 

earlier (section 2.3), the stress calculation in classical MD approaches, such as 

LAMMPS, includes a kinetic contribution that has resemblance with the 2nd term of Eq. 

(16) and in Figure 5(b) we compare the two.  While the kinetic contribution marginally 

decreases in magnitude in a linear manner over the loading regime, the 2nd term of Eq. 

(16) that involves the vibration tensor evolves significantly, and nonlinearly, with strains.  

The linear decrease of the kinetic contribution is entirely due to the volume change since 



the a a

i iv v terms do not change at constant temperature. The nonlinearity in the 2nd term 

of Eq. (16) is likely due to the anharmonicity of the EAM potential used to describe 

aluminum.  In the virial stress formulation, this nonlinearity is embedded into the 

potential part of the stress, but its contribution to the free energy is underestimated due to 

the affine transformation approximation on the atomic trajectories.  The comparisons in 

Figures 5(a) and 5(b) show the need for additional kinematic descriptors that can capture 

the effect of evolving vibrations under deformation.   

 

 
Figure 5 (a) Average Piola stress (static, vibration and LAMMPS) versus deformation gradient, and (b) 

Kinetic/vibration contribution to static stress. 

 

4.5. Variation in directionality of second moments in peak stress vicinity 

Figure 6 shows the atom-wise distribution of the direction cosines of the primary 

eigenvectors of 11

aF  and 11

aG  across the supercell at ε11 = 11.75% and ε11 = 11.7505%, 

which corresponds to peak value of 11

VirialP .  The transition from affine to non-affine 

displacements of atomic equilibrium positions takes place between these two strain 

values.  Figures 6(a) and (b) shows that the primary eigenvectors of the local deformation 

gradients continue to point in the [100] direction (loading direction) on either side of the 

softening peak.  Comparison between Figures 6(c) and (d) show that the primary 



eigenvectors of 11

aaG at ε11 = 11.7505% strongly deviate from the loading direction in the 

softening region, as compared to ε11 = 11.75%.  This indicates that the “atomic clouds” 

formed by the trajectories have rotated away in this region from the direction of loading.    

This effect is similar to the rotational degree-of-freedom envisaged in micropolar 

continuum theory thus pointing to the need for enhanced continuum models for properly 

describing failure of even such simple material systems.  

 

 
Figure 6 (a) Atom-wise map of direction cosine of primary eigenvector of vibration tensor at 11.75% strain 

(b) Atom-wise map of direction cosine of primary eigenvector of deformation gradient at 11.7505% strain 

(c) Atom-wise map of direction cosine of primary eigenvector of vibration tensor at 11.75% strain (d) 

Atom-wise map of primary eigenvector of vibration tensor at 11.7505% strain  

 

 



 

4.6. Potential wells at incipient plasticity 

To provide a vivid visualization of the “atomic clouds”, Figure 7(a) shows the trajectory 

and probability density at every point of the trajectory for a sample atom in the softening 

region at 11.7505% strain.  Figure 7(b) shows that this atom is oscillating between two 

potential wells leading to an asymmetric dumbbell shaped “atomic cloud”.  The 

geometric centers of each of the two spheres of the dumbbell are shown in Figure 7(c) 

indicated by large red circles.  The deviation in the equilibrium position of the sample 

atom from the Cauchy-Born rule is only 0.026 Å.  However, the distance between the 

centers of the ellipses of the dumbbell is about 1.8 Å.  Correspondingly, in Figure 7(b), 

we observe the distance between the minima of the potential wells to be close to 1.8 Å.  

Although the atom resides close to its equilibrium position for a majority of the time, the 

second cloud is considerably displaced from the initial position and has entered the 

octahedral interstitial site shown in Figure 7(c).  The change in second moment about 

equilibrium position for this atom is 0.043 Å2.  We note that the second moment is 

insufficient to model such a change in shape of the atomic trajectory cloud; however, the 

use of a spherical harmonic expansion, as used in atomic orbitals, can potentially capture 

such changes.  In any case, the softening of the material corresponds to the jump of the 

atom from the deeper potential well to the shallower one.  We conjecture that the onset of 

such a transition will be characterized by a critical value of 11

aaG .  The existence of such a 

condition may provide additional criterion for the formulation of finite-temperature 

continuum plasticity theory and needs further investigations. 

