
ar
X

iv
:1

7
0
5
.0

8
4
6
0
v
2
  
[m

at
h
.A

G
] 

 1
5
 M

ay
 2

0
1
8

BRILL-NOETHER THEOREMS AND GLOBALLY GENERATED VECTOR

BUNDLES ON HIRZEBRUCH SURFACES

IZZET COSKUN AND JACK HUIZENGA

Abstract. In this paper, we show that the cohomology of a general stable bundle on a Hirzebruch
surface is determined by the Euler characteristic provided that the first Chern class satisfies necessary
intersection conditions. More generally, we compute the Betti numbers of a general stable bundle. We
also show that a general stable bundle on a Hirzebruch surface has a special resolution generalizing
the Gaeta resolution on the projective plane. As a consequence of these results, we classify Chern
characters such that the general stable bundle is globally generated.
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1. Introduction

The Brill-Noether theorem of Göttsche and Hirschowitz [GHi94] shows that a general stable
bundle on P2 has at most one nonzero cohomology group. On a Hirzerbruch surface Fe the situation
is not so simple—the section of negative self-intersection can cause every bundle with given numerical
invariants to have interesting cohomology. In this paper, we determine necessary and sufficient
conditions on numerical invariants which ensure that the general stable bundle on Fe has at most
one nonzero cohomology group. Essentially equivalently, we also compute the Betti numbers of a
general stable bundle.

We then show that the general stable sheaf on Fe has a special resolution by direct sums of line
bundles. These resolutions generalize the Gaeta resolution of a general sheaf on P2, and can be
viewed as giving unirational parameterizations of moduli spaces of sheaves [Eis05, Gae51]. Thus,
these resolutions are a convenient tool for describing a general sheaf. As a consequence of the Brill-
Noether theorem and the Gaeta-type resolution, we completely determine when a general stable
bundle on a Hirzebruch surface is globally generated. The case of F1 implies an analogous result for
P2 which sharpens a theorem of Bertram, Goller and Johnson [BGJ16]. These theorems play crucial
roles in the construction of theta and Brill-Noether divisors and in the study of Le Potier’s Strange
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2 I. COSKUN AND J. HUIZENGA

Duality Conjecture. We also anticipate they will be useful in the study of ample vector bundles on
these surfaces.

Let Fe denote the Hirzebruch surface P(OP1 ⊕ OP1(e)), where e is a nonnegative integer. The
Picard group Pic(Fe) = ZE⊕ZF is generated by the class of a fiber F of the projection π : Fe → P1

and the class of the section E with self-intersection E2 = −e. Let H denote an ample class on
Fe and let v be the Chern character of a positive rank µH -semistable sheaf. We call v stable for
brevity. Let M(v) := Mµ-ss

H (v) be the moduli space of µH -semistable sheaves with Chern character
v. By a theorem of Walter [Wal98], the moduli space M(v) is irreducible, and therefore it makes
sense to talk about a general sheaf of character v. If r(v) ≥ 2, then Walter additionally shows the
general sheaf in M(v) is a vector bundle.

Our first theorem generalizes the Göttsche-Hirschowitz Theorem.

Theorem 1.1. Let v be a stable Chern character on Fe with rank r(v) ≥ 2 and total slope

ν(v) :=
c1(v)

r(v)

satisfying ν(v) · F ≥ −1.

If ν(v) · E ≥ −1, then the general sheaf V ∈ M(v) has at most one nonzero cohomology group
and, furthermore, H2(Fe,V) = 0. Conversely, if χ(v) ≥ 0, then the general sheaf in M(v) has at
most one nonzero cohomology group if and only if ν(v) · E ≥ −1.

