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ABSTRACT

Continuum modeling of finite temperature mechanical behavior of atomic systems
requires refined description of atomic motions. In this paper, we identify additional
kinematical quantities that are relevant for a more accurate continuum description as the
system is subjected to step-wise loading. The presented formalism avoids the necessity
for atomic trajectory mapping with deformation, provides the definitions of the kinematic
variables and their conjugates in real space, and simplifies local work conjugacy. The
total work done on an atom under deformation is decomposed into the work
corresponding to changing its equilibrium position and work corresponding to changing
its second moment about equilibrium position. Correspondingly, we define two
kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their
stress conjugates, termed here as static and vibration stresses, respectively. The proposed
approach is validated using MD simulation in NVT ensembles for fcc aluminum
subjected to uniaxial extension. The observed evolution of second moments in the MD
simulation with macroscopic deformation is inconsistent with the transformation of
atomic trajectories through the deformation gradient using a generator function.
Correspondingly, the vibration part of the Piola stress becomes particularly significant at
high temperature and high tensile strain as the crystal approaches the softening limit. In
contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration
tensor show strong spatial heterogeneity in the vicinity of softening. More importantly,
the elliptic distribution of local atomic density transitions to a dumbbell shape, before
significant non-affinity in equilibrium positions has occurred.



1. Introduction

In concurrent as well as hierarchical multiscale modeling, the computation of continuum
scale quantities including internal energy, entropy, stress, strain and temperature from
molecular dynamics (MD) simulations is ubiquitous. For example, in the recent past,
MD has been used to study the microstructural origins of material failure in metallic
glass, and the necessity for further investigation into “dynamic heterogeneities” has been
strongly emphasized (1-4). In particular, the importance of an atomic level stress
definition to study the local environment has been stressed (5). MD has also been used to
study inter-atomic stress in simulation of ion-beam assisted deposition (2). The effects of
cross-sectional shapes of silicon nanowires on their plasticity, stability and deformation,
particularly with respect to dislocation nucleation, have also been investigated using MD
simulation (6). The virial stress has been used in all these applications to calculate the
atomic-level stress. Indeed, the virial stress expression is an invaluable computational
diagnostic tool for evaluation of these continuum scale quantities for the study of several
material science phenomena (7). The literature base in this line of research is rather vast
and the above examples are for illustration only. In a solid mechanics discrete-to-
continuum homogenization framework where the discrete scale is much larger than the
atomic scale, for example in granular micromechanics (8-14), thermal vibration of
particles is not relevant and the virial stress can be derived in a straightforward manner
using the principles of virtual work (14,15). However, when the homogenization is from
atomic to continuum scale at finite temperature, the effect of thermal vibration on the
stress needs to be quantified. Finite temperature continuum stress from molecular

simulation is most often computed using the virial stress expression. The expression for



virial pressure was originally proposed by Clausius and Maxwell, based upon the virial
theorem of Clausius (16). In order to define the virial stress, the continuum space has
been connected to the discrete scale in two ways: (i) coarse-graining or system-average
approaches where each material point in the continuum space is composed of a
sufficiently large number of atoms (9,14,16-28) and (ii) localization approaches where
the continuum space is of atomic scale resolution and continuum definitions are obtained
by smearing the influence of individual atoms across the space (7,29-36). In both (i) and
(i1), the results can be averaged over a macroscopically small time interval. The virial
stress itself has been derived using several approaches, including, term-by-term
comparison of the balance laws in continuum and atomic scale (32,37-39), the statistical
mechanics definition of stress (21,40), and computation of the free energy using quasi-
harmonic approximation in reciprocal space (41), or a combination of these approaches.
In particular, Kuzkin and Krivtsov (38,39,42-45) have derived Piola and Cauchy stress
expressions from the atomistic scale using comparison of momentum balance between
scales, and explicitly isolate the contributions to stress from (i) average atomic
displacements and (ii) thermal vibration. In their seminal paper, Irving and Kirkwood
(33) devised a somewhat distinct syncretic approach that utilizes a distribution function in
phase space for obtaining expressions of the localized continuum quantities as well as
their derivatives with respect to time. However, as pointed out by Zimmerman (7), this
procedure is cumbersome since it requires the integration of a large number of functions
including an infinite series of differential operators over phase space. Using a different
approach, the virial stress has been derived from the Hamiltonian using the statistical

mechanics definition of stress (see Eq. 4.3.22 in Weiner (41)). By definition, this method



involves ensemble averaging of the atomic scale quantities and has been widely used by a
number of researchers (18,21,22,25,30,46). In these approaches, either atom-to-atom
mapping is used between the undeformed and deformed atomic trajectories, or
alternatively, quasi-harmonic approximation and the theory of small vibration is used to
calculate the free energy and the corresponding stress conjugate (20,41). We note that
approaches where the stress is calculated using comparison of momentum balance
between discrete and continuous descriptions do not require atom-to-atom mapping
between undeformed and deformed trajectories. On the other hand, in these approaches,
work conjugacy of the obtained stress with rate of deformation or other strain measures
does not follow spontaneously, as pointed out by Zhou (23). There are other important
concerns regarding the equivalence of the virial stress and continuum mechanical stress at
the boundaries of solids with atomic level inhomogeneity, particularly with respect to
local stress on surface atoms, which are crucial in analyzing MD simulations of
nanostructures from a continuum viewpoint (6,47). In this paper, however, we restrict
our discussion to crystals which are homogeneous and periodic in the undeformed

configuration.

