2018 IEEE Computer Society Annual Symposium on VLSI

Mystic: Mystifying IP Cores Using an Always-ON
FSM Obfuscation Method

Ehsan Aerabi, Ahmad Patooghy, Hamidreza Rezaei, Miguel Mark, Mahdi Fazeli, and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Boston University

Abstract—The separation of manufacturing and design pro-
cesses in the integrated circuit industry to tackle the ever
increasing circuit complexity and time to market issues has
brought with it some major security challenges. Chief among
them is IP piracy by untrusted parties. Hardware obfuscation
which locks the functionality and modifies the structure of an
IP core to protect it from malicious modifications or piracy
has been proposed as a solution. In this paper, we develop an
efficient hardware obfuscation method, called Mystic (Mystifying
IP Cores), to protect IP cores from reverse engineering, IP over-
production, and IP piracy. The key idea behind Mystic is to
add additional state transitions to the original/functional FSM
(Finite State Machine) that are taken only when incorrect keys
are applied to the circuit. Using the proposed Mystic obfuscation
approach, the underlying functionality of the IP core is locked
and normal FSM transitions are only available to authorized
chip users. The synthesis results of ITC99 circuit benchmarks for
ASIC 45nm technology reveal that the Mystic protection method
imposes on average 5.14% area overhead, 5.21% delay overhead,
and 8.06% power consumption overheads while it exponentially
lowers the probability that an unauthorized user will gain access
to or derive the chip functionality.

1. INTRODUCTION

Growing complexity and critical time-to-market have played
key roles in the current semiconductor design and manufac-
turing supply chain landscape. For example, many fab-less
companies have emerged to take advantage of low-cost over-
seas foundries for IC production. Companies, such as ARM
Holdings, develop and sell their soft intellectual properties
(IP) to other chip manufacturers for the hard implementations.
There is a large international market for these pre-built, veri-
fied and ready-to-use soft IP designs. Under this globalization
trend, IP piracy has become an increasing concern which
has drawn a great deal of research and investment from both
academia and industry [1]. For instance, an untrusted party
can reverse-engineer and steal an IP core and then claim
ownership, resell or over-produce it [2].

Logic Masking is a set of IP piracy prevention methods
which obfuscate the circuit’s main functionality to prevent
unauthorized access to the chip’s functionality. The circuit
cannot properly operate until the owner activates it by means
of an activation key. Logic masking is generally achieved by
inserting Key Gates e.g XOR/XNOR/MUX/AND/OR into the
original combinational circuit, each of which is driven by a
bit of the activation key. These key gates mask the circuit’s
functionality in a way that only a unique correct key can
neutralize their effects. After chip fabrication, the secret key
is programmed usually in a secure internal EEPROM memory
and the masked IP is unlocked by the owner.

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLS1.2018.00119

626

In order to maximize the mismatch points between the
masked circuit and the original circuit when comparing them
by formal methods, Chakraborty et. al [3] proposed a method
based on fan-in and fan-out cones in the circuit. Rajendran et.
al [4] presented another logic masking method in which key
gates have more effect on each other. This hinders attacker’s
effort to reveal the key by feeding the circuit with specific
inputs and propagating uncorrelated key bits to the outputs.
Using the concept of Fault Propagation, [5] tries to perform
a proper key gate insertion. The aim is to have nearly 50%
of the wrong output bits when a wrong key-vector is applied.
By choosing appropriate nets to insert XOR/XNOR gates, one
can achieve 50% correctness in the Hamming Distance (HD)
among outputs for the valid key and invalid key. Using the
MUX primitive as key-gates instead of XOR/XNOR has been
proposed in [6] and [5]. When supplied key-inputs are correct,
the MUXs pass the correct input, otherwise they pass a wrong
value coming from other parts of the circuit. Overall, the goal
in [5] is to achieve a high HD between the correct and wrong
keys.

Sequential circuit masking methods try to obfuscate the
finite state machine (FSM) of the circuit at the system level
perspective. Under this set of approaches, the original state
transitions are modified in a way that only a unique sequence
of keys can drive it through its correct transitions. Otherwise,
the system is lost in out-of-order or fake states.

