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Abstract—Robust Adaptive Secure Secret Sharing (RASSS)
is a protocol for reconstructing secrets and information in
distributed computing systems even in the presence of a large
number of untrusted participants. Since the original Shamir’s
Secret Sharing scheme, there have been efforts to secure the
technique against dishonest shareholders. Early on, researchers
determined that the Reed-Solomon encoding property of the
Shamir’s share distribution equation and its decoding algorithm
could tolerate cheaters up to one third of the total shareholders.
However, if the number of cheaters grows beyond the error
correcting capability (distance) of the Reed-Solomon codes, the
reconstruction of the secret is hindered. Untrusted participants
or cheaters could hide in the decoding procedure, or even frame
up the honest parties. In this paper, we solve this challenge and
propose a secure protocol that is no longer constrained by the
limitations of the Reed-Solomon codes. As long as there are a
minimum number of honest shareholders, the RASSS protocol
is able to identify the cheaters and retrieve the correct secret or
information in a distributed system with a probability close to
1 with less than 60% of hardware overhead. Furthermore, the
adaptive nature of the protocol enables considerable hardware
and timing resource savings and makes RASSS highly practical.

I. INTRODUCTION

In many applications and systems, secret sharing tech-
niques are deployed when a piece of confidential data cannot
be entrusted to a single person. The general concept consists
of taking that piece of data, i.e., the secret, and sharing it
among multiple holders, each with unique ID, in a manner
that allows the reconstruction of the shared secret using inputs
from only a subset of the shareholders. The minimum size of
any subset to reconstruct the secret is called “threshold”. Below
the threshold, the secret is information theoretically safe and
cannot be retrieved.

Practical secret sharing techniques are required in many
real world applications. For example, the DNS Security
(DNSSEC) [1] which ensures the DNS (Domain Name Sys-
tem) servers to connect the users and their Internet destinations
(URLs and IPs) in a secure and verified manner, has its root
key split and shared among seven holders. In the case of an
attack, if five or more of the holders are in the same U.S.
base, then they can reconstruct the root key using their shares
and restore the Internet connections. Another application is
in Hardware Security Module (HSM) based systems. HSMs
are widely used in bank card payment systems. Some HSMs
[2] are produced and distributed by certification authorities
(CAs) and registration authorities (RAs) to generate and share
important secret keys under Public Key Infrastructure (PKI).
These HSMs also require implementation of a multi-part user
authentication scheme, namely threshold secret sharing.

Due to their distributed nature, secret sharing techniques
are susceptible to a number of attacks, like, man-in-the-middle
attacks and share manipulations, i.e., cheating. These attacks,

resulting in share distortions, may lead to the retrieval of a
wrong secret. Although, there are many secure secret sharing
schemes, they are often limited in their cheater tolerance.
Generally, the number of cheaters exceeds their fault tolerance
or error correction capabilities. Therefore, to improve the
robustness of secret sharing in distributed systems, we propose
a new protocol tolerating a large number of untrusted and
colluding participants, called Robust Adaptive Secure Secret
Sharing (RASSS). The contributions of this work are:

1) The protocol tolerates beyond the previously established
t < n/3 cheater tolerance bound, where t denotes the
number of cheaters and n the number of parties engaged
in the computation. The new protocol is able to recon-
struct secrets as long as there exists a minimum threshold
number of honest parties, where the classic protocol using
Reed-Solomon decoder is unable to either identify the
cheaters or retrieve the correct secret;

2) The protocol has a higher level of security. It is able to
detect cheating conducts and identify the cheaters even
when there is sophisticated collusion among them. In
contrast, under this situation the classic protocol will
be misled and will retrieve an erroneous secret and/or
mislabel the honest parties;

3) The new scheme is adaptive, which allows for efficient
implementation with low computation complexity on
average. In our design and analysis, RASSS shows a
hardware overhead of only 60% over the classic protocol.

The rest of the paper is organized as follows. Sections II
introduces the original secret sharing scheme and its secure
protocol to tolerate up to t < n/3 cheaters. Section III explains
the vulnerability of this classic protocol when t ≥ n/3.
Section IV proposes the new RASSS protocol to overcome
the vulnerability. Section V is on the analysis of the security
level and overhead of the RASSS protocol.

