2018 IEEE Computer Society Annual Symposium on VLSI

A Short Survey at the Intersection of Reliability and
Security in Processor Architecture Designs

Lake Bu, Miguel Mark, and Michel A. Kinsy
Adaptive and Secure Computing Systems (ASCS) Laboratory
Department of Electrical and Computer Engineering, Boston University

Abstract—Over the next decade, processor design will en-
counter a number of challenges. The ongoing miniaturization
of semiconductor manufacturing technologies that has enabled
the integration of hundreds to thousands of processing cores
on a single chip is pushing the limits of physical laws. The
fabrication process has also grown more complex and globalized
with widespread use of third-party IPs (intellectual properties).
This development ecosystem has complicated the security and
trust view of processors. Some of the pressing processor archi-
tecture design questions are: (1) how to use reconfiguration and
redundancy to improve reliability without introducing additional
and potentially insecure system states, (2) what analytical models
lend themselves best to the joint implementation of reliability
and security in these systems, and (3) how to optimally and
securely share resources and data among processing elements
with high degree of reliability. In this work, we present and
discuss (1) principal reliability approaches - error correction
code, modular redundancy, (2) processor architecture specific
reliability, (3) major secure processor architectures. We also
highlight key features of a small representative class of the secure
and reliable architectures.

I. INTRODUCTION

The intersection of reliability and security in the design of
processor architectures is now a critical concern in a wide
range of embedded computing, communications systems, and
connected devices. On one hand, as feature size shrinks, tran-
sistors become less reliable and component failures increase.
Transistor scaling and integration result in reliability chal-
lenges, including interference from electric fields, shrinking of
the maximum-minimum voltage window, thermo-mechanical
limitations, and soft, transient and intermittent errors. On
the other hand, the emergence of general-purpose system-
on-chip (SoC) architectures has given rise to a number of
significant security challenges. The current trend in SoC de-
sign is system-level integration of heterogeneous technologies
consisting of a large number of processing elements such as
programmable RISC cores, memories, DSPs, and accelerator
function units/ASIC. These processing elements may come
from different providers, and application executable code may
have varying levels of trust.

In this short survey, we attempt to highlight some of the
pressing processor architecture design questions:

1) Reliability Issues: how reconfiguration and redundancy
are used to improve reliability without introducing addi-
tional and potentially insecure system states;

2) Security Issues: how to optimally and securely share
resources and data among processing elements which
have different levels of trust;

3) Security and Reliability in Architecture: what analyt-
ical models lend themselves best to the joint implemen-
tation of reliability and security in these systems.

Over the years, there have been many attempts to address
the aforementioned processor architecture design issues. Some
commonly accepted approaches and methodologies have even
emerged. In this work, we define “reliability” as the property
of keeping the system in a pre-defined/desired/accepted func-
tional condition. “Security” is characterized by the capability
to protect the system from malicious attempts which either
drive the system away from the accepted functional conditions,
or exploit the limitations and restrictions of the system. These
attempts can be either invasive or non-invasive.

On the topic of reliability, we first emphasize general
approaches: error control codes and their application in proces-
sor architecture designs, modular redundancy for dependable
functionalities in architectures, and processor architecture spe-
cific reliability methods such as ACE (architecturally correct
execution), and AVFs (architectural vulnerability factors). We
then discuss the existing and potential vulnerabilities of these
approaches.

As for the security aspect, we start with major commercially
available and academic secure processor architectures, such
as Intel’s Software Guard Extensions (SGX) and Trusted
Execution Technology (TXT), ARM TrustZone Technology
and derived processor architectures, MIT Aegis Secure Pro-
cessor, IBM 4765 Secure Coprocessor, and Apple Secure
Enclave Processor (SE). We then examine work on privacy
and permission management targeting heterogeneous multi-
core systems. Finally, we stress the potential vulnerabilities
and attacks on some of these security-aware architectures.

Our focus on the security issues in heterogeneous computing
environments primarily centers around multicores where the
cores may have different levels of trustworthiness. The prob-
lem on such compute systems is how to optimally and securely
share resources and data among those processing units, while
maintaining individual tenant security and preventing data
leakage among the units.

