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Abstract: In current systems-on-chip (SoCs) designs, processing elements, i.e., intellectual property

(IP) cores, may come from different providers, and executable code may have varying levels of

trust, all executing on the same compute platform and sharing resources. This creates a very fertile

attack ground and represents the Achilles’ heel of heterogeneous SoC architectures and distributed

connected devices. The general consensus today is that conventional approaches and software-only

add-on schemes fail to provide sufficient security protections and trustworthiness. In this paper,

we develop a secure heterogeneous SoC architecture named Hermes. It represents a new architectural

model that integrates multiple processing elements (called tenants) of secure and non-secure cores into

the same chip design while: (a) maintaining individual tenant security; (b) preventing data leakage

and corruption; (c) promoting collaboration among the tenants; and (d) tolerating untrusted tenants

with potentially malicious purposes. The Hermes architecture is based on a programmable secure

router interface and a trust-aware routing algorithm. Depending on the trust levels of computing

nodes, it is able to virtually isolate them in different access modes to the memory blocks. With secure

key management and join protocols, Hermes is also able to function properly when nodes request

for, or allow, memory access in a dishonest manner. With 17% hardware overhead, it enables the

implementation of processing-element-oblivious secure multicore systems with a programmable

distributed group key management scheme. The Hermes architecture is meant to emblematize

the design of secure heterogeneous multicore computing systems out of unsecured or untrusted

components using user-defined security policies to create at the hardware-level virtual zones to

enforce these security and trust policies.

Keywords: heterogeneous; multicore; encryption; key management

1. Introduction

Cyber security is now a critical concern in a wide range of embedded computing modules,

communications systems, and connected devices used in medical electronics, automotive systems,

power grid systems, military equipment, robotics and public safety, and avionics. The current trend in

these systems-on-chip (SoCs) designs is system-level integration of heterogeneous technologies onto

the same chip. The design of these systems and the development of associated kernels and applications

are increasingly global [1]; system designers and users of integrated circuits (ICs), intellectual property

(IP), and SoC systems are increasingly facing trust issues. In these designs, the processing elements may

come from different providers, and application executable code may have varying levels of security

and trust, all executing on the same compute platform and sharing resources. This creates a very fertile

attack ground and represents the Achilles’ heel of heterogeneous SoC architectures and distributed
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connected devices. The general consensus today is that conventional approaches and software-only

add-on schemes have failed to provide sufficient security protections and trustworthiness.

1.1. Security Problem

Heterogeneous systems-on-chip are vulnerable to a variety of software-centric and

hardware-centric attacks, such as spyware, Trojans or viruses at the software level and side channel

analysis or trojans at the hardware level [2]. On SoC architectures consisting of multiple or a

multitude of cores, the runtime interactions between processing elements can be very complex and

difficult to fully analyze at design time. As a result, processors running untrusted applications can

sometimes circumvent the built-in security guards and access memory blocks in encrypted sections of

the system [3].

These SoC architectures generally have: (a) a set of heterogeneous processing elements; (b) a

memory subsystem; and (c) an interconnect network. For scalability reasons, network-on-chip (NoC) is

broadly used as the communication fabric in these systems [4]. Unfortunately, the NoC is not immune

to attacks. In fact, it is one of most targeted parts of the architecture, because it serves as the gateway

to the other modules in systems (i.e., processing elements and memory units).

An adequate solution needs to provide: (i) a provable mechanism for robust isolation of hardware

subsystems (e.g., trusted vs. untrusted) and program code; (ii) efficient and fast access control to system

resources (e.g., physical memory and routing paths); and (iii) support for user-defined security policies.

1.2. Threat Models

Network-on-Chip based heterogeneous multicore systems can be vulnerable to several attacks [5],

including invasive attacks against hardware modules (using micro probing or other similar techniques),

non-invasive attacks such as side channel attacks, Trojans and malware. In this work, we focus on the

following attack scenarios:

(a) On-Chip Denial of Service (OC-DoS) attacks: System performance is degraded by injecting a

deluge of useless packets into the network.

(b) Virtual Channel (VC) attacks: Shared VCs can be plowed, allowing malicious flows to build their

packet contents out of other flows’ residual data.