More precisely, we will give a simple formula to compute the Betti numbers hi(Fe,V) of a general
sheaf V ∈ M(v); see Theorem 3.1. The statements in Theorem 1.1 contain the most challenging and
interesting part of this computation. By replacing v by the Serre dual character vD, we can always
reduce to the case ν(v) ·F ≥ −1, so this assumption is not really restrictive. Under the assumptions
of the theorem, the Euler characteristic completely determines the cohomology of the general sheaf
if ν(v) · E ≥ −1. If ν(v) · E < −1 and χ(v) ≥ 0, then the general sheaf has both nonzero h0 and
h1. On the other hand, if ν(v) ·E < −1 and χ(v) < 0, then general sheaf has only h1 provided that
the discriminant of v is sufficiently large. We will quantify this precisely in Corollary 3.9.

Theorem 1.1 has many applications. For instance, it shows that effective theta divisors can be
constructed on moduli spaces M(v) if χ(v) = 0, ν(v) · F ≥ −1, and ν(v) · E ≥ −1. In this special
case, Theorem 1.1 was shown in [CH16] by a different approach. The full version of Theorem 1.1 for
arbitrary Euler characteristic will also play a crucial role in classifying the stable Chern characters
for which the general sheaf in M(v) is globally generated. The next theorem contains the majority
of the classification; see Theorems 5.1 and 5.2 for the complete classification.

Theorem 1.2. Let e ≥ 1, and let v be a stable Chern character on Fe. Assume that r(v) ≥ 1,
χ(v) ≥ r(v)+2, ν(v) ·F > 0 and ν(v) ·E ≥ 0. Then the general sheaf in M(v) is globally generated.

As a consequence of the F1 case of Theorem 1.2, we complete an analogous classification for P2

started by Bertram-Goller-Johnson [BGJ16]. We will use two techniques to prove our theorems. We
will make use of the stack of F -prioritary sheaves, and we will find special resolutions of the general
sheaf in the spirit of the Gaeta resolution on P2.

A torsion-free sheaf V on Fe is F -prioritary if Ext2(V,V(−F )) = 0. The stack of F -prioritary
sheaves PF (v) with Chern character v is irreducible [Wal98, Proposition 2]. Furthermore, µH -
semistable sheaves are F -prioritary, so Mµ-ss

H (v) ⊂ PF (v) is an open substack, which is dense if it
is nonempty. Hence, assuming µH -semistable sheaves of character v exist, to show that the general
V ∈ M(v) satisfies some open property, it suffices to exhibit one V ∈ PF (v) with that property.
The advantage of working with F -prioritary sheaves is that they are much easier to construct than
semistable sheaves. For example, one can construct F -prioritary sheaves as certain direct sums of
line bundles. We will prove Theorem 1.1 by explicitly constructing an F -prioritary sheaf with at
most one nonzero cohomology group for every character v satisfying the hypotheses of the Theorem.
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Remark 1.3. In fact, µH -semistability will play essentially no role in this paper. Instead, in
the body of the article we state almost all of our theorems for moduli stacks PF (v) where v is a
character satisfying the Bogomolov inequality ∆(v) ≥ 0 (which is automatically satisfied if there is
a µH -semistable sheaf of character v). When the space M(v) is nonempty, the analogous results
for M(v) follow immediately.

Our second technique will be to exploit a convenient resolution of the general sheaf in M(v). We
will be able to read many cohomological properties of the general sheaf from this resolution. Our
main result is as follows. See Theorem 4.2 for a stronger statement.

Theorem 1.4. Suppose e ≥ 2, and let V ∈ M(v) be a general µH -semistable sheaf on Fe. Then
there exists a line bundle L such that V has a resolution of the form

0 → L(−E − (e+ 1)F )α → L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ → V → 0.

We use Theorem 1.4 in order to analyze the most challenging case in the classification of Chern
characters such that the general bundle is globally generated. We additionally anticipate resolu-
tions of this type will be useful in studying various questions related to generic vector bundles on
Hirzebruch surfaces.