The rest of the paper is organized as follows: section II is on
the reliability-oriented architecture designs, followed by their
vulnerabilities. Section III is on the security-oriented archi-
tecture designs, and the existing and potential vulnerabilities.
Section IV discusses the joint design and implementation of
reliability and security. Section V concludes the paper.

EE

IE
computer
psouety

2159-3477/18/$31.00 ©2018 IEEE
DOI 10.1109/ISVLSI.2018.00031

118

II. RELIABILITY-AWARE PROCESSOR ARCHITECTURES
AND DESIGNS

In this section we will first introduce the error control
codes (ECCs) as a universal technique to provide reliability in
architecture designs. Besides being used as a tool to preserve
the data integrity, the mathematical principle of ECCs can
also be leveraged in the design of reliable systems or proces-
sors. Besides introducing the redundant modules using ECC,
the processor architecture specific reliability such as ACE
(architecturally correct execution), and AVFs (architectural
vulnerability factors) are also presented. The vulnerabilities
of current reliability techniques will be discussed in the final
subsection.

A. ECC-based Reliable Processor Design

The error control codes (ECCs) are usually used to pre-
vent data from being distorted by random errors. The most
straightforward applications are the reliable buses, memories,
and caches [1, 2]. We define the following notations:

o x: the original source data;

o y: the redundant portion computed based on x;
o v the encoded codewords of x;

e ¢: the random errors on v;

o G() the generating function of v;

o H(): the checking function of v;

e f(): the functional module’s function;

o P(): the predictor function for f();

o ~: the distortion symbol.

We introduce three of the most common ways that ECCs
can be used to assist the reliability of a system.

1) Random Error Correction: the procedure that an ECC
module uses to protects data from random errors is as follows:

i. Before a piece of data z is transmitted or stored in a
system, it is first encoded by a generating function that
G(z) = v, where x should be able to be retrieved from
v;

During the transmission or storage of v, it might be
corrupted by random errors e, that v + e = v;

When the piece of data is to be extracted, a decoding
function is used to retrieve the correct piece: H () = v.
And so x can be derived from v.

ii.

iii.

The work flow of such procedure is shown in Fig. 1.

I |
Fig. 1. In systematic encoding, v = z||y and y is the redundant
portion computed by G(z) based on z, || the concatenation operator.
In this case the value of z is obvious once the correct v is retrieved.

In non-systematic encoding, x has to be computed through certain
algorithms from v.

119

2) Data Regeneration: This use of ECC modules is similar
to Fig. 1, except that instead of v being distorted by a random
error e, now part of it is missing. Thus the H() is used to re-
generate v rather than removing e. Due to the property of ECC,
when used for data re-generation, it usually has a stronger
capability in fault tolerance. This approach is now popular in
machine learning acceleration [3] and heterogeneous clusters’
straggler tolerance [4].

3) Self-checking Checkers: There have been many research
efforts on the application of ECCs to the circuits or functional
modules as the self-checking checkers (SCC) to verify the
correctness of their functionality. The common thread in
these efforts is the addition of a parallel module named the
“predictor” to the original function module, which generates
the corresponding check bits at the same time of the functional
module’s output. The predictor’s check bits and the functional
module’s output are verified by the decoder for error detection,
or correction. Together, the predictor and decoder form an SCC
system. The procedure of a SCC’s self-correction is as follows:

i. When an input comes into a functional module f(), it
is also fed into a predictor module P(), where P() is a
combination of f() and G();

During the computation of f(z), which is the system’s
original functionality, P(z) is also computed. Either mod-
ule can be malfunctional;

The decoder verifies f(Z) and P(Z) and outputs the
correct f(z) to maintain reliability.

ii.

iii.

Figure 2 illustrates the workflow of a SCC.

H—ﬁ-

Fig. 2. Instead of random error correction on the source data,
the goal of a SCC is to protect the functionality f() of a given
system or computation node. With proper optimization, P() does not
necessarily have higher complexity than f();

Various codes have been devised as ECCs such as the
repetition codes, cyclic codes, Hamming codes, and Reed-
Solomon (RS) codes [5, 6, 7]. They are characterized by
different levels of error tolerance capability and decoding
complexity. In recent years, low density codes have become
more popular due to their low complexity in decoding [8, 2].