Chakraborty et. al proposed an FSM-based method called
HARPOON [7], which adds a finite state machine to the IP
core netlist. The FSM outputs are connected to the internal
nodes of the circuit via some XOR gates. Therefore, the circuit
cannot properly work until the output of the added FSM be-
comes logical zero. Zhang et. al presented an IP protection and
FPGA licensing scheme which combined FSM masking with
PUFs (Physical Unclonable Function) [8]. Recently, Sumathi
et. al [9] published an FSM-based IP protection to improve
the HARPOON approach.

The contribution of this paper is two fold.

o A new hardware attack specification: although substantial
research has been done on sequential logic masking, we
show that most of the previous sequential logic masking
techniques are vulnerable to FSM Separation Attack.

o A new obfuscation method: to address this weakness, we
propose an FSM-based logic masking technique at the
RTL level. The proposed method can effectively protect
against FSM Separation Attacks as well as the recently
presented SAT attacks [10], [11].

IEEE
computer
® psoaety

This paper is organized as follows. In Section II, we pro-
vide a brief overview of the previously proposed obfuscation
methods. Section III introduces our proposed attack method. In
Section IV, we explain our proposed FSM encoding method
and show how it overcomes the mentioned weakness using
an illustrative case. Section V contains an explanation of the
experimental system setup and results. Finally, Section VI
concludes the paper.

II. BACKGROUNDS

Logic masking protection mechanisms can be divided into
“sequential logic” and “combinational logic” protections. For
sequential logic circuits, the protection method is applied to
the state transition graph of the circuit by adding extra states
with the aim of masking or authenticating [9], [3], [12], [13].
Almost all of the previously proposed sequential encodings
are based on the concept illustrated in Figure 1. As shown
in the figure, a set of obfuscated states is added to the FSM
of the original design. The circuit starts from an initial state
in the obfuscated states set. In this initial state, the circuit
is locked and its produced outputs are intentionally wrong.
To successfully traverse the obfuscated states and enter the
original states of the circuit, one must apply to the input(s)
the correct sequence of ig to i, for (n+ 1) consecutive clock
cycles. Exiting the obfuscated states will lead to the first state
within the normal FSM, Tj. Therefore, the circuit will now
correctly respond to inputs since outputs here are functions
of inputs and the original FSM states. If k is the number of
primary inputs which are applied to the obfuscated states, then
an attacker needs to potentially perform 2F x 27 searches to
unlock the circuit.

For the combinational logic circuits, some extra gates
(XOR/XNOR or multiplexer) are inserted into the original
combinational circuit. Each obfuscating gate has an input that
is derived from the secret key, so that the correct combination
of the key bits would neutralize the masking effect of these
gates. Consequently, an incorrect input key will lead to incor-
rect circuit functionality. XOR/XNOR gates could be inserted
randomly in the circuit as expressed in [14], but there is no
guarantee of the circuit malfunctioning if the wrong keys are
used as input. Some researchers [3] have tried to improve
the robustness of these obfuscation methods by combining
combinational and sequential techniques. To achieve this goal,
the outputs of obfuscated states e.g., Sy to S, are connected
to Modification Cells which are extra logic inserted into the
circuit’s combinational part (See Figure 2). While the circuit
is in the obfuscated states, the outputs of Sy to S,,_1 enable
the Modification Cells and disables normal circuit operation.
The Modification Cell combines the original net of the circuit
(p) with a high fan-in signal borrowed from another part of
the circuit to add more obfuscation.

The output of the Modification Cell is often expressed as an
output =p- f +p-g- f where f is the obfuscation enabling
signal, f = 1 when the circuit is in the obfuscated states and
otherwise f = 0. p is the original net and g is the high fan-in
net. Since f is a function of Sy to S,,_1, it evaluates to zero

627

Obfuscated

Normal Cloud Obfuscation Cloud

Ostart State . Obfuscated State . End State . Normal State

Fig. 1. General block diagram of FSM encoding methods.

