
A Short Survey at the Intersection of Reliability and

Security in Processor Architecture Designs

Lake Bu, Miguel Mark, and Michel A. Kinsy

Adaptive and Secure Computing Systems (ASCS) Laboratory

Department of Electrical and Computer Engineering, Boston University

Abstract—Over the next decade, processor design will en-
counter a number of challenges. The ongoing miniaturization
of semiconductor manufacturing technologies that has enabled
the integration of hundreds to thousands of processing cores
on a single chip is pushing the limits of physical laws. The
fabrication process has also grown more complex and globalized
with widespread use of third-party IPs (intellectual properties).
This development ecosystem has complicated the security and
trust view of processors. Some of the pressing processor archi-
tecture design questions are: (1) how to use reconfiguration and
redundancy to improve reliability without introducing additional
and potentially insecure system states, (2) what analytical models
lend themselves best to the joint implementation of reliability
and security in these systems, and (3) how to optimally and
securely share resources and data among processing elements
with high degree of reliability. In this work, we present and
discuss (1) principal reliability approaches - error correction
code, modular redundancy, (2) processor architecture specific
reliability, (3) major secure processor architectures. We also
highlight key features of a small representative class of the secure
and reliable architectures.

I. INTRODUCTION

The intersection of reliability and security in the design of

processor architectures is now a critical concern in a wide

range of embedded computing, communications systems, and

connected devices. On one hand, as feature size shrinks, tran-

sistors become less reliable and component failures increase.

Transistor scaling and integration result in reliability chal-

lenges, including interference from electric fields, shrinking of

the maximum-minimum voltage window, thermo-mechanical

limitations, and soft, transient and intermittent errors. On

the other hand, the emergence of general-purpose system-

on-chip (SoC) architectures has given rise to a number of

significant security challenges. The current trend in SoC de-

sign is system-level integration of heterogeneous technologies

consisting of a large number of processing elements such as

programmable RISC cores, memories, DSPs, and accelerator

function units/ASIC. These processing elements may come

from different providers, and application executable code may

have varying levels of trust.

In this short survey, we attempt to highlight some of the

pressing processor architecture design questions:

1) Reliability Issues: how reconfiguration and redundancy

are used to improve reliability without introducing addi-

tional and potentially insecure system states;

2) Security Issues: how to optimally and securely share

resources and data among processing elements which

have different levels of trust;

3) Security and Reliability in Architecture: what analyt-

ical models lend themselves best to the joint implemen-

tation of reliability and security in these systems.

Over the years, there have been many attempts to address

the aforementioned processor architecture design issues. Some

commonly accepted approaches and methodologies have even

emerged. In this work, we define “reliability” as the property

of keeping the system in a pre-defined/desired/accepted func-

tional condition. “Security” is characterized by the capability

to protect the system from malicious attempts which either

drive the system away from the accepted functional conditions,

or exploit the limitations and restrictions of the system. These

attempts can be either invasive or non-invasive.

On the topic of reliability, we first emphasize general

approaches: error control codes and their application in proces-

sor architecture designs, modular redundancy for dependable

functionalities in architectures, and processor architecture spe-

cific reliability methods such as ACE (architecturally correct

execution), and AVFs (architectural vulnerability factors). We

then discuss the existing and potential vulnerabilities of these

approaches.

As for the security aspect, we start with major commercially

available and academic secure processor architectures, such

as Intel’s Software Guard Extensions (SGX) and Trusted

Execution Technology (TXT), ARM TrustZone Technology

and derived processor architectures, MIT Aegis Secure Pro-

cessor, IBM 4765 Secure Coprocessor, and Apple Secure

Enclave Processor (SE). We then examine work on privacy

and permission management targeting heterogeneous multi-

core systems. Finally, we stress the potential vulnerabilities

and attacks on some of these security-aware architectures.

Our focus on the security issues in heterogeneous computing

environments primarily centers around multicores where the

cores may have different levels of trustworthiness. The prob-

lem on such compute systems is how to optimally and securely

share resources and data among those processing units, while

maintaining individual tenant security and preventing data

leakage among the units.