It should be noted that duplication or triplication systems in
processor designs have originated from ECCs. In a duplication
system [9], two systems with identical functionality will
perform the same operations, and the results of which will be
compared. A triplication system [10], involves three identity
function whose results will participate in a majority voting

to tolerate the malfunction of a single system. These two
techniques leverage the concept of repetition codes in ECCs.

B. Architecturally Correct Execution (ACE), and Architectural
Vulnerability Factors (AVFs)

Researchers from Intel [11] introduced the concept of
architecturally correct execution (ACE). In their definition, a
bit in a system is related to architecturally correct execution
(ACE) if it affects the output of the program. Other bits
which do not have such influence are called un-ACE bits. A
structure’s architectural vulnerability factor (AVF) is defined
as the probability that a fault in the structure will result
in an erroneous output. One of the fundamental differences
between AVF estimation and ECC is, the former is more of
a methodology to evaluate an architecture’s reliability, and
the latter is a practical technique to ensure the dependability
of an architecture. Also, the former tracks the bits with an
impact to the final outcome only (particularly from the user’s
perspective), while the latter tries to treat all the bits equally.

A program running on a faulty architecture has multiple
possible outcomes. There can be faults resulting no error, silent
data corruption (SDC), and detected but unrecoverable errors
(DUE). The correlation among them and an architecture’s error
tolerance capability are given by [12] and depicted in Figure 3.

Faulty bit is read?

Does it have
error tolerance?

Detection but
not correction

mpacts the program
output (ACE bit)?

mpacts the program
output (ACE bit)?

Y

| v | |
v

Fig. 3. In this diagram, there can be undetected and uncorrected faults
in an architecture, but they do not necessarily affect the final outcome.
The “detection but not correction” branch can be the scenarios that
the architecture is only equipped with parity check codes but not any
ECC with Hamming distance larger than 3. Or it can be that the
architecture only has an error detection subsystem but not an error
correction subsystem, such as the duplication subsystems.

In [11], authors proposed an efficient approach for esti-
mating AVFs that uses only a subset of the processor state
bits. The used bits in a processor state storage cell/structure
are the ones related to ACE. They will show a distortion in
the output when an error occurs. Other bits in storage cells
are the un-ACE bits, which can be flipped without causing
a functional error. The authors provide the equations and
different approaches for computing the AVFs.

120

1) Statistical Fault Injection: In this test scheme, random
errors are injected in both randomized space and time domains.
The results will then be compared with a pre-generated refer-
ence result set, or an error-free model. The AVF is computed
by the fraction of mismatches divided by the total number of
injected errors.

If there is no mismatch observed, it can be because either
the error is tolerated, or is masked (silent errors). The latter
is a more complicated situation and has to be studied by a
complete comparison in system states [13].

2) Little’s Law: This method is suitable for the early stage
of a design before the RTL is generated. Denote N as the
average number of bits in the architecture, B the average
bandwidth per cycle into the architecture, and L the average
latency a bit through the architecture, the subscript ACE for
the ACE bits. Then the AVF can be estimated by:

Bace X Lack
N

3) ACE Analysis in Performance Models: In this method, a
performance model is used to determine which bits are ACE
and which are un-ACE. A conservative assumption is made
that, a bit is ACE unless it is proved as an un-ACE. This
methodology can be more time efficient than others.

C. Vulnerabilities of Reliability-Aware Architecture Designs

For most reliability-oriented designs, there can be a large
number of “invisible” errors never detected by the system.
The invisibility is not due to the lack of error detection or
correction subsystems, but because of their linearity. We will
firstly introduce the concept of the “kernel” as a measurement
of the number of invisible errors in an architecture.

Definition 1. Suppose C is the set of N-bit ECC codewords
and H() is the decoding/error detection/error correction func-
tion. C' is defined by C' = {v|H(v) = 0}. Set K, is called
the Kernel of C' if:

Ki;={ele+veC, YveC}.