While continuum stress measures have been formulated to account for non-affine
deformations arising from atomic scale structural disorder (48,49), comparatively little
attention has been devoted to an investigation of non-affinity due to thermal vibration
(50-52) and its bearing on the calculation of continuum stress and strain from atomistic
systems. Such investigation could be beneficial towards continuum interpretation of
thermally activated processes, which play a crucial role in important phenomena

including the onset of yield in crystalline metals (53), rejuvenation of metallic glasses by



thermal cycling (54), variation of creep mechanism in metals (55-57) and high entropy
alloys (58) with temperature, elastic properties of crosslinked polymers (59,60) glass
transition (61) and plastic deformation (62-65) of polymers under temperature and

moisture gradients.

In this paper, we have reconsidered the stress calculation for atomic systems in quasi-
static MD simulations. In particular, we (i) decompose the deformation kinematics of
each atom based on change in equilibrium position and change in second moments about
equilibrium positions, (ii) derive the stress measures conjugate to each of these kinematic
deformation measures, and (iii) present numerical results for MD simulation of uniaxial
deformation of fcc Aluminum. In section 2 we derive the expressions defining relevant
stress tensors for atomic systems in a virtual work framework that includes the atomic
vibration as an additional kinematic variable. To this end we introduce an atomic
vibration tensor. As a result, we find a vibration stress tensor conjugate to the vibration
tensor in addition to the static stress conjugate to the deformation gradient. For certain
simple atomic systems, the vibration tensor is shown to be a function of deformation
gradient. Consequently, the average Piola stress for a crystalline supercell is derived as a
conjugate to the overall deformation gradient in section 2.2. We present our simulation

and computation procedures in section 3, and numerical results in section 4.

2. Kinematics and Stress Measures
2.1. Role of atomic trajectory mapping

Under ergodicity, the macroscopic Piola stress (41,66) of a system of atoms occupying

volume, V,, with distribution function in phase space, p, can be defined as follows,
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where H(q,p,F) is the Hamiltonian of the system, ¢ and p are the generalized coordinates

and momenta, Fj; is the deformation gradient, 7’ (t) is the position of the a atom at time

t. Throughout the paper, subscripts have been used to represent the x, y or z coordinate,
superscripts for the atom number, and angular braces represent the time average.
Rewriting the Hamiltonian as sum of potential and kinetic energies, Eq. (1) is written as:
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where @™ (rk“ (t)) is the potential energy of the system, K ( P! (t)) is the kinetic energy of

the system, and p; (t) is the momentum of atom a. In such a description, we note that
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. The second term of the RHS in Eq. (2)

also requires similar mapping for the momenta. Thus, the trajectory-to-trajectory
mapping between the deformed and undeformed configurations is essential in order to
calculate the stress Pyi. However, establishing unique trajectory-to-trajectory mapping is
non-trivial as discussed in Appendix A, therefore we follow an alternative approach in

this paper.

2.2. Average stress in a supercell

Considering a crystalline supercell made of N atoms of a solid material, with boundaries
deformed according to a specified deformation gradient, we recognize that the work done
on the system, -d W, represents the work done in changing the equilibrium positions of the

atoms, as well as the work done in changing the second moment about equilibrium



positions. The total potential energy of the system ¢”“ =@™ +¢** is the sum of the

int

energy of interaction of the atoms of the system with themselves (¢™ ) as well as with an

ext

external agency (@) that is responsible for deforming the system.

At a constant temperature 7, the total virtual work done on a single atom, a, can be

written as:
Wa :If;ext,aé‘];apdpdq:<ﬂext,aé‘}/;a> (3)
r
¢ext
Where f““=- P is the external force acting on the atom and 7" is the infinitesimal
V.

perturbation to 7* (t) In a step-wise deformation process, at any step, the total potential

energy can be taken as harmonic for small perturbations about the equilibrium position

leading to the following approximation:
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is the local stiffness or force constant when atoms a and b are at their equilibrium

positions. On the other hand, the internal force on atom a, under a general state of strain,

int

and at any general position in its trajectory, defined as £ = — , 1s more accurately

estimated as follows using a quasi-harmonic assumption. We remark that a similar
approximation to the second order has been adopted (38,39) in approximating the force

on the atom at its instantaneous position. However, in (39) and (38), the atomistic-to-



continuum bridging was performed using comparison of momentum balance, while we

perform the same using equivalence of virtual work at the two scales.
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where f, " 8¢” is the internal force on the atom at its equilibrium position and
hi r=ri
,in 2 4i
kim,ab . afia t _( 6 ¢1nt J (5)
yoo b - an.b
arj o =ri pb =t} ar] a”; I “opf Ih—;b
P =TT =T R

is the local stiffness or force constant with respect to the internal potential. Substituting

for /™ and using Eq. (4) in Eq. (3) we get,
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Now defining the second moment about equilibrium atomic positions for atoms a and b
—a=b _ “ .
as ,B;?” = <ri“r;’ > —rir;, the first variation of ,By.b can be written as

—a —b

éﬁ <5r, rj> < “5r > 57’?7_’_1;—7’,67’_;.

