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Abstract—Chaotic systems such as Lorenz functions have been
proposed as cryptographic primitives due to their short-range
divergence attributes. They are commonly used in pseudo random
number generators, key agreement protocols, and certain classes
of encryption procedures. These functions are typically used for
their chaotic behavior. However, two of their key properties are
often overlooked: (1) their long-range convergence behavior is
seldom used, and (2) the static nature of their system parameters
is disregarded. The static nature of the system parameters, i.e.,
core secret, renders these functions vulnerable to a number of
attacks when they are deployed in security applications. In this
work, we examine these usage gaps and discover compelling
security applications for these chaotic systems, in particular,
Lorenz chaotic systems. In this paper, we propose an adaptive and
dynamic authentication scheme based on discrete Lorenz chaotic
systems. The scheme leverages Lorenz function’s convergence to
achieve a fast and lightweight authentication protocol. We also
devise a dynamic parameter configuration technique to enhance
the security of the protocol.

Index terms — Chaotic System, Lorenz Function, PUF,
Authentication.

I. INTRODUCTION

The Lorenz system, which consists of a set of differential
equations, was originally proposed to describe and model
thermally induced fluid convection in the atmosphere [1]. In
a chaotic system like the Lorenz system, once a proper set of
parameters is selected, the output of the chaotic functions is
highly sensitive to the initial state. The slightest variation in
the initial state values will result in a large change in the output
values. Furthermore, given a number of outputs from a chaotic
system, it is nearly impossible to precisely reverse engineer
the parameters of the system. Consequently, predicting the sys-
tem’s future behavior is impracticable. However, because of its
short-range divergence properties, it has found application in
many other domains, the most common one being encryption.
Researchers have suggested using these chaotic functions for
block encryptions, image encryptions, digest generations, and
key agreement protocols.

Besides its short-range divergence behavior, the Lorenz
system also has a convergence property. This aspect of the
system constrains all the outputs in a closed trajectory or
map. Although the output (a point in the trajectory) is highly
unpredictable due to the system’s sensitivity to the initial
state values, the trajectory’s holistic shape and boundaries are
fully determined once the system parameters are fixed. As a
corollary, the chaotic system’s parameters cannot be arbitrarily
chosen or at random. They have to be selected and tested in
a way that both the divergence and convergence properties
are satisfied. Although the theoretical foundation of chaotic
systems is well-established, their application thus far has been

* Hai Cheng participated in this research while he was a visiting scholar
with the Adaptive and Secure Computing Systems Laboratory.

fairly narrow. For example in most applications such as obfus-
cation and encryption, only their divergence property is used,
whereas their convergence attribute is seldom mentioned or
exploited. Another central, often overlooked, feature of these
chaotic systems is that their system parameters can be treated
as the secret keys to unlock/predict both their short and long-
range behaviors. Albeit, these keys are static and vulnerable
to static secret key attacks such as key counterfeiting.

In this work, we broaden the application of chaotic systems,
specifically Lorenz chaotic systems and develop an adaptive
authentication protocol that is both efficient and secure. The
major contributions of the work are:

1) an approach that takes advantage of both the divergence
and convergence properties of the Lorenz systems in a
way that it is hard for adversaries to predict, but easy for
trusted parties to authenticate;

2) a technique to configure the system parameters dynam-
ically using the intrinsic characteristics of the authenti-
cated hardware device - this way, the scheme becomes
much harder for adversaries to breach;

3) an authentication protocol that is adaptive and efficient
- its runtime complexity and power are adjustable and
proportional to the context of execution or application
needs.

II. PRELIMINARIES OF THE LORENZ CHAOTIC SYSTEMS

AND PHYSICAL UNCLONABLE FUNCTIONS

In this section we (i) introduce the key concept and prop-
erties of the Lorenz chaotic systems, and (ii) present the main
notations from physical unclonable functions (PUFs) used for
the dynamic parameter configuration in Section III. To better
facilitate the presentation and understanding of the various
points made in the paper, we adopt the following notations:

• α, β, γ: the system parameters of Lorenz functions;
• x, y, z: the outputs of chaotic functions;
• pn: a point on the Lorenz function’s trajectory/map.
pn = (xn, yn, zn);

• n and m: the dynamic and static numbers of iterations
to run the Lorenz functions, respectively;

• LFi(p0, n): a Lorenz function with system parameters
(αi, βi, γi), and arguments of the initial state p0 and
number of iterations n;

• CHLi: the ith challenge to a PUF;
• RSPj:i: the ith response of a PUF indexed by j;
• CRP : the challenge and response pairs of a PUF.