II. THE ORIGINAL SHAMIR’S SECRET SHARING SCHEME

AND ITS CLASSIC SECURE PROTOCOL

The following notations are used to describe and evaluate
the original Shamir’s secret sharing scheme, the classic and
proposed secure protocols:

• b: the number of bits in a vector variable;
• S: the original secret;
• xi: the ID number of the ith shareholder;
• Di: the share of the ith shareholder;
• k: the minimum number (threshold) of shareholders

needed to reconstruct a secret;
• t: the number of cheaters;
• n: the total number of shareholders in computation;
• T : the number of tests needed to identify the cheaters

and honest shareholders;
• AMD: the algebraic manipulation detection codes;978-1-5386-0362-8/17/$31.00 ©2017 IEEE



• E: the encoded secret by AMD codes;
• Pmask: the error masking probability of AMD codes;
• RS: the Reed-Solomon codes;
• d: the distance of RS codes where d = n− k+1 which

tolerates (or corrects) up to d−1

2
errors;

• ⊕: the addition operator in finite fields.

A. The Original Shamir’s Secret Sharing
The concept of k-threshold secret sharing was first intro-

duced by Shamir [3] in 1979. For the sake of information
theoretic security, all elements and operations are supposed to
work under Galois finite field (GF ) arithmetic where the field
size should be a prime or power of prime. To share a secret S,
a polynomial is used to distribute the shares where the secret S
serves as the leading coefficient. The shares are the evaluations
of the polynomial by each shareholder’s ID xi:

Di = c0 ⊕ c1xi ⊕ c2x
2
i ⊕ · · · ⊕ Sxk−1

i . (1)

Usually the ID number is publicly known to everyone while
the shares are kept private by shareholders. With any subset
of at least k shareholders’ IDs and shares, one can use the
Lagrange interpolation formula to reconstruct the secret:

S =

k−1⊕

i=0

Di∏k−1

j=0,j �=i (xi ⊕ xj)
. (2)

Such a construction is (k−1)-private. This means it needs
at least k shareholders to reconstruct the secret and so any
(k − 1) shareholders have no knowledge of the secret.

B. The Classic Secure Protocol for Share Verification
After the invention of Shamir’s secret sharing, it was

noticed that if any number of the shareholders participating
in the secret reconstruction apply an active attack by changing
their shares, the retrieved secret will be distorted. Therefore
Cramer et. al. [4] have proposed an Algebraic Manipulation
Detection (AMD) code to detect any modification of secrets
with a probability close to 1. Karpovsky et. al. [5] later
generalized this code with a flexible construction. On the
other hand, researchers [6], [7], [8] have proposed approaches
to verify the validity of shares with a probability of 1. The
common feature in the latter approaches is that, if the shares
can be encoded to a codeword of a certain error control code
(ECC), then the codeword’s symbols (shares) can be verified
and corrected within the ECC’s capability.

Particularly, the share distribution [Eq. 1] is inherently
equivalent to the non-systematic encoding equation of the
well-known Reed-Solomon (RS) ECC codes. RS codes are
maximum distance separable (MDS) codes which meet the
Singleton bound with equality. With such a distribution equa-
tion, an (n, k, d) Reed-Solomon codeword (D0, D1, · · ·Dn−1)
is encoded with n symbols (shares) in total, k information
symbols, and distance d = n−k+1 which corrects up to d−1

2

(or n−k
2

) erroneous symbols with algorithms in [9], [10].
In the secret sharing language, with n shareholders’ IDs

and shares, we are able to tolerate up to t ≤ n−k
2

shares
maliciously modified by cheaters. Theoretically speaking, the
error correction capability of RS codes can tolerate up to t <
n/2 cheaters if n � k. However, oftentimes an assumption is
made that there should be t < k cheaters such that a group of
all cheaters have no access to the secret [11]. Then we have:

t < n/3. (3)

If n instead of k shareholders are involved in the share
error correction by RS decoders, then the correctness of the
retrieved secret is ensured when [Eq. 3] holds. Consequently,
the secure secret sharing is both t-private and t-resilient, that
up to t shareholders cannot reconstruct the secret, and up to t
cheaters cannot affect the correctness of the secret [12].

