
Hardening AES Hardware Implementations
Against Fault and Error Inject Attacks

Lake Bu and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering
Boston University

{bulake, mkinsy}@bu.edu

ABSTRACT

The Advanced Encryption Standard (AES) enables secure transmis-

sion of confidential messages. Since its invention, there have been

many proposed attacks against the scheme. For example, one can

inject errors or faults to acquire the encryption keys. It has been

shown that the AES algorithm itself does not provide a protection

against these types of attacks. Therefore, additional techniques like

error control codes (ECCs) have been proposed to detect active

attacks. However, not all the proposed solutions show the adequate

efficacy. For instance, linear ECCs have some critical limitations,

especially when the injected errors are beyond their fault detection

or tolerance capabilities. In this paper, we propose a new method

based on a non-linear code to protect all four internal stages of the

AES hardware implementation. With this method, the protected

AES system is able to (a) detect all multiplicity of errors with a

high probability and (b) correct them if the errors follow certain

patterns or frequencies. Results shows that the proposed method

provides much higher security and reliability to the AES hardware

implementation with minimal overhead.

KEYWORDS

AES, Error detection, Error correction, Robust codes, Non-linearity.

ACM Reference Format:

Lake Bu and Michel A. Kinsy. 2018. Hardening AES Hardware Implementa-

tions Against Fault and Error Inject Attacks. In Proceedings of Great Lakes

Symposium on VLSI 2018 (GLSVLSI’18). ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3194554.3194649

1 INTRODUCTION

In cryptography, the Advanced Encryption Standard (AES) [2] is

widely used as a block cipher algorithm. It ensures the confidential-

ity of a plaintext message through encryption. The computational

complexity of the AES algorithm makes it intractable to recover

the plaintext message without the appropriate secret key. Since its

introduction, there have been numerous proposed attacks against

the AES algorithm, especially attacks exploiting potential hardware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

GLSVLSI’18, May 23–25, 2018, Chicago, IL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5724-1/18/05. . . $15.00
https://doi.org/10.1145/3194554.3194649

implementation vulnerabilities. Passive attacks, such as the Differ-

ential Power Analysis (DPA) [9], aim to steal the algorithm secret

keys by analyzing the AES system runtime power behaviors.

For active attacks, a fault or an error is injected [10] during one

or more stages of AES algorithm execution. These attacks infer

important information (e.g., key length) about the AES system by

observing and analyzing the erroneous output ciphers caused by

the injected errors. Our work in this paper focuses on this class of

attacks. Beyond attacks, an AES system is also vulnerable to random

errors caused by the instability or aging of the cryptographic circuit.

This can lead to errors propagating to the outputs of the AES system

or its internal stages. Therefore, error detection and error tolerance

capabilities are a critical design consideration in these systems.

Hardware defense techniques have been explored for both injected

and random errors [5]. Another approach is to use error control

codes (ECCs) as a built-in self test (BIST) mechanism. ECC-based

approaches tend to be more attractive because they (a) can be

analyzed using precise mathematical models and (b) offer more cost

efficient solutions [8].

Although these approaches have provided a certain level of re-

liability and security to AES systems, they are often limited in

their error detection capabilities. If injected faults are beyond their

detection or correction capability, then those errors could be (i)

invisible to the detector and (ii) exploited by attackers. Therefore,

in this paper, we propose a new method that protects each stage

of the AES system with a non-linear code. The proposed approach

(a) overcomes the weaknesses seen in linear error detection codes

and (b) extends beyond the error correction capability range of

previously established non-linear techniques. The key capabilities

of the proposed method are:

(1) Conditional All Error Detection: all errors will be detected

with a high probability in a multiplicity of settings;

(2) Conditional All Error Correction: the method is able to correct

all errors under a variety of scenarios with a probability of

1 if the injected error is łlazy", i.e., an error that repeatedly

appears in 3 or more cycles or rounds;

(3) Customized Functionality: the method can be efficiently cus-

tomized for the four different stages of theAES algorithm/system.

Thus, we characterize the proposed method as łconditional all error

detecting and all error correcting" (C-AED-AEC). The rest of the

paper is organized as follows. Section 2 has a brief introduction of

the four stages of the AES system. In Section 3, we present a widely

used error control coding approach for AES systems and highlight

some of its vulnerabilities. Section 4 contains the proposed method

(C-AED-AEC). Section 5 has the hardware cost and performance

results. Section 6 concludes the paper.