Under this definition, if H() is a linear function (which is
the case for most architectures), and there exist an error e that
H(e) =0, then we have:

H(W)=H(e+v)=H(e)+ H(v)=0+0=

0. (@

Then this error is invisible for Vv € C. If C is linear, then
the set of e which is the kernel K; = C'. This result shows
that for any architecture with a linear error control function,
there exists a large number of invisible errors. The good news
is that for most systems, those invisible errors are more than
one bit, which can be very rare. Thus most single-bit errors
can still be taken care by the SEC-DED subsystems. However
this potential vulnerability can still be leveraged by attackers
to inject forever-masked errors.

III. SECURITY-AWARE PROCESSOR ARCHITECTURES AND
DESIGNS

Security, unlike reliability, is a much larger and more
complicated topic for all architecture designers. Different
architectures targeting different security demands will end up
with very distinct structures. Therefore in this section, instead
of giving a universal design methodology, we will present a
number of commercialized and representative security-aware
architecture designs, as well as their advantages and vul-
nerabilities. The subsections will include the introduction of
the MIT Aegis Secure Processor, the Apple Secure enclave
processor (SEP), the ARM TrustZone technology, and the IBM
4765 Secure Processor.

A. MIT Aegis Secure Processor

Aegis [14] is a secure processor which aims to provide
conventional software-based authentication and addresses a
critical assumption made by other secure processor imple-
mentations: physical attacks are infeasible or meaningless. Its
architectural design philosophy is based on the premise that
only the Aegis processor can be authenticated and trusted.
External components such as non-volatile memory and other
processors are treated as non-trustworthy by default. The core
of Aegis’s protection is centered on Silicon Physical Random
Functions (SPUFs) which leverage unique timing delays in
integrated circuits created by the semiconductor manufacturing
process [15]. Aegis uses this unique characteristic in the form
of a PUF delay circuit which is used for secret key genera-
tion and authentication. Furthermore, restricting protection to
one chip prevents the leakage of secrets through unsecured
communication between multiple processing units.

To protect software, Aegis first introduces four additional
processing modes: Standard (STD), Suspended Secure Pro-
cessing (SSP), Tamper-Evident (TE) and Private Tamper-
Resistant (PTR). STD and SSP are the lowest privilege mode
which has no access to private memory and can only enter
the more secure TE and PTR mode. TE has read/write ac-
cess to verified memory and a subset of security functions.
PTR mode is the most privileged due to its access to PUF
instructions. Second, software can be authenticated using an
authentication scheme with SPUFs such as a public/private key
protocol. Lastly, off-chip memory protection in the form of
Integrity verification (IV) and Memory Encryption (ME) can
be enabled when the supervisor switches the processor into TE
or PTR mode after boot. IV and ME aim to provide defense
against both software and hardware attacks. To accomplish
this, the processor partitions the available memory into IV and
ME regions which can overlap. IV protects regions through
detecting and preventing any unintended modifications and
ME utilizes encryption to hide sensitive contents. A trusted
supervisor, such as a kernel manages the sharing of these
protected regions. Later on they also proposed a version of
Aegis which is resistant to malicious operating systems [16].

With these features combined, the Aegis secure one chip
processor can defend against a wide range of attacks. Brute
force based attacks are not feasible due to the sheer number

121

of challenge-response pairs that can be generated. Attackers
may then attempt to create a timing model of the PUF delay
circuit but this is not possible since no information is leaked
from the circuit. Likewise, an attacker cannot duplicate the
PUF circuit due to nature of the manufacturing process. Even
if the attacker gains physical access to the processor and tries
to probe timing information, the data collected will be useless
due to the interference caused by the probe.

Although the authors noted the omission of side-channel at-
tacks and learning attacks to the PUF which is the fundamental
source of security, overall Aegis can provide a strong defense
with negligible overhead in gate size and performance.

B. Apple Secure Enclave Processor (SEP)

Apple’s Secure Enclave Processor (SEP) [17] is a flashable
coprocessor which utilizes memory encryption and hardware
number generation to carry out cryptographic functions for
the main processor. In a sense, SEP creates a logical wall
between software and sensitive security functions so that
untrusted software cannot gain access to sensitive data such as
fingerprints and keys. To achieve most of its functionality, a
trusted micro-kernel runs on top of the processor, sporting its
own drivers and services. Given the nature of this technology,
Apple has prevented the dissemination of the technical details
of the processor. Therefore, technical details are only available
through efforts of reverse engineering.