III. VULNERABILITIES OF THE CLASSIC SECURE

PROTOCOL

The essence of the classic RS-based secure scheme is to
encode the shares into a codeword, whose validity can be
verified by the RS decoding algorithm. Although RS codes
are known for their strong error correction, their encoding
procedure is linear and susceptible to cheating exploits.

We assume a strong attack model, that the cheaters can
change their shares to any value, and they are all colluding.
With t beyond the error correction capability of the chosen
RS code, the cheaters, collusively, can breach the safeguards
of the protocol. To illustrate what types of attacks they can
implement, we will use the relationship between t and d (the
RS code’s distance) to describe the increasing vulnerability in
the protocol when t increases.

A. Making the Secret Unaccessible
If the number of cheaters satisfy d−1

2
< t < d, although

the RS decoder can still raise an alarm for cheating, it is unable
to retrieve the secret or identify the cheaters.

B. Turning Off the Alarm
If the number of cheaters satisfies d ≤ t ≤ n, they will be

able to manipulate the entire system. For instance the cheaters
can pick another share distribution polynomial different from
[Eq. 1] with random coefficients bi and another secret S′:

D′
i = b0 ⊕ b1xi ⊕ b2x

2
i ⊕ · · · ⊕ S′xk−1 (4)

The new shares D′
i of the cheaters will be the evaluation

of [Eq. 4] by the same IDs xi. When t ≥ d, the cheaters’
shares will form a new legal RS codeword which will never
be detected by the RS decoder. The secret reconstruction will
then produce the secret S′ that the cheaters have selected.

Example III.1. A secret sharing system has a secret S = 111
in the GF (23) finite field. It requires k = 2 shareholders
to reconstruct the secret every time. The following share
distribution polynomial is used to generate the shares:

Di = c0 ⊕ Sxi = 010⊕ 111xi.

The protocol is designed in such a way that up to 1 cheater
can be tolerated. Therefore, in the secret reconstruction stage
there will be n = 3t + 1 = 4 shareholders involved. Suppose
that in the secret reconstruction, shareholders with IDs x0 =
001, x1 = 010, x2 = 011, x3 = 100 are involved. And the
shares distributed to them are D0 = 101, D1 = 111, D2 =
010, D3 = 001. These 4 shares form a legal RS codeword
v = (101, 111, 010, 001) with distance d = 3 and it can correct
up to 1 error.

Now all 4 of them are cheating collusively, and they have
selected their own secret S′ = 100 and a different share
distribution polynomial:

D′
i = b0 ⊕ S′xi = 001⊕ 100xi.

Thus their shares will be maliciously changed to D0 =
101, D1 = 010, D2 = 110, D3 = 111, which is also a legal



codeword v′ = (101, 010, 110, 111) of a (n, k, d) = (4, 2, 3)
RS code. This codeword will unfortunately be considered as a
valid codeword by the RS decoding algorithm [10] and there
will be no cheating alarm. As a result, the fake secret S′ = 100
is retrieved by those shares under [Eq. 2]. During the entire
procedure the cheating will not be detected. �

C. Framing Up the Honest Shareholders
Another vulnerability that cheaters can exploit when d ≤

t ≤ n is to frame up the honest shareholders, so that the
decoder treats the honest parties as “cheaters” and cheaters as
“honest shareholders”. If t is large enough that the number
of honest shareholders is n − t ≤ d−1

2
, then the honest

shareholders are within the RS decoder’s error correction
capability. Since all cheaters’ shares are generated by the same
forged secret sharing polynomial, the honest minority will be
treated as cheaters and “corrected”. The cheaters’ fake secret
will be regarded as the valid secret as the result of [Eq. 2].

