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ABSTRACT

The Advanced Encryption Standard (AES) enables secure transmis-
sion of confidential messages. Since its invention, there have been
many proposed attacks against the scheme. For example, one can
inject errors or faults to acquire the encryption keys. It has been
shown that the AES algorithm itself does not provide a protection
against these types of attacks. Therefore, additional techniques like
error control codes (ECCs) have been proposed to detect active
attacks. However, not all the proposed solutions show the adequate
efficacy. For instance, linear ECCs have some critical limitations,
especially when the injected errors are beyond their fault detection
or tolerance capabilities. In this paper, we propose a new method
based on a non-linear code to protect all four internal stages of the
AES hardware implementation. With this method, the protected
AES system is able to (a) detect all multiplicity of errors with a
high probability and (b) correct them if the errors follow certain
patterns or frequencies. Results shows that the proposed method
provides much higher security and reliability to the AES hardware
implementation with minimal overhead.
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1 INTRODUCTION

In cryptography, the Advanced Encryption Standard (AES) [2] is
widely used as a block cipher algorithm. It ensures the confidential-
ity of a plaintext message through encryption. The computational
complexity of the AES algorithm makes it intractable to recover
the plaintext message without the appropriate secret key. Since its
introduction, there have been numerous proposed attacks against
the AES algorithm, especially attacks exploiting potential hardware
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implementation vulnerabilities. Passive attacks, such as the Differ-
ential Power Analysis (DPA) [9], aim to steal the algorithm secret
keys by analyzing the AES system runtime power behaviors.

For active attacks, a fault or an error is injected [10] during one
or more stages of AES algorithm execution. These attacks infer
important information (e.g., key length) about the AES system by
observing and analyzing the erroneous output ciphers caused by
the injected errors. Our work in this paper focuses on this class of
attacks. Beyond attacks, an AES system is also vulnerable to random
errors caused by the instability or aging of the cryptographic circuit.
This can lead to errors propagating to the outputs of the AES system
or its internal stages. Therefore, error detection and error tolerance
capabilities are a critical design consideration in these systems.
Hardware defense techniques have been explored for both injected
and random errors [5]. Another approach is to use error control
codes (ECCs) as a built-in self test (BIST) mechanism. ECC-based
approaches tend to be more attractive because they (a) can be
analyzed using precise mathematical models and (b) offer more cost
efficient solutions [8].

Although these approaches have provided a certain level of re-
liability and security to AES systems, they are often limited in
their error detection capabilities. If injected faults are beyond their
detection or correction capability, then those errors could be (i)
invisible to the detector and (ii) exploited by attackers. Therefore,
in this paper, we propose a new method that protects each stage
of the AES system with a non-linear code. The proposed approach
(a) overcomes the weaknesses seen in linear error detection codes
and (b) extends beyond the error correction capability range of
previously established non-linear techniques. The key capabilities
of the proposed method are:

(1) Conditional All Error Detection: all errors will be detected
with a high probability in a multiplicity of settings;

(2) Conditional All Error Correction: the method is able to correct
all errors under a variety of scenarios with a probability of
1 if the injected error is “lazy", i.e., an error that repeatedly
appears in 3 or more cycles or rounds;

(3) Customized Functionality: the method can be efficiently cus-

tomized for the four different stages of the AES algorithm/system.

Thus, we characterize the proposed method as “conditional all error
detecting and all error correcting” (C-AED-AEC). The rest of the
paper is organized as follows. Section 2 has a brief introduction of
the four stages of the AES system. In Section 3, we present a widely
used error control coding approach for AES systems and highlight
some of its vulnerabilities. Section 4 contains the proposed method
(C-AED-AEC). Section 5 has the hardware cost and performance
results. Section 6 concludes the paper.
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2 THE FOUR STAGES OF AES

In this section we briefly describe the four stages of the Advanced
Encryption Standard (AES) algorithm. In each round of the ten or
more rounds of the algorithm, the four stages or part of them will
operate on a 4 X4 matrix of data called the state. In order to facilitate
the mathematical discussion in the following sections, we introduce
the functions of the stages in the matrix form. For convenience
some terms are defined as follows:

e v: the 4 X 4 state which serves as the input to each stage;

a;,j: the element located at the ith row and jth column of v;
u: the 4 X 4 transformed state, which is the output of each
stage;

e b; j: the element located at the ith row andjth column of u;
e b: the number of bits in a byte;

e GF(): the Galois finite field;
[ ]
[ ]

®: the finite field multiplication;
@: the finite field addition;
® faddRoundKey® the AddRoundKey function;
® fsubBytes: the SubBytes function;
® fshiftRows: the ShiftRows function;
® fMixColumns: the MixColumns function;
o ¢: the additive error injected by attackers;
e ~: the distortion symbol, e.g., I;i,j =b;;® €p; ;-

The mathematical representation of the four stages is as follows:

I. AddRoundKey:

1

bi,]‘ = fAddRoundKey(ai,j) =4aij® ki,j’

where k; ; is the key byte at the i’ h row and j* column of
the key matrix.