The basic architectural design of SEP is the separation of
computation into two processors: Application processor (AP)
and SEP. SEP contains completely separated hardware such as
a hardware number generator, boot ROM, and crypto engine.
Despite this aggressive separation, SEP is still a 32-bit proces-
sor which coordinates with the AP to share external memory.
During its boot process, SEP will wait for AP to configure
a region of memory. Communication between AP and SEP
is achieved through an interrupt-driven secure mailbox. With
this mailbox, the architecture acts as a walled garden which
is called the KF filter. The KF filter encapsulates and guards
many of the SEP’s unique hardware components. Therefore
all data originating from the SoC passes through the filter and
must go through the secure mailbox. Once SEP has initialized
secure memory regions, it is protected from software-based
attacks. To protect against physical-based attacks such as
memory probing, SEP utilizes memory encryption in the form
of AES-ECB, AES-CBC and AES-XEX. Furthermore, after
initialization, applications which wish to interact with the
encrypted data guarded by SEP must use a Bootstrap server
which can enforce access and privilege rules for different
functionalities such as a secure key generation service.

Overall the nature of the SEP defends against an attack
model in which an attacker can compromise system software
such as the kernel. However, there have been reports in 2017
that hackers have decrypted the SEP’s firmware and published
its secret key [18]. Although this breach does not leak any
user’s information or data, it makes a way for researchers and
hackers to explore the vulnerabilities of SEP.

C. ARM TrustZone technology

The ARM TrustZone technology [19] is a single core secure
processor technology that uses a security approach similar to
that of Apples Secure Enclave processor. Its design philosophy
is based on levels of trust which aims to minimize the attack
surface at lower levels. In a sense, ARM TrustZone uses
separation based on the concept of least privilege; software
or hardware should only have access that it needs and nothing
more. To implement this secure model, TrustZone creates two
logical zones: secure world and non-secure world; the secure
world houses the security subsystem while the normal world
contains everything else. This allows an establishment of a
chain of trust. Separation of zones starts with the partitioning
of memory into secure and non-secure memory regions.

Naturally, through separation, non-secure world processes
cannot access secure content but secure-world processes can
access both secure and non-secure content. Modules called the
Security Attribution Unit (SAU) and Implementation Defined
Attribution Unit (IDAU) work together to determine if a
memory region is secure. TrustZone also provides a subtype of
secure memory, non-secure callable memory, which is an exe-
cutable region which allows non-secure instructions to branch
into a secure memory using Secure Gateway (SG) instructions.
Despite this aggressive separation model, communication be-
tween non-secure world and secure world processes is possible
via a Secure Monitor Call (SMC). Through providing these
primitives for processes, TrustZone removes the need for a
separate security processor that would inevitably increase the
attack surface. ARM designed TrustZone as a configurable
platform that can better adapt to different attack models.
Specifically, TrustZone provides SoC designers with various
TrustZone enabled IP modules that allow an embedded device
to be tailored to a particular attack model. One particular
weakness of Trustzone is that assumes that secure mode
processes can always be trusted.

D. IBM 4765 Secure Processor

The IBM 4765 [20] is a secure co-processor which is placed
on a PCle card. Equipped with a hardware number generator
it provides tamper-proof storage of sensitive data and crypto-
graphic operations for activities such as SSL private key trans-
actions. Like most secure processors, the 4765 supports several
cryptographic algorithms: SHA-256, HMAC, and RSA. Due to
the nature of PCle, the 4765 is, unfortunately, an easy target for
both theft and physical manipulation. Fortunately, a hardware-
based tamper-proof module is included which is certified for
meeting the Federal Information Processing Standard (FIPS)
1402-2 level 4 security requirements.

The tamper-proof module can detect physical abnormalities
such as voltage spikes and temperatures variances and mark
them as physical attacks. As a response, the tamper circuit
will automatically zero out secrets stored in onboard memory
devices such as Battery-Backed Static Random Access Mem-
ory (BBRAM). The tamper-proof protocol can also be made
to zero out memory in the case of ejection from the PCle slot.