(c) Physical Memory attacks: Traditional security features built in the Memory Management

Unit (MMU) or the Direct Memory Access (DMA) are bypassed or the address space layout

randomization (ASLR) protection is circumvented.

The design methodology behind the Hermes architecture is to provide hardware-supported

mechanisms for user-defined or software-defined security rules and their enforcement in heterogeneous

many-core systems-on-chip. It effectively decouples the security or trust levels management of

processing cores from the integrated SoC. The architecture has a predesigned, security and trust aware

hardware template where existing or third party processing cores and routers can be placed.

The key contributions of this work are:

(1) a processing-element-oblivious secure network interface architecture;

(2) a programmable, efficient and distributed group key management algorithm;

(3) a set of security-enhancing schemes to detect and tolerate dishonest processing elements (PEs)

attempting illegal memory accesses, while preserving the privacy of trusted PEs; and

(4) a hardware-supported security-aware on-chip routing.

The rest of the paper is organized as follows: Section 2 briefly lists the related work; Section 3

gives an overview of the security policy of the proposed design; Section 4 introduces the distributed

key management of Hermes, which is the core mechanism of the proposed system; Section 5 proposes

three schemes to enhance the security of Hermes on dishonest PE tolerance and PE privacy preserving;
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Section 6 explains the architecture supporting the Hermes system; Section 7 evaluates Hermes in

various aspects; and finally Section 8 concludes the paper.

2. Related Work

Many hardware-based security techniques have been proposed in recent years [6]. For most

multicore systems-on-chip, a secure core at each node is unnecessary. In these systems, mixed criticality

or multi-tenant/multi-trust computation is often the design choice [1]. Different solutions have

been proposed at different design abstraction levels, from gate-level description [7] to system

virtualization [8]. Wassel et al. implemented a non-interfering scheme for secure NoC in SurfNoC [9].

Sajeesh and Kapoor [10] highlighted some of the advantages of implementing security policies at

the network interface level in NoC based systems for secure communication among such IP cores.

Porquet et al. [11] introduced a solution for co-hosting different protection domains or compartments

on the same shared memory multiprocessor SoC using a NoC architecture. Our proposed design

model addresses both the hardware and software components of multi-tenant execution. It allows

system designers to define and enforce execution communication rules for both secure and non-secure

cores or software at the on-chip communication layer. Previously proposed secure processors [12] are

still supported in our architecture model since the security protocols are not bound by the processor

core type. The design of our group key management scheme is informed by the model of attacks

highlighted in [13]. In this model, if a secure processor core is used at a processing site, the system

designer can bypass the network interface security module. In such cases, the traffic coming from

the processor is treated as non-secure communication from the point of view of the on-chip network

security protocol. In [13], an Authenticated Key Exchange amongst a group is explored. Using group

keys allows a message to be sent to multiple recipients without having to pay the cost of encrypting

the data multiple times.

3. Security Policy

Hermes is a secure multicore computing architecture model. It reduces the system attack surface

by creating a virtualization layer that isolates compute threads based on system and user defined trust

levels and security policies.

3.1. Process Isolation via Hardware Virtualization

In current SoCs, the way to schedule tasks to processing nodes generally makes it difficult to

reason about the runtime interactions between functions of different trust levels, especially in the

absence of hardware-level support. This procedure often leads to ad-hoc execution modes where

trusted or untrusted software could be running on both trusted or untrusted hardware. Figure 1 shows

a set of applications with mixed security mapped onto mixed security hardware. Hermes achieves

both hardware and software views of secure processing by grouping processors into physical zones

called wards and virtual logical zones called islands.

First, the on-chip processing elements are divided into wards that are identified and formed at

system integration time, based on IP or processing element provenance. Wards are created to help

negotiate the security keys used to create the islands in a trusted manner. Because the security level

is inherent to the IP origin, the wards remain constant throughout the chip’s lifetime. The chip is

divided into physical quadrants, and, within each quadrant, nodes of the same security level make

up one ward. Hardware security is divided into highly trusted, trusted, untrusted, and unknown

levels. Each ward has a representative node/module, called the anchor node, specified and selected

during system integration stage. The anchor node has a table containing the reachability and security

information of the other anchor nodes and nodes in the same ward. Figure 2 shows the ward grouping

of the illustrative mixed security heterogeneous architecture presented in Figure 1. The anchoring of

wards provides a simple method of node discovery and key distribution without requiring a full list of

node keys at each node.
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Figure 3. Hardware virtualization through trusted, untrusted and unknown island partitioning.