 



 
Figure 7 (a) Dumbbell shaped cloud of atomic trajectory along with probability density at each location for 

sample atom in region of failure, (b) Potential energy well(s) for sample atom (c) centers of the ellipses of 

the dumbbell shaped cloud 

 

5. Concluding Remarks and Epilogic Discussion 

In this paper, we have shown that the stress-strain conjugate pair formed by the static 

component of the Piola stress and deformation gradient only captures the changes in the 

potential energy landscape that are result of change in equilibrium atomic positions, but 



does not capture changes in the local potential energy landscapes which are a result of 

thermal vibration evolution with deformation.  On the other hand, the vibration stress and 

the vibration component of the Piola stress that we have derived in this paper capture part 

of the changes in the local potential energy landscapes caused by the evolution of thermal 

vibration of atoms under macroscopic deformation.  Therefore, they promise to be useful 

continuum measures to extract from finite temperature molecular simulations.  While 

stress conjugates to non-affine fields caused by structural disorder have been derived in a 

discrete-to-continuum setting using micromorphic (11,74,75) or strain-gradient methods 

(48,49,76,77), stress conjugates to real-space kinematic fields resulting from non-affine 

thermal vibration have not been explicitly derived, even though the mechanical 

importance of considering non-affinity from thermal vibration has been recognized in 

recent times (50–52).  Our simulations show that the contribution of non-affine evolution 

of thermal vibrations to the free energy change can be significant even for the case of 

statically homogeneous deformation of an ordered crystalline solid such as fcc Aluminum 

with only a single atom in the primitive unit cell.  The vibration stress and vibration 

tensor are expected to play a more significant role for solids with a more complex 

structure than fcc aluminum. In summary, we have: 

(a) analyzed some of the nuances of the virial stress derivation which use the deformation 

gradient to map deformed and undeformed trajectories,   

(b) shown that the canonical transform assumption used for trajectory mapping does not 

always hold in NVT ensembles by tracking the change in second moments about 

equilibrium positions under uniaxial deformation of fcc aluminum, 



(c) provided an alternative method for computing local deformation measures and their 

conjugate stresses at atomic sites, under the condition of quasi-static deformation, by 

decomposing the change in atomic trajectory into deformation gradient and vibration 

tensor, and 

(d) demonstrated the relevance of the vibration stress and vibration tensor to incipient 

plasticity in the material.  We elaborate the highlights of our findings in the following 

sections. 

5.1. Relevance of our formalism to continuum scale kinematic variables 

Possible choices that have been used for continuum scale kinematic variables include 

combination of deformation gradient with temperature (F, T) or with entropy (F, S).  In 

this paper, we have demonstrated that the deformation gradient and vibration tensor pair 

(F, G) is a particularly useful kinematic variable set for continuum interpretations of 

atomistic models at finite temperature.  It simplifies work conjugacy at the atomic scale 

and is a suitable choice for localization frameworks where high spatial resolution, 

approaching the atomic scale, is required without simultaneous need for high temporal 

resolution.  Furthermore, it could be used to develop atomistically motivated finite 

temperature failure theories based on molecular dynamics or other discrete simulations.  

For example, the elastic-plastic transition of single crystal platinum has been 

experimentally studied using nano-indentation and the authors have proposed that energy 

barriers for yield have a complex dependence on stress and temperature, and are 

eventually overcome by a combination of thermal and mechanical energies, under an 

appropriate thermal fluctuation (53).  Since thermal trajectory evolution is built into our 

approach, formulation of continuum theories to describe such phenomena may prove to 



be easier in a (F, G) framework as opposed to a (F, T) or (F, S) framework. Moreover, 

local representations of temperature are not required in this proposed formulation.   