Example III.2. Suppose that we have the same secret sharing
system as in Example III.1. Let us have three shareholders
{x0 = 001, x1 = 010, x2 = 011} as cheaters, and shareholder
x3 = 100 is an honest participant. The codeword for the shares
submitted to the RS decoder will be v′ = (101, 010, 110, 001).
v′ will be decoded as (101, 010, 110, 111) which is the
cheaters’ codeword since d ≤ t. Shareholder x3 = 100 will
be labeled as a “cheater”. Consequently, the forged secret
S′ = 100 (as in Example III.1) will be retrieved. �

IV. THE ROBUST ADAPTIVE SECURE SECRET SHARING

(RASSS) PROTOCOL

We have shown that (1) the RS-based protocol has a limited
cheater correction capability with probability of 1, and (2) the
AMD codes provides strong detection of any modification to
the secret with a probability close to 1. Inspired by these prop-
erties, we propose a new robust adaptive secure secret sharing
(RASSS) protocol for secret sharing using both techniques for
cheater identification and correction. The advantages of the
new protocol are:

1) When 0 ≤ t < n/3 (or 0 ≤ t ≤ d−1

2
): the AMD-based

protocol detects the cheating and the proposed protocol
(a) corrects all the cheaters’ shares and (b) retrieves the
correct secret with a probability of 1, same as in the RS-
based approach;

2) When n/3 ≤ t ≤ n− k (or d−1

2
< t < d): the proposed

protocol is able to identify all the cheaters and retrieve the
correct secret with a probability close to 1. Both the RS
and AMD-based protocols only detect the cheating, but
they are unable to either identify the cheaters or retrieve
the correct secret;

3) When n − k < t ≤ n (or d ≤ t ≤ n) and there are
not enough honest shareholders to retrieve the secret:
the proposed protocol detects cheating with a probability
close to 1, same as in the AMD-based protocol. With
additional resources, the proposed approach is able to
identify cheaters and retrieve the secret. Whereas, the RS-
based protocol will retrieve a fake secret and mislabel the
honest shareholders as cheaters.

The following subsections are organized in the order of:
overview of the proposed 4-stage protocol, detailed introduc-
tion of the submodules of the four stages, and a numeric
illustrative example of the protocol’s mechanics.

A. Overview of the RASSS Protocol
The RASSS protocol has four conditional branches to

switch among the stages.
Stage 1: Secret Encoding and Share Distribution

In the first stage the protocol will encode the secret S with
the Algebraic Manipulation Detection (AMD) encoder. The
encoded secret E is then distributed using equation [Eq. 1].

Stage 2: Secret Reconstruction and Verification
A set of k shareholders will participate in the secret reconstruc-
tion using [Eq. 2]. The retrieved secret will be decoded and
verified by the AMD decoder module. If the decoder claims
validity of the secret, then it is considered a successful secret
reconstruction with no cheating involved. If not, the protocol
calls for Stage 3.

Stage 3: Share Error Correction
This stage uses the Reed-Solomon error correction module
in the classic protocol. Here, n = 3t + 1 shareholders
will be invited to participate in the protocol, where t is the
number of estimated cheaters defined by the system. The RS
decoder will try to correct the shares and then send them
back to the secret reconstruction and verification modules. If it
passes both the share correction (by RS decoder module) and
secret verification (by AMD decoder module), then the secret
reconstruction is successful. If either module fails then the
protocol ascends to its fourth stage, indicating that the actual
number of cheaters is greater than n/3.

Stage 4: Group Testing
This stage will generate a group testing pattern in the form
of a binary matrix M of size T × n. As long as there are
at least k honest shareholders, this stage is always capable
of retrieving the correct secret while identifying up to n/3 ≤
t ≤ n − k cheaters within T tests. If n − k < t and there
are less than k honest parties, this stage is still capable of
detecting cheating. The protocol can be extended to include
an invitation module. The purpose of such a module is to pull
in the operation additional parties or system nodes to increase
the number of potential honest participants. The work flow of
RASSS is shown in the figure below.

Group Testing
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Fig. 1: Stage 1 and 2 are sufficient if the number of cheaters t = 0.
If cheating is detected by Stage 2, then Stage 3 with RS decoder is
called under the assumption of t < n/3. If Stage 3 fails then Stage
4 with group testing is able to identify n/3 ≤ t ≤ n−k cheaters and
retrieve the correct secret. If t is even beyond this scale, an additional
invitation module can be introduced to resolve the issue.