3.2. Enhanced Programmable Memory Access Management

In multicore systems, the implementation of on-chip security policies is typically handled by the

memory management unit (MMU) through: (1) application memory management; (2) operating

system memory management; and (3) hardware memory management. The MMU is placed

between the processing element and the memory subsystem where it translates virtual addresses

into physical addresses and performs access right validations. All of the memory management

safeguards, however, stop at the processing node boundary. Figure 4 shows the typical hardware

memory arrangement.

Cache
Main

Memory
Processing	

Element

Access	Type

Privilege

Virtual	Address

Data
MMU

Physical	Address

Data

Physical	Address

Data

Figure 4. Typical memory management unit (MMU) based memory subsystem organization.

The Hermes design extends the MMU protections and security policies beyond the node boundary

into the NoC layer while still applying conventional system memory management techniques at the

node-level. The Hermes architecture is an interconnected network of nodes where the physical

memory is distributed. A portion of the total on-chip memory is allocated to each processor node

in a Non-uniform Memory Access (NUMA) style. Figure 5 shows the new enhanced system node

organization. The MMU not only provides local memory protection guarantees for processing requests

serviced at the node-level but also guarantees their secure routing when requests need to traverse the

on-chip network by sending processor id and access code ac along with the messages.

On a load or store miss at the processing element, the higher order bits in the address are used to

locate the physical location of the memory block being addressed. During packetization at the source,

the processing element id is added to the address and/or data with an access code (shorter version of

island key). The packet is then encrypted using the island key or the destination master key. At the

remote node, the security layer checks that the process or processor making the request belongs to

the appropriate island. After depacketization, the local router sends the source PE id, the address,

the access code (AC), and the data if it is a write operation, to the memory module. The lower bits of the

address are used to index into the Access Code Table (ACT) to check that the PE is part of the island
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KSi
, and an island v’s key is represented as KGv

. Public requests and responses are denoted rqKPi
and

rpKPi
, respectively. The process of dynamically creating, expanding and contracting islands happens

through the join and leave operations.

The join operation protocol is used to add a node to an island or to create an island. An island is

a set of nodes with access to a particular data block. When a new node needs access to a data block,

it first must obtain the public key of an island member (referred to as its sponsor) and join the island

before requesting access. The sponsoring node will verify the security level of the requesting node

and, if the security is sufficient, will initiate the key update process and provide the new node with

the island key. The full protocol is described below, assuming requesting node i is in anchor node x’s

ward and the sponsor node j is in anchor node y’s ward.

Protocol 1. The protocol of a new node conducting the join operation is as follows:

1. Node i sends an encrypted message to anchor node x requesting node j’s public key:

EKPx
(EKSi

(Mix(rqKPj
))). E and M denote the encryption operation and message, respectively.

2. Anchor node x sends an encrypted message to anchor node y requesting node j’s public key for node i

(denoted ni) including i’s public key: EKPy
(EKSx

(Mxy(rqKPj
, ni, KPi

))).

3. Anchor node y sends an encrypted message to node i using i’s public key containing node j’s public key for

node i: EKPi
(EKSy

(Myi(rpKPj
))).

4. Node i then sends an encrypted message to node j using j’s public key requesting to join the island assigned

to the memory block at j: EKPj
(EKSi

(Mij(rqKGv
))).

5. Node j verifies node i’s access code embedded in the key request message to determine i’s trust level. If there

is no island, node j creates a symmetric key and sends it to i, EKPi
(EKSj

(Mji(rpKGv
))). If there is an

existing island, node j creates a new island key using a one-way function f such that KG′
v
= f (KGv

).

Node j sends the new island key KG′
v

to both i and j sponsors for the island to enable the propagation of

updates. Node j also marks its island table to reflect i as a dependent node. When sponsor key update reply

comes back, then j sends i the new key.