The rest of the paper is organized as follows: section II is on

the reliability-oriented architecture designs, followed by their

vulnerabilities. Section III is on the security-oriented archi-

tecture designs, and the existing and potential vulnerabilities.

Section IV discusses the joint design and implementation of

reliability and security. Section V concludes the paper.

118

2018 IEEE Computer Society Annual Symposium on VLSI

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00031

II. RELIABILITY-AWARE PROCESSOR ARCHITECTURES

AND DESIGNS

In this section we will first introduce the error control

codes (ECCs) as a universal technique to provide reliability in

architecture designs. Besides being used as a tool to preserve

the data integrity, the mathematical principle of ECCs can

also be leveraged in the design of reliable systems or proces-

sors. Besides introducing the redundant modules using ECC,

the processor architecture specific reliability such as ACE

(architecturally correct execution), and AVFs (architectural

vulnerability factors) are also presented. The vulnerabilities

of current reliability techniques will be discussed in the final

subsection.

A. ECC-based Reliable Processor Design

The error control codes (ECCs) are usually used to pre-

vent data from being distorted by random errors. The most

straightforward applications are the reliable buses, memories,

and caches [1, 2]. We define the following notations:

• x: the original source data;

• y: the redundant portion computed based on x;

• v the encoded codewords of x;

• e: the random errors on v;

• G() the generating function of v;

• H(): the checking function of v;

• f(): the functional module’s function;

• P (): the predictor function for f();
• ∼: the distortion symbol.

We introduce three of the most common ways that ECCs

can be used to assist the reliability of a system.

1) Random Error Correction: the procedure that an ECC

module uses to protects data from random errors is as follows:

i. Before a piece of data x is transmitted or stored in a

system, it is first encoded by a generating function that

G(x) = v, where x should be able to be retrieved from

v;

ii. During the transmission or storage of v, it might be

corrupted by random errors e, that v + e = ṽ;

iii. When the piece of data is to be extracted, a decoding

function is used to retrieve the correct piece: H(ṽ) = v.

And so x can be derived from v.

The work flow of such procedure is shown in Fig. 1.

Fig. 1. In systematic encoding, v = x||y and y is the redundant
portion computed by G(x) based on x, || the concatenation operator.
In this case the value of x is obvious once the correct v is retrieved.
In non-systematic encoding, x has to be computed through certain
algorithms from v.

2) Data Regeneration: This use of ECC modules is similar

to Fig. 1, except that instead of v being distorted by a random

error e, now part of it is missing. Thus the H() is used to re-

generate v rather than removing e. Due to the property of ECC,

when used for data re-generation, it usually has a stronger

capability in fault tolerance. This approach is now popular in

machine learning acceleration [3] and heterogeneous clusters’

straggler tolerance [4].

3) Self-checking Checkers: There have been many research

efforts on the application of ECCs to the circuits or functional

modules as the self-checking checkers (SCC) to verify the

correctness of their functionality. The common thread in

these efforts is the addition of a parallel module named the

“predictor” to the original function module, which generates

the corresponding check bits at the same time of the functional

module’s output. The predictor’s check bits and the functional

module’s output are verified by the decoder for error detection,

or correction. Together, the predictor and decoder form an SCC

system. The procedure of a SCC’s self-correction is as follows:

i. When an input x comes into a functional module f(), it

is also fed into a predictor module P (), where P () is a

combination of f() and G();
ii. During the computation of f(x), which is the system’s

original functionality, P (x) is also computed. Either mod-

ule can be malfunctional;

iii. The decoder verifies f(x̃) and P (x̃) and outputs the

correct f(x) to maintain reliability.

Figure 2 illustrates the workflow of a SCC.

Fig. 2. Instead of random error correction on the source data,
the goal of a SCC is to protect the functionality f() of a given
system or computation node. With proper optimization, P () does not
necessarily have higher complexity than f();

Various codes have been devised as ECCs such as the

repetition codes, cyclic codes, Hamming codes, and Reed-

Solomon (RS) codes [5, 6, 7]. They are characterized by

different levels of error tolerance capability and decoding

complexity. In recent years, low density codes have become

more popular due to their low complexity in decoding [8, 2].