Normal Combinational Cloud Obfuscated Combinational Cloud
A high fan-in net.
of the circuit

obfuscated states
Fig. 2. Combinational logic obfuscation using modification cells.

whenever the obfuscated FSM goes through the Unlocking
Transitions and reaches the normal FSM.

III. FSM SEPARATION ATTACK

In this section we describe the FSM Separation Attack
which can exponentially reduce the search space for attackers
to unlock an obfuscated circuit. This builds on the work
presented in [15] with key clarifications to the attack steps
and concrete implementations of the attack on real circuits.

Suppose a circuit which is jointly protected using FSM
and combinational obfuscation methods as described in the
previous section. We know that the circuit has some memory
elements storing its obfuscated Sy to S, _1, and original T}
to 7T,,—1 states along with some combinational parts. The
resilience of the circuit relies on the fact that the attacker
cannot distinguish between the added state elements Sy to
S,—1 and the original ones Ty to T;,_1. If an attacker can
manage to find the added states, they would be able to traverse
all 2™ value space of Sy to S,,—1 to find out which one unlocks
the circuit; then they can set it to obtain the normal operation
of the circuit illegally. The FSM separation attack has three
stages:

« In stage one, the circuit HDL code is used by an attacker

to divide the combinational and sequential parts of the
circuit. Note that this is possible since FSM memory
elements can be easily distinguished from combinational
part of a given IP core. However, since the attacker does
not know how many state elements were added to the
original circuit, the attack moves to stage two.
For stage two, the attacker has to assume all possible
values for n from 1 to L where L is the total number of
state elements of the circuit, L = m + n. The attacker
needs to figure out which subset of L states are the added
Si’s. Assuming 7 as a hypothesis for n, there are (ﬁ)
possible combinations for Sy to S;—1.

« In the final stage, for each hypothesis, the attacker needs
to (i) eliminate flip-flops which are assumed to be the
(added) obfuscation ones, (ii) put zero as their outputs
and (iii) see if their elimination unlocks the circuit.

It is an iterative attack where the second and third stages
will loop until the circuit is unlocked and produces a valid
response. The total number of trials that the attacker needs to
unlock the circuit can be computed by Equation (1).

£

It is worth noting that this number differs from the search
space presented in [3] i.e., (2™*F) where m is the number of
a circuit’s obfuscated states and k is the number of a circuit’s
primary inputs. 2% could still be a large number of states
with a large number of flip flops, but 7 is generally a very
small number due to the overhead associated with the added
FSM. Hence, the iteration loop will terminate much sooner
than exhausting the entire 2° space. We will show this fact
in an experimental study later in the section. A key aspect of
the FSM separation attack is that its search space does not
depend on the number of circuit inputs k. In fact, this attack
reduces the attack complexity by separating the combinational
and sequential parts of the circuit.

To examine the impacts of this complexity reduction, let
us consider the following synthetic [3] and real examples.
Assuming k = n = 16, the computation space is 22°6 ~ 1077
which is infeasible to search. For real commercial IP cores,
we consider NEO430 and ao068000, two CISC (Complex
Instruction-Set Computers) open core CPUs. These IPs are
relatively big circuits e.g., 3500 VHDL lines for ao68000.
They are well within the range of real world circuits.

The NEO430 and ao68000 have 860 and 724 memory
elements i.e., flip-flops, respectively. However, the largest logic
block in these CISC IPs is a 5-bit state variable and therefore
less than 2° = 32 states. Obviously a large portion of memory
elements in each IP is used to store processed data and a very
little portion is used as state holders. This means that when
a designer chooses a bigger number for n to make it more
difficult for the attacker to traverse the computational space,
the hardware overhead should be considered with respect to
the number of memory elements which are doing state holding.
For example [3] has reported 18.44 and 15.88 percent over-
heads for only six added state elements. These sample circuits
confirm that in the real world, (1) parameter m is not very large
and (2) overheads of using a large number of obfuscating states
i.e., parameter n can be very high. To investigate the effects
of FSM separation attacks against existing protection schemes
on real circuits, we studied the feasibility of these attacks on
ISCAS’89 circuits. In our evaluations, we used the largest
circuits namely (a) s38417 circuit with 28 primary inputs
and 1635 D-type flip-flops and (b) s38584 circuit with 38
inputs and 1425 D-type flip-flops. The circuits are synthesized
targeting the Spartan-6 FPGA board using the Xilinx ISE
Design Suite operating at 100 MHz.