6. When node i receives the message, it updates its island table to make j its sponsor for the particular island.

Figure 7 shows an illustration of the join operation. To cut down the number of messages for

establishing or joining a new island, we add the message relay capability, where if two anchor nodes

are at the same trust level, then the second anchor can directly send the island key request to the node

in its ward, as shown Figure 7b.

(a)	Public	key	relay	 (b)	Message	relay	

Figure 7. The two forms of the join operation protocol.
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Protocol 2. The leave operation protocol is as follows:

1. Node i sends to node j, its sponsor for an island, a leave request. j sends the new island key KG′
v

to its node

sponsor of the island for propagated updates. When the sponsor’s reply arrives, node j removes i from its

island table and sends a reply to i.

2. When node i receives the message, it updates its island table for the particular island.

Islands dynamically change when certain execution events occur. For example, when a cache-miss

involves a remote access and the processing node making the cache request is not part of the island

holding access key to the memory block of interest. This event will lead to an island join operation.

Dynamic task and thread scheduling, re-scheduling and load re-balancing may also activate idle nodes

and create join operations. When tasks or threads finish or exit the system, these events may trigger

leave operations.

Both join and leave operations may lead to a new island topology. In such cases, the routing

connectivity graph of the island needs to be rebuilt and associated routing tables will need to be

updated. During the re-keying process, network virtual channels are also reset to prevent VC plowing.

5. Untrusted Processing Element Tolerance and Privacy Preservation

Protocols 1 and 2 have provided a convenient and trustworthy approach to allow a node to join

and leave a virtual island though physical wards and anchors. However, in this approach, an assumption

is made that, although nodes have different trust levels, they will remain honest in the entire join and

leave processes. This means that: (1) a node i will only apply for an island using an access code ac

matching its trust level; and (2) a sponsor node j will verify the requesting node i’s trust level honestly

and will not let in any of the disqualified nodes.

With any of the above conditions broken, there will be grave vulnerabilities in the system.

For example, since the access code ac is a static string, any node who has knowledge of this code

(by legal or illegal means) can request for an island key it does not deserve. Another scenario can be

that a sponsor node j, say from an unknown island, treats its sponsorship with misconduct by letting in

a node without a proper ac.

Additionally, there may also be a need that a requesting node wants to join and leave an island

silently without being known by other nodes and even the anchor nodes, except a necessary sponsor.

This applies particularly to the scenario when a highly trusted node has to join a lower trust-level

island and it does not want to be listed as a potential sponsor. This invisible join ensures that its public

key will not be requested by other untrusted nodes who also want to join the island.

In response to these vulnerabilities caused by dishonesty and the one demand in invisible

join, we propose three corresponding solutions that enhance the join and leave protocol, particularly,

Protocol 1. With these solutions:

1. We can apply a dynamic access code ac fetching scheme, so that only the nodes properly being

verified and applying for ac can present to its sponsor node a legal ac, which is also personalized

for the requesting node.

2. We can apply a threshold join authorization scheme, so that it takes more than one sponsor node

to allow a join of a new node. Thus, even if one sponsor node is casual about the join request,

other sponsor(s) can still hold the line.

3. We can apply an invisible island join request scheme, so that a requesting node with a higher trust

level can hide its lower trust-level destination from the anchor or any other nodes. The privacy of

the node is preserved and it will not be listed as a potential sponsor in a lower trust-level island.

In other words, this section provides a strong protection to the key management approach in

Section 4, under the assumption of dishonest entities’ existence. The protection scheme consists of

three protocols to address the problems mentioned above.
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where all the coefficients of a can be arbitrarily chosen.

2. Threshold Voting:

(a) Node i has to contact t prospective sponsors, who will verify its ac (some dishonest sponsors may

not). Only the sponsors who agree to let i join will send their ballots to i. If there are at least t

sponsors supporting the decision, then with the Lagrange interpolation formula:

A =
t−1
⊕

j=0

β j

∏
t−1
j=0,j 6=k (idk ⊕ idj)

, (3)

the authorization token A can be reconstructed by node i. If there are less than t supportive voters,

then A remains unknown to i, meaning the join request is denied;

(b) Node i computes COM(A) and proves to all the sponsors it reaches the qualification threshold.

