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Abstract—Reliability of modern multicore and many-core chips
is tightly coupled with the reliability of their on-chip networks.
Communication channels in current Network-on-Chips (NoCs)
are extremely susceptible to crosstalk faults. In this work, we
propose a set of rules for generating classes of crosstalk free
coding systems to protect communication channels in NoCs
against crosstalk faults. Codewords generated through these rules
are free of ‘101’ and ‘010’ bit patterns, which are the main
sources of crosstalk faults in NoC communication channels. The
proposed rules determine: (1) the weights of different bit positions
in a coding system to reach crosstalk free codings, and (2) how
the coding might be utilized in an NoC to prevent crosstalk
generating bit patterns in NoC channels. Using the proposed set
of rules, designers can obtain coding systems which are crosstalk
free for any widths of communication channels. Compared to
conventional Forbidden Pattern Free (FPF) systems, the proposed
methodology is able to provide unique representation to any input
values at the lower bound of the codeword lengths. Analyses
show that the proposed rules, along with the proposed encod-
ing/decoding mechanisms, are effective in preventing forbidden
pattern coding systems for network-on-chips of any arbitrary
channel width.

Keywords: Crosstalk Fault; Network on Chips; Fibonacci

Coding; Crosstalk Free Coding; Forbidden Pattern Free.

I. INTRODUCTION

Nowadays, single-chip architectures use on-chip networks
as the communication platform between cores, memory blocks
and input/output modules. Network-on-Chip (NoC), as an
efficient choice for designers and manufacturers, is widely
used in recent multicore and many-core chips [1]. The proper
operation of NoCs can be threatened by several fault sources
[2], therefore, among all NoC issues, reliability is of the
greatest importance [3]. Communication channels in NoCs are
highly susceptible to crosstalk faults along adjacent parallel
wires [4]. Long closely placed parallel wires form unwanted
capacitive coupling and/or inductive coupling. This effect in
turn can cause unpredictable voltage changes on the wires of
channels [5] [6]. These voltage changes on bit wires of the
NoC communication channel cause the data passing through
the channel to be delivered incorrectly, i.e., a crosstalk fault
[7].

In fact, when a crosstalk fault occurs, data bits that are
passing through the channel may become erroneous, and the
transmitted data may be distorted [5]. Previous studies have
shown that the main source of crosstalk faults in NoC channels
are ‘101” and ‘010’ bit patterns appearing in adjacent bit
wires of NoC channels [3]. If these two patterns appear in
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the same bit positions of two consecutive data words, triplet
opposite direction transition patterns of “1}1 or ‘[1)” will
be seen on the channel. Due to the capacitive and inductive
coupling of neighboring wires, ‘1|1’ and ‘| 1]’ can cause data
corruption in the middle wire [8]. Several researchers have
tried to minimize the impact of crosstalk faults happening on
NoC channels [3] [5] [9] [10]. Some of the proposed methods
include crosstalk-aware layout design [11], wire shielding [12],
intentional time skewing [13], use of error control coding [10],
and crosstalk avoidance codings [3] [5] [6]. Methods which
are based on data coding are among the most efficient methods
to tackle crosstalk faults.

Coding based methods can be classified into the two fol-
lowing groups. Group (1) Forbidden Transition Codes (FTC)
which prevent some transition patterns to increase NoCs
reliability as well as the speed of channels. FTC methods suffer
from high complexity of their codec modules when channel
width grows [14]. In order to mitigate the overhead of FTC
methods, the idea of channel partitioning was proposed [6]
[7], which divides each NoC channel into some sub-channels,
and each sub-channel is coded separately. Group (2) Forbidden
Pattern Free (FPF) codes that prevent the appearance of ‘101’
and ‘010’ bit patterns in NoC channels. FPF codec modules
impose lower power and delay overheads, especially in low
width NoC channels [15]. This low overhead makes FPF codec
modules a practical solution to deal with crosstalk in NoCs.

FPF codes are based on a numeral system that defines
weights of different bit positions to eliminate ‘101’ and ‘010’
patterns from the encoding. Fibonacci numeral system is
used by several researchers to decrease the complexity of
encoder/decoder modules in FPF codes when the width of
communication channels grows [14] [16]. However, Fibonacci
FPF coding suffers from ambiguity in the coding procedure
[16], i.e., each word may be coded into more than one
codeword. Several other authors have tried to propose optimal
numeral systems to define optimum FPF coding systems [3]
[14] [15]. Although some of the numeral systems proposed in
the literature are efficient in some conditions, most of them
cannot be used for all widths of NoC channels [15].