122

On the software side, applications can interface with the
4765 through Miniboot: software internal to the module that
exposes functionality. The commands available for applica-
tions depends on Miniboot’s current boot level. Because
Miniboot runs at boot time, its progress through different
levels depends on the success of the host’s power-on-self-test
(POST). For example, if POSTI fails, an application would
have had only access to the set of Miniboot0 commands and
queries. Communication between the two available Miniboot
levels, Minitboot0O and Miniboot1, and applications involve au-
thentication using a public/private key protocol. Authentication
of each command is based on the concept of roles which is
essentially an Access Control Layer for various functions and
services provided by Miniboot.

E. Intel Trusted Execution Technology (TXT)

Intel’s Trusted Execution Technology (TXT) [21] is a
hardware-based technology to examine the authenticity of
the operating system and its running environment. It also
relies on the Trusted Platform Module (TPM) to provide
functionalities such as secure storage. The purpose of the TXT
is to provide a trusted way for loading and executing sys-
tem software, e.g. Operating System kernel or Virtualization
Machine Monitor (VMM), even on machines with malicious
software and malware. The technology supports both a static
chain of trust and a dynamic chain of trust. The static chain
of trust starts when the platform powers on (or the platform is
reset), which resets all PCRs to their default value. For server
platforms, the first measurement is made by hardware (i.e.,
the processor) to measure a digitally signed module (called an
Authenticated Code Module or ACM) provided by the chipset
manufacturer. The processor validates the signature and in-
tegrity of the signed module before executing it. The ACM
then measures the first BIOS code module, which can make
additional measurements. However, there have been works
showing that the TXT only provides launch-time protection,
but not runtime [22], against attacks such as buffer overflow
etc. More importantly, researchers have been able to infect the
system management mode (SMM), which is one of the most
privileged software loaded on a computer, to bypass the TXT’s
launch examination and conduct attacks. Another research [23]
shows that attackers can infect the boot loader and execute
their own code before the TXT’s SENTER instructions are
executed.

IV. SECURE HETEROGENEOUS MULTICORE
ARCHITECTURE

It is worth stressing that the technique and technology
challenges encountered in the design of single-core or ho-
mogeneous multicore secure processors are further amplified
in the security-aware design of heterogeneous multicore ar-
chitectures. On those systems, different cores or processing
units may have different levels of trust or privacy. Thus the
secure data and permission management has to be taken into
consideration. Researchers in [24] and [25] have proposed

different approaches to address this issue. In [25], the au-
thors introduced the “Hermes” architecture, which embeds its
security features in the on-chip interconnect fabric. Hermes
is a secure multicore computing architecture framework. It
reduces the system attack surface by creating a virtualization
layer that isolates compute threads based on system and user
defined trust levels and security policies. Figure 4 shows a
set of applications with mixed security being mapped onto
a mixed security hardware. It achieves both hardware and
software views of secure processing by grouping processors
into physical zones called wards and virtual logical zones
called islands. So that although different cores are located
and operated in different manners, they are categorized to
certain standardized security levels to be given corresponding
permissions and privileges.

Applications

Multicore Architecture

Fig. 4. Trusted/untrusted applications running on trusted/untrusted cores.
Different trust levels are illustrated by different colors (e.g., red represents
the least trusted program or core).

V. CONCLUSION

In this paper we explore and discuss the key details of
reliability and security-aware processor architectures and de-
signs. There are some established approaches to designing
and evaluating reliable architectures such as ECC, ACE, and
AVE. The application of error correction protection can guard
processors against random and limited errors. However, the
problem is more complicated when it comes to security-aware
architectures. There are different security demands and attack
models for each design on the market. Additionally, we present
a small representative set of secure processor architectures -
commercially available and academic and discuss their vulner-
abilities. Finally, we briefly touched on a secure heterogeneous
multicore architecture, which aims to provide a trustworthy
data and permission management among heterogeneous cores
with different levels of trust.

VI. ACKNOWLEDGMENTS

This research is partially supported by the NSF grant (No.
CNS- 1745808).
REFERENCES

[1] C. Wilkerson, A. Alameldeen, and Z. Chishti, “Scaling the memory
reliability wall.” Intel Technology Journal, vol. 17, no. 1, 2013.

