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Abstract—Reliability of modern multicore and many-core chips
is tightly coupled with the reliability of their on-chip networks.
Communication channels in current Network-on-Chips (NoCs)
are extremely susceptible to crosstalk faults. In this work, we
propose a set of rules for generating classes of crosstalk free
coding systems to protect communication channels in NoCs
against crosstalk faults. Codewords generated through these rules
are free of ‘101’ and ‘010’ bit patterns, which are the main
sources of crosstalk faults in NoC communication channels. The
proposed rules determine: (1) the weights of different bit positions
in a coding system to reach crosstalk free codings, and (2) how
the coding might be utilized in an NoC to prevent crosstalk
generating bit patterns in NoC channels. Using the proposed set
of rules, designers can obtain coding systems which are crosstalk
free for any widths of communication channels. Compared to
conventional Forbidden Pattern Free (FPF) systems, the proposed
methodology is able to provide unique representation to any input
values at the lower bound of the codeword lengths. Analyses
show that the proposed rules, along with the proposed encod-
ing/decoding mechanisms, are effective in preventing forbidden
pattern coding systems for network-on-chips of any arbitrary
channel width.

Keywords: Crosstalk Fault; Network on Chips; Fibonacci

Coding; Crosstalk Free Coding; Forbidden Pattern Free.

I. INTRODUCTION

Nowadays, single-chip architectures use on-chip networks

as the communication platform between cores, memory blocks

and input/output modules. Network-on-Chip (NoC), as an

efficient choice for designers and manufacturers, is widely

used in recent multicore and many-core chips [1]. The proper

operation of NoCs can be threatened by several fault sources

[2], therefore, among all NoC issues, reliability is of the

greatest importance [3]. Communication channels in NoCs are

highly susceptible to crosstalk faults along adjacent parallel

wires [4]. Long closely placed parallel wires form unwanted

capacitive coupling and/or inductive coupling. This effect in

turn can cause unpredictable voltage changes on the wires of

channels [5] [6]. These voltage changes on bit wires of the

NoC communication channel cause the data passing through

the channel to be delivered incorrectly, i.e., a crosstalk fault

[7].

In fact, when a crosstalk fault occurs, data bits that are

passing through the channel may become erroneous, and the

transmitted data may be distorted [5]. Previous studies have

shown that the main source of crosstalk faults in NoC channels

are ‘101’ and ‘010’ bit patterns appearing in adjacent bit

wires of NoC channels [3]. If these two patterns appear in

the same bit positions of two consecutive data words, triplet

opposite direction transition patterns of ‘↑↓↑’ or ‘↓↑↓’ will

be seen on the channel. Due to the capacitive and inductive

coupling of neighboring wires, ‘↑↓↑’ and ‘↓↑↓’ can cause data

corruption in the middle wire [8]. Several researchers have

tried to minimize the impact of crosstalk faults happening on

NoC channels [3] [5] [9] [10]. Some of the proposed methods

include crosstalk-aware layout design [11], wire shielding [12],

intentional time skewing [13], use of error control coding [10],

and crosstalk avoidance codings [3] [5] [6]. Methods which

are based on data coding are among the most efficient methods

to tackle crosstalk faults.

Coding based methods can be classified into the two fol-

lowing groups. Group (1) Forbidden Transition Codes (FTC)

which prevent some transition patterns to increase NoCs

reliability as well as the speed of channels. FTC methods suffer

from high complexity of their codec modules when channel

width grows [14]. In order to mitigate the overhead of FTC

methods, the idea of channel partitioning was proposed [6]

[7], which divides each NoC channel into some sub-channels,

and each sub-channel is coded separately. Group (2) Forbidden

Pattern Free (FPF) codes that prevent the appearance of ‘101’

and ‘010’ bit patterns in NoC channels. FPF codec modules

impose lower power and delay overheads, especially in low

width NoC channels [15]. This low overhead makes FPF codec

modules a practical solution to deal with crosstalk in NoCs.