In this paper, we propose a methodology for generating
optimal Forbidden Pattern Free numeral systems for any width
of NoC channels. Compared to conventional Forbidden Pattern
Free (FPF) systems, the proposed methodology is able to
provide unique representation to any input value at the lower
bound of the codeword lengths. Under this methodology, the
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two least significant bit positions of the codewords are preset
to the value ‘1’, and the weight of other bit positions are
calculated based on the set of rules described in Section III.

The rest of this paper is organized as follows. In Section
II, we explain the background and previous work on FPF.
Section III presents the proposed methodology to generate FPF
coding systems. Evaluations of the methodology are presented
in Section IV, and finally the paper is concluded in Section
V.

II. BACKGROUND AND PREVIOUS WORK

In this section we discuss the conditions under which
crosstalk faults might occur. First, we introduce the different
bit patterns that might appear on NoC channels. Second, we
present the details of the conventional Fibonacci-based FPF
coding according to the work presented in [16].

When a crosstalk fault occurs on an NoC wire, it man-
ifests itself in the form of unexpected transient voltage or
delay/speedup in the edge of signal changes on the wire
[17]. Among these effects, delayed edges are the most serious
situation, since they may result in erroneous data delivery to
the other side of an NoC channel [18]. It has been shown that
the imposed delay is proportional to the effective capacitance
[3] seen on the victim wire. The effective capacitance itself
depends on the transition patterns appearing on a wire and
its two neighboring wires [6]. Possible transition patterns on
a 3-bit NoC communication channel and their corresponding
effective capacitances are shown and classified in Table I,
where symbols ‘17, ‘|’, and ‘—’ represent transitions 1 — 0,
0 — 1, and no transition respectively.

Considering coupling capacitances between wires of an
NoC communication channel, the worst case delay of the
channel is given by (1 + pA)mo [5], where 7 is delay of a
non-coupled channel, A is the ratio of coupling capacitance to
the bulk capacitance (i.e., %f;)’ and p is the maximum coupling
coefficient. Cy is the intrinsic capacitance of the wire, C.. is the
coupling capacitance between the wire and its adjacent wires.
As shown in Table I, triplet transition patterns are classified
into four classes. Based on this analysis, triplet transition
patterns belonging to 3C and 4C transition classes are the main
source of crosstalk faults in NoC channels. Now, we will try to
calculate the probability of appearing these transition patterns
in NoC channels [3].

In order to calculate the probability of appearing triplet
opposite direction transition patterns on an NoC channel, let
us first study transition patterns in a 2-bit NoC channel. In a
2-bit NoC communication channel, probabilities of occurring
each of the possible transition patterns which are shown in
Table II, are calculated at first. In this regard, we assume
that the probabilities of appearing ‘0’ and ‘1’ in each bit
position of NoC channels are Py and P; respectively, where
Py=P =1/2.

A 3C transition pattern on a 4-bit channel may be generated
in an NoC channel if either of these cases happen:

1) One of the transition pairs {I,Is, 7} appears at left
neighboring of one of the transition pairs {Is, I7, Is};
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Table. I: Classes of transition patterns, their corresponding
effective capacitances, and their imposed channel delays [3].

Effective

Transition . Capacitance of Imposed

Class Transition Pattern Vilz:tim Wies Channel Delay
1C B e Co + Ce (14 Nmo

2C -, -)- Co +2C. (14 2X\)mo
3C AN W - Co+3Ce (1+3N)m
4Cc 4 N Co +4C. (14 4X)mo

Table. II: Transition pairs appearing on a 2-bit channel.

Symbol  a b | Symbol @ b
Io —— 1/4 I5 ™ 1/16
I -1 1/8 Is - 1/8
P = 1/8 17 1 1/16
I3 1 1/16 Is H 1/16
I -1 1/8 —— total 1

@ Pair transition
b Occurrence Probability

2) One of the transition pairs {l4,I5, s} appears at left
neighboring of one of the transition pairs {12, I3, I5}.