It should be noted that duplication or triplication systems in

processor designs have originated from ECCs. In a duplication

system [9], two systems with identical functionality will

perform the same operations, and the results of which will be

compared. A triplication system [10], involves three identity

function whose results will participate in a majority voting

119

to tolerate the malfunction of a single system. These two

techniques leverage the concept of repetition codes in ECCs.

B. Architecturally Correct Execution (ACE), and Architectural

Vulnerability Factors (AVFs)

Researchers from Intel [11] introduced the concept of

architecturally correct execution (ACE). In their definition, a

bit in a system is related to architecturally correct execution

(ACE) if it affects the output of the program. Other bits

which do not have such influence are called un-ACE bits. A

structure’s architectural vulnerability factor (AVF) is defined

as the probability that a fault in the structure will result

in an erroneous output. One of the fundamental differences

between AVF estimation and ECC is, the former is more of

a methodology to evaluate an architecture’s reliability, and

the latter is a practical technique to ensure the dependability

of an architecture. Also, the former tracks the bits with an

impact to the final outcome only (particularly from the user’s

perspective), while the latter tries to treat all the bits equally.

A program running on a faulty architecture has multiple

possible outcomes. There can be faults resulting no error, silent

data corruption (SDC), and detected but unrecoverable errors

(DUE). The correlation among them and an architecture’s error

tolerance capability are given by [12] and depicted in Figure 3.

Fig. 3. In this diagram, there can be undetected and uncorrected faults
in an architecture, but they do not necessarily affect the final outcome.
The “detection but not correction” branch can be the scenarios that
the architecture is only equipped with parity check codes but not any
ECC with Hamming distance larger than 3. Or it can be that the
architecture only has an error detection subsystem but not an error
correction subsystem, such as the duplication subsystems.

In [11], authors proposed an efficient approach for esti-

mating AVFs that uses only a subset of the processor state

bits. The used bits in a processor state storage cell/structure

are the ones related to ACE. They will show a distortion in

the output when an error occurs. Other bits in storage cells

are the un-ACE bits, which can be flipped without causing

a functional error. The authors provide the equations and

different approaches for computing the AVFs.

1) Statistical Fault Injection: In this test scheme, random

errors are injected in both randomized space and time domains.

The results will then be compared with a pre-generated refer-

ence result set, or an error-free model. The AVF is computed

by the fraction of mismatches divided by the total number of

injected errors.

If there is no mismatch observed, it can be because either

the error is tolerated, or is masked (silent errors). The latter

is a more complicated situation and has to be studied by a

complete comparison in system states [13].

2) Little’s Law: This method is suitable for the early stage

of a design before the RTL is generated. Denote N as the

average number of bits in the architecture, B the average

bandwidth per cycle into the architecture, and L the average

latency a bit through the architecture, the subscript ACE for

the ACE bits. Then the AVF can be estimated by:

BACE × LACE

N

3) ACE Analysis in Performance Models: In this method, a

performance model is used to determine which bits are ACE

and which are un-ACE. A conservative assumption is made

that, a bit is ACE unless it is proved as an un-ACE. This

methodology can be more time efficient than others.

C. Vulnerabilities of Reliability-Aware Architecture Designs

For most reliability-oriented designs, there can be a large

number of “invisible” errors never detected by the system.

The invisibility is not due to the lack of error detection or

correction subsystems, but because of their linearity. We will

firstly introduce the concept of the “kernel” as a measurement

of the number of invisible errors in an architecture.

Definition 1. Suppose C is the set of N -bit ECC codewords

and H() is the decoding/error detection/error correction func-

tion. C is defined by C = {v|H(v) = 0}. Set Kd is called

the Kernel of C if:

Kd = {e|e+ v ∈ C, ∀v ∈ C}.

Under this definition, if H() is a linear function (which is

the case for most architectures), and there exist an error e that

H(e) = 0, then we have:

H(ṽ) = H(e+ v) = H(e) +H(v) = 0 + 0 = 0. (1)

Then this error is invisible for ∀v ∈ C. If C is linear, then

the set of e which is the kernel Kd = C. This result shows

that for any architecture with a linear error control function,

there exists a large number of invisible errors. The good news

is that for most systems, those invisible errors are more than

one bit, which can be very rare. Thus most single-bit errors

can still be taken care by the SEC-DED subsystems. However

this potential vulnerability can still be leveraged by attackers

to inject forever-masked errors.