ey

628

TABLE 1
SUCCESSFUL ATTACK TIME ESTIMATION FOR ISCAS CIRCUITS
OBFUSCATED BY TRADITIONAL METHODS.

Number of Added State Elements

Circuit|#FF| 1 2 3 4 5 6 7 8 9 10
S$298 | 14 | 3 s [33 pus {203 ps {968 ps| 3 ms | 13 ms [42 ms (122 ms|326 ms|817 ms
S$344 | 15 (4 ps [38pus (242 ps| 1ms | 5ms |18 ms | 61 ms (183 ms|510ms| 1s
S$349 | 15 (4 ps [38pus (242 ps| 1ms | 5ms |18 ms | 61 ms (183 ms(510 ms| 1s
S526 |22 |5ps |74 pus (649 ps| 4ms |24 ms (118 ms|508 ms| 1s 7s 23s
S641 | 19 | 5ps |57 ps (442 ps| 2ms |13 ms | 57 ms |222 ms|777 ms| 2s 7s
S713 |19 |5pus |57 ps (442 ps| 2ms | 13 ms | 57 ms |222 ms|777 ms| 2s 7s
S$838 | 32 | 8 s (148 pus| 1 ms | 16 ms (125 ms(815ms| 4s 23s iM 7™M
$1196| 18 |4 pus |52 pus (384 ps| 2ms [10 ms | 44 ms |164 ms|555ms| 1s 5s
$1238| 18 |4 pus |52 ps (384 ps| 2ms [10 ms | 44 ms |164 ms|555ms| 1s 5s
$1423| 74 |18 pus|731 ps| 19 ms [375ms| 65 1M |15M | 2H 1D 9D
$1488| 6 |1ps| 8us | 29 ps | 82 ps (197 ps (428 us (857 us| 1ms | 2ms | 4ms
§5378|179|45 us| 4 ms |251ms| 11s | 7M 3H 4D | 96D | 6Y [105Y
$9234|211|53 us| 5ms |[408 ms| 22s [15M | 9H | 12D | 346D | 23Y [517Y

For the sake of fairness, we used the same simulation setup
as used in [3]. We added two extra d-type flip-flops and
inserted four XOR gates into high fan-in nets in s38417 and
s38584 circuits. Based on normal calculations, an exhaustive
attack will test 238%4 = 2152 inputs to unlock the s38584
circuit, and 228%4 = 2112 inputs for the s38417 circuit. These
circuits were assumed unbreakable for a polynomial time
attack scheme. However, we showed that if an FSM separation
attack is occurs, the circuit degenerates into lower orders.

To attack the s38417 circuit, we assume 1 to 1635 of flip-
flops as FSM masking ones and check our hypothesis. This
attack is accomplished in a short time, since only two of the
1635 flip-flops are intended to do FSM encoding i.e., the cir-
cuit has just 4 obfuscating states. The search took 1, 340, 703
clock cycles in our simulation environment. This means that it
took about 335 milliseconds to attack the obfuscated s38417
circuit. We performed the same FSM separation attack on the
obfuscated circuit of s38584 and were able to break the circuit
in only 254 milliseconds. It should be noted that the FSM state
elements in ISCAS’89 circuits are not distinguishable from
the rest of the memory elements, otherwise the attack could
be significantly faster.