Organization of the paper. In §2, we collect preliminary facts concerning the geometry of Hirze-
bruch surfaces and moduli of sheaves. In §3, we prove a strengthened version of Theorem 1.1 and
compute the Betti numbers of a general sheaf. In §4, we prove a strengthened version of Theorem
1.4. We then classify characters such that the general sheaf is globally generated in §5. We close
the paper with some remarks on the open question of determining the Chern characters of ample
vector bundles.

Acknowledgements. We would like to thank Aaron Bertram, Lawrence Ein, John Lesieutre, and
Daniel Levine for useful discussions.

2. Preliminaries

In this section, we collect basic facts which we will use in the rest of the paper.

2.1. Hirzebruch surfaces. We refer the reader to [Bea83], [Cos06] and [Hart77] for detailed ex-
positions on Hirzebruch surfaces. Let e be a nonnegative integer and let Fe denote the ruled surface
P(OP1 ⊕ OP1(e)). Let π : Fe → P1 be the natural projection. Let F be the class of a fiber and let
E be the class of the section of self-intersection −e. The intersection pairing on Fe is given by

E2 = −e, F 2 = 0, F ·E = 1.

The effective cone of Fe is generated by E and F . In fact,

h0(Fe,OFe
(aE + bF )) > 0

if and only if a, b ≥ 0. Dually, the nef cone of Fe is generated by E + eF and F . The canonical
divisor is given by KFe

= −2E − (e+ 2)F . By Serre duality, h2(Fe,OFe
(aE + bF )) > 0 if and only

if a ≤ −2 and b ≤ −e− 2. The following theorem summarizes the cohomology of line bundles on Fe

(also see [Cos06, CH16, Hart77]).

Theorem 2.1. Let L = OFe
(aE + bF ) be a line bundle on Fe. Then

(1) We have

χ(L) = (a+ 1)(b+ 1)− e
a(a+ 1)

2
.

(2) If L · F ≥ −1, then h2(Fe, L) = 0.
(3) If L · F ≤ −1, then h0(Fe, L) = 0.
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(4) In particular, if L · F = −1, then L has no cohomology in any degree.

Now suppose L · F > −1. Then h2(Fe, L) = 0, so either of the numbers h0(Fe, L) or h1(Fe, L)
determine the cohomology of L. These can be determined as follows.

(5) If L · E ≥ −1, then H1(Fe, L) = 0, and so h0(Fe, L) = χ(L).
(6) If L · E < −1, then H0(Fe, L) ∼= H0(Fe, L(−E)), and so the cohomology of L can be deter-

mined inductively using (3) and (5).

(If L · F < −1 then the cohomology of L can be determined by Serre duality.)

While the proof is well-known, we include it since the argument is relevant to our approach for
vector bundles.

Proof. Part (1) is just Riemann-Roch. Part (3) comes from the description of the effective cone,
and (2) follows by Serre duality. Part (4) is just a combination of (1)-(3).

(5) Suppose a = L · F ≥ 0 and L · E ≥ −1, and consider the restriction sequence

0 → L(−E) → L → L|E → 0.

Then H1(E,L|E) = 0, so H1(Fe, L) is a quotient of H1(Fe, L(−E)). Repeating this process, we
eventually find that H1(Fe, L) is a quotient of H1(Fe, L(−(a+ 1)E)) = H1(Fe,OFe

(−E + bF )) = 0
by (4). Therefore H1(Fe, L) = 0.

(6) The isomorphism H0(Fe, L) ∼= H0(Fe, L(−E)) comes immediately from the restriction se-
quence. When we twist L by −E, the intersection number with E increases by e and the in-
tersection number with F decreases by 1. Thus there is some smallest integer m > 0 such that
either L(−mE) · F ≤ −1 or L(−mE) · E ≥ −1, and by induction h0(Fe, L) = h0(Fe, L(−mE)). If
L(−mE) · F ≤ −1, we have h0(Fe, L) = 0 by (3). On the other hand, if L(−mE) · F > −1 and
L(−mE) ·E ≥ −1, then we have h0(Fe, L) = χ(L(−mE)) by (5). �

Remark 2.2. In particular, the line bundles

OFe
(−F ), OFe

(−2E − (e+ 1)F ), and OFe
(−E + bF ) (b ∈ Z)

all have no cohomology in any degree.