The probabilities of the two conditions above are:

P({Iy, I3, I} {16, Ir, Is}) = P({I1,Is, It} x {Is, I7,Is}) = & x

4
16

P({I4,I5,Is} {12, Is, Is }) = P({I4, I5, Is} x {I2, I3, I5}) = & x

where P({Il, I3, 17}) =P, + P, + Pr..

We denote 3C transition patterns occurrence as Fp, and
the probability of E; occurring as P(FE;). The probability
of having 3C transition patterns, i.e., P(E), is % X 1% +
% X % = 0.125. Similarly, we denote the occurrence of 4C
transition patterns class as Es, and the occurrence probability
of FEy as P(F5). Then this probability is calculated as below.

P(EQ) = P({I47I5,Ig}.f5) + P(I5.{12,13,I5})
—+ P({Il, 137 17}17) =+ P(I7.{16, 177 Ig})

1 1
=4x (4 X 16) = 0.0625

It has been shown that the two patterns of ‘|T]’ and
“tJ1" are the most hazardous patterns from the perspective
of crosstalk fault, among the transition patterns listed in Table
I [6] [7]. The calculated probabilities show that the crosstalk
faults may be seen in 6.25% of all data transmissions on an
NoC channel. Therefore, preventing triplet opposite direction
patterns such as 4C class of transition is of critical importance.

Several papers have proposed to code data with minimal
or zero probability of occurrences of these patterns on NoC
communication channels. These codes use numeral systems
which are able to eliminate the ‘101’ and ‘010’ hazardous
patterns from their codewords, in order not to generate ‘| 1]’

and ‘11 patterns on NoC channels. Denoting S; as the i'"



digit of the coding system, such a system should satisfy the
following two conditions [3]:

Condition 1) The numeral system should be complete. It
means that for any integer u, where 0 < u < > S; , u should
have at least one representation in the numeral system.

Condition 2) The numeral system should be able to code
every integer u, where 0 < u < > S;, as a Forbidden Pattern
Free codeword.

The Fibonacci numeral system as the first numeral system
used in crosstalk avoidance codes, uses Fibonacci sequence
to generate bit weights in its codewords. Fibonacci numeral
system is complete and therefore, each integer number has at
least one representation in it. The digits in Fibonacci sequence
are defined as the following [3] [16].

1, ifi=1
S, =<1, ifi=2
Si—l + Si_g, le > 3

Using crosstalk avoidance Fibonacci coding system, an NoC
communication channel will no longer experience crosstalks
greater than 2C [8].

The coding system presented in [16] is based on this
sequence. It converts data words into the Forbidden Pattern
Free codewords without dividing the channel. As an example
of Fibonacci numeral system, considering the binary code of
21 i.e., 10101, which contains three forbidden patterns of
‘101" and ‘010’, the Fibonacci numeral system eliminates the
forbidden patterns from the code by generating its codeword
1100000 for 21:

21 =13 x1+8x1+5x0+3x0+2x0+1x0+1x0.

A conversion algorithm was presented in [16] to convert
binary words into Forbidden Pattern Free codewords based on
Fibonacci coding system. Although this algorithm generates
FPF codes, it is not optimum since it requires one more bit than
the lower bound calculated in the last bit position weight. The
one extra bit is also the reason of ambiguity in the conversion
time mentioned by [8] [16]. Table III demonstrates the method
of producing Forbidden Pattern Free codewords in a 5-bit
space.

III. THE PROPOSED METHODOLOGY TO GENERATE FPF
CODING SYSTEMS

In this section, we propose a new methodology that offers
classes of numeral systems for FPF NoC coding systems.
Compared with the conventional FPF systems, the proposed
methodology is able to provide unique representation to any
input value at the lower bound of the codeword lengths. More-
over, it provides a generalized methodology to select various
bit weights, so that different systems can select different codes
based on their optimization demands.

A. Proposed Rules to Generate FPF numeral Systems

As mentioned before, numeral-based FPF-coding systems
are able to eliminate ‘101’ and ‘010’ bit patterns from data
words. In this way, the possibility of occurring ‘[1)°, ‘41’
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Table. III: The FPF codewords with Fibonacci coding system.