The graduate, stage-based, adaptive nature of the RASSS
protocol ensures that a higher security stage with greater
computational cost is activated only if a conditional branch
determines that the current stage is inadequate. Under this
approach, the execution time complexity and resource uti-
lization are application driven and on average (most common
case) minimum. The stages’ submodules are introduced in the
following subsections.

B. Secret Encoding module (AMD Encoder)
The linearity of the RS encoding and its vulnerabilities (cf.

III) enable the attackers to forge legal shares with the knowl-
edge of (n, k, d). In the RASSS protocol, we encode the secret
with security-oriented AMD codes [5] so that forged shares
will not result in valid secrets. Under the protocol, encoded
secrets are distributed instead of original “raw” secrets. This
way, the authenticity of retrieved secrets can also be verified.

Definition IV.1. Let R = (R1, R2, · · · , Rm), where Ri ∈
GF (2b) is a randomly generated b-bit vector. An hth order
Generalized Reed-Muller code (GRM ) [13] with m variables
consists of all codewords (f(0), f(1), · · · , f(2bm−1)), where
f(R) is a polynomial of R = (R1, R2, · · · , Rm) of degree up
to h. Let

A(R) =

{⊕m

i=1
Rh+2

i , if h is odd;⊕m−1

i=2
R1R

h+1
i , if h is even and m > 1;

where
⊕

is the accumulated sum in GF (2b). Let

B(R, y) =
⊕

1≤j1+j2+···+j1≤h+1

yj1,j2,··· ,jm

m∏

i=1

Rji
i ,

where
∏m

i=1
Rji

i is a monomial of R of a degree between 1

and h+ 1. And
∏m

i=1
Rji

i /∈ �B(R, y) which is defined by:
{
{Rh+1

1 , Rh+1
2 , · · · , Rh+1

m }, if h is odd;

{Rh+1
2 , R1R

h
2 , · · · , R1R

h
m}, if h is even and m > 1.

Let f(R, y) = A(R)⊕ B(R, y), then a generalized AMD
codeword is composed of the vectors (y,R, f(R, y)), where y
is the information portion, R the random vector, and f(R, y)
the redundancy portion [5]. �

Remark IV.1. If the attack involves an error ey �= 0 on the
information y, which is the major purpose of almost all attacks,
then in f(R, y) the term A(R) can be omitted [14]. �

In the RASSS protocol, by a randomly generated vector
R and the AMD encoding equation for f(R, y), the original
secret S is encoded into:

E = (S, f(R,S)). (5)

We call this newly generated E the encoded secret. It will
be shared using [Eq. 1] to all shareholders instead of the
original secret S. And the random vector R will be sent to
the secret decoding module after every secret encoding.

C. Secret Decoding module (AMD Decoder)
The secret reconstruction procedure will retrieve a secret

that is probably distorted under the existence of cheaters. If
we denote the error caused by cheating as e = (ef , eR, eS),

and the distorted secret as Ẽ = (S̃, ˜f(R,S)), then the AMD
decoder is to check whether the following equation holds:

˜f(R,S)
?
= f(R̃, S̃) (6)

where ˜f(R,S) = f(R,S) ⊕ ef , S̃ = S ⊕ eS , R̃ = R ⊕ eR,
assuming for the worst case scenario that R is also erroneous.

If [Eq. 6] is not equal, then an error is detected. If Ẽ �= E
but [Eq. 6] still holds the equality, then the error is masked.
The security level of the AMD codes is defined by the error
masking probability Pmask when e �= 0.

By Remark IV.1, if eS �= 0 and so f(R,S) = B(R,S),
[Eq. 6] can be written as the error masking equation (EME):

B(R,S)⊕ ef ⊕B(R⊕ eR, S ⊕ eS) = 0. (7)

It is fairly easy to determine that the left side of [Eq. 7] is
a non-zero polynomial of R of a degree up to h, and R has
at most h solutions out of all 2b possible values. Any error
caused by attacks that makes [Eq. 7] hold, will be masked.
Therefore for any given error e = (ef , eR, eS) where eS �= 0,
the security level of AMD codes characterized by the error
masking probability Pmask can be upper bounded by:

Pmask =
h

2b
. (8)

It is obvious that as b increases, the error detection proba-
bility (1−Pmask) grows rapidly close to 1 and the AMD code
becomes more secure.