Table I estimates the FSM separation attack duration time
for some of the other ISCAS circuits when different numbers
of flip-flops are used in the obfuscating FSM. In this table
we have examined up to 10 added obfuscation flip-flops and
calculated the required time for a successful FSM separation
attack. For those circuits with a large number of flip-flops (e.g
59234 and S5378) the attack time is in order of hundreds of
years (which is still assumed a feasible attack on distributed
and parallel systems). Nevertheless, we can conclude that
regardless of the circuit size, using a separated obfuscating
FSM to lock the chip cannot protect the chip especially when
the number of memory elements in the obfuscating FSM is not
very high (see S1488 results with 6 flip-flops in Table I). On
the other hand, adding a large number of obfuscating states
implies an unacceptable overhead on the protected circuit.

In this paper, we propose a method where the robustness of
obfuscation does not depend on the number of added states.
Since it checks for the correct key before every FSM transition,
it can be used for any desired level of obfuscation.

IV. THE PROPOSED Mystic METHOD

In order to reduce the chance of a successful attack,
we believe that the added obfuscating FSM should not be
completely separated from the original FSM. We propose a
masking technique that is active during the whole operation of
the circuit in its lifetime. The technique combines original and
obfuscated states and significantly reduces the probability of
an attack successfully unlocking the target circuit. As shown in
Figure 3, the circuit starts working from an original state and
works correctly. However, in each state in the circuit’s FSM, a
set of the key bits should be correct in order for the FSM to go
through the correct transition and operate consistently. On a
wrong key, the FSM goes to a wrong state which will perturb
the entire computation for the rest of the circuit operation.

The key underpinning of the proposed technique is the
concept that a designer may add more state transitions and/or
additional states to mask the original FSM. Going back to
Figure 1, it should be highlighted that the proposed method
actually adds a Locking Transition to the model in opposite
direction of the Unlocking Transition. To compensate for a
small state space, a designer may add extra states as a means
of increasing the transition candidates for the masking process.

We propose an iterative masking algorithm to systematically
add obfuscation transitions or states to a given circuit. On
each iteration, the algorithm chooses a state to which an extra
obfuscating transition is going to be added. To choose an
appropriate state, we propose a simple but effective Security

Metric that can be assigned to each state s as Equation (2)
SM, = OutEdge)
KeyCounts + 1
where OutEdges is the total number of transitions started
from the state s and KeyCounts is the number obfuscating
transitions which have been previously added to state s during
the masking process. One general observation is that the
states with high OutEdge tend to be more critical in the
operation of the FSM. Therefore, an intuitive and judicious
way for selecting the order of states to guard when all the
circuit states cannot be guarded is to use the OutEdge degree.
In addition, having the KeyCount on the denominator of
the metric gradually decreases the importance of previously
masked states. Locking transitions are added to the original
circuit’s FSM in a manner that allows the circuits to check
their activation keys at runtime. Whenever the input key is not
valid, the circuit follows one of the added Locking transitions
and goes to an intentionally wrong state.

Algorithm 1 presents the masking procedure. It receives
an input key K and an FSM graph F. First, in lines 2 and
3, it prepares two lists for storing KeyCounts and Security
Metrics associated with each state. Then in lines 5 to 8§,
it calculates initial security metrics for all states. The main
masking iterations start from line 10. For each key bit K[j],

629

Normal
Start State

— Locking Transition

<«—— Normal Transition

L -

Mixed State Cloud

Fig. 3. Our proposed FSM encoding methods.

Algorithm 1: The Proposed Masking Algorithm

1
2

3

4

5
6

Input: Key K

Input: FSM graph F with Sr states and Er edges

Result: Obfuscated FSM graph F

// Initialization

Define zero-initialized list of integers KeyCount with
size of |Sz|;

Define zero-initialized list of floats SecM etric with size
of |S Fls

// Calculating Security Metrics

for i + 1 to |Sx| do

OutEdge < number of edges in Er starting from
S f[i];

SecMetricli] <

end for

// Masking F

for j < 1 to |K| do

m < index of the largest value in SecM etric;

Add to Ex an edge from Sz[m] to a random state in
Sz with K[j] activator;

//Update Security Metric for Sx[m]

KeyCount[m] + KeyCount[m] + 1;
OutEdge

OutEdge .
KeyCount[i]+1°

SecMetric|m] + FeyCount(m] i1
end for
Return F;

Fig. 4. An example of the proposed masking algorithm.

the algorithm finds the state Sz[m] with the highest security
metric value and then adds a transition Ej., _gp;) starting
from Sr[m] which ends at a random (not already connected)
state. The transition Ly, g(;) shifts the FSM to a wrong state
whenever the attacker’s key bit is not equal to the correct value
Kl].