Then, the island key will be granted by any of the supportive sponsors.

(c) Once i joins the island, it will hold its ballot βi as a potential sponsor too.

Equations (2) and (3) are the share distribution and secret reconstruction equations of the

t-threshold secret sharing (TSS) scheme, which was first introduced by Shamir [19] and later studied

by many researchers. With this technique, the probability of letting in disqualified nodes by dishonest

or unfaithful sponsors is drastically reduced. For example, at an unknown trust level island where

t = 2, a dishonest sponsor decides to casually give its ballot to node i, whose ac is disqualified.

Another sponsor checks the ac faithfully and decides not to support the join of i. Then, without enough

ballots, information of A remains unknown to node i. Thus, i cannot acquire KGv
by showing COM(A).

5.3. Invisible Island Join

In these heterogeneous SoC architectures, the attacker needs to first identify the victim node

before devising an attack scheme. Consequently, any degree of node identity obfuscation will harden

the system’s security posture. Concretely, in cases where a highly trusted node i wishes to join an

untrusted or unknown island, it may be favorable if its privacy can be preserved when communicating

with other lower trust-level nodes and even the anchor nodes who have introduced i to its sponsor j.

In a sense, node i would enter an “incognito” mode.

For security purposes, we only allow trusted and highly trusted nodes to have this invisible island

join feature. This feature allows a node i to hide its destination from the anchor who introduces it to the

sponsor j, while still getting the public key of j from the anchor, so that in the entire network, only j

knows the join of i.

The brief idea is to make the public key request in an oblivious manner. In Protocol 1 Step 1,

instead of putting the rqKPj
in the request message, i uses an obfuscated message which does not reveal

j’s identity. In step 3, anchor y responds also with obfuscated public keys of all the nodes in its ward.

Then, i is only able to retrieve j’s public key but not others.

Figure 10 depicts the invisible join procedure:

Protocol 5. The invisible join protocol is as follows:

1. When node i wants to have j as its sponsor, it firstly notifies anchor y through anchor x that it requests for

one of the public keys anchor y holds;

2. Suppose anchor y has m nodes in its ward. It generates m random vectors {r0, r1, · · · , rl , · · · , rm−1} with

the same length of the public keys;

3. Anchor y has two numbers (e, d) that e · d ≡ 1 mod (N − 1). Again, this pair can be generated by the

Carmichael’s Totient function in the field of N. Anchor y sends e together with the m random numbers to i,

while keeping d to itself privately;
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of the system level fine-grained security management scheme from the processing elements (cores or

tenants) and executing software security level. Any processing unit executing any type of software

can be installed in the processor socket. Similarly, our security and trust models are oblivious to the

on-chip network router microarchitecture.

The hardware modification is constrained to the Network Interface (NI) module. The NI is

responsible for converting data traffic coming from the local processor and cache subsystem into

packets/flits that can be routed inside the network, and for reconstructing packets/flits into data

traffic at the opposite side when exiting the NoC. The new network interface has two datapaths:

one encrypted and one bypass. The encrypted datapath’s functional block description is provided

in Section 6.2. The Bypass path through the NI module enables the disabling or power-gating of the

encryption function at a given core site.

Network 
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Routing 

Module

VC 

Allocator
Switch 

Allocator

...

Crossbar

Switch

Processing Unit

Socket

Router

Front-End 

(Conventional) 

Packetizer

New Back-End 
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Generator

Message

Authentication 

Code

Hash 

Function 
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Encryption

Engine

(AES) 

Key Box

Master Key

Key Chain

Key Manager

Public Key Exchange Path

Bypass Datapath

Figure 11. Hermes Architecture. A new Network Interface is the key component of Hermes. All of the

security features of the system are independent of the processing unit.

6.2. Communication Protocol

Hermes is an encryption-based secure architecture. Its communication protocol is as follows:

1. A local processor unit generates message traffic consisting of memory load and store operations,

cache coherency messages and inter-core communication traffic.

2. The Front-End Packetizer converts the processor produced data traffic into packets that can be

used for communication with the Network Interface (NI).

3. The appropriate communication key is selected by the Key Manager in the NI. All of the keys

are stored in the Key Box, which also contains the Key Manager function block. There is a single

master key per processing site stored in the Key Box. The set of all the other keys is referred to as

the Key Chain.