FPF
with 53211
weights

00000
00001
00011
00110
00111
01100
01110
01111
11000
11001
11100
11110
11111
10000
10001
10011

codeworglii Extra bit needed

Input value with weight of 8

NN B W —=O

., O 0000000000000

transition patterns in NoC channels becomes zero. The nu-
meral system in the FPF coding should be able to convert a
data word in a way that eliminates ‘101" and ‘010’ bit patterns,
while the value inferred by the data word is unique. This means
that the selected numeral system in NoC channels has a key
role in preventing crosstalk faults.

In our proposed methodology, different weights for bit
positions are defined in a way that all obtained coding systems
are FPF. The proposed methodology is based on the following
rules [3] [14] [16]:

1) The LSB position of any coding system in the proposed
methodology should have the weight 1 to be able to
produce odd values.

2) The weight at the MSB of a coding system should be
determined in a such way that ‘101’ bit pattern can be
removed. To reach this aim, bit weight at the MSB of a
coding system should be producible by other bit weights.

Consider S,,S,,—1...5257 as bitwise weights of an n-bit FPF
coding system. According to rule 1), S; = 1. According to
rule 2), Sy 1. To determine a proper range for Ss3, we
should satisfy rule 2 to allow sliding of probable 1s in MSB
of codewords to prevent ‘101’ bit patterns. Thus, we have to
choose a weight that can be produced by 57,55, ie., 1 <
S3 < 2. The optimal choice for S5 to maximize the range of
the produced FPF coding system is 2. The coding system with
bitwise weights of 211 is able to code values between 1 to 4
as 3-bit FPF codewords. In a 4-bit coding system, the weight
of the most significant bit position, i.e., S; should be selected
from [S3, S 4 S3] interval. Generally, for a n-bit FPF coding
system, each bit position’s weight can be selected based on
the following theorem.

Theorem 3.1. For a n-bit FPF coding system with the
bitwise weights of S;,5,,—1...535251, where S3 =2, So =1,
Sy =1,and S; € {S,, Sn—1,...,53}, S; can be selected from
the interval [S;_1, S;_1+.5;_2]. The optimal selection of each
S; to maximize the coding range is the upper bound of this
interval, namely S;_1 + S;_o. [ |



Table. IV: Coding the integers in 5-bit space using new
algorithm in 42211 coding system.

Input Value codeword Input Value codeword
u 42211 u 42211
0 00000 5 10001
1 00001 6 10011
2 00011 7 11001
3 00110 8 11100
4 00111 9 11110

B. How to Code Data into FPF Codewords Considering a
Numeral System

In this section, a coding algorithm is proposed that is able
to generate FPF codewords for the numeral systems generated
in Section III-A. As an example, assuming bitwise weights
of 42211, the equivalent FPF codewords are shown in Table
IV. Under a given numeral system generated as described in
Section III-A, the proposed coding algorithm takes k iterations
to generate an FPF codeword for any input value.

Assume u demonstrates the input integer value, r; the
remainder of w in iteration i, S,...57 the bitwise weights of
the coding system, and d,,...d; the output FPF codeword. The
proposed algorithm, whose flowchart is shown in Figure 1,
begins to calculate the FPF codeword d,,...d; from d,. As
seen in Figure 1, at the beginning of coding input value wu, if
u > S,, d, is set to 1 else it is considered as 0. Then, the
remainder of u, i.e., u — (S, X d;,) is calculated and is stored
in 7,. The counter ¢ is decremented to count the number of
remaining iterations. Note that the process of calculation of
d;, where 1 < i <n — 1, is different from that of d,,.

In order to determine the value of d;, where 1 < i <n—1,
the proposed algorithm checks the remainder of previous step
i.e., ;. if it is greater than or equal to S; + S;_1, then d; is
set to 1. Otherwise, the algorithm checks another condition. If
the remainder, r; is greater than or equal to S;, d; is set the
same as d; 1. This rule is the key part of our algorithm, which
prevents the forbidden patterns to appear in the codewords. If
the later condition is not satisfied, d; should be set to 0 and
r; will be the same as 7;41. At the last round, the algorithm
checks the last remainder of the integer for being 1 or 0. If 7;
is 1, dy should be set as 1, else it will be 0.

IV. ANALYTICAL EVALUATION OF THE PROPOSED
METHOD

Lemma 1. The proposed rules in Section III-A are neces-
sary and sufficient to obtain FPF numeral systems.