FPF codes are based on a numeral system that defines

weights of different bit positions to eliminate ‘101’ and ‘010’

patterns from the encoding. Fibonacci numeral system is

used by several researchers to decrease the complexity of

encoder/decoder modules in FPF codes when the width of

communication channels grows [14] [16]. However, Fibonacci

FPF coding suffers from ambiguity in the coding procedure

[16], i.e., each word may be coded into more than one

codeword. Several other authors have tried to propose optimal

numeral systems to define optimum FPF coding systems [3]

[14] [15]. Although some of the numeral systems proposed in

the literature are efficient in some conditions, most of them

cannot be used for all widths of NoC channels [15].

In this paper, we propose a methodology for generating

optimal Forbidden Pattern Free numeral systems for any width

of NoC channels. Compared to conventional Forbidden Pattern

Free (FPF) systems, the proposed methodology is able to

provide unique representation to any input value at the lower

bound of the codeword lengths. Under this methodology, the
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two least significant bit positions of the codewords are preset

to the value ‘1’, and the weight of other bit positions are

calculated based on the set of rules described in Section III.

The rest of this paper is organized as follows. In Section

II, we explain the background and previous work on FPF.

Section III presents the proposed methodology to generate FPF

coding systems. Evaluations of the methodology are presented

in Section IV, and finally the paper is concluded in Section

V.

II. BACKGROUND AND PREVIOUS WORK

In this section we discuss the conditions under which

crosstalk faults might occur. First, we introduce the different

bit patterns that might appear on NoC channels. Second, we

present the details of the conventional Fibonacci-based FPF

coding according to the work presented in [16].

When a crosstalk fault occurs on an NoC wire, it man-

ifests itself in the form of unexpected transient voltage or

delay/speedup in the edge of signal changes on the wire

[17]. Among these effects, delayed edges are the most serious

situation, since they may result in erroneous data delivery to

the other side of an NoC channel [18]. It has been shown that

the imposed delay is proportional to the effective capacitance

[3] seen on the victim wire. The effective capacitance itself

depends on the transition patterns appearing on a wire and

its two neighboring wires [6]. Possible transition patterns on

a 3-bit NoC communication channel and their corresponding

effective capacitances are shown and classified in Table I,

where symbols ‘↑’ , ‘↓’, and ‘−’ represent transitions 1 → 0,

0 → 1, and no transition respectively.

Considering coupling capacitances between wires of an

NoC communication channel, the worst case delay of the

channel is given by (1 + ρλ)π0 [5], where π0 is delay of a

non-coupled channel, λ is the ratio of coupling capacitance to

the bulk capacitance (i.e., Cc

C0

), and ρ is the maximum coupling

coefficient. C0 is the intrinsic capacitance of the wire, Cc is the

coupling capacitance between the wire and its adjacent wires.

As shown in Table I, triplet transition patterns are classified

into four classes. Based on this analysis, triplet transition

patterns belonging to 3C and 4C transition classes are the main

source of crosstalk faults in NoC channels. Now, we will try to

calculate the probability of appearing these transition patterns

in NoC channels [3].

In order to calculate the probability of appearing triplet

opposite direction transition patterns on an NoC channel, let

us first study transition patterns in a 2-bit NoC channel. In a

2-bit NoC communication channel, probabilities of occurring

each of the possible transition patterns which are shown in

Table II, are calculated at first. In this regard, we assume

that the probabilities of appearing ‘0’ and ‘1’ in each bit

position of NoC channels are P0 and P1 respectively, where

P0 = P1 = 1/2.

A 3C transition pattern on a 4-bit channel may be generated

in an NoC channel if either of these cases happen:

1) One of the transition pairs {I1, I3, I7} appears at left

neighboring of one of the transition pairs {I6, I7, I8};

Table. I: Classes of transition patterns, their corresponding

effective capacitances, and their imposed channel delays [3].