4. The message authentication code (MAC) is generated by feeding the key and one random number

into the Hash Function Engine. MAC is used as session encryption key, so that even the same

core-pair can have multiple distinctive communication sessions.
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5. The processor generated packets are fed into the Encryption Engine with the MAC to be encrypted.

We implement AES key encryption algorithm for the actual encoding of packets, given its low

hardware logic cost.

6. The Encryption Engine uses the MAC as a key to encrypt the data using the AES algorithm.

7. The encrypted packet and a second random number are re-packetized by the Back-End Packetizer.

8. On the receiving side, packets are first depacketized into encrypted packets and random numbers.

The random number is used with the communication key to generate the MAC used to decrypt

the packet. The blue directional edges in Figure 11 show the return side data-flow.

6.3. Trust-Aware On-Chip Routing Algorithm

The on-chip routing is also aware of the logical security islands and tries to either prohibit

or limit the traversal of zones by non-member generated traffic. Algorithm 1 describes the added

routing function.

Algorithm 1: Trust-aware on-chip routing algorithm.

1 Objective

2 Minimize intersections across all routing path sets among islands;

3 A system with a list of processing elements P = {p1, p2, ..., pn} ;

4 With the following corresponding list of routers R = {r1, r2, ..., rn} ;

5 Find a set of routes S = {S(R1), S(R2), ..., S(Rn)} ;

6 Such that ∀ pi ∈ P, S(Ri) = {ru, ..., rv} with 1 ≤ u < v ≤ n while

minimizing ∀(i, j) S(Ri) ∩ S(Rj). ;

7 The association of a processing element pi to a router rj is denoted pi . rj (a pi runtime trust

classification depends on the IP core trust level and the security of the program running on

the core. ;

8 ∀ pi ∈ P, S(Ri) = φ;

9 for i ∈ [1, n] do

10 for j ∈ [1, n] do

11 if (pi . rj) then

12 S(Ri) = S(Ri) ∪ {rj}

13 end

14 end

15 end

16 while (∀ pi ∈ P, |S(Ri)| > 1 and ∀(i, j) S(Ri) ∩ S(Rj) 6= φ) do

17 if (∃(pi, pj) | S(Ri) ∩ S(Rj) 6= φ) then

18 if ((|S(Ri)| > 1) ∧ (|S(Rj)| > 1)) then

19 S(Ri) =











S(Ri)− {S(Rmin) ∩ S(Ri)} where

S(Ri) ( {S(Rmin) ∩ S(Ri)}

{re} f or any re ∈ S(Ri) otherwise

20 end

21 end

22 end

6.4. Illustrative Example

Figures 12 and 13 show the case where the data placement for an application task and read

and write operations dynamically create a security group. The initial placement is shown in Step 1.

The effect of a read-only request from PE 2 is presented in Step 2. A read/write request from PE 4 causes

the group to expand (Step 3). In Step 4, an attempt to read/write by PE 6 through PE 2 fails (red edge),

since PE 2 cannot be a sponsor. Sponsorship consists of authorizing other threads/tasks/processes to
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read or write a copy of data without informing the initial owner. Consequently, PE 6 had to join the

security group through PE 1 (Step 5). In Step 6, PE 8 is able to join the group through PE 6 and bypass

PE 1’s sponsorship.
ere	
  PE	
  6	
  shares	
  with	
  PE	
  8	
  a	
  data	
  item	
  without	
  going	
  through	
  PE	
  1.	
  	
  

	
  
Figure	
  5:	
  Group-­‐forming	
  example	
  (steps	
  1	
  through	
  4)	
  

{ } {pe2} 

{ } { } { } 

{pe2, pe4} 

{ } { } 

{pe2, pe4} 

{ } 

Figure 12. Group-forming example (Steps 1–4).
	
  

	
  
Figure	
  6:	
  Group-­‐forming	
  example	
  (step	
  5	
  and	
  6)	
  

{ } { } 

{ } 

{ } 

{ } 

{pe2, pe4, pe6} {pe2, pe4, pe6} 

{pe8} 

{ } 

Figure 13. Group-forming example (Step 5–6).