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

499

2 THE FOUR STAGES OF AES

In this section we briefly describe the four stages of the Advanced

Encryption Standard (AES) algorithm. In each round of the ten or

more rounds of the algorithm, the four stages or part of them will

operate on a 4×4 matrix of data called the state. In order to facilitate

the mathematical discussion in the following sections, we introduce

the functions of the stages in the matrix form. For convenience

some terms are defined as follows:

• v : the 4 × 4 state which serves as the input to each stage;

• ai, j : the element located at the ith row and jth column of v ;

• u: the 4 × 4 transformed state, which is the output of each

stage;

• bi, j : the element located at the ith row and jth column of u;

• b: the number of bits in a byte;

• GF (): the Galois finite field;

• ⊗: the finite field multiplication;

• ⊕: the finite field addition;

• fAddRoundKey: the AddRoundKey function;

• fSubBytes: the SubBytes function;

• fShiftRows: the ShiftRows function;

• fMixColumns: the MixColumns function;

• e: the additive error injected by attackers;

• ∼: the distortion symbol, e.g., b̃i, j = bi, j ⊕ ebi, j .

The mathematical representation of the four stages is as follows:

I. AddRoundKey:

bi, j = fAddRoundKey(ai, j) = ai, j ⊕ ki, j , (1)

where ki, j is the key byte at the ith row and jth column of

the key matrix.

II. SubBytes:

bi j = fSubBytes(ai, j) = Minv ⊗ ai, j ⊕ Maf f , (2)

whereMinv is the binary inversion matrix in GF (28). With

the binary vectorMaf f it provides an affine function.

III. ShiftRows:

b0,∗ = fShiftRows0(a0,∗) = a0,∗ ⊗ MSR0;

b1,∗ = fShiftRows1(a1,∗) = a1,∗ ⊗ MSR1;

b2,∗ = fShiftRows2(a2,∗) = a2,∗ ⊗ MSR2;

b3,∗ = fShiftRows3(a3,∗) = a3,∗ ⊗ MSR3;

(3)

whereMSR0,MSR1,MSR2,MSR3 are binary matrices which

shift the input by 0, 1, 2, 3 digits respectively.

IV. MixColumns:

b∗, j = fMixColumns(a∗, j) = MMC ⊗ a∗, j , (4)

whereMMC is a 4 × 4 Maximum Distance Separable (MDS)

matrix.

Although there are manyways to describe the operations of the AES

stages, the matrix form lends itself well to our BIST formulations

and associated attacks in a clearer mathematical way.

3 RELATEDWORKS ON THE ECC

PROTECTED STAGES OF AES AND THEIR

VULNERABILITIES

As previously mentioned, since the error injection attacks are often

able to distort the AES internal stages and lead to the leakage of

critical information of the secret keys, there is a strong demand of

error detection, or even error correction, for the AES implementa-

tions. A popular and efficient approach is to use the error control

codes (ECCs) to form a built-in self test (BIST) mechanism, which is

often referred to as the self-checking checkers (SCC). Various codes

including parity codes, cyclic codes, Hamming codes, and Reed-

Solomon (RS) codes [1, 11] are adopted to detect different number

of errors or correct some of them by SCC. In addition, codes are

also used to protect the AES against non-invasive attacks such as

differential power analysis (DPA) [4, 9].

3.1 Linear SCC Protected AES Stages

In a SCC, the input (state) of a stage goes through two functional

modules:

• The specific AES stage:

bi, j = f (ai, j)

• The corresponding redundancy generator (predictor):

Rbi, j = д(f (ai, j))

The outputs from the two modules are verified by the SCC’s

decoder for error detection:

H (bi, j ,Rbi, j)
?
= 0. (5)

With those ECC codes, the SCC can achieve a limited error

detection capability.

3.2 Vulnerabilities of the Linear SCC

Because of the linearity of the SCC induced by a linear ECC, there

can be a large number of injected errors non-detectable, i.e., ‘invis-

ible" to the decoder. This attack scenario is illustrated below. For

two arbitrary state elements ai, j and ak,l , it is easy to see that [Eq.

5] satisfies the following if there is no error:

ai, j → H ((bi, j ,Rbi, j)) = 0; ah,l → H ((bh,l ,Rbh,l)) = 0.