From Eq. (6), the total work done on all the atoms can be written as follows (see

Appendix B for details):
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We assume k;/“"“and k" to be equal; therefore the second term of Eq. (7) reduces to

N | =

zero. Further, we rewrite:

5kmt ,ab 5kab ,0 (5k;b,T _5k;b,0) (8)



where k;b’o are the force constants at zero temperature (see step 4 of section 3.1 for
calculation procedure) and k;b’T are the force constants at a finite temperature T (see

section 3.3 for calculation procedure). We note that 5k5b’0 represents the change in force

constants caused solely by the change in atomic equilibrium positions, while
5k;””r represents the total change in force constants due to the change in atomic

equilibrium positions as well as the change in atomic trajectories. Therefore, Eq. (8) can
be rewritten as:
ab,0 n a
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where we introduce G as the normalized second moment about equilibrium atomic

mn

position for atoms a and b, which we henceforth refer to as the vibration tensor. The

D
normalization factor K = /2k—T where m® is the mass of atom a, wp is the Debye
B

frequency of the material under study at 0% strain, ks is the Boltzmann constant, and T is
1 N

the temperature. Gy = NZGZIC is the average vibration tensor in the supercell
a=l1

representing interaction between an atom and its ¢ neighbor, and n represents the

neighbor number up to which the interaction is significant. Fis the deformation
gradient in the supercell assumed to be uniform so that the change in atomic equilibrium
positions is affine. We now substitute: (a) 7* = F,R?, (b) 6G* =K (5@33), and (c) Eq.

gouj

(9) in Eq. (7) to obtain:
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We note that Eq. (10) represents the change in free energy of the system at constant

temperature. Under the condition of affine transformation inside a supercell whose

primitive cell contains only one atom, we can assume a uniform F; and a uniform G,

inside the supercell, where G is defined between any atom (all atoms are equivalent)
and its ¢ neighbor. Then, Eq. (10) can be decomposed into two parts: (a) the change in
free energy due to change in equilibrium positions of atoms and (b) the change in free
energy due to change in the second moments about equilibrium atomic positions. They
can be represented as:

N _ akabO .
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where n is the neighbor number beyond which the terms ﬁ; " are insignificant. From Eq.

(12), the average static stress in the supercell is defined as:

1 o¥ 1 mM1NNaak“b°
%_VO aF V0|: Zf t J Ezz ; - :| (13)
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and the average vibration stress in the supercell corresponding to the atom-neighbor pair
between an atom and its ¢ neighbor is defined as:

kab,T _kab,O
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where V7 is the underformed volume of the supercell. For crystals with only one atom in

the primitive cell, within the elastic regime, a constitutive relationship of the

form Gf‘ =f (Fij,T ) can be defined. Under this condition, it is possible to express
90
5G§c =——"-0F,,. Therefore, both the static and vibration stresses from Egs. (13) and
OF,

kl

(14) may be viewed as conjugate to £, and the average Piola stress in the supercell can be

written as the following sum:

P, =P +P? (15)

In Eq. (15), the static part of the average Piola stress is given as:

E {Zf“““ R; —ZZ " ak” } (16)

albl

while the vibration part of the average Piola stress is:
1, ok -k

B =— —ZZ,@J’Q (17)
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In general, a relationship of the form G;c =f (E/.,T ) is difficult to specify except for the

case of homogeneous crystal with affine transformation. Comparing Eqs. (16) and (17)
with the Mie-Gruneisen equation (67), the first term of Eq. (16) is similar to the “cold
pressure”, while the second term of Eq. (16), as well as the term in Eq. (17) are similar to
the thermal pressure contribution, represented by the Gruneisen coefficient. We follow a
similar approach as (38,39) in connecting the kinematics of the discrete system to
continuum deformation, but compute the stress measures using equality of virtual work at
continuum and atomic scales, rather than using momentum balance comparison between

scales.



We note here that the second term of Eq. (16) bears resemblance to the kinetic
contribution, typically arising from thermal vibrations, of the stress tensor defined by
Hardy (32). It is noteworthy that in an ideal harmonic solid, the thermal stress does not
contribute to work done. It is clear from Eq. (16) that the second term will vanish for
such ideal cases. However in the classical formulations, such as that in Hardy, it is not
clear under what conditions the kinetic contributions vanish. Consequently, the work
conjugacy aspects of the kinetic contribution term in classical formulation needs careful

reexamination (23).

3. Numerical Simulations
3.1. Molecular Dynamics simulation of fcc Aluminum under uniaxial tension

The derived formulation was evaluated using results from MD simulations. The
simulation was performed using LAMMPS code (68) on a periodic supercell made of 10
X 10 X 10 primitive unit cells of face-centered cubic Aluminum using an embedded atom
method (EAM) (69) potential. The triclinic non-orthogonal supercell contained 1000
atoms. Periodic boundary conditions (PBC) were used for the simulation in the three
Cartesian directions to simulate an infinite crystal. The x, y and z axes were chosen to lie
along the [100], [010] and [001] crystallographic directions. The simulation was
performed in the following steps:

1. The supercell was first relaxed to zero stress state (P = 0) in the NPT ensemble
using 0.5x10° time-steps with a time period of 1 fs. A Nose-Hoover thermostat
was used to maintain the temperature at T = 300 K. The centroid of the supercell
is maintained at a constant value for each time step. The dimensions of the

supercell under zero-stress conditions were estimated using time-average.



2. Simulations were then performed at the same temperature (300 K) at different
tensile uniaxial strains of 0% to 11.7505% in the NVT ensemble. The deformed
supercell at each strain-level was relaxed using 0.5x10° time-steps with a time

period of 1 fs (the number of time-steps used was found to achieve converged

: : o 1
results). The strain measure used is the Green strain given as ¢, = —(F,dFk. -0, )
g 2 9 y

The lateral strains ¢,, = &,, =0and the shear strains ¢, = &,, =&,, =0. The strain
g, was applied along the [100] crystallographic direction (x axis or 1 direction)

and the corresponding deformed edge vectors of the simulation box were

computed for each axial strain. The position of every atom was recorded at every

time-step of the simulation. In addition, the second moments, ﬂ;b , were
computed at each atom with respect to itself and all its 999 neighbors.
. . . . Ob 1 N ah
3. For simulation at each strain-level, the atomic average f.” = —Z B over all the
y N o Y

atoms was computed using an additional 2.0x10° time-steps beyond convergence.
4. Each of the relaxed strained system at 300 K from step 2 was then quenched to ~0
K in the NVT ensemble. A quadratic polynomial
¢=A+Br' +Crl + Dr'r! +E(1;.")2 +F(rj?’)2
was fit to the resultant potential energy surface for perturbations of atoms a and b
in the range of -0.05 A to +0.05 A, Subsequently, the zero temperature force

constants, kij.’b 'O, were computed at 5 representative atoms which were sufficiently

far from the boundaries of the simulation box. Stiffness tensors including the self-



interaction as well as the 78 nearest neighbor interactions (b = 0 to 78) were
computed.