Transition
Class

Transition Pattern

Effective
Capacitance of
Victim Wires

Imposed
Channel Delay

1C -↑↑, -↓↓, ↑↑-, ↓↓- C0 + Cc (1 + λ)π0

2C -↑-, -↓- C0 + 2Cc (1 + 2λ)π0

3C -↑↓ ↑↓-, ↓↑-, ↓↑- C0 + 3Cc (1 + 3λ)π0

4C ↓↑↓, ↑↓↑ C0 + 4Cc (1 + 4λ)π0

Table. II: Transition pairs appearing on a 2-bit channel.

Symbol a b Symbol a b

I0 −− 1/4 I5 ↑↓ 1/16
I1 − ↑ 1/8 I6 ↓ − 1/8
I2 ↑ − 1/8 I7 ↓↑ 1/16
I3 ↑↑ 1/16 I8 ↓↓ 1/16
I4 − ↓ 1/8 −− total 1

a Pair transition
b Occurrence Probability

2) One of the transition pairs {I4, I5, I8} appears at left

neighboring of one of the transition pairs {I2, I3, I5}.

The probabilities of the two conditions above are:

P ({I1, I3, I7}.{I6, I7, I8}) = P ({I1, I3, I7} × {I6, I7, I8}) =
4

16
× 4

16

P ({I4, I5, I8}.{I2, I3, I5}) = P ({I4, I5, I8} × {I2, I3, I5}) =
4

16
× 4

16

where P ({I1, I3, I7}) = PI1 + PI3 + PI7 .
We denote 3C transition patterns occurrence as E1, and

the probability of E1 occurring as P (E1). The probability

of having 3C transition patterns, i.e., P (E1), is 4

16
× 4

16
+

4

16
× 4

16
= 0.125. Similarly, we denote the occurrence of 4C

transition patterns class as E2, and the occurrence probability

of E2 as P (E2). Then this probability is calculated as below.

P (E2) = P ({I4, I5, I8}.I5) + P (I5.{I2, I3, I5})

+ P ({I1, I3, I7}.I7) + P (I7.{I6, I7, I8})

= 4×
(1

4
×

1

16

)

= 0.0625

It has been shown that the two patterns of ‘↓↑↓’ and

‘↑↓↑’ are the most hazardous patterns from the perspective

of crosstalk fault, among the transition patterns listed in Table

I [6] [7]. The calculated probabilities show that the crosstalk

faults may be seen in 6.25% of all data transmissions on an

NoC channel. Therefore, preventing triplet opposite direction

patterns such as 4C class of transition is of critical importance.

Several papers have proposed to code data with minimal

or zero probability of occurrences of these patterns on NoC

communication channels. These codes use numeral systems

which are able to eliminate the ‘101’ and ‘010’ hazardous

patterns from their codewords, in order not to generate ‘↓↑↓’

and ‘↑↓↑’ patterns on NoC channels. Denoting Si as the ith
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digit of the coding system, such a system should satisfy the

following two conditions [3]:

Condition 1) The numeral system should be complete. It

means that for any integer u, where 0 ≤ u ≤
∑

Si , u should

have at least one representation in the numeral system.

Condition 2) The numeral system should be able to code

every integer u, where 0 ≤ u ≤
∑

Si, as a Forbidden Pattern

Free codeword.

The Fibonacci numeral system as the first numeral system

used in crosstalk avoidance codes, uses Fibonacci sequence

to generate bit weights in its codewords. Fibonacci numeral

system is complete and therefore, each integer number has at

least one representation in it. The digits in Fibonacci sequence

are defined as the following [3] [16].

Si =

⎧

⎪

⎨

⎪

⎩

1, if i = 1

1, if i = 2

Si−1 + Si−2, if i ≥ 3

Using crosstalk avoidance Fibonacci coding system, an NoC

communication channel will no longer experience crosstalks

greater than 2C [8].