120

III. SECURITY-AWARE PROCESSOR ARCHITECTURES AND

DESIGNS

Security, unlike reliability, is a much larger and more

complicated topic for all architecture designers. Different

architectures targeting different security demands will end up

with very distinct structures. Therefore in this section, instead

of giving a universal design methodology, we will present a

number of commercialized and representative security-aware

architecture designs, as well as their advantages and vul-

nerabilities. The subsections will include the introduction of

the MIT Aegis Secure Processor, the Apple Secure enclave

processor (SEP), the ARM TrustZone technology, and the IBM

4765 Secure Processor.

A. MIT Aegis Secure Processor

Aegis [14] is a secure processor which aims to provide

conventional software-based authentication and addresses a

critical assumption made by other secure processor imple-

mentations: physical attacks are infeasible or meaningless. Its

architectural design philosophy is based on the premise that

only the Aegis processor can be authenticated and trusted.

External components such as non-volatile memory and other

processors are treated as non-trustworthy by default. The core

of Aegis’s protection is centered on Silicon Physical Random

Functions (SPUFs) which leverage unique timing delays in

integrated circuits created by the semiconductor manufacturing

process [15]. Aegis uses this unique characteristic in the form

of a PUF delay circuit which is used for secret key genera-

tion and authentication. Furthermore, restricting protection to

one chip prevents the leakage of secrets through unsecured

communication between multiple processing units.

To protect software, Aegis first introduces four additional

processing modes: Standard (STD), Suspended Secure Pro-

cessing (SSP), Tamper-Evident (TE) and Private Tamper-

Resistant (PTR). STD and SSP are the lowest privilege mode

which has no access to private memory and can only enter

the more secure TE and PTR mode. TE has read/write ac-

cess to verified memory and a subset of security functions.

PTR mode is the most privileged due to its access to PUF

instructions. Second, software can be authenticated using an

authentication scheme with SPUFs such as a public/private key

protocol. Lastly, off-chip memory protection in the form of

Integrity verification (IV) and Memory Encryption (ME) can

be enabled when the supervisor switches the processor into TE

or PTR mode after boot. IV and ME aim to provide defense

against both software and hardware attacks. To accomplish

this, the processor partitions the available memory into IV and

ME regions which can overlap. IV protects regions through

detecting and preventing any unintended modifications and

ME utilizes encryption to hide sensitive contents. A trusted

supervisor, such as a kernel manages the sharing of these

protected regions. Later on they also proposed a version of

Aegis which is resistant to malicious operating systems [16].

With these features combined, the Aegis secure one chip

processor can defend against a wide range of attacks. Brute

force based attacks are not feasible due to the sheer number

of challenge-response pairs that can be generated. Attackers

may then attempt to create a timing model of the PUF delay

circuit but this is not possible since no information is leaked

from the circuit. Likewise, an attacker cannot duplicate the

PUF circuit due to nature of the manufacturing process. Even

if the attacker gains physical access to the processor and tries

to probe timing information, the data collected will be useless

due to the interference caused by the probe.

Although the authors noted the omission of side-channel at-

tacks and learning attacks to the PUF which is the fundamental

source of security, overall Aegis can provide a strong defense

with negligible overhead in gate size and performance.

B. Apple Secure Enclave Processor (SEP)

Apple’s Secure Enclave Processor (SEP) [17] is a flashable

coprocessor which utilizes memory encryption and hardware

number generation to carry out cryptographic functions for

the main processor. In a sense, SEP creates a logical wall

between software and sensitive security functions so that

untrusted software cannot gain access to sensitive data such as

fingerprints and keys. To achieve most of its functionality, a

trusted micro-kernel runs on top of the processor, sporting its

own drivers and services. Given the nature of this technology,

Apple has prevented the dissemination of the technical details

of the processor. Therefore, technical details are only available

through efforts of reverse engineering.