5. The virial stress values at each strain at 300 K were calculated using the
LAMMPS “compute stress per atom” command, summed over all atoms, and
averaged over an additional 0.5x10° time-steps beyond convergence. The
computed virial Cauchy stress is then transformed to the virial Piola stress

Virial

denoted in the subsequent discussion as £, "™ .

—int,a —a

1 . . .
The term F(_ fi R j) in Eq.(16) was approximated using the “compute

stress/atom” command in LAMMPS at 0 K and summing up the per-atom stress

over all atoms and appropriately normalizing with the system volume.

3.2. Phonon frequencies and total stiffness tensor calculations

The phonon frequencies of a periodic crystal can be calculated using several different
approaches (41,70,71). Here, we employ the method by Kong (70), in which the phonon
frequencies can be directly computed from MD trajectories. For a pure crystal whose
primitive cell consists of a single atom, the Green’s functions in reciprocal space can be
written in the form (see Appendix C):

r(ry Ip
ro—-r

&j (5) _ %Zb:ﬂ;bem( (18)

Where N is the number of atoms in the supercell and ¢ is the wavevector. Clearly, the
Green’s functions in reciprocal space are the forward Fourier transformations of the

second moments, /3;1’ , about equilibrium atomic positions. Under conditions where

every atom is identical in a periodic lattice, Eq. (18) reduces to
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where S = —Z " is the atomic average of the second moments between an atom and
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its ™ neighbor.

The Fourier transform of the force constant matrix is obtained from the reciprocal space

o-1

Green’s function as £/ 5):kBT [G i,»(é)} from which the dynamical matrix is

. 1 . .
obtained as D, ((5):;/%/ 5), whose eigenvalues are the phonon frequencies @,. The

: . r :
inverse Fourier transform of /‘c?{ q)are used to calculate the finite temperature force

T
constants k;b o

3.3. Local deformation gradient calculations

The deformation gradient at the site of each atom was calculated by minimizing the
following sum of the squared error using the approach and weight functions proposed by

Gullet et al. (31)

N
" =Y (A" = FJAXT" ) (Ax)" = FAX]" )" (19)
n=1
Where e" is the weighted error in position of atom m, Ax;" is the vector from the mean
position of atom m to the mean position of atom 7 in the deformed configuration, AX"is

the same vector in the undeformed configuration, F"is the deformation gradient at the

site of atom m, and w" are the weight functions used to weight the error contribution for

the atomic pair (m,n). The weight functions are inversely proportional to the distance



between atoms m and n. The cut-off radius proposed by Gullet et al. (31) is assigned

based on the spread of ,B;” (the implementation is discussed later in sections 4.1 and 4.5).

4. Results and discussion

In the discussion of the results, the kinematics of deformation is described at 300 K,
while for the discussion of stress; results are also presented at 750 K to highlight the

contribution of the vibration stress to the free energy of deformation.

4.1. Validation of MD simulations

Figure 1 shows the phonon dispersion at 0% strain obtained from the second moments
about equilibrium atomic position using the procedure described in section 3.3. The
predictions closely match the trend of the experimental data (72) for the phonon
dispersion curves validating the second moment calculations. We note that the
magnitudes of the computed frequencies are somewhat smaller than the experimental
values since our simulation is at 300 K, while the experimental data (72) was measured at

80 K.

I [q00] (A line) X K [qq0] (Z line) I [qqq] (A line) L

v (THz)

0 0.25 0.5 0.75 1 0.75 0.5 0.25 0 0.25 0.5

Figure 1 Phonon dispersion curves computed from the second moments about equilibrium atomic position

4.2. Adequacy of quasi-harmonic approximation



The percent difference between the terms <¢i‘“> ¢™ and ZZk‘“‘ “ B provides an

a=1 b=1

indication of the adequacy of the quasi-harmonic approximation of the internal potential

int

as shown in Figure 2, where ¢™ refers to the internal energy of the system with all the

atoms fixed at their equilibrium positions. ZZk“b 3% is the vibrational part of the
a=1 b=1

potential energy resulting from a zero temperature estimation of the force constants. It is

ab
iJ

seen that the error in energy estimation contributed by ZZk“bO
a=1 b=1

is positive and
increases with deformation from 5.0% to 17.7%. Accounting for finite temperature using

N N
ZZk;b’T ,B:b brings down the error, which varies from -2.6% to -4.7% under
a=1 b=1

deformation. It is interesting to see that using k" =", the total potential energy is

overestimated if only the contribution from the zero temperature force constants is
considered, while use of the finite temperature force constants underestimates the total

potential energy. The implications on the stress calculation are discussed in section 4.4.
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Figure 2 Percentage error in quasi-harmonic approximation versus continuum scale deformation gradient

4.3. Variation in the second moments with loading

Figure 3(a) shows the variation of the atomic average of the self-interaction second

o iy ) 1 & .
moments of atoms about equilibrium position, that is B =— > A/ (where N is the
pp=l

number of atoms and no summation on repeated index i is imposed), with applied

deformation gradient. As expected, the value of B is isotropic at 0% strain. We

observe that as the applied tensile strain increases, the second moment becomes
anisotropic and has higher amplitude in the direction of loading. Further, we observe that
the change is solely due to deformation of the system since the temperature is kept
constant.