D. Share Error Correction Module (RS Decoder)
Without loss of generality, when Stage 2 detects that the

reconstructed secret is invalid, it is reasonable and practical
to initially assume that t is not a large number. Therefore,
Stage 3 involves n = 3t+1 shareholders and tolerates up to t
cheaters with a probability of 1 by the RS decoder. The secret
retrieved from the corrected shares will still be verified by the
AMD decoder module in the case of the collusive attacks (cf.
Section III-B and III-C).

E. Group Testing Module
If Stage 3 fails and the actual number of cheaters t ≥ n/3,

Stage 4 is enabled to identify cheaters and retrieve the secret
with a probability close to 1 using secret verification and group
testing. Stage 4 uses group testing to tolerate cheaters in the
range of n/3 ≤ t ≤ n−k (or d−1

2
< t < d). The lower bound

is beyond the capability of the classic RS decoder module, and
the upper bound is tightly roofed by only k honest shareholders
(the minimum number required to retrieve the secret). This
means that out of

(
n
k

)
possible subsets of shareholders, there

can be as few as 1 subset only to retrieve the correct secret.
The test pattern is described in the following construction.

Construction IV.1. For any secret sharing scheme that is (k−
1)-private, suppose among n shareholders there are t cheaters
where n/3 ≤ t ≤ n− k. A test pattern to identify the honest
and cheating parties can be constructed as a binary matrix M
of size T × n, where T is the number of tests needed. The
rows of M consist of all different n-bit vectors with exactly k
1’s and so T =

(
n
k

)
. Each column of the matrix therefore has(

n−1

k−1

)
number of 1’s. The 1’s in each row (test) correspond to

the shareholders participating in that particular test. Each test
is a two-step procedure:

1) A secret reconstruction using [Eq. 2] to retrieve the secret

Ẽ with its specific participants;

2) An AMD decoding using [Eq. 6] over Ẽ to verify the
validity of the retrieved secret. The test syndrome is a T -
bit binary vector u, where 0’s in u indicate the equality
of [Eq. 6], and 1’s the inequality. �



Then the cheaters can be identified by the algorithms below.

Algorithm IV.1. For any (k−1)-private secret sharing scheme
and its corresponding group testing matrix M there are
n shareholders participating in the tests indexed by H =
{0, 1, 2, · · · , n − 1} . Among the n shareholders there are t
cheaters where n/3 ≤ t ≤ n−k. Let w = (w0, w1, · · · , wn−1)
be a n-digit vector and w = u� × M , where u is the
T -bit binary test syndrome and × is the multiplication of
regular arithmetic. The cheaters’ indices belong to the set
{l| wl =

(
n−1

k−1

)
}. and the rest of the holders are honest. �

This test pattern M can be utilized in an adaptive manner
to drastically reduce the average number of tests needed.

Algorithm IV.2. For a test pattern M of size T ×n generated
by Construction IV.1, �T is the number of tests needed to
find the first 0 (equality of [Eq. 6]) in the test syndrome. The
k honest holders identified by this test are indexed by I =
{i0, i1, · · · , ik−1}. The system only needs to run at most n−k
more tests whose participants are {i0, i1, · · · , ik−2, j}, where
j ∈ H\I . Each test’s syndrome indicates holder j as a cheater
or not by 1 or 0. The total number of tests needed to identify
all holders is then. 0 at most �T + (n− k). �

F. Extra Invitation Module
If the group testing module in Stage 4 cannot successfully

identify the t cheaters in the system, where n − k < t ≤ n,
then the number of honest shareholders is less than k. Unlike
the classic one, the RASSS protocol will still raise the cheating
alarm based on the AMD decoder module [Eq. 6]. Moreover,
the protocol is adaptive enough to be extended to a fourth stage
to include an invitation module. This module can pull in the
execution additional participants and perform new rounds of
group testing. From the hardware prospective, the invitation
module can be power-gated and disabled when not in use.