Proof. Assume a k-bit channel in which the (k — 1) and
E*" bit weights in the coding system have values more than
Sk—2+ Sk_3 and Si_1 + Sk_2, respectively. According to the
definition, in this coding system any integer v € [0, Zle Si
should be able to be coded with a SySk_1...211 coding
system. We find an integer u with following assumptions that
cannot be coded by the coding system as an FPF code.
Assumption 1) u > Zf:_f Si.

Assumption 2) Si_1 < u < Sk.
Assumption 3) u < Sp_1 + Sk_o.
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Figure. 1: Flowchart of the proposed coding algorithm.

According to the coding algorithm dj, = 0 because u < S.
In the next step, dr—1 = 0 again due to Assumption 2. Due
to Assumption 1 the coding system is not able to generate an
FPF codeword for integer u. The first assumption says that
Sk, Sk—1 values are bigger than permitted upper bound. To
deny that, it is enough to prove that u € [0, € Zle S;]. From
Assumption 3 we have u < Sp_1 + Sp_2 = u < Zle S;,
ie,uel0,YF S |

Lemma 2. The proposed algorithm in Section III-B returns
FPF codewords.

Proof. Let A be a set of numbers that are supposed to be
Forbidden Pattern Free codes when A C N. The proposed
method partitions A into 3 subsets of Ay, Ay, A3 where A; =
{0,1,...,8, — 1}, Ay = {Si}, A3 = {Sk+1,..,5°F S}
In what follows, we show that for any integer u, the generated
code does not contain forbidden patterns. For any integer w,
uw € A, or u € Ay, or u € Az, let us examine each of these
cases separately.

Case 1) For coding integer v where u € Aj, since u is
smaller than Sy, dj, = 0. Therefore, only bit pattern ‘010” can
appear. Suppose the ‘010 pattern has appeared and Sy > u,
then if
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Figure. 2: Number of coding systems in several specific
channel widths

dg—1=1=u>Sp 1+ Sk—2 & Sp < Sp—1 + Sk—2
= Sp <u,

it will be contradictory to the definition of A; set.

Case 2) When u € As ie., u = Sj, we have d, = 1.
Thus, only the ‘101’ pattern may be seen. For this pattern, it
is sufficient that at least one 1 appears in the pattern. Thus,
r > 1. On the other hand, u = S}, & dp = 1 = r = 0 which
is contradictory to our assumption. So ‘101’ is impossible to
appear.

Case 3) When u € Az, u > Sp = di = 1. Therefore,
forbidden bit pattern may only occur as ‘101°. In this situation
we have:

S 1=0=>r<Sp,_1 & Sp_o=1=7r>8,_5+Sk_3
=Sk-1 > Sk—2 + Sk—3

which is a contradiction. Hence, the assumption of ‘101’
bit pattern occurring in u is false. By considering cases 1)
to 3), we successfully demonstrate that the proposed coding
algorithm does not generate any forbidden patterns. |

A. Number of Coding Systems in a Specific Channel Width

Under the proposed approach, the number of coding systems
for a specific channel width which can code data in the form of
Forbidden Pattern Free, can be calculated as shown in Figure
2. Let N; denote the number of coding systems for an ¢-bit
channel. It is clear that for a 2-bit channel, in which k = 2, the
only coding system is 11. This coding system codes integer
values of 0,1,2 into 00,10,11 FPF codewords respectively.
Therefore, Ny = 1. Similarly for a 3-bit channel N3 = 1.

Assume Ny, is the number of Forbidden Pattern Free coding
systems for a channel with £ bits width. In general, it can be
said that, in channels with width of less than 4 bits, we have
only one FPF coding system, because the weight pattern of 211
is the base for generating coding systems. When the channel
width is 4, i.e., kK = 4, we have 211 for the first three bits,
and two choices for the weight of the last bit. Therefore, for
a 4-bit channel we have two Forbidden Pattern Free coding
systems: 3211 and 2211. By the same deduction, for a 5-bit
channel, k = 5, the number of coding systems depends on the
number of options for the fourth bit position as well as the
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number of options for the fifth bit position. Since there are
3 options for the fifth bit position, the number of Forbidden
Pattern Free coding systems for a 5-bit channel can be written
as N5 = 3 X Ny.