P. Reviriego, S. Pontarelli, A. Evans, and J. A. Maestro, “A class of
sec-ded-daec codes derived from orthogonal latin square codes,” IEEE
transactions on very large scale integration (visi) systems, vol. 23, no. 5,
pp. 968-972, 2015.

(2]

123

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514-1529, 2018.
A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Information Theory (ISIT),
2017 IEEE International Symposium on. 1EEE, 2017, pp. 2408-2412.
L. Breveglieri, I. Koren, and P. Maistri., “Incorporating error detection
and online reconfiguration into a regular architecture for the advanced
encryption standard,” Defect and Fault Tolerance in VLSI Systems, 2005.
DFT 2005. 20th IEEE International Symposium on. IEEE, 2005.

C.-H. Yen and B.-F. Wu, “Simple error detection methods for hardware
implementation of advanced encryption standard,” IEEE transactions on
computers, 2006.

G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, “A parity
code based fault detection for an implementation of the advanced
encryption standard,” Defect and Fault Tolerance in VLSI Systems, 2002.
L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5g: solutions, challenges, opportunities,
and future research trends,” IEEE Communications Magazine, vol. 53,
no. 9, pp. 74-81, 2015.

J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, “Using duplication with compare for on-line
error detection in fpga-based designs,” Aerospace Conference, 2008.
P-T. Huang, W.-L. Fang, Y.-L. Wang, and W. Hwang., “Low power
and reliable interconnection with self-corrected green coding scheme
for network-on-chip,” Second ACM/IEEE International Symposium on
Networks-on-Chip, 2008.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in Microarchitecture,
2003. MICRO-36. Proceedings. 36th Annual IEEE/ACM International
Symposium on. 1EEE, 2003, pp. 29-40.

S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in High-Performance Computer Architec-
ture, 2005. HPCA-11. 11th International Symposium on. 1EEE, 2005,
pp. 243-247.

N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
Dependable Systems and Networks, 2004 International Conference on.
IEEE, 2004, pp. 61-70.

G. E. Suh, C. W. O’Donnell, and S. Devadas, “Aegis: A single-chip
secure processor,” Information Security Technical Report, vol. 10, no. 2,
pp. 63-73, 2005.

G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design and
implementation of the aegis single-chip secure processor using physical
random functions,” in ACM SIGARCH Computer Architecture News,
vol. 33, no. 2. IEEE Computer Society, 2005, pp. 25-36.

G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis:
architecture for tamper-evident and tamper-resistant processing,” in ACM
International Conference on Supercomputing 25th Anniversary Volume.
ACM, 2014, pp. 357-368.

Apple, “Tos security,” apple.com/business/docs/iOS_Security_Guide.pdf.
M. Mimoso, “Hacker publishes ios secure enclave firmware decryption
key,” in Threatpost, 2017.

A. ARM, “Security technology building a secure system using trustzone
technology (white paper),” ARM Limited, 2009.

T. W. Arnold, C. Buscaglia, F. Chan, V. Condorelli, J. Dayka,
W. Santiago-Fernandez, N. Hadzic, M. D. Hocker, M. Jordan, T. Morris
et al., “Ibm 4765 cryptographic coprocessor,” IBM Journal of Research
and Development, vol. 56, no. 1.2, pp. 10-1, 2012.

J. Greene, “Intel trusted execution technology,” Intel Technology White
Paper, 2012.

R. Wojtczuk and J. Rutkowska, “Attacking intel trusted execution
technology,” Black Hat DC, 2009.

R. Wojtczuk, J. Rutkowska, and A. Tereshkin, “Another way to circum-
vent intel trusted execution technology,” Invisible Things Lab, 2009.
H. Kondo, S. Otani, M. Nakajima, O. Yamamoto, N. Masui, N. Oku-
mura, M. Sakugawa, M. Kitao, K. Ishimi, M. Sato et al., “Heterogeneous
multicore soc with sip for secure multimedia applications,” IEEE Journal
of solid-state circuits, vol. 44, no. 8, pp. 2251-2259, 2009.

M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, “Hermes: Secure
heterogeneous multicore architecture design,” in Hardware Oriented
Security and Trust (HOST), 2017 IEEE International Symposium on.
IEEE, 2017, pp. 14-20.