II. SubBytes:
bij = fsubBytes(ai,j) = Mino ® ai,j ® My, )]

where M;y, is the binary inversion matrix in GF (28). With
the binary vector M, it provides an affine function.

III. ShiftRows:
bo,« = fshiftRowso(@0,%) = ao,« ® MsRo;
b1, = fsniftRows1(a1,%) = a1,x ® MsRi; )
b2« = fsnifiRows2(d2,+) = az,« ® MsR2;
b3, = fshiftRows3(a3,5) = a3,« ® MsRs;
where Msro, Msr1, MsRr2, Msgrs are binary matrices which
shift the input by 0, 1, 2, 3 digits respectively.
IV. MixColumns:

©

by, j = fMixColumns(a*,j) = Mpc ® axj,

where My is a 4 X 4 Maximum Distance Separable (MDS)
matrix.

Although there are many ways to describe the operations of the AES
stages, the matrix form lends itself well to our BIST formulations
and associated attacks in a clearer mathematical way.
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3 RELATED WORKS ON THE ECC
PROTECTED STAGES OF AES AND THEIR
VULNERABILITIES

As previously mentioned, since the error injection attacks are often
able to distort the AES internal stages and lead to the leakage of
critical information of the secret keys, there is a strong demand of
error detection, or even error correction, for the AES implementa-
tions. A popular and efficient approach is to use the error control
codes (ECCs) to form a built-in self test (BIST) mechanism, which is
often referred to as the self-checking checkers (SCC). Various codes
including parity codes, cyclic codes, Hamming codes, and Reed-
Solomon (RS) codes [1, 11] are adopted to detect different number
of errors or correct some of them by SCC. In addition, codes are
also used to protect the AES against non-invasive attacks such as
differential power analysis (DPA) [4, 9].

3.1 Linear SCC Protected AES Stages
In a SCC, the input (state) of a stage goes through two functional
modules:

o The specific AES stage:

bij = f(aij)
e The corresponding redundancy generator (predictor):
Ry, , = 9(f(ai,;))

The outputs from the two modules are verified by the SCC’s
decoder for error detection:

?
H(bi’j’Rbivj) =0. (5)

With those ECC codes, the SCC can achieve a limited error
detection capability.

3.2 Vulnerabilities of the Linear SCC

Because of the linearity of the SCC induced by a linear ECC, there
can be a large number of injected errors non-detectable, i.e., ‘invis-
ible" to the decoder. This attack scenario is illustrated below. For
two arbitrary state elements a; j and ay y, it is easy to see that [Eq.
5] satisfies the following if there is no error:

ai,j = H((bi,j, Rp, ;) = 0;  ap 1 — H((bp,1, Ry, ;) = 0.

Since most of the ECC is linear and g() and H() are linear functions,
we have the following relationship:

H((bi,j, Rp, ;) & (bp, 1, Ry, ;)
:H(bi,j’Rb,-yj) & H(bh,l’Rbh,l) =0+0=0.

This means that the linear combination of two (or more) legal entries
is still a legal entry to H(). In another word, if an injected error e
satisfies H(e) = 0, then when it is applied to this ECC protected
AES stage, it will never be detected because

H((bi,j, Rp, ;) ® €) = H(bi,j, Rp, ;) ® H(e) = 0. (6)

We call these invisible errors. In this situation, b; ; has been dis-
torted by the injected error e, but it will never be detected by H().
For any given AES stage’s output b; j, there exist 2 such invisible
errors. Moreover, this fatal attack applies to all the AES implemen-
tations with linear ECCs, such as the ones mentioned earlier in this
section.
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4 THE CONDITIONAL ALL ERROR
DETECTING AND ALL ERROR
CORRECTION (C-AED-AEC) SCHEME

In this section, we introduce a new secure and reliable scheme to
protect the AES stages from any errors, including ones invisible to
the linear SCC. This scheme utilizes a non-linear ECC so [Eq. 6]
will not always stand. The advantages of this proposed scheme are:
(1) It detects all errors with a probability close to 1;
(2) There are no errors non-detectable, i.e., invisible, to the de-
coder;
(3) If the injected error is lazy (i.e., the same error remains for
three or more rounds or cycles of AES), it will be corrected
with a probability of 1.
Based on the properties above, we name the new scheme Conditional
All Error Detecting and All Error Correction (C-AED-AEC). The SCC
diagram is given below.