The coding system presented in [16] is based on this

sequence. It converts data words into the Forbidden Pattern

Free codewords without dividing the channel. As an example

of Fibonacci numeral system, considering the binary code of

21 i.e., 10101, which contains three forbidden patterns of

‘101’ and ‘010’, the Fibonacci numeral system eliminates the

forbidden patterns from the code by generating its codeword

1100000 for 21:

21 = 13× 1+8× 1+5× 0+3× 0+2× 0+1× 0+1× 0.

A conversion algorithm was presented in [16] to convert

binary words into Forbidden Pattern Free codewords based on

Fibonacci coding system. Although this algorithm generates

FPF codes, it is not optimum since it requires one more bit than

the lower bound calculated in the last bit position weight. The

one extra bit is also the reason of ambiguity in the conversion

time mentioned by [8] [16]. Table III demonstrates the method

of producing Forbidden Pattern Free codewords in a 5-bit

space.

III. THE PROPOSED METHODOLOGY TO GENERATE FPF

CODING SYSTEMS

In this section, we propose a new methodology that offers

classes of numeral systems for FPF NoC coding systems.

Compared with the conventional FPF systems, the proposed

methodology is able to provide unique representation to any

input value at the lower bound of the codeword lengths. More-

over, it provides a generalized methodology to select various

bit weights, so that different systems can select different codes

based on their optimization demands.

A. Proposed Rules to Generate FPF numeral Systems

As mentioned before, numeral-based FPF-coding systems

are able to eliminate ‘101’ and ‘010’ bit patterns from data

words. In this way, the possibility of occurring ‘↓↑↓’, ‘↑↓↑’

Table. III: The FPF codewords with Fibonacci coding system.

Input value
FPF codewords
with 53211 bit
weights

Extra bit needed
with weight of 8

0 00000 0

1 00001 0

2 00011 0

3 00110 0

4 00111 0

5 01100 0

6 01110 0

7 01111 0

8 11000 0

9 11001 0

10 11100 0

11 11110 0

12 11111 0

13 10000 1

14 10001 1

15 10011 1

transition patterns in NoC channels becomes zero. The nu-

meral system in the FPF coding should be able to convert a

data word in a way that eliminates ‘101’ and ‘010’ bit patterns,

while the value inferred by the data word is unique. This means

that the selected numeral system in NoC channels has a key

role in preventing crosstalk faults.

In our proposed methodology, different weights for bit

positions are defined in a way that all obtained coding systems

are FPF. The proposed methodology is based on the following

rules [3] [14] [16]:

1) The LSB position of any coding system in the proposed

methodology should have the weight 1 to be able to

produce odd values.

2) The weight at the MSB of a coding system should be

determined in a such way that ‘101’ bit pattern can be

removed. To reach this aim, bit weight at the MSB of a

coding system should be producible by other bit weights.

Consider SnSn−1...S2S1 as bitwise weights of an n-bit FPF

coding system. According to rule 1), S1 = 1. According to

rule 2), S2 = 1. To determine a proper range for S3, we

should satisfy rule 2 to allow sliding of probable 1s in MSB

of codewords to prevent ‘101’ bit patterns. Thus, we have to

choose a weight that can be produced by S1, S2, i.e., 1 ≤
S3 ≤ 2. The optimal choice for S3 to maximize the range of

the produced FPF coding system is 2. The coding system with

bitwise weights of 211 is able to code values between 1 to 4

as 3-bit FPF codewords. In a 4-bit coding system, the weight

of the most significant bit position, i.e., S4 should be selected

from [S3, S2 +S3] interval. Generally, for a n-bit FPF coding

system, each bit position’s weight can be selected based on

the following theorem.

Theorem 3.1. For a n-bit FPF coding system with the

bitwise weights of SnSn−1...S3S2S1, where S3 = 2, S2 = 1,

S1 = 1, and Si ∈ {Sn, Sn−1, ..., S3}, Si can be selected from

the interval [Si−1, Si−1+Si−2]. The optimal selection of each

Si to maximize the coding range is the upper bound of this

interval, namely Si−1 + Si−2. �
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Table. IV: Coding the integers in 5-bit space using new

algorithm in 42211 coding system.