To illustrate the operation of the proposed Mystic algorithm,
we applied it to the FSM graph shown in Figure 4-A. As
shown in this figure, the highest Security Metric belongs to
states S and S4 due to their higher out Edge degree which
is equal to 2. Security Metric for the other five states is 1.
Therefore the first bits of the key are negated and inserted
as obfuscating transition of state S; in Figure 4-B and state
Sy in Figure 4-C. By updating the security metrics, we have
all states with security metrics of 1. The algorithm chooses a
random state on each iteration (S5 and Sg on Figure 4-D and
4-E) and adds an obfuscating transition to them. This process
continues until all bits of the activation key are used. Note that
it is possible for a transition to have multiple key bits or even
a function of key bits as an activating function on obfuscating
transitions. To answer the question of wether we have multiple
key bits activator or not, we have to compare |K| with |Sz|.
If || > |Sr|, we have some states with multiple key bits
activators, but when || < |Sz| we can manage to have no
such state. Since allowing multiple key bits as activator i)
increases the hardware overhead of our proposed method and
ii) loses the termination condition of our proposed masking
algorithm, in this example we bound the number of added
obfuscating transitions to 4.

In terms of estimating the obfuscation level of Mystic, it is
important to note that each state is obfuscated using a subset
of the masking key. All of the key bits in that subset should be
correct for the FSM to perform a single transition correctly.
Similarly, for the following transition, another subset of the
key bits should be correct. From the attacker’s perspective,
for each state, a subset of the key bits needs to be guessed
correctly. For key hypothesis checking, the attacker needs to
test all possible values for all combinations of key subsets with
different lengths. The compute complexity of this verification

IK|

operation is:
¢ = E (>2k
k=1

It is worth noting that the key size || in (3) is much bigger
than the number of states in the circuit, L. In fact, probability
of correctly passing a state by an unauthorized attacker is +

Generally, the attacker’s only reference to evaluate the
correctness of a key guess is the output of the circuit i.e.,
a correct output. Under the Mystic obfuscation method, the
attacker does not have any reference output, especially when
it comes to large IP cores like CPUs and cryptographic cores.
This constitutes another important security feature of the
Mpystic technique to further reduce the chance of a successful
attack. Because these large IPs oftentimes do not produce
meaningful intermediate outputs, the attack must pass several
transitions correctly to produce a meaningful output. Without

K|

I 3)

630

TABLE II
OVERHEADS OF THREE SAMPLE OBFUSCATED [P CORES USING
Mystic SYNTHESIZED FOR A XILINX VIRTEX-7 FAMILY FPGA.

AES IP Core CR16 IP Core RISC IP Core
Key [Slice Slice Slices Slice Slice Slices Slice Slice Slices
Length] Reg. LUTs Reg. LUTs Reg. LUTs
0 824 2873 1073] 4211 1920 1330 4473 1825 1490
1 824 2873 1075 4211 1920 1329|4473 1828 1492
4 824 2876 1079 4211 1922 1335|4474 1841 1516
8 826 2894 10894213 1931 1359|4491 1899 1593
16 831 2991 1094|4221 2172 1396 | 4549 2014 1689
32 847 3224 1102 | 4296 2354 1416 | 4678 2288 1803
64 859 3489 11314384 2567 1489|4792 2413 1898
96 863 3755 12534432 2931 1564 | 4881 2698 1972
128 872 4093 1390 4503 3456 1679 | 5153 2984 2299
AVG 841 3229 11424298 2352 1433|4662 2198 1750

an intermediate output, an attacker would need to guess all the
key bits used in several states. Therefore the probability that an
unauthorized attacker generates a meaningful output is reduced
to ﬁ where v is the average number of cycles needed to
produce the next meaningful output of the obfuscated circuit.