AES Stage | /1 ﬂ’)
4 .
/O Non-linear ‘)
Decoder fo
- ~ | H(). @)
Non-linear w )
Predictor Error?
g0y

Figure 1: With the non-linear Robust SCC, there is no more H(e) =
0—> Hb®e)=0 Vb.

4.1 The Non-linear Robust Code

Before introducing the non-linear ECC code, we will first discuss
the concept of Kernel of codes. This will help in understanding why
linear ECC protections in AES implementations are vulnerable to
certain injected errors.

Definition 4.1 LetC C GF (2N) be the set of N-bit codewords
and M is an (R X N) matrix. C is defined by C = {c|M - ¢ = 0}. Set
K is called the Kernel of C if:

Ky={ele®ceC, VceC}.

If C is linear, then K; = C, and these errors can mask themselves
in all verification by H(). As discussed at the end of Section 3,
a linear ECC has a large invisible error set K;, namely its legal
codeword set. Therefore, it will be ideal to adopt a non-linear code
[12] whose Kernel is Kz = 0. Thus, there will be no error capable
of masking itself in all states under the check of H(). In this work,
we use the Robust codes for their high error detection capability
[3]. Although, the generalized form of the Robust codes has a very
complicated construction and proof [7], we introduce a simplified
version specially tailored to the four stages of AES.

Construction 4.1 For a vector x that can be equally parti-
tioned into N pieces of b-bit symbols {xo, x1, - ,x;, - ,XN-1},
its corresponding b-bit signature symbol o can be computed as:

@Efo’”/z (%21 ® x2i+1),

w =

N is even,;
)
xg ® [@go_S)/z (x2i+1 ®x2i+2)] , Nisodd.
Note: all computations are carried out over GF (2%) finite field.

cr = (x,w) € Cpg is a Robust codeword of the Robust code Cg,
where x is the information part, and w the redundant part. |
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4.2 Conditional All Error Detection

A Robust code built by Construction 4.1 has K; = 0. There exists
no e which always makes e @ cg a legal Robust codeword Vcg € Cg.
In other words, any error can be detected with some probability by
Robust codes. The lower bound of their error detection probability
can be calculated by the error masking equation (EME).

For an error e = {ex, ey} (that X; = x; @ ey, @ = w D ey,) to
be invisible to a given Robust codeword, it has to satisfy the EME,
which is the equality of [Eq. 7] under (X, @), where X = x ® ex, ® =
@ @ e,,. Denoting the upper bound of the error masking probability
as Py, 45k, then the error detection probability of the Robust codes
iS Pges = 1 — Py 45k for any given e = {ex, e, } (proof in [6]):

1- zlb’ N is even;

®)

Paer 2 1= Ppgsk =

1- 2%, N is odd.
Larger is b, higher error detection probability: P;,.; =~ 1. Further-
more, there are no errors completely invisible to the decoder.

4.3 Conditional All Error Correction

In the proposed approach, we also correct lazy inject errors. A lazy
error will remain in place for several cycles or rounds. Here, we
introduce two specific algorithms for lazy error correction for the
Robust code tailored to the AES stages.

4.3.1 Lazy Error Correction when N = 1. Among the four stages
of AES, the AddRoundKey and SubBytes operate over single bytes
of the state. Therefore, for a Robust code predictor using [Eq. 7],
we have the case of N = 1, which is an odd number. At this special
case there is only one cubic term and [Eq. 7] becomes:

w=x 9)
A legal Robust codeword is ¢ = (x, x3).

If we assume to have a lazy error e = (ex,e,,) that lasts for
at least three different messages (xp, @), (X1, @1), (X2, &32), then by
substituting these terms in [Eq. 9], we can solve:
ity g “31] [Ges (o
X0 @ x2 X0 @ x1
In a similar way, we can solve x; and x.

x0 = |12 @ %) @

4.3.2  Lazy Error Correction when N = 2. Among the four stages
of AES, the MixColumns and ShiftRows both operate over 4 bytes (a
row or a column) of the state, which can be encoded as two Robust
codewords with 2 bytes each. [Eq. 7] becomes:
W = X0 ® X1
and a legal Robust codeword is ¢ = (xo, x1, xp ® x1).
If we assume a lazy error e = (ex,, ex, , €, ) Which lasts for at least
three different messages (xoo0, X01, ¥0), (X170, X11, @1), (%20, X21, 32),
then by substituting these terms in [Eq. 11], we can calculate each
X, e.g.
X00 =