Algorithm IV.3. Let the number of honest shareholders in the
current group testing be �k and 0 ≤ �k < k. Suppose the
system is able to identify an extra set of k honest shareholders
from another group. Then these k honest parties can be
combined into the current group with the modified group
testing matrix of size

(
n+k
k

)
× (n + k). With this new test

pattern, the �k+ k honest shareholders can be identified and
the rest will be properly labeled as cheaters. �

G. An Example of the Proposed RASSS Protocol
Here we present an illustrative example to demonstrate the

adaptivity and robustness of the proposed protocol.

Example IV.1. A Shamir’s secret sharing scheme is (k − 1)-
private and k = 3. The original secret S ∈ GF (212) where
S = 001111110000 = 0x3F0. The RS decoder is constructed
under the assumption that there are at most 2 cheaters in every
secret reconstruction. However, in the actual scenario there are
more cheaters than honest shareholders. The RASSS protocol
is able to retrieve the correct secret under this grave situation.

Stage 1: Secret Encoding and Share Distribution
The original secret 0x0F0 is first encoded by the AMD
encoding equation [Eq. 5]. Using Definition IV.1. we choose
b = 4 such that the encoding and decoding are over GF (24),
m = 1 such that the random vector has only one symbol,
and h = 3 such that S is partitioned into 3 symbols S =
(S0, S1, S2) where S0 = 0x3, S1 = 0xF , and S2 = 0x0.
Suppose the random number generator generates R = 0x6.

The original secret will be encoded to an AMD codeword
E = (S, f(R,S)) = (S,B(R,S)) by:

B(R,S) = S0R⊕ S1R
2 ⊕ S2R

3 = 0x1 ⇒ E = (0x3F01).

Then with the share distribution polynomial:

Di = c0 ⊕ c1xi ⊕ Ex2
i

where c0 = 0xAAAA, c1 = 0x5555 are arbitrarily chosen
coefficients and c0, c1, E ∈ GF (216), this encoded secret is
shared to seven shareholders with IDs and shares {xi : Di}
= {1 : 0xC0FE}, {2 : 0xFC04}, {3 : 0x9650}, {4 :
0x0FB4}, {5 : 0x65E0}, {6 : 0x591A}, {7 : 0x334E}.
However, shareholders {3, 4, 6, 7} are cheaters and they have
collusively selected another secret S′ = 0xABCD and forged
another share distribution polynomial:

D′
i = 0xBBBC ⊕ 0x7777xi ⊕ 0xABCDx2

i .

By their IDs, their shares are changed to: {3 : 0x2686},
{4 : 0xDBAF}, {6 : 0x9A2F}, {7 : 0x4695}.

Stage 2: Secret Reconstruction and Verification
Suppose shareholders {2, 3, 4} are selected to reconstruct the
secret with {3, 4} being cheaters. By the secret reconstruction
[Eq. 2] the retrieved secret is:

Ẽ = 0x5522.

The reconstructed secret will be verified by the AMD

decoder using [Eq. 6]: ˜f(R,S)
?
= f(R̃, S̃), where ˜f(R,S) =

B̃(R,S) = 0x2, R̃ = 0x6, S̃ = (0x5, 0x5, 0x2). Through the
computation over GF (24) we have the following inequality:

[B̃(R,S) = 0x2] �= [B(R̃, S̃) = S̃0R̃⊕ S̃1R̃
2⊕ S̃2R̃

3 = 0x7].

Thus, cheating is detected and Stage 3 will be initiated under
the assumption of t = 2 cheaters.

Stage 3: Share Error Correction
Under the RS decoder, n = 3t + 1 = 7 shareholders will be
involved and it can correct up to 2 shares using an (n, k, d) =
(7, 3, 5) RS code. However, there is a total number of t = 4
cheaters {3, 4, 6, 7} which is beyond the capability of this RS
decoder. Therefore, the protocol moves in its fourth stage.

Stage 4: Group Testing
This stage is designed under the assumption that among all
the shareholders from Stage 3, only k = 3 are honest. The
group testing matrix M of size T ×n can be constructed with
Construction IV.1, where T =

(
n
k

)
= 35, n = 7. To save space

M is listed in its transposed form M�:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0
4 0 1 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1
5 0 0 1 1 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 1 0
6 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 1
7 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1

Each test involves 3 shareholders and the secret retrieved
by them is to be verified by the AMD decoder. Since holders
{1, 2, 5} are honest, test 7 is the first test with syndrome 0.