The basic architectural design of SEP is the separation of

computation into two processors: Application processor (AP)

and SEP. SEP contains completely separated hardware such as

a hardware number generator, boot ROM, and crypto engine.

Despite this aggressive separation, SEP is still a 32-bit proces-

sor which coordinates with the AP to share external memory.

During its boot process, SEP will wait for AP to configure

a region of memory. Communication between AP and SEP

is achieved through an interrupt-driven secure mailbox. With

this mailbox, the architecture acts as a walled garden which

is called the KF filter. The KF filter encapsulates and guards

many of the SEP’s unique hardware components. Therefore

all data originating from the SoC passes through the filter and

must go through the secure mailbox. Once SEP has initialized

secure memory regions, it is protected from software-based

attacks. To protect against physical-based attacks such as

memory probing, SEP utilizes memory encryption in the form

of AES-ECB, AES-CBC and AES-XEX. Furthermore, after

initialization, applications which wish to interact with the

encrypted data guarded by SEP must use a Bootstrap server

which can enforce access and privilege rules for different

functionalities such as a secure key generation service.

Overall the nature of the SEP defends against an attack

model in which an attacker can compromise system software

such as the kernel. However, there have been reports in 2017

that hackers have decrypted the SEP’s firmware and published

its secret key [18]. Although this breach does not leak any

user’s information or data, it makes a way for researchers and

hackers to explore the vulnerabilities of SEP.

121

C. ARM TrustZone technology

The ARM TrustZone technology [19] is a single core secure

processor technology that uses a security approach similar to

that of Apples Secure Enclave processor. Its design philosophy

is based on levels of trust which aims to minimize the attack

surface at lower levels. In a sense, ARM TrustZone uses

separation based on the concept of least privilege; software

or hardware should only have access that it needs and nothing

more. To implement this secure model, TrustZone creates two

logical zones: secure world and non-secure world; the secure

world houses the security subsystem while the normal world

contains everything else. This allows an establishment of a

chain of trust. Separation of zones starts with the partitioning

of memory into secure and non-secure memory regions.

Naturally, through separation, non-secure world processes

cannot access secure content but secure-world processes can

access both secure and non-secure content. Modules called the

Security Attribution Unit (SAU) and Implementation Defined

Attribution Unit (IDAU) work together to determine if a

memory region is secure. TrustZone also provides a subtype of

secure memory, non-secure callable memory, which is an exe-

cutable region which allows non-secure instructions to branch

into a secure memory using Secure Gateway (SG) instructions.

Despite this aggressive separation model, communication be-

tween non-secure world and secure world processes is possible

via a Secure Monitor Call (SMC). Through providing these

primitives for processes, TrustZone removes the need for a

separate security processor that would inevitably increase the

attack surface. ARM designed TrustZone as a configurable

platform that can better adapt to different attack models.

Specifically, TrustZone provides SoC designers with various

TrustZone enabled IP modules that allow an embedded device

to be tailored to a particular attack model. One particular

weakness of Trustzone is that assumes that secure mode

processes can always be trusted.

D. IBM 4765 Secure Processor

The IBM 4765 [20] is a secure co-processor which is placed

on a PCIe card. Equipped with a hardware number generator

it provides tamper-proof storage of sensitive data and crypto-

graphic operations for activities such as SSL private key trans-

actions. Like most secure processors, the 4765 supports several

cryptographic algorithms: SHA-256, HMAC, and RSA. Due to

the nature of PCIe, the 4765 is, unfortunately, an easy target for

both theft and physical manipulation. Fortunately, a hardware-

based tamper-proof module is included which is certified for

meeting the Federal Information Processing Standard (FIPS)

1402-2 level 4 security requirements.

The tamper-proof module can detect physical abnormalities

such as voltage spikes and temperatures variances and mark

them as physical attacks. As a response, the tamper circuit

will automatically zero out secrets stored in onboard memory

devices such as Battery-Backed Static Random Access Mem-

ory (BBRAM). The tamper-proof protocol can also be made

to zero out memory in the case of ejection from the PCIe slot.