Input Value
u

codeword
42211

Input Value
u

codeword
42211

0 00000 5 10001

1 00001 6 10011

2 00011 7 11001

3 00110 8 11100

4 00111 9 11110

B. How to Code Data into FPF Codewords Considering a

Numeral System

In this section, a coding algorithm is proposed that is able

to generate FPF codewords for the numeral systems generated

in Section III-A. As an example, assuming bitwise weights

of 42211, the equivalent FPF codewords are shown in Table

IV. Under a given numeral system generated as described in

Section III-A, the proposed coding algorithm takes k iterations

to generate an FPF codeword for any input value.

Assume u demonstrates the input integer value, ri the

remainder of u in iteration i, Sn...S1 the bitwise weights of

the coding system, and dn...d1 the output FPF codeword. The

proposed algorithm, whose flowchart is shown in Figure 1,

begins to calculate the FPF codeword dn...d1 from dn. As

seen in Figure 1, at the beginning of coding input value u, if

u ≥ Sn, dn is set to 1 else it is considered as 0. Then, the

remainder of u, i.e., u− (Sn × dn) is calculated and is stored

in rn. The counter i is decremented to count the number of

remaining iterations. Note that the process of calculation of

di, where 1 < i < n− 1, is different from that of dn.

In order to determine the value of di, where 1 < i < n− 1,

the proposed algorithm checks the remainder of previous step

i.e., ri. if it is greater than or equal to Si + Si−1, then di is

set to 1. Otherwise, the algorithm checks another condition. If

the remainder, ri is greater than or equal to Si, di is set the

same as di+1. This rule is the key part of our algorithm, which

prevents the forbidden patterns to appear in the codewords. If

the later condition is not satisfied, di should be set to 0 and

ri will be the same as ri+1. At the last round, the algorithm

checks the last remainder of the integer for being 1 or 0. If r1
is 1, d1 should be set as 1, else it will be 0.

IV. ANALYTICAL EVALUATION OF THE PROPOSED

METHOD

Lemma 1. The proposed rules in Section III-A are neces-

sary and sufficient to obtain FPF numeral systems.

Proof. Assume a k-bit channel in which the (k − 1)th and

kth bit weights in the coding system have values more than

Sk−2+Sk−3 and Sk−1+Sk−2, respectively. According to the

definition, in this coding system any integer v ∈ [0,
∑k

i=1
Si]

should be able to be coded with a SkSk−1...211 coding

system. We find an integer u with following assumptions that

cannot be coded by the coding system as an FPF code.

Assumption 1) u >
∑k−2

i=1
Si.

Assumption 2) Sk−1 < u < Sk.

Assumption 3) u < Sk−1 + Sk−2.

Start

i� k

u � sk

dk� 0

rk� u

dk� 1

rk� u-sk

i � i-1

Return

dk...d2d1

di� 0

ri� ri+1

di� di+1

ri� ri+1 – si×di

di� 1

ri� ri+1 - si×di

ri+1 � si

ri+1 � si+si-1

i � i-1

i = 1

r2 � 0

d1� 0d1� 1

NY

N

N

N

N

Y

Y

Y

Y

Figure. 1: Flowchart of the proposed coding algorithm.

According to the coding algorithm dk = 0 because u < Sk.

In the next step, dk−1 = 0 again due to Assumption 2. Due

to Assumption 1 the coding system is not able to generate an

FPF codeword for integer u. The first assumption says that

Sk, Sk−1 values are bigger than permitted upper bound. To

deny that, it is enough to prove that u ∈ [0,∈
∑k

i=1
Si]. From

Assumption 3 we have u < Sk−1 + Sk−2 ⇒ u <
∑k

i=1
Si,

i.e., u ∈ [0,
∑k

i=1
Si]. �

Lemma 2. The proposed algorithm in Section III-B returns

FPF codewords.