Since most of the ECC is linear and д() and H () are linear functions,

we have the following relationship:

H ((bi, j ,Rbi, j) ⊕ (bh,l ,Rbh,l))

=H (bi, j ,Rbi, j) ⊕ H (bh,l ,Rbh,l) = 0 + 0 = 0.

Thismeans that the linear combination of two (ormore) legal entries

is still a legal entry to H (). In another word, if an injected error e

satisfies H (e) = 0, then when it is applied to this ECC protected

AES stage, it will never be detected because

H ((bi, j ,Rbi, j) ⊕ e) = H (bi, j ,Rbi, j) ⊕ H (e) = 0. (6)

We call these invisible errors. In this situation, bi, j has been dis-

torted by the injected error e , but it will never be detected by H ().

For any given AES stage’s output bi, j , there exist 2
8 such invisible

errors. Moreover, this fatal attack applies to all the AES implemen-

tations with linear ECCs, such as the ones mentioned earlier in this

section.

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

500

4.4 The SCCs Functions for the Four Stages

By [Eq. 9, 11] and the four AES stages’ functions [Eq. 1, 2, 3, 4], we

have the SCC predictor functions as:

• AddRoundKey (Pdet ≥ 1 − 2
28
= 99.2%):

ωAddRoundKey = (ai, j ⊕ ki, j)
3
. (13)

• SubBytes (Pdet ≥ 1 − 2
28
= 99.2%):

ωSubByte = (Minv ⊗ ai, j ⊕ Maf f)
3
. (14)

with Pdet ≥ 1 − 2
28
= 99.2%.

• ShiftRows (Pdet ≥ 1− 1
28
= 99.6%), each row with two SCCs

denoted by α , β :

ωShiftRows0-α = (a0,0 ⊗ a0,1), ωShiftRows0-β = (a0,2 ⊗ a0,3);

ωShiftRows1-α = (a1,1 ⊗ a1,2), ωShiftRows1-β = (a1,3 ⊗ a1,0);

ωShiftRows2-α = (a2,2 ⊗ a2,3), ωShiftRows2-β = (a2,0 ⊗ a2,1);

ωShiftRows3-α = (a3,3 ⊗ a3,0), ωShiftRows3-β = (a3,1 ⊗ a3,2).

(15)

• MixColumns (Pdet ≥ 1 − 1
28
= 99.6%), each column with

two SCCs denoted by α , β :

ωMixColumns-α =(2a0, j ⊕ 3a1, j ⊕ a2, j ⊕ a3, j)

⊗(a0, j ⊕ 2a1, j ⊕ 3a2, j ⊕ a3, j);

ωMixColumns-β =(a0, j ⊕ a1, j ⊕ 2a2, j ⊕ 3a3, j)

⊗(3a0, j ⊕ a1, j ⊕ a2, j ⊕ 2a3, j).

(16)

The decoders are to verify [Eq. 13, 14, 15, 16] under the existence

of errors. The error correction probability for lazy errors (lasts for

at least 3 rounds) is 100%.

5 EVALUATION

We expanded and optimized the four predictor functions [Eq. 13,

14, 15, 16] over finite field GF (28), as well as the decoder functions.

Thus the overlay of д(f ()) functions in the Robust predictors can

be precomputed into a simpler function instead of applying f () and

д() successively and separately. In our experimentation, we injected

4,019,798 errors of various complexities in the computation stages

and measure the error detection rates. To test the lazy error correc-

tion capability, the errors are made to last for at least 3 rounds in a

given stage, such that [Eq. 10 & 12] can be computed. We used the

Xilinx Vertex 7 XC7VX330T FPGA board for our implementations

and testing.

Table 1: Hardware and Timing Overhead

Stages Pdet Overhead

(C-AED)

Overhead

(C-AED-AEC)

AddRoundKey 99.4% 56.3% 92.7%

SubBytes 99.3% 63.7% 101.3%

ShiftRows 99.6% 80.3% 144.0%

MixColumns 99.6% 77.9% 132.9%

I Hardware Overhead =
Stage + Predictor + Decoder

Stage − 1.

The Pdet for the AddRoundKey and SubBytes stages is below

(1 − Pmask = 99.6%), because there exists no error satisfying their

EMEs in cubic forms. In contrast, there is always a solution satisfy-

ing the EMEs equations for the ShiftRows and MixColumns stages.