We note here that the introduced method in section 2.2 does not require the postulation of
generator functions as in some other attempts (21,22). As discussed in Appendix A,
unique and general generator function for canonical ensemble may not be easily obtained.

For generator functions that lead to affine transformations of trajectories, the second

moment takes the form [)’U“” =F F B®

ab
il B> Where By are the second moments before

deformation. The second moments for this case are also shown in Figure 3(a). The
variation of mean square displacement A" from the MD simulation is clearly
significantly different compared to that from the generator function. Remarkably, the
affine mapping approach predicts no change in ), and 3y with loading, which is clear

contrast to that in the MD simulation. To further illustrate these differences, in Figure

3(b) we plot the atom-wise maps of the 11 component of the vibration tensors obtained



from the affine mapping approach and the MD simulations at 11.7505% strain. The
atom-wise map of F¢ used to calculate G*““"™ is also shown in Figure 3(b). We observe

a remarkable difference in the vibration tensor calculated in the MD simulations versus
that obtained as a consequence of affine mapping assumption applied locally to each
atom. We remark that the transition from affine to non-affine displacements of atomic

equilibrium position takes place between 11.75% and 11.7505% strain. In addition, we

note that the histogram of F{ still retains some resemblance to a bell-curve and G’

is still normally distributed, while the histogram of G/“"” has completely deviated from a
normal distribution. We further observe that in transitioning through the softening

regime, the local values of G/ at the site of atoms in the region of localized non-

affine deformation undergo an increase several times larger than G%*/"*. These observed
discrepancies emphasize the need for additional local kinematic descriptors that can
capture the effect of evolving vibrations under deformation. Some researchers (51,52)
have pointed out that thermal vibrations can cause non-affine displacements even in a

homogeneous crystal, leading to fluctuation-driven instability. Further, we note that the

change in B’ with strain is non-linear and is well-fit (R?=0.999) using a cubic curve.
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Figure 3 (a) Variation in second moments with continuum scale deformation gradient: comparison of
observations from MD with those computed using F as the trajectory-to-trajectory mapping function, and
(b) Atom-wise maps and histograms for 11 component of local deformation gradients and vibration tensors
at 11.7505% strain obtained from affine transformations and the MD simulations.

Figure 4(a), (b) and (c) show that the inter-atomic second moments A3.", S, and ﬂOb all
increase non-linearly with applied strain for all the first 12 nearest neighbors (b = 1 to

12). For B, the increase in the neighbors lying in the (010) and (001) crystallographic



planes (yx and xz Cartesian planes) is similar, and greater than those lying in the (100)

plane (yz plane). The values of S are significantly different from those predicted by an

affine trajectory transform. For S, and Bi , the largest values are for the neighbors

lying in the (100) plane (yz plane) followed by those in the (010) and (001) (xy and xz)

planes. It is interesting that the affine transformation does not predict a change in the
interatomic second moments f;, and pjr with applied deformation, while the results

from the MD simulation show a significant change. Figure 4(d) shows the variation in

0b 0b

. s Py and

the off-diagonal ,B;b values with deformation gradient. Notably, the

% values are only significant for the neighbors in the (001) (xy), (100) (yz) and (010)
(xz) planes. Figure 4(d) also shows that the off-diagonal ,HUOZ’ values change more
significantly for the 23 components as compared to 12 and 13 components. The minimal
change in the 12 and 13 components agrees with the prediction of the affine mapping
approach. However, for the 23 components the affine approach is completely incorrect.
All the changes in inter-atomic second moments follow the symmetry break due to the

strain applied along the [100] direction. Overall, it is clear that application of strain

reduces the crystal symmetry, and affects the local potential landscape, which leads to the

observed trends in ,be . The underlying reason for the inconsistency between the second

moments predicted by the simulation and by the affine mapping approach is that the

affine approach does not account for the local changes in potential landscape.
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Figure 4 Variation in ,Bl.?b for the first 12 nearest neighbors

4.4. Finite temperature stress

Figure 5(a) shows a plot of the static stress P!, vibration stress P?, total Piola stress
P,in the 1-direction, computed using Eqs. (16), (17) and (15) respectively, and B,
obtained from LAMMPS, plotted against the deformation gradient at two temperatures of

300 K and 750 K. We find that P/ > P" > P, however the difference between P!,
P and P, is minimal at 300 K, and the magnitude of the vibration stress P¢ is only

about 3% that of B,. The agreement is interesting, given the difference in stress

calculation procedures; while the stress in LAMMPS is derived from kinetic and potential
contributions using the affine trajectory transformation, the stress we derive in section 2.2

is based on work done under a quasi-static deformation. At the higher temperature of 750

K, B, is about 40% lower than B’ at 8% tensile strain; the magnitude of the vibration

stress P is about 27% of the magnitude of P,. The agreement at 300 K appears to be



purely coincidental and further examination for complex systems is needed to verify its

generality.
It is notable that " can be shown to be the exact work conjugate of the deformation

gradient under the assumption that a canonical transform generator function, causing an

affine transformation of thermal trajectories, holds true (22). Further, we note that in the

case where this assumption does not hold, P’ does not completely capture the free
energy change. Therefore, the differences between P,and P!, as well as the

significance of P?can be related to the deviation of S’ from affine behavior, discussed

in section 4.3. The affine transformation of trajectories under-predicts the contribution of

thermal vibration and thus over-predicts the stress. Observing the results described in
section 4.2, it is likely that a more exact estimate of the stress lies between P and P} .