On the software side, applications can interface with the

4765 through Miniboot: software internal to the module that

exposes functionality. The commands available for applica-

tions depends on Miniboot’s current boot level. Because

Miniboot runs at boot time, its progress through different

levels depends on the success of the host’s power-on-self-test

(POST). For example, if POST1 fails, an application would

have had only access to the set of Miniboot0 commands and

queries. Communication between the two available Miniboot

levels, Minitboot0 and Miniboot1, and applications involve au-

thentication using a public/private key protocol. Authentication

of each command is based on the concept of roles which is

essentially an Access Control Layer for various functions and

services provided by Miniboot.

E. Intel Trusted Execution Technology (TXT)

Intel’s Trusted Execution Technology (TXT) [21] is a

hardware-based technology to examine the authenticity of

the operating system and its running environment. It also

relies on the Trusted Platform Module (TPM) to provide

functionalities such as secure storage. The purpose of the TXT

is to provide a trusted way for loading and executing sys-

tem software, e.g. Operating System kernel or Virtualization

Machine Monitor (VMM), even on machines with malicious

software and malware. The technology supports both a static

chain of trust and a dynamic chain of trust. The static chain

of trust starts when the platform powers on (or the platform is

reset), which resets all PCRs to their default value. For server

platforms, the first measurement is made by hardware (i.e.,

the processor) to measure a digitally signed module (called an

Authenticated Code Module or ACM) provided by the chipset

manufacturer. The processor validates the signature and in-

tegrity of the signed module before executing it. The ACM

then measures the first BIOS code module, which can make

additional measurements. However, there have been works

showing that the TXT only provides launch-time protection,

but not runtime [22], against attacks such as buffer overflow

etc. More importantly, researchers have been able to infect the

system management mode (SMM), which is one of the most

privileged software loaded on a computer, to bypass the TXT’s

launch examination and conduct attacks. Another research [23]

shows that attackers can infect the boot loader and execute

their own code before the TXT’s SENTER instructions are

executed.

IV. SECURE HETEROGENEOUS MULTICORE

ARCHITECTURE

It is worth stressing that the technique and technology

challenges encountered in the design of single-core or ho-

mogeneous multicore secure processors are further amplified

in the security-aware design of heterogeneous multicore ar-

chitectures. On those systems, different cores or processing

units may have different levels of trust or privacy. Thus the

secure data and permission management has to be taken into

consideration. Researchers in [24] and [25] have proposed

122

different approaches to address this issue. In [25], the au-

thors introduced the “Hermes” architecture, which embeds its

security features in the on-chip interconnect fabric. Hermes

is a secure multicore computing architecture framework. It

reduces the system attack surface by creating a virtualization

layer that isolates compute threads based on system and user

defined trust levels and security policies. Figure 4 shows a

set of applications with mixed security being mapped onto

a mixed security hardware. It achieves both hardware and

software views of secure processing by grouping processors

into physical zones called wards and virtual logical zones

called islands. So that although different cores are located

and operated in different manners, they are categorized to

certain standardized security levels to be given corresponding

permissions and privileges.

Fig. 4. Trusted/untrusted applications running on trusted/untrusted cores.
Different trust levels are illustrated by different colors (e.g., red represents
the least trusted program or core).

V. CONCLUSION

In this paper we explore and discuss the key details of

reliability and security-aware processor architectures and de-

signs. There are some established approaches to designing

and evaluating reliable architectures such as ECC, ACE, and

AVF. The application of error correction protection can guard

processors against random and limited errors. However, the

problem is more complicated when it comes to security-aware

architectures. There are different security demands and attack

models for each design on the market. Additionally, we present

a small representative set of secure processor architectures -

commercially available and academic and discuss their vulner-

abilities. Finally, we briefly touched on a secure heterogeneous

multicore architecture, which aims to provide a trustworthy

data and permission management among heterogeneous cores

with different levels of trust.

VI. ACKNOWLEDGMENTS

This research is partially supported by the NSF grant (No.

CNS- 1745808).
REFERENCES

[1] C. Wilkerson, A. Alameldeen, and Z. Chishti, “Scaling the memory
reliability wall.” Intel Technology Journal, vol. 17, no. 1, 2013.