5.2. Relevance of our formalism to failure theories 

The appearance of non-affine deformation regions are being utilized to detect regions of 

failure (1).  The appearance of imaginary frequencies in the phonon dispersion is also 

used to identify mechanical instability (78).  It has been known for several decades that 

the presence of a critical r.m.s atomic vibration amplitude or a critical amount of “free 

volume” at the dislocation in a crystal is strongly correlated to the beginning of plastic 

flow associated with a localized “melting” (79).  More recently, a “hidden” critical point 

which is related to percolation thermally induced non-affine droplets has been observed  

in the pre-yield strain regime of a crystalline solid using MD simulation (80).  In this 

context, the vibration tensor and similar higher moment measures could serve as 

deformation measures with high sensitivity to unveil and predict the onset of material 

instability, particularly at high temperatures.  Recent research has shown the instability of 

phonon lattice dynamics calculations in the neighborhood of failure for Aluminum-

Titanium alloys using the lattice dynamical finite element method (LDFEM) (81).  The 

LDFEM method explicitly separates stress calculation into (a) stress at zero temperature 

and (b) instabilities studied by using phonon dispersion spectra.  We suggest that the use 

of presented formalism in place of the phonon gas approach will ensure that the 

corresponding deformation fields along with their stress conjugates are all in the real 

space and may be input into a larger-scale FE simulation with (F,G) as kinematic 

deformation fields.  The use of real space makes our approach attractive to amorphous 

solids.  The incorporation of higher orders of vibration in addition to G can enrich 



continuum models even more, making it possible to include changes in the shape of the 

trajectory cloud.  Particularly, as presented in section 4.6, the probability density of the 

atomic position may be described to be undergoing a smooth transition from an ellipse to 

a dumbbell.  The presented approach can be extended to include such deformation by 

expanding the probability density of atomic position in suitable form such as spherical 

harmonics.   
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Appendix A: Generator Function Approach 

For a canonical ensemble, the modified Hamilton’s principle states that:(21,22)  

   
2 2

1 1

ˆ( , , ) 0 ( , , ) 0

t t

a a a a a a a a

i i i i i i i i

t t

B R H R B t dt p r H r p t dt            (A.1) 

where  ,a a

i iR B are the position and momenta before deformation and  ,a a

i ir p are the 

position and momenta after deformation i.e. the transformation must maintain the 

Hamiltonian equations.  ( , , )a a

i iH R B t is the Hamiltonian function of the system before 

deformation andµ( , , )a a

i iH r p t  is the Hamiltonian function of the system after deformation.  

This pair of equations can only be satisfied under the following condition. 

 
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where   is the generator function which is an arbitrary scalar function of atomic 

position, momentum and time, and has continuous second derivatives(21,22).  For 

example, the generator function may be assumed to be of the form: 

 1 2, .... ,a N a a a

i j j j i i if R R R t p r p   (82).   
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in Eq. (A.2), we get: 
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Equating coefficients of each time derivative (or differential) term,  
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i if r           (A.3) 
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   ˆ , , , ,p p p p p p

i i i i i iH r p t H R B t f p  &          (A.5) 

The above equations represent a one-to-one correspondence between the deformed and 

undeformed quantities which hold at any instant of time.  Time averaging both sides of 

Eq. (A.5) gives insight into the nature of the generator function.  The quantity p p

i if p& is 

the change in the total average energy of the system after deformation.  From Eq. (A.5), 

p

if  is the function that maps the trajectories from the undeformed configuration to the 

deformed configuration.  When Ĥ H , it is possible to obtain generator functions which 

explicitly relate  ,p p

i ir p to  ,p p

i iR B  (for example, see section 8.1.3, Tadmor and 

Miller(22)).  However, for a canonical ensemble undergoing deformation under constant 

temperature, the condition Ĥ H is not satisfied due to the requirement of constant 

temperature.  Therefore, it is non-trivial to come up with a unique and general generator 

function in closed form for a canonical ensemble.   

 

Appendix B: Derivation of the Virtual Work Expression 

The total work done on the atom a (see Eq.(6)) is split into three parts δWa1, δWa2 and 

δWa3, defined as follows: 

int,
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Recognizing that the force on atom a at its equilibrium position, 
int,a

if , is independent  of 

time, Eq.  (B.1) is evaluated as follows: 



int,
1

a
a a

ii
W f r            (B.4) 

where 
a

ir is the change in equilibrium position of atom a.  In order to evaluate Eqs. 