As shown in Figure 14, PE 1 has no record of the sharing between PE 3, 5, 7 and PE 4. This is

done to avoid updating the whole group structure on every entry or exit. Therefore, the control of the

security policies becomes distributed. Changes are more localized and the protocol is more resilient

to notification propagation delay associated with group membership alterations. The evaluations

show that this distributed approach is more scalable than the full broadcast scheme with equal

security guarantees.
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Figure	
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  7)	
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Figure 14. Group-forming example (Step 7).

7. System Performance Evaluation

The effectiveness of the protection provided by the Hermes architecture to the attack models

outlined in Section 1.2 is measured through flows and processes isolation. Strict isolation of flows

and processes based on trust levels effectively creates control access to shared resources: (1) shared

memory regions in the network, i.e., virtual channels at the router; and (2) distributed shared main

memory modules. The degree of process isolation provided by Hermes inversely corresponds to the

computing system attack surface, where higher isolation means smaller attack surface.

For the system performance and evaluation, an 8 × 8 2-D mesh topology design is implemented

on a Xilinx Virtex7-XC7VX690T FPGA device. The board has 433, 200 LUTs and 866, 400 register slices.

The unmodified switch allocation step in the routing process has the critical path due to the arbitration

scheme logic. The operating frequency is 151.5 MHz across all the designs. For the power estimates,

the Xilinx Power Estimator (XPE) in the Vivado Design Suites is used. The power numbers are the

post-routing estimates using a vector based switching activity format (i.e., SAIF). The process feature

was set to maximum, the airflow to 500 LFM and the power supply to default.

The router has four virtual channels and eight slots per virtual channel. The Heracles [22] RTL

simulator is used for all the experiments. Heracles’ injector cores are used to create network and

memory traffic. Table 1 shows the FPGA synthesis results. In the table, BA stands for baseline

architecture—Heracles’ seven-stage in-order RISC processor, AES is the 128-bit version and KS stands

for key storage unit. The hardware overhead to fully implement the security features of Hermes

architecture is only 17%. Table 2 has the power estimates for the different design. These estimates

correlate fairly well to the logic resource utilization.

Since the secure Protocols 1 and 3–5 are all based on cryptographic operations, the number of

exponential operations (exp op) can be used to evaluate the computation complexity and overhead.

Table 3 shows the exp op of the Hermes join Protocol 1, and the overhead needed for the three secure

schemes in Section 5.
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Figures 16 and 17 show throughput and latency results of all the synthetic benchmarks on the

baseline and Hermes architectures. The graphs are color-coded to match the trust-level (e.g., HA BitRev

green means that the Bit reverse traffic is run in the highly secure mode). Overall, the proposed secure

architecture shows no significant performance penalty. In some cases, we actually see a performance

improvement at higher injection rates. This improvement occurs because the Hermes architecture

tries to confine the traffic to their trust classification islands, which decreases path diversity and

throughput for low injection rates but reduces head-of-line-blocking at high injection rates. In other

words, by maximizing within-island routing, as a secondary effect, the algorithm also provides better

traffic distribution and load balancing in the network.
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Figure 16. Throughput per benchmark for the baseline and Hermes architecture.
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8. Conclusions

To solve the problem of mixed security of software and hardware components, we develop:

(1) Hermes, a generalized multi-tenant, multicore computer architecture with virtual logical zones to

enforce trust levels; (2) a dynamic key management protocol that lends itself well to the architecture

for secure efficient heterogeneous computing; and (3) a set of schemes to detect and tolerate dishonest

processing elements (PEs) in the island join procedure, while supporting privacy preservation for the

trusted PEs.

Hermes isolates flows and processes based on their trust levels, effectively creating system-level

control access to shared resources: (a) shared memory regions in the network, i.e., virtual channels at

the router; and (b) distributed shared main memory modules. In the various sub-parts of the system,

the architecture monitors processing traffic to verify their compliance to the trust level security policy

in effect. The Hermes design model is currently limited to offline classification of programs and

processing elements. In addition, the set of rules governing the mapping of programs to cores must

be defined beforehand. The architecture has no runtime learning and classification of threats or trust

level re-assignments.
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