(11)

(@0 © @ SX B0, BX1o ®X11) ®(X0 DX10)
X00 ®X10

x00 D [67)1 @ Dy D x20 @ X21 B X10 @ X11 D

(xo1 999('1_1)@({20@35117)
X00 DX10

/[Xil ©x21 @
(12)
Since all errors lasting for a few cycles can be corrected by the for-

mulated SCC, we call this property Conditional All-Error-Correction
(C-AEC).
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4.4 The SCCs Functions for the Four Stages
By [Eq. 9, 11] and the four AES stages’ functions [Eq. 1, 2, 3, 4], we
have the SCC predictor functions as:

e AddRoundKey (Pg,; > 1— 22—8 =99.2%):

3
WAddRoundKey = (ai,j ® ki,j)”. (13)

e SubBytes (Pgey =1 — 2% =99.2%):
osubByte = Mino ® i j ® Mypp)*. (14)
with Pge; 21— % = 99.2%.

o ShiftRows (Py,; > 1— zis = 99.6%), each row with two SCCs
denoted by «, f:

WshiftRows0-a = (0,0 ® 40,1); WshiftRowso-g = (40,2 ® a0,3);

WShiftRows1-a = (31,1 ® A1,2), WshiftRows1-g = (41,3 ® a1,0); 1s)

WshiftRows2-a = (42,2 ® 2,3), OshifiRowsz-g = (a2,0 ® az,1);
WshiftRows3-o = (3,3 ® 43,0), WshiftRows3-g = (43,1 ® a3,2).

e MixColumns (Pge; > 1 — 2% = 99.6%), each column with
two SCCs denoted by a, f:

OMixColumns-a =(2a0,j ®3ay,j Daz;j® a3,j)
®(a0,j [$] 2a1’j @ 3a2,j @ ag,j);

(16)

wMixCqumns—ﬂ :(a(),j @ ai,j ® 2a2,j @ 3a3,j)
®(3a0,j Day,jDaz;® 2a3,j).

The decoders are to verify [Eq. 13, 14, 15, 16] under the existence
of errors. The error correction probability for lazy errors (lasts for
at least 3 rounds) is 100%.

5 EVALUATION

We expanded and optimized the four predictor functions [Eq. 13,
14, 15, 16] over finite field GF(2%), as well as the decoder functions.
Thus the overlay of g(f()) functions in the Robust predictors can
be precomputed into a simpler function instead of applying f() and
g() successively and separately. In our experimentation, we injected
4,019,798 errors of various complexities in the computation stages
and measure the error detection rates. To test the lazy error correc-
tion capability, the errors are made to last for at least 3 rounds in a
given stage, such that [Eq. 10 & 12] can be computed. We used the
Xilinx Vertex 7 XC7VX330T FPGA board for our implementations
and testing.

Table 1: Hardware and Timing Overhead

Stages Pyes Overhead Overhead
(C-AED) | (C-AED-AEC)
AddRoundKey 99.4% 56.3% 92.7%
SubBytes 99.3% 63.7% 101.3%
ShiftRows 99.6% 80.3% 144.0%
MixColumns 99.6% 77.9% 132.9%

Stage + Predictor + Decoder _

I Hardware Overhead = Stage
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The Pg,; for the AddRoundKey and SubBytes stages is below

(1 = Ppask = 99.6%), because there exists no error satisfying their
EMEs in cubic forms. In contrast, there is always a solution satisfy-
ing the EMEs equations for the ShiftRows and MixColumns stages.
The implementation overhead associated with the error detection
plus the error correction (C-AED-AEC) is larger than that of the
error detection alone (C-AED). This increase is due to the fact that
questions [Eq. 10 & 12] are more complex when compared to the
error detection decoders. Altogether, the additional cost is justi-
fied since the implementation supports a stronger error tolerance
capability.

6 CONCLUSION

In this paper, we have proposed a new technique to harden the
reliability and security of AES hardware implementations using
a non-linear code self-checking checkers. The proposed method
shows key advantages over conventional linear approaches. Unlike
the linear ECC approaches, the non-linear technique can (a) detect
any injected error with a high probability and (b) guarantee the
correction of all lazy errors, which commonly appear in high speed
AES hardware implementations. In addition, since the new scheme
is built upon error control codes, its performance and capability can
be analyzed and estimated using mathematical models. The strong
theoretical modeling foundation makes it possible for designers to
evaluate and determine the cost/performance trade-off with high
accuracy.
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