(B.2) and (B.3), we use the fact that all the atoms in the supercell are equivalent in the 

range of study (0 to 11.75% strain).  Using Eq. (B.2), we write the sum total of δWa2 over 

all the atoms, which we denote as δW2, as follows: 

  2 int, ,ab total ab b b a

ij ij j j i

a b

W k k r r r              (B.5) 

We recognize that 
int,ab

ijk and 
,total ab

ijk are evaluated at the equilibrium positions and 

therefore independent of time.  With some rearrangement of terms, Eq. (B.5) is rewritten 

as: 

  2 int, ,ab total ab a b a b

ij ij i j i j

a b
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The first variation of 
a b

ab a b
i jij i jr r r r    can be written as 

ab a b
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b a b a b

ij i j i jr r r r    .  Therefore, Eq. (B.6) is rewritten as 

follows 

  2 int, ,ab total ab a

ij ij ij

a b

W k k            (B.7) 

Since the stiffness tensors 
int,ab

ijk and 
,total ab

ijk  are symmetric, 

  2 int, ,ab total ab b

ij ij ij

a b

W k k   also holds.  Using 
ab a b

ij ij ij    , we can rewrite: 
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Writing the sum of δWa3 over all atoms, δW3, and using the commutative property of 

int,ab

ij

c

k

k

r




,  we obtain: 
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Using the time independence of the derivative 

int,

a a
i i

cb

ij
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i r r

k

r





, and further simplification, 

δW3 may be rewritten as follows:  
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Now, the total work on the system may be obtained by summing δW1, δW2, and δW3 to 

obtain: 
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Appendix C: Greens Function for Phonon Frequency Determination 

The following derivation is for a periodic supercell of N atoms constructed with a 

primitive cell containing a single atom. Superscripts are used to indicate atom numbers 

and subscripts enumerate the Cartesian directions 1, 2 and 3.  Under the harmonic 

approximation, the equation of motion for an atom in the supercell undergoing thermal 

vibration may be written as  

,a total ab b

i ij j

b

mu k u &&             (C.1) 

where m is the mass of the aluminum atom, a

iu&&is the acceleration of atom a, ,total ab

ijk are the 

components of the stiffness tensor for the interaction between atoms a and b, and b

ju is the 

instantaneous displacement of atom b from its equilibrium position. 

The particular solution to Eq. (C.1) is given by: 

  aj q r q ta

i iu Ae
  

 
r r r

            (C.2) 



where j is the unit imaginary number, Ai is the amplitude of the wave,  q
r

is the 

wavenumber, ω is the wave frequency, ar
r

is the position vector of the equilibrium 

position for atom a, and t is the time.  Substituting Eq. (C.2) in Eq. (C.1), we get 
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Using the equivalence of all unit primitive cells (with one atom each), Eq. (C.3) may be 

rewritten as  

   2

i ij jq A D q A 
r r
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where  
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m
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r r r

r
and the summation runs over all possible pairs for 

an atom including with itself.   

The dynamical matrix is now determined using the approach proposed by Kong (83), and 

using the equipartition theorem (41) as follows 
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where  G q
r%  is the Green’s function in the reciprocal space given by 
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ij i jG q u q u q
r r r% % %            (C.6) 

The tilde signs refer to the Fourier transforms of the corresponding quantities and the * 

refers to the complex conjugate.  The Fourier transforms of the atomic displacements can 

be written as 
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Noting that the equilibrium positions of atoms are independent of time, we substitute Eqs. 

(A.7) and (A.8) in Eq. (A.6), and simplify the Green’s function to 

 
 1 a bj r rab

ij ij

a b
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where ab a b

ij i ju u  is the second moment of atomic vibrations about their equilibrium 

positions. 

Under conditions where every atom is identical in a periodic lattice, the Green’s function 

in Eq. (C.9) is evaluated as °  
 0

0
uiq r ru

ij ij

u

G q e
  
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r r rr

, where 0

1

1 N
u au

ij ij

aN
 



  is the atomic 

average of the second moments, where 0 refers to the atom at the supercell origin.   