At low strain-levels and low temperatures, the vibration stress can be assumed to be
insignificant; however at high temperatures and high strains, the vibration stress increases
to significant levels, steeply increasing in magnitude as the strain nears the softening
point. On a related note, it has been suggested that elastic instability may be preceded by
instabilities in vibration modes driven by thermal fluctuations (51,52,73). As discussed
earlier (section 2.3), the stress calculation in classical MD approaches, such as
LAMMPS, includes a kinetic contribution that has resemblance with the 2™ term of Eq.
(16) and in Figure 5(b) we compare the two. While the kinetic contribution marginally
decreases in magnitude in a linear manner over the loading regime, the 2™ term of Eq.
(16) that involves the vibration tensor evolves significantly, and nonlinearly, with strains.

The linear decrease of the kinetic contribution is entirely due to the volume change since



the <vl."vl.“ > terms do not change at constant temperature. The nonlinearity in the 2" term

of Eq. (16) is likely due to the anharmonicity of the EAM potential used to describe
aluminum. In the virial stress formulation, this nonlinearity is embedded into the
potential part of the stress, but its contribution to the free energy is underestimated due to
the affine transformation approximation on the atomic trajectories. The comparisons in
Figures 5(a) and 5(b) show the need for additional kinematic descriptors that can capture

the effect of evolving vibrations under deformation.
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Figure 5 (a) Average Piola stress (static, vibration and LAMMPS) versus deformation gradient, and (b)
Kinetic/vibration contribution to static stress.

4.5. Variation in directionality of second moments in peak stress vicinity

Figure 6 shows the atom-wise distribution of the direction cosines of the primary

eigenvectors of F| and G| across the supercell at ¢;; = 11.75% and &;; = 11.7505%,

which corresponds to peak value of B"”. The transition from affine to non-affine

displacements of atomic equilibrium positions takes place between these two strain
values. Figures 6(a) and (b) shows that the primary eigenvectors of the local deformation
gradients continue to point in the [100] direction (loading direction) on either side of the

softening peak. Comparison between Figures 6(c) and (d) show that the primary



eigenvectors of G} at 1, = 11.7505% strongly deviate from the loading direction in the

softening region, as compared to ¢;; = 11.75%. This indicates that the “atomic clouds”
formed by the trajectories have rotated away in this region from the direction of loading.
This effect is similar to the rotational degree-of-freedom envisaged in micropolar
continuum theory thus pointing to the need for enhanced continuum models for properly

describing failure of even such simple material systems.
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Figure 6 (a) Atom-wise map of direction cosine of primary eigenvector of vibration tensor at 11.75% strain
(b) Atom-wise map of direction cosine of primary eigenvector of deformation gradient at 11.7505% strain
(c) Atom-wise map of direction cosine of primary eigenvector of vibration tensor at 11.75% strain (d)
Atom-wise map of primary eigenvector of vibration tensor at 11.7505% strain



4.6. Potential wells at incipient plasticity

To provide a vivid visualization of the “atomic clouds”, Figure 7(a) shows the trajectory
and probability density at every point of the trajectory for a sample atom in the softening
region at 11.7505% strain. Figure 7(b) shows that this atom is oscillating between two
potential wells leading to an asymmetric dumbbell shaped “atomic cloud”. The
geometric centers of each of the two spheres of the dumbbell are shown in Figure 7(c)
indicated by large red circles. The deviation in the equilibrium position of the sample
atom from the Cauchy-Born rule is only 0.026 A. However, the distance between the
centers of the ellipses of the dumbbell is about 1.8 A. Correspondingly, in Figure 7(b),
we observe the distance between the minima of the potential wells to be close to 1.8 A.
Although the atom resides close to its equilibrium position for a majority of the time, the
second cloud is considerably displaced from the initial position and has entered the
octahedral interstitial site shown in Figure 7(c). The change in second moment about
equilibrium position for this atom is 0.043 A2 We note that the second moment is
insufficient to model such a change in shape of the atomic trajectory cloud; however, the
use of a spherical harmonic expansion, as used in atomic orbitals, can potentially capture
such changes. In any case, the softening of the material corresponds to the jump of the

atom from the deeper potential well to the shallower one. We conjecture that the onset of
such a transition will be characterized by a critical value of G/'. The existence of such a

condition may provide additional criterion for the formulation of finite-temperature

continuum plasticity theory and needs further investigations.
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Figure 7 (a) Dumbbell shaped cloud of atomic trajectory along with probability density at each location for
sample atom in region of failure, (b) Potential energy well(s) for sample atom (c) centers of the ellipses of
the dumbbell shaped cloud

5. Concluding Remarks and Epilogic Discussion

In this paper, we have shown that the stress-strain conjugate pair formed by the static
component of the Piola stress and deformation gradient only captures the changes in the

potential energy landscape that are result of change in equilibrium atomic positions, but



does not capture changes in the local potential energy landscapes which are a result of
thermal vibration evolution with deformation. On the other hand, the vibration stress and
the vibration component of the Piola stress that we have derived in this paper capture part
of the changes in the local potential energy landscapes caused by the evolution of thermal
vibration of atoms under macroscopic deformation. Therefore, they promise to be useful
continuum measures to extract from finite temperature molecular simulations. While
stress conjugates to non-affine fields caused by structural disorder have been derived in a
discrete-to-continuum setting using micromorphic (11,74,75) or strain-gradient methods
(48,49,76,77), stress conjugates to real-space kinematic fields resulting from non-affine
thermal vibration have not been explicitly derived, even though the mechanical
importance of considering non-affinity from thermal vibration has been recognized in
recent times (50—52). Our simulations show that the contribution of non-affine evolution
of thermal vibrations to the free energy change can be significant even for the case of
statically homogeneous deformation of an ordered crystalline solid such as fcc Aluminum
with only a single atom in the primitive unit cell. The vibration stress and vibration
tensor are expected to play a more significant role for solids with a more complex
structure than fcc aluminum. In summary, we have:

(a) analyzed some of the nuances of the virial stress derivation which use the deformation
gradient to map deformed and undeformed trajectories,

(b) shown that the canonical transform assumption used for trajectory mapping does not
always hold in NVT ensembles by tracking the change in second moments about

equilibrium positions under uniaxial deformation of fcc aluminum,



(c) provided an alternative method for computing local deformation measures and their
conjugate stresses at atomic sites, under the condition of quasi-static deformation, by
decomposing the change in atomic trajectory into deformation gradient and vibration
tensor, and

(d) demonstrated the relevance of the vibration stress and vibration tensor to incipient
plasticity in the material. We elaborate the highlights of our findings in the following

sections.

5.1. Relevance of our formalism to continuum scale kinematic variables

Possible choices that have been used for continuum scale kinematic variables include
combination of deformation gradient with temperature (F, 7) or with entropy (F, S). In
this paper, we have demonstrated that the deformation gradient and vibration tensor pair
(F, G) is a particularly useful kinematic variable set for continuum interpretations of
atomistic models at finite temperature. It simplifies work conjugacy at the atomic scale
and is a suitable choice for localization frameworks where high spatial resolution,
approaching the atomic scale, is required without simultaneous need for high temporal
resolution. Furthermore, it could be used to develop atomistically motivated finite
temperature failure theories based on molecular dynamics or other discrete simulations.
For example, the elastic-plastic transition of single crystal platinum has been
experimentally studied using nano-indentation and the authors have proposed that energy
barriers for yield have a complex dependence on stress and temperature, and are
eventually overcome by a combination of thermal and mechanical energies, under an
appropriate thermal fluctuation (53). Since thermal trajectory evolution is built into our

approach, formulation of continuum theories to describe such phenomena may prove to



be easier in a (F, G) framework as opposed to a (F, T) or (F, S) framework. Moreover,

local representations of temperature are not required in this proposed formulation.

5.2. Relevance of our formalism to failure theories

The appearance of non-affine deformation regions are being utilized to detect regions of
failure (1). The appearance of imaginary frequencies in the phonon dispersion is also
used to identify mechanical instability (78). It has been known for several decades that
the presence of a critical r.m.s atomic vibration amplitude or a critical amount of “free
volume” at the dislocation in a crystal is strongly correlated to the beginning of plastic
flow associated with a localized “melting” (79). More recently, a “hidden” critical point
which is related to percolation thermally induced non-affine droplets has been observed
in the pre-yield strain regime of a crystalline solid using MD simulation (80). In this
context, the vibration tensor and similar higher moment measures could serve as
deformation measures with high sensitivity to unveil and predict the onset of material
instability, particularly at high temperatures. Recent research has shown the instability of
phonon lattice dynamics calculations in the neighborhood of failure for Aluminum-
Titanium alloys using the lattice dynamical finite element method (LDFEM) (81). The
LDFEM method explicitly separates stress calculation into (a) stress at zero temperature
and (b) instabilities studied by using phonon dispersion spectra. We suggest that the use
of presented formalism in place of the phonon gas approach will ensure that the
corresponding deformation fields along with their stress conjugates are all in the real
space and may be input into a larger-scale FE simulation with (F,G) as kinematic
deformation fields. The use of real space makes our approach attractive to amorphous

solids. The incorporation of higher orders of vibration in addition to G can enrich



continuum models even more, making it possible to include changes in the shape of the
trajectory cloud. Particularly, as presented in section 4.6, the probability density of the
atomic position may be described to be undergoing a smooth transition from an ellipse to
a dumbbell. The presented approach can be extended to include such deformation by
expanding the probability density of atomic position in suitable form such as spherical
harmonics.
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Appendix A: Generator Function Approach

For a canonical ensemble, the modified Hamilton’s principle states that:(21,22)

5T(BfR;’ —H(R,B/,))dt =0 5?( pir =HG, plot)t =0 (A.1)

4 4

where (Ri“,Bi")are the position and momenta before deformation and (rf’, pf)are the

position and momenta after deformation i.e. the transformation must maintain the

Hamiltonian equations. H(R/,B;,t)is the Hamiltonian function of the system before

deformation and H{(r", p/,¢) is the Hamiltonian function of the system after deformation.

This pair of equations can only be satisfied under the following condition.

~ Y
(pf&—H(;ﬂia,pf,t))—F((il—t=Bl.”]€e—H(Ria,Bi”,t) (A.2)
where Y is the generator function which is an arbitrary scalar function of atomic

position, momentum and time, and has continuous second derivatives(21,22). For

example, the generator function may be assumed to be of the form:

Y= /(R R...RY ) p =1 pf (82).

dr

“ OR“ a
Substituting d_ = [% v 9,
t

+ 2 pf - &pt —r

in Eq. (A.2), we get:

B =)+ L pr e = (st + ey = Br R~ 11 (RY, B 1)
J

Equating coefficients of each time derivative (or differential) term,

S =r"=0 (A.3)
of?
I pr =y (A4)



H(r?,pl.t)=H(R! B t)+ fep! (A.5)
The above equations represent a one-to-one correspondence between the deformed and

undeformed quantities which hold at any instant of time. Time averaging both sides of
Eq. (A.5) gives insight into the nature of the generator function. The quantity < f?e p’ > is

the change in the total average energy of the system after deformation. From Eq. (A.5),

/.7 1is the function that maps the trajectories from the undeformed configuration to the

deformed configuration. When H = H , it is possible to obtain generator functions which
explicitly relate (rl." ,pr ) to (Rl." , B’ ) (for example, see section 8.1.3, Tadmor and

Miller(22)). However, for a canonical ensemble undergoing deformation under constant

temperature, the condition H =His not satisfied due to the requirement of constant
temperature. Therefore, it is non-trivial to come up with a unique and general generator

function in closed form for a canonical ensemble.