V. Mystic HARDWARE OVERHEADS

To evaluate hardware overheads of the Mystic technique, we
have developed a CAD tool in Python. The tool takes the RTL
description of a circuit, extracts the state machine and then
obfuscates it using the key provided by the user. Finally, the
original FSM inside the circuit is replaced with the obfuscated
FSM for heightened security. We performed our experiments
on three benchmarks circuits of 1) AES cryptographic core,
2) A RISC processor and 3) CR16 microprocessor. Results of
the synthesis for both FPGA and ASIC implementations are
compared with those of the recent approach proposed in [8].

A. FPGA Implementation Results

The synthesis results of the three benchmarks on the Xilinx
Virtex-7 xc7vx330t FPGA board are shown in Table II. The
first row in this table shows the hardware utilization for the
three normal benchmarks with no obfuscation. We performed
the obfuscation under 1, 4, 5, 16, 32, 64, 96, and 128 widths
of key. Based on the results, overhead growth is not very
sharp i.e., we have the highest area overhead of 14% for
the RISC IP Core benchmark when the obfuscation key of
128 bits is used. The main reason of such a relatively low
overhead is that the FSM part is not normally a large portion
of the whole digital circuit. It can be seen that the key length
growth mostly affects the number of used LUTs in the FPGA
implementation. Since the proposed masking algorithm does
random selections in some steps, we repeated the obfuscation
process of benchmarks with 128-bit key for 10 times. Figure
5b shows the average overheads when a 128-bit obfuscation
is done on benchmarks. We have also compared the Mystic
method with a recent work presented in [8] in terms of
area, delay, and power. Figure 5a illustrates the overheads
comparison between Mystic and the PUF-FSM based method.

B. ASIC Implementation Results

In the second set of experiments, we added the ITC99 circuit
benchmarks to the three mentioned cores. We synthesized

B Slice Registers

§ & Mystic
« >
2 o ®™Zhang et. Al %
w I
] E N & g
o @ N > n
> wn ~ [} ~
° el ~ o = R
o R o= e}]
o] 3 8 w B <
H @ 8 3 2 q
: 8 IR IS |
=< & m o z ~

LUTS SLICES DELAY POWER AES

(a) FPGA resource overheads for Mystic and [8].

@Slice LUTs

X
a
e
=1
S

8
S
~

(v}

c

R16 IP

(b) Mystic overheads per obfuscated IP cores.

B Area
B Occupied Slices

o 12%

10.62%
12.06%

B Dynamic Power

® =
2 ¢ £ 10% & F
5 a 9(° O Maximum Delay § ﬁ
P s 8% ﬁ
N g o £, 0 ™
3 0
o E W3
NE o o Netd 2 -
RISC 1P AES Risc

(c) Mystic ASIC implementation overheads.

Fig. 5. FPGA Virtex-7 and ASIC 45nm technology implementations resource utilization results.

TABLE III
OVERHEAD RESULTS FOR ITC99 CIRCUIT BENCHMARKS
SYNTHESIZED FOR AN ASIC 45NM TECHNOLOGY.

Circuit Design Overheads (%)
Area Delay Power
bo1 3.14 2.55 5.63
b02 3.05 2.41 5.88
b03 211 1.89 4.12
b04 2.14 1.95 4.05
b05 2.89 2.23 5.41
b06 3.12 2.65 5.88
b07 3.16 2.89 5.69
b08 2.88 2.11 5.01
b0g 2.96 2.32 4.87
b10 3.99 2.96 6.56
b1l 3.55 2.88 6.74
b12 4.55 3.98 7.86
b13 4.14 3.87 7.42
b14 6.08 8.97 10.56
b15 4.84 5.44 8.67
b17 4.96 5.23 8.91
b18 8.06 8.88 11.65
b19 9.34 9.76 11.98
b20 9.55 9.95 12.58
b21 9.61 10.58 12.74
b22 10.88 12.65 14.23
b30 8.54 8.53 10.89
Average 5.14 5.21 8.06