Proof. Let A be a set of numbers that are supposed to be

Forbidden Pattern Free codes when A ⊆ N. The proposed

method partitions A into 3 subsets of A1, A2, A3 where A1 =
{0, 1, ..., Sk − 1}, A2 = {Sk}, A3 = {Sk + 1, ...,

∑k

i=1
Si}.

In what follows, we show that for any integer u, the generated

code does not contain forbidden patterns. For any integer u,

u ∈ A1, or u ∈ A2, or u ∈ A3, let us examine each of these

cases separately.

Case 1) For coding integer u where u ∈ A1, since u is

smaller than Sk, dk = 0. Therefore, only bit pattern ‘010’ can

appear. Suppose the ‘010’ pattern has appeared and Sk > u,

then if
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K=4

K=5

K=6

K=7

1×3 1×3+

1 1+

3×3

+3×3 3×4 3×5 4×4 4×5

3×4

4×6+ + ++

+

Figure. 2: Number of coding systems in several specific

channel widths

dk−1 = 1 ⇒ u ≥ Sk−1 + Sk−2 & Sk ≤ Sk−1 + Sk−2

⇒ Sk < u,

it will be contradictory to the definition of A1 set.

Case 2) When u ∈ A2 i.e., u = Sk, we have dk = 1.

Thus, only the ‘101’ pattern may be seen. For this pattern, it

is sufficient that at least one 1 appears in the pattern. Thus,

r > 1. On the other hand, u = Sk & dk = 1 ⇒ r = 0 which

is contradictory to our assumption. So ‘101’ is impossible to

appear.

Case 3) When u ∈ A3, u > Sk ⇒ dk = 1. Therefore,

forbidden bit pattern may only occur as ‘101’. In this situation

we have:

Sk−1 = 0 ⇒ r <Sk−1 & Sk−2 = 1 ⇒ r > Sk−2 + Sk−3

⇒Sk−1 > Sk−2 + Sk−3

which is a contradiction. Hence, the assumption of ‘101’

bit pattern occurring in u is false. By considering cases 1)

to 3), we successfully demonstrate that the proposed coding

algorithm does not generate any forbidden patterns. �

A. Number of Coding Systems in a Specific Channel Width

Under the proposed approach, the number of coding systems

for a specific channel width which can code data in the form of

Forbidden Pattern Free, can be calculated as shown in Figure

2. Let Ni denote the number of coding systems for an i-bit

channel. It is clear that for a 2-bit channel, in which k = 2, the

only coding system is 11. This coding system codes integer

values of 0, 1, 2 into 00, 10, 11 FPF codewords respectively.

Therefore, N2 = 1. Similarly for a 3-bit channel N3 = 1.

Assume Nk is the number of Forbidden Pattern Free coding

systems for a channel with k bits width. In general, it can be

said that, in channels with width of less than 4 bits, we have

only one FPF coding system, because the weight pattern of 211

is the base for generating coding systems. When the channel

width is 4, i.e., k = 4, we have 211 for the first three bits,

and two choices for the weight of the last bit. Therefore, for

a 4-bit channel we have two Forbidden Pattern Free coding

systems: 3211 and 2211. By the same deduction, for a 5-bit

channel, k = 5, the number of coding systems depends on the

number of options for the fourth bit position as well as the

number of options for the fifth bit position. Since there are

3 options for the fifth bit position, the number of Forbidden

Pattern Free coding systems for a 5-bit channel can be written

as N5 = 3×N4.

The fifth bit weight may be selected within the ranges of

[3, 5] or [2, 4]. Thus, for k = 6 the weight of the sixth bit

position can have 3 or 4 different selections, i.e., [2,4], [3,5],

[4,6] or [3,6], [4,7], [5,8]. Therefore, the number of Forbidden

Pattern Free coding systems can be calculated from sum of two

product terms, which means N6 = 3× 3 + 3× 4.

To calculate N7, it should be noticed that each product term

of (i× j) in formula of N6, should be replaced by

(j × j) + (j × (j + 1)) + ...+ (j × (j + i− 1)).
According to the explanations given, N7 can be calculated

from the equation below.