Based on the adaptive Algorithm IV.2, �T = 7. The
system will only need to run the tests of {1, 6, 8, 9} whose
participants are {1, 2, j} where j ∈ H\I = {3, 4, 6, 7}.
Thus only tests {8, 9} are left to run. The actual number of
implemented tests are then 9 < �T + (n− k) 


(
n
k

)
= 35.

In this way the cheaters are identified as: {3, 4, 6, 7}. And
the honest holders {1, 2, 5} will be able to retrieve the encoded
legal secret E = 0x3F01 and therefore S = 0x3F0. �



V. DESIGN ANALYSIS OF RASSS

A. Error Masking Probability
In Example IV.1 the AMD code works over GF (24), per

equation [Eq. 8], the error masking probability is Pmask = 3

24

in the worst case. To increase the security level one can simply
have the protocol work over a larger field.

In more of our experiments, the sizes of the encoded
secret E are set to {8, 16, 32, 48, 64, 80, 96, 128} bits which
are the cases for most real-world applications. Therefore,
the AMD codes are over GF (2b) fields where b ∈
{2, 4, 8, 12, 16, 20, 24, 32}. A comparison is made between the
experimental Pmask (under 4 · 2b rounds of RASSS for each
b) and the theoretical Pmask.
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Fig. 2: The experimental Pmask matches the theoretical upper bound
Pmask =

h

2b
. The experimental results are usually better than the

upper bound because the left side of equation [Eq. 7] does not always
have h solutions in the finite field. Also when b ≥ 32 the experiments
did not miss a single attack.

B. Hardware and Timing Overhead
The hardware cost comparison between RASSS and the

classic scheme is made on a Xilinx Vertex 7 XC7VX330T
FPGA board under the same parameters as in Section V-A.

The timing comparison is made under severely adverse
scenario with t = n − k cheaters for RASSS, and much
less cheaters of t = n/3 − 1 for the classic scheme. It
is implemented by Python on an Intel® Core™ i7-6700 @
3.4GHz and 8 GB memory machine running Linux OS.

TABLE I: Hardware and Timing Overhead

E Hardware (Slices) Timing (106 clock cycles)
(bits) Classic RASSS Overhead Classic RASSS Overhead

8 521 828 0.59 0.47 3.50 7.38
16 1492 2256 0.51 0.56 5.13 9.17
32 3977 6164 0.55 1.36 14.65 10.75
48 6114 9462 0.55 1.89 22.34 11.81
64 8462 12749 0.51 2.55 27.37 10.75
80 9895 15804 0.59 3.18 32.47 10.21
96 11873 18918 0.59 3.68 40.90 11.12

128 17842 27695 0.55 4.79 50.05 10.44
I Overhead = RASSS

Classic
− 1.

I With only 60% of the hardware overhead the RASSS protocol drastically improves the
cheater tolerance capability. The latency of the classic protocol is 49 logic steps and the
latency of RASSS 215 logic steps.

II Although the RASSS protocol has a large T as an upper bound, with the adaptive test in

Algorithm IV.2 it effectively reduces the actual number of tests on average.

VI. CONCLUSION

We proposed and implemented a new secure protocol for
designing trustworthy distributed systems, called RASSS (Ro-
bust Adaptive Secure Secret Sharing). Compared to the classic
protocols which can only tolerate up to t < n/3 cheaters
by RS codes, or detect cheating without cheater tolerance by
AMD codes, the RASSS protocol remarkably improves the
security level to tolerating t ≤ n − k collusive cheaters and
retrieving the secret or information as well. When t is beyond
this range and even t = n, it can still retrieve the secret
when provided with additional resources. The adaptivity of
the protocol allows an efficient implementation for power sen-
sitive cooperative systems. In future work, we plan to further
improve on the practicality of the protocol and significantly
reduce the hardware overhead. We also plan to improve the
cheater identification and cheating tolerance capability.
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