all 26 circuits using the Synopsis Design Compiler tool for
45nm technology and overheads are logged. The area, dynamic
power and maximum delay overheads of the three IP cores
with respect to their non-obfuscated versions are shown in
Figure 5c. The AES circuit has the lowest overheads and
RISC processor has the highest. This is due to more complex
combinational part of the AES circuit in comparison with its
simple sequential logic. The Mystic method does not add any
additional state to the FSM. Instead it adds extra combinational
logic to produce the transition guard considering the key
inputs. Table III shows the overheads for an obfuscated ITC99
circuit benchmark by Mystic for the ASIC 45nm technology.

VI. CONCLUSIONS

In this paper, we showed that the previously proposed FSM
obfuscation methods can be easily broken with a simple FSM
separation attack. This attack is able to break secure-through-
obfuscation circuits with a very low time complexity. We also
presented an always-on obfuscating method which acts as a
security watchdog at runtime and throughout the lifetime of
the chip. When an attacker applies the first wrong key, this
action activates the security watchdog and the chip goes to an
intentionally wrong state resulting in incorrect functionality.
Since the proposed method has a runtime defense mechanism
and covers the lifetime of the chip, it is also robust against SAT
attacks. The synthesis results and the comparative study with

631

previous obfuscation methods show that the proposed method
provides stronger circuit obfuscation guarantees with better
efficiency in terms of area, delay, and power consumption.

VII. ACKNOWLEDGMENTS

This research is partially supported by the NSF grant (No.
CNS- 1745808).

(1]

[2

[3]

[4

[5

[6

[7]

[8

9

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411-1424,
2016.

“Innovation Is at Risk as Semiconductor Equipment and Materials
Industry Loses up to $4 Billion Annually Due to IP Infringement,”
http://www.marketwired.com, [Online; accessed 12-July-2017].

R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-based soc
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493-1502, 2009.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automa-
tion Conference, ser. DAC *12. New York, NY, USA: ACM, 2012, pp.
83-89.

J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 410-424, 2015.

A. Nejat, D. Hely, and V. Beroulle, “Facilitating side channel analysis by
obfuscation for hardware trojan detection,” in 2015 10th International
Design Test Symposium (IDT), 2015, pp. 129-134.

R. S. Chakraborty and S. B., “Rtl hardware ip protection using key-
based control and data flow obfuscation,” in Proceedings International
Conference on VLSI Design, ser. VLSID *10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 405-410.

J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A puf-fsm binding scheme for
fpga ip protection and pay-per-device licensing,” IEEE Transactions on
Information Forensics and Security, vol. 10, no. 6, pp. 1137-1150, 2015.
G. Sumathi, L. Srivani, D. T. Murthy, A. Kumar, K. Madhusoodanan,
and S. A. V. S. Murty, “Structural modification based netlist obfuscation
technique for plds,” in 2016 International Conference on Wireless
Communications, Signal Processing and Networking (WiSPNET), 2016,
pp. 1418-1423.

C. Yu, X. Zhang, D. Liu, M. Ciesielski, and D. Holcomb, “Incremental
sat-based reverse engineering of camouflaged logic circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. PP, no. 99, pp. 1-1, 2017.

M. E. Massad, S. Garg, and M. V. Tripunitara, “Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes,”
in NDSS, 2015.

T. Meade, S. Zhang, and Y. Jin, “Ip protection through gate-level
netlist security enhancement,” Integration, the VLSI Journal, vol. 58,
no. Supplement C, pp. 563 — 570, 2017.

A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in Proceedings of
the Eighth Annual Cyber Security and Information Intelligence Research
Workshop. ACM, 2013, p. 8.

J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30-38, 2010.

T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit sequential
logic obfuscation: Attacks and defenses,” in 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1-4.