N7 = P1 + P2

where, P1 = 3× 3 + 3× 4 + 3× 5 is the extension of 3× 3
product term in N6, and P2 = 4 × 4 + 4 × 5 + 4 × 6 is the

3× 4 extension in N6.

Generally, to calculate the number of Forbidden Pattern Free

coding systems for a channel with i-bit width (k = i), any i×j
term in Ni−1 should be replaced by

(j×j)+(j×(j+1))+ ...+(j×(j+ i−1)) = j
∑j+i−1

k=j k.

As seen in previous sections, the proposed method offers

coding systems which code the data in the form of Forbidden

Pattern Free for any channel width. In terms of selecting the

most efficient FPF coding system, i.e., the more suitable for a

specific channel width that imposes the least implementation

cost on the network, among all found FPF coding systems, one

key factor is the range of integers supported by the coding sys-

tem. Usually a coding system able to code a greater range of

integer values is considered as more efficient. Investigating this

parameter, we found out that the Fibonacci numeral system

proposed in [14] [16] which is also covered by our proposed

method, is the best coding system for a specific channel width

in terms of the the supported integer range. Other important

factors, e.g., the complexity of the encoder/decoder hardware

[14], power consumption of encoder/decoder [14], ability to

develop and build the encoder/decoder modules for any width

of channel [3], are also critical in selecting a proper coding

system. With respect to these parameters, the proposed method

is able to produce coding systems for optimizing any system

parameters, while the coding system in [16] is only capable

of optimizing the integer range.

The total number of codebooks for a n-bit NoC channel

when n is given, can be calculate by the help of a tree graph,

as shown in Figure 3. In this graph, the number of children

for each node (step) is determined based on the parent and

grandparent nodes, i.e., Si−1 and Si−2. In Figure 3 some

of the nodes are extended upto stage N = 8 as examples,

whereas others are curtailed in the first stages for the sake

of figure simplicity. The total number of codebooks for a

general n-bit NoC channel, with an unknown n, cannot be

calculated precisely, as the number of children grows rapidly.
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Figure. 3: Tree graph of the proposed numeral systems for

different channel widths.
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Figure. 4: The number of codebooks (log-scale) versus the

number of channel bits.

Nonetheless, a lower boundary can be calculated for the

number of codewords in an n-bit NoC channel.

Theorem 3.2. Assuming: 1) the root of the tree is located

at N = 1, and 2) all the nodes for N ≥ 4 have at least three

children, the tree in Figure 3 converts into a balanced tree

and a lower boundary for the number of codebooks can be

defined. At the root node, if we cut the graph into two sub-

trees, it can be seen that all the tree nodes for N ≥ 5 have

at least 3 children. Therefore, the number of codebooks for

each sub-tree equals 3N−4, because the first 4 levels are not

involved in the calculations. Since we have two of these sub-

trees, the lower boundary for the number of codebooks will

be 2× 3N−4. �

Lower Boundary for the number of codebooks (in logarith-

mic scale) versus the number of channel bits is illustrated for

5 ≤ N ≤ 128 in Figure 4. The lower boundary shows a large

number of possible codebooks even for low length channels,

which depicts the flexibility of the proposed coding system.

V. CONCLUSIONS

We present a set of rules for generating FPF coding systems

for reliable data transition in NoCs. The proposed method-

ology is able to provide unique representation to any input

value at the lower bound of the codeword lengths. Evalua-

tions show that all the coding systems generated under the

proposed rules are FPF and eliminate triplet opposite direction

transitions from codewords transmitted in NoCs channels. We

also provide a formula to systematically derive the number

of coding systems which can be generated with a specific

channel width. Using the proposed rules, we can define several

numeral systems to code data in form of FPF codewords.

Since different numeral systems may have different power

consumption and area overhead in their codes modules, NoC

designers have the opportunity of selecting a suitable coding

system for any situations using the rules and algorithms

proposed in this paper.
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