Appendix B: Derivation of the Virtual Work Expression

The total work done on the atom a (see Eq.(6)) is split into three parts SW*! §W*? and
oW, defined as follows:

SW = _<]7i“““5;;.“> B.1)
b

5Wa2 — <Z(k;jnt,ab _ k[;otal,ab )(rjb _ Fjb )5’/;a> (B2)

int,ab
Ok;;

a3 __ l
oW = 222 arkc

(rt =7*) (e =756 (B3)

c b

C_—C
Te =Tk

Recognizing that the force on atom a at its equilibrium position, fiim’” , 1s independent of

time, Eq. (B.1) is evaluated as follows:



—int,a

W =—f, 5% (B4)
where o7 is the change in equilibrium position of atom a. In order to evaluate Egs.
(B.2) and (B.3), we use the fact that all the atoms in the supercell are equivalent in the
range of study (0 to 11.75% strain). Using Eq. (B.2), we write the sum total of §/*? over

all the atoms, which we denote as 672, as follows:

SW?* = Za:<zh:(k;t,ab _ k;otal,ab )(rjb _ 77jb )51/20 > (B.5)

klotal ,ab
i

We recognize that k;“t’”b and are evaluated at the equilibrium positions and

therefore independent of time. With some rearrangement of terms, Eq. (B.5) is rewritten
as:

SW? = Zy:zb:(k;m,ab _k;jotal,ab )(<5riarjb> _ rl_aFjb) (B.6)

—a—b

The first variation of A’ =<1;"rf >—r,- r; can be written as 5@;1’ :5@?+5ﬁ; , where

a a_ b a—=b b a b —a b : :
op; =or'r; —or'r;and Of; =r"6r; —1,°6r;’. Therefore, Eq. (B.6) is rewritten as
follows
5W2 — ZZ(k;nt,ab _kl;otal,ab )(5@;1) (B7)
a b

Since the stiffness tensors k" and k;.”’”l - are symmetric,

SW? = Zzb:(k;.m’“b — ke )(5,3;’ ) also holds. Using 88" = 8, + 3, we can rewrite:

1 ‘
2 _ int,ab otal ,ab ab
oW =3 22k k) (9B ) (B3)
Writing the sum of dW* over all atoms, 6W°, and using the commutative property of

int,ab
Ok;;

c
or;

, We obtain:



aklnt ,cb

ZZZ o Srt () =7 ) =7°) (B.10)

c b _
};.(l - a

int,ch
ij

Using the time independence of the derivative , and further simplification,

SW? may be rewritten as follows:

_—2251«“"“” « (B.11)

Now, the total work on the system may be obtained by summing 6W?, sW?, and §W* to
obtain:

S — Z fmtaé‘_a ZZ(k;m,ab _k;;)tal,ab )(5ﬂ;b) ZZé‘kmt ab ab (B.13)
a b

Appendix C: Greens Function for Phonon Frequency Determination

The following derivation is for a periodic supercell of N atoms constructed with a
primitive cell containing a single atom. Superscripts are used to indicate atom numbers
and subscripts enumerate the Cartesian directions 1, 2 and 3. Under the harmonic
approximation, the equation of motion for an atom in the supercell undergoing thermal

vibration may be written as

m& _Z ktotal ab b (C.l)

where m is the mass of the aluminum atom, #is the acceleration of atom a, k;”‘”’“b are the

components of the stiffness tensor for the interaction between atoms a and b, and uf is the

instantaneous displacement of atom b from its equilibrium position.

The particular solution to Eq. (C.1) is given by:

ut = 4ol ] (C.2)



where j is the unit imaginary number, 4; is the amplitude of the wave, g¢is the

wavenumber, o is the wave frequency, r“is the position vector of the equilibrium

position for atom a, and ¢ is the time. Substituting Eq. (C.2) in Eq. (C.1), we get

@ (§) 4 = e (C.3)

J
b
Using the equivalence of all unit primitive cells (with one atom each), Eq. (C.3) may be

rewritten as

@ (4)4 =D, (q) 4, (C.4)

J

Ta Ip

where D, (5) = le;”"‘“[’“"e{_j[q'(r +) and the summation runs over all possible pairs for
ab

an atom including with itself.
The dynamical matrix is now determined using the approach proposed by Kong (83), and

using the equipartition theorem (41) as follows

D,(q) =lkBT[<%l (9)] (C.5)

ij m i
where @/fcr]) is the Green’s function in the reciprocal space given by
T r r
Go(a)=(da)a(q)) (C6)
The tilde signs refer to the Fourier transforms of the corresponding quantities and the *

refers to the complex conjugate. The Fourier transforms of the atomic displacements can

be written as

9(q)=—== ute " (C.7)

JN
I(§) = e )



Noting that the equilibrium positions of atoms are independent of time, we substitute Egs.

(A.7) and (A.8) in Eq. (A.6), and simplify the Green’s function to
ry 1 R e
G =y X pre (©9)

where ,B:b = <uf’uj’ >is the second moment of atomic vibrations about their equilibrium

positions.

Under conditions where every atom is identical in a periodic lattice, the Green’s function

: : 2 r _ Ou _i‘g'(;o_;“) Ou 1 S au :

in Eq. (C.9) is evaluated as G (q)=>_f)"e , where g = NZ B is the atomic
u a=1

average of the second moments, where 0 refers to the atom at the supercell origin.