The implementation overhead associated with the error detection

plus the error correction (C-AED-AEC) is larger than that of the

error detection alone (C-AED). This increase is due to the fact that

questions [Eq. 10 & 12] are more complex when compared to the

error detection decoders. Altogether, the additional cost is justi-

fied since the implementation supports a stronger error tolerance

capability.

6 CONCLUSION

In this paper, we have proposed a new technique to harden the

reliability and security of AES hardware implementations using

a non-linear code self-checking checkers. The proposed method

shows key advantages over conventional linear approaches. Unlike

the linear ECC approaches, the non-linear technique can (a) detect

any injected error with a high probability and (b) guarantee the

correction of all lazy errors, which commonly appear in high speed

AES hardware implementations. In addition, since the new scheme

is built upon error control codes, its performance and capability can

be analyzed and estimated using mathematical models. The strong

theoretical modeling foundation makes it possible for designers to

evaluate and determine the cost/performance trade-off with high

accuracy.

7 ACKNOWLEDGMENTS

This research is partially supported by the NSF grant (No. CNS-

1745808).

REFERENCES
[1] Luca Breveglieri, Israel Koren, and Paolo Maistri. 2005. Incorporating error

detection and online reconfiguration into a regular architecture for the advanced
encryption standard. Defect and Fault Tolerance in VLSI Systems, 2005. DFT 2005.
20th IEEE International Symposium on. IEEE (2005).

[2] JoanDaemen andVincent Rijmen. 2013. The design of Rijndael: AES-the advanced
encryption standard. Springer Science and Business Media (2013).

[3] G. Gaubatz, B. Sunar, and M. G. Karpovsky. 2006. Non-linear residue codes for
robust public-key arithme. Fault Diagnosis and Tolerance in Cryptography (2006).

[4] Marc Joye and Amir Moradi. 2015. Smart Card Research and Advanced Applica-
tions. Springer International Publishing (2015).

[5] Ramesh Karri, Kaijie Wu, Piyush Mishra, and Yongkook Kim. 2001. Fault-Based
Side-Channel Cryptanalysis Tolerant Rijndael Symmetric Block Cipher Archi-
tecture. Defect and Fault Tolerance in VLSI Systems, 2001. Proceedings. 2001 IEEE
International Symposium on. IEEE (2001).

[6] Konrad Kulikowski, Mark Karpovsky, and Alexander Taubin. 2005. Robust codes
for fault attack resistant cryptographic hardware. Fault Diagnosis and Tolerance
in Cryptography, 2nd International Workshop (2005).

[7] K. Kulikowski, Z. Wang, and M. G. Karpovsky. 2008. Comparative analysis of
robust fault attack resistant architectures for public and private cryptosystems.
IEEE 5th Workshop on Fault Diagnosis and Tolerance in Cryptography (2008).

[8] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha.
2003. Analyzing the energy consumption of security protocols. Proceedings of the
2003 international symposium on Low power electronics and design. ACM (2003).

[9] Emmanuel Prouff. 2005. DPA attacks and S-boxes. nternational Workshop on Fast
Software Encryption (2005).

[10] Cyril Roscian, Jean-Max Dutertre, and Assia Tria. 2013. Frontside laser fault
injection on cryptosystems-Application to the AES last round. Hardware-Oriented
Security and Trust (HOST), 2013 IEEE International Symposium on. IEEE (2013).

[11] Chih-Hsu Yen and Bing-Fei Wu. 2006. Simple error detection methods for hard-
ware implementation of advanced encryption standard. IEEE transactions on
computers (2006).

[12] W. Zhen, M. Karpovsky, and K. J. Kulikowski. 2009. Replacing linear hamming
codes by robust nonlinear codes results in a reliability improvement of memories.
IEEE/IFIP International Conference on Dependable Systems and Networks (2009).

Poster Session 2 GLSVLSI’18, May 23-25, 2018, Chicago, IL, USA

502

	Abstract
	1 Introduction
	2 The Four Stages of AES
	3 Related Works on the ECC protected Stages of AES and Their Vulnerabilities
	3.1 Linear SCC Protected AES Stages
	3.2 Vulnerabilities of the Linear SCC

	4 The Conditional All Error Detecting and All Error Correction (C-AED-AEC) Scheme
	4.1 The Non-linear Robust Code
	4.2 Conditional All Error Detection
	4.3 Conditional All Error Correction
	4.4 The SCCs Functions for the Four Stages

	5 Evaluation
	6 Conclusion
	7 Acknowledgments
	References