A. Chaotic System by Lorenz Functions
A chaotic system is a type of nonlinear and unpredictable

system which is highly sensitive to the initial conditions. In a
such system, a slight difference in the initial state will produce
rapid escalating and compounding variations in the system’s
future behavior. These phenomena are often described by



fractal mathematics, which capture the infinite complexity of
their nature. Important properties of chaotic systems are: initial
condition sensitivity, unpredictability, fractals, divergence, and
convergence. There are many types of chaotic systems. In this
work we primarily focus on the Lorenz systems which are a
3D chaotic map. The discrete Lorenz chaotic functions are as
follows:

xn+1 = xn + α(xn − yn)4t

yn+1 = yn + (γxn − xnzn − yn)4t,

zn+1 = zn + (xnyn − βzn)4t

(1)

where (α, β, γ) are called the system parameters, and 4t
determines the resolution of the map. The parameters (α, β,
γ) have to be carefully selected and tested to maintain the
convergence of the Lorenz map. A statistical pattern of a
Lorenz system is shown in Fig. 1. Unlike many random sys-
tems which only demonstrate divergence but not convergence,
Lorenz systems have both properties.

Fig. 1: The trajectory of a 3D Lorenz system, which usually has a
butterfly pattern.

1) The divergence of Lorenz Systems: Intuitively, the di-
vergence comes from the high randomness of the location and
timing that a point pn = (xn, yn, zn) appears on a 3D Lorenz
map. Theoretically speaking, Lyapunov exponent can be used
to measure the rate of divergence of a chaotic system:

|δ(p)| ≈ |δ(0)|eλp, (2)

where for a trajectory T (p)’s nearby orbit T (p) + δ(p), δ(p)
is a vector with infinitesimal initial length. The maximal λ for
Lorenz system is known to be approximately 0.9056 [2].

2) The Convergence of Lorenz Systems: Figuratively speak-
ing, once a set of (α, β, γ) are given, the shape of the butterfly
pattern is determined. In addition, even if the initial state p0
is not a point on the trajectory, it will soon be attracted into
the orbit within limited iterations. The convergence property
can be described by Hausdorff dimension dimHK bounded
by [3]:

dimHK ≤ 3−
2(α+ β + 1)

α+ 1 +
√

(α− 1)2 + 4γα
(3)

B. Physical Unclonable Functions (PUFs)
A physical unclonable function (PUF) is a piece of hard-

ware that will produce an unpredictable response to a challenge
due to its manufacturing variations. Each response is an output
of a nonlinear function using the stimulus (challenge) and the
PUF’s own unique physical properties - “silicon fingerprints”.
Even with the same circuit layout and manufacturing process,
two pieces of hardware will still have distinct behaviors under
the same challenge [4]. PUFs are mostly used to verify the
validity of a hardware device. In this work, it is serving a
slightly different purpose: dynamic parameter updating. The
procedure works as follows:

(i) Before a PUF device, indexed by j, is deployed, the server
or verifier uses {CHL0, CHL1, · · · , CHLi, · · · } as the
challenges to the PUF. Then the corresponding responses
{RSPj:0, RSPj:1, · · · , RSPj:i, · · · } are stored;

(ii) When the server chooses to use RSPj:i to generate the
new parameters on both itself and the device, it needs to
inform the device of the choice. To do so, the server sends
CHLi to the device;

(iii) The PUF applies CHLi to locally retrieve the response
RSPj:i, which is used to generate the new parameters.

The above procedure is secure against eavesdropping since
CHLi leaks zero knowledge of RSPj:i.

III. ADAPTIVE AUTHENTICATION USING LORENZ

CHAOTIC SYSTEMS

We first give an overview of the protocol followed by
the detailed description of each step of the protocol in the
subsections. The advantages of the proposed protocol are: (1)
it is hard for an adversary to predict outputs of the system
due to the Lorenz functions’ divergence behavior, but it is
easy for a verifier to authenticate these outputs because given
a specific set of system parameters, the global behavior is
deterministic; (2) it fixes the integer digits of the Lorenz
system parameters to guarantee the convergence of the system
while keeping the decimal digits reconfigurable in order to
dynamically control the short-range divergence of the system
- this technique enhances the security of the protocol by
introducing controllable variability to the system parameters;
and (3) the authentication is performed in an adaptive manner
for algorithmic efficiency.

The proposed adaptive authentication protocol is:
Protocol III.1.

Verifier Device

1. Selects  (α, β, γ)
2. Sends  

a. Pre-configuration

CHL
Zero-knowledge 3. Computes  (α, β, γ) locally

b. Request and Response

1. Sends  R
2. Generates p1 based on R

3. Generates p2 based on p1

4. Sends
p1, p2 

Zero-knowledge

c. Authentication

1. p1, p2 within the     

    trajectory area?

2. LF(p1, [n]) = p2 ?

Counterfeit

Counterfeit

Genuine

N

N

Y

Y

In the configuration step, the verifier dynamically deter-
mines the Lorenz system parameters. Then, it shares them
with the device in a zero-knowledge way. At the time of
authentication, the verifier sends a random number R as the
request to the device. The device responds with two points
{p1, p2} on the trajectory/map while leaking no knowledge of
the system parameters. To verify the authenticity of the device,
the verifier first examines if {p1, p2} are both within the Lorenz
map’s pattern boundaries, which is a fast but coarse-grained
filter. If they are, the verifier then checks if p2 can be computed
by the Lorenz functions with p1 being the initial condition.