[2] P. Reviriego, S. Pontarelli, A. Evans, and J. A. Maestro, “A class of
sec-ded-daec codes derived from orthogonal latin square codes,” IEEE

transactions on very large scale integration (vlsi) systems, vol. 23, no. 5,
pp. 968–972, 2015.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-

actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[4] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded

computation over heterogeneous clusters,” in Information Theory (ISIT),

2017 IEEE International Symposium on. IEEE, 2017, pp. 2408–2412.
[5] L. Breveglieri, I. Koren, and P. Maistri., “Incorporating error detection

and online reconfiguration into a regular architecture for the advanced
encryption standard,” Defect and Fault Tolerance in VLSI Systems, 2005.

DFT 2005. 20th IEEE International Symposium on. IEEE, 2005.
[6] C.-H. Yen and B.-F. Wu, “Simple error detection methods for hardware

implementation of advanced encryption standard,” IEEE transactions on

computers, 2006.
[7] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “A parity

code based fault detection for an implementation of the advanced
encryption standard,” Defect and Fault Tolerance in VLSI Systems, 2002.

[8] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5g: solutions, challenges, opportunities,
and future research trends,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 74–81, 2015.

[9] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, “Using duplication with compare for on-line
error detection in fpga-based designs,” Aerospace Conference, 2008.

[10] P.-T. Huang, W.-L. Fang, Y.-L. Wang, and W. Hwang., “Low power
and reliable interconnection with self-corrected green coding scheme
for network-on-chip,” Second ACM/IEEE International Symposium on

Networks-on-Chip, 2008.
[11] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,

“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Microarchitecture,

2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International

Symposium on. IEEE, 2003, pp. 29–40.
[12] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:

An architectural perspective,” in High-Performance Computer Architec-

ture, 2005. HPCA-11. 11th International Symposium on. IEEE, 2005,
pp. 243–247.

[13] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
Dependable Systems and Networks, 2004 International Conference on.
IEEE, 2004, pp. 61–70.

[14] G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” Information Security Technical Report, vol. 10, no. 2,
pp. 63–73, 2005.

[15] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and
implementation of the aegis single-chip secure processor using physical
random functions,” in ACM SIGARCH Computer Architecture News,
vol. 33, no. 2. IEEE Computer Society, 2005, pp. 25–36.

[16] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis:
architecture for tamper-evident and tamper-resistant processing,” in ACM

International Conference on Supercomputing 25th Anniversary Volume.
ACM, 2014, pp. 357–368.

[17] Apple, “Ios security,” apple.com/business/docs/iOS Security Guide.pdf.
[18] M. Mimoso, “Hacker publishes ios secure enclave firmware decryption

key,” in Threatpost, 2017.
[19] A. ARM, “Security technology building a secure system using trustzone

technology (white paper),” ARM Limited, 2009.
[20] T. W. Arnold, C. Buscaglia, F. Chan, V. Condorelli, J. Dayka,

W. Santiago-Fernandez, N. Hadzic, M. D. Hocker, M. Jordan, T. Morris
et al., “Ibm 4765 cryptographic coprocessor,” IBM Journal of Research

and Development, vol. 56, no. 1.2, pp. 10–1, 2012.
[21] J. Greene, “Intel trusted execution technology,” Intel Technology White

Paper, 2012.
[22] R. Wojtczuk and J. Rutkowska, “Attacking intel trusted execution

technology,” Black Hat DC, 2009.
[23] R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to circum-

vent intel trusted execution technology,” Invisible Things Lab, 2009.
[24] H. Kondo, S. Otani, M. Nakajima, O. Yamamoto, N. Masui, N. Oku-

mura, M. Sakugawa, M. Kitao, K. Ishimi, M. Sato et al., “Heterogeneous
multicore soc with sip for secure multimedia applications,” IEEE Journal

of solid-state circuits, vol. 44, no. 8, pp. 2251–2259, 2009.
[25] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes: Secure

heterogeneous multicore architecture design,” in Hardware Oriented

Security and Trust (HOST), 2017 IEEE International Symposium on.
IEEE, 2017, pp. 14–20.

123