The fifth bit weight may be selected within the ranges of
[3,5] or [2,4]. Thus, for k¥ = 6 the weight of the sixth bit
position can have 3 or 4 different selections, i.e., [2,4], [3,5],
[4,6] or [3,6], [4,7], [5,8]. Therefore, the number of Forbidden
Pattern Free coding systems can be calculated from sum of two
product terms, which means Ng =3 x 3 + 3 x 4.

To calculate N7, it should be noticed that each product term
of (¢ x j) in formula of Ng, should be replaced by

UxN+ExG+))+ .+ x G +i=1).
According to the explanations given, /N7 can be calculated
from the equation below.

N =P+ P

where, P, =3 x 34+ 3 x 44 3 x 5 is the extension of 3 x 3
product term in Ng, and P, =4 x4 44 x5+ 4 x 6 is the
3 X 4 extension in Ng.

Generally, to calculate the number of Forbidden Pattern Free
coding systems for a channel with i-bit width (k = i), any i X j
term in N;_; should be replaced by

XA+ G+ + ot (G x (G+i=1)) =5 3927 k.

As seen in previous sections, the proposed method offers
coding systems which code the data in the form of Forbidden
Pattern Free for any channel width. In terms of selecting the
most efficient FPF coding system, i.e., the more suitable for a
specific channel width that imposes the least implementation
cost on the network, among all found FPF coding systems, one
key factor is the range of integers supported by the coding sys-
tem. Usually a coding system able to code a greater range of
integer values is considered as more efficient. Investigating this
parameter, we found out that the Fibonacci numeral system
proposed in [14] [16] which is also covered by our proposed
method, is the best coding system for a specific channel width
in terms of the the supported integer range. Other important
factors, e.g., the complexity of the encoder/decoder hardware
[14], power consumption of encoder/decoder [14], ability to
develop and build the encoder/decoder modules for any width
of channel [3], are also critical in selecting a proper coding
system. With respect to these parameters, the proposed method
is able to produce coding systems for optimizing any system
parameters, while the coding system in [16] is only capable
of optimizing the integer range.

The total number of codebooks for a m-bit NoC channel
when n is given, can be calculate by the help of a tree graph,
as shown in Figure 3. In this graph, the number of children
for each node (step) is determined based on the parent and
grandparent nodes, i.e., S;_; and S;_o. In Figure 3 some
of the nodes are extended upto stage N = 8 as examples,
whereas others are curtailed in the first stages for the sake
of figure simplicity. The total number of codebooks for a
general n-bit NoC channel, with an unknown n, cannot be
calculated precisely, as the number of children grows rapidly.



N=1
N=2
2 N=3

Figure. 3: Tree graph of the proposed numeral systems for
different channel widths.
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Figure. 4: The number of codebooks (log-scale) versus the
number of channel bits.

Nonetheless, a lower boundary can be calculated for the
number of codewords in an n-bit NoC channel.

Theorem 3.2. Assuming: 1) the root of the tree is located
at N =1, and 2) all the nodes for N > 4 have at least three
children, the tree in Figure 3 converts into a balanced tree
and a lower boundary for the number of codebooks can be
defined. At the root node, if we cut the graph into two sub-
trees, it can be seen that all the tree nodes for N > 5 have
at least 3 children. Therefore, the number of codebooks for
each sub-tree equals 3N—=4 because the first 4 levels are not
involved in the calculations. Since we have two of these sub-
trees, the lower boundary for the number of codebooks will
be 2 x 3NV—4. [ |

Lower Boundary for the number of codebooks (in logarith-
mic scale) versus the number of channel bits is illustrated for
5 < N <128 in Figure 4. The lower boundary shows a large
number of possible codebooks even for low length channels,
which depicts the flexibility of the proposed coding system.

V. CONCLUSIONS

We present a set of rules for generating FPF coding systems
for reliable data transition in NoCs. The proposed method-
ology is able to provide unique representation to any input
value at the lower bound of the codeword lengths. Evalua-
tions show that all the coding systems generated under the
proposed rules are FPF and eliminate triplet opposite direction
transitions from codewords transmitted in NoCs channels. We
also provide a formula to systematically derive the number
of coding systems which can be generated with a specific
channel width. Using the proposed rules, we can define several
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numeral systems to code data in form of FPF codewords.
Since different numeral systems may have different power
consumption and area overhead in their codes modules, NoC
designers have the opportunity of selecting a suitable coding
system for any situations using the rules and algorithms
proposed in this paper.
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