2.2. Numerical invariants and semistability. We refer the reader to [CH15, HuL10, LeP97] for
more details on moduli spaces of vector bundles on surfaces. Let X be a surface and let H be an
ample divisor on X. For a sheaf V (or Chern character v) of positive rank we respectively define
the H-slope, total slope, and discriminant:

µH(V) =
c1(V) ·H

r(V)H2
ν(v) =

c1(V)

r(V)
∆(V) =

1

2
ν(V)2 −

ch2(V)

r(V)
.

The discriminant has the following important properties:

(1) If L is a line bundle then ∆(L) = 0.
(2) If V is torsion-free and W is a nonzero vector bundle, then ∆(V ⊗W) = ∆(V) + ∆(W). In

particular, ∆(V ⊗ L) = ∆(V) for any line bundle L.

If we put P (ν) = χ(OX) + 1
2ν · (ν −KX), then the Riemann-Roch formula reads

χ(V) = r(V)(P (ν(V)) −∆(V)).

In the special case of Fe, if V has rank r and total slope ν(V) = k
r
E + l

r
F , then the term P (ν(V))

becomes

P (ν(V)) =

(

k

r
+ 1

)(

l

r
+ 1

)

−
ek

2r

(

k

r
+ 1

)

.

We will find the following easy consequence of Hirzebruch-Riemann-Roch useful.
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Lemma 2.3. Let X be a smooth projective surface with canonical class KX . Let V be a torsion-free
sheaf of rank r on X and let L be a line bundle on X. Then

χ(V ⊗ L) = χ(V) + L · c1(V) + r(χ(L)− χ(OX)).

A torsion-free sheaf V on X is µH-semistable if whenever W ⊂ V is a nonzero subsheaf we have
µH(W) ≤ µH(V). Ordinary H-Gieseker semistability implies µH -semistability, but all the theorems
in this paper will hold for the weaker µH -semistability. The Bogomolov inequality implies that
∆(V) ≥ 0 for any µH -semistable sheaf.

2.3. Prioritary sheaves. While our results are perhaps the most interesting in the context of
semistable sheaves, stronger results can be proved by working with the easier notion of prioritary
sheaves.

Definition 2.4. Let D be a divisor on a smooth surface X. A torsion free sheaf V is called
D-prioritary if Ext2(V,V(−D)) = 0.

We write PD(v) (or PX,D(v) if X is not clear) for the stack of D-prioritary sheaves on X.

In this paper, we will primarily consider F -prioritary sheaves on Fe, where F is the class of a fiber.
If H is any ample class on Fe and V is a torsion-free µH -semistable sheaf, then V is automatically
F -prioritary. Indeed, suppose V is µH -semistable. By Serre duality

Ext2(V,V(−F )) = Hom(V,V(KFe
+ F ))∗.

Since KFe
+ F is anti-effective, we have (KFe

+ F ) ·H < 0. Therefore µH(V) > µH(V(KFe
+ F )),

and Hom(V,V(KFe
+ F )) = 0 by µH -semistability. Therefore V is F -prioritary. It follows from

openness of stability that the stack Mµ-ss
H (v) is an open substack of PF (v). Furthermore, if there

are µH -semistable sheaves of character v, then it is dense by the following theorem of Walter [Wal98].

Theorem 2.5. Let π : X → P1 be a geometrically ruled surface with fiber class F , and let v ∈ K(X)
have positive rank. Then the stack PF (v) is irreducible. Furthermore, if r(v) ≥ 2 and PF (v) is
nonempty, then a general V ∈ PF (v) is a vector bundle.

In particular, to show that a general µH -semistable sheaf on Fe of character v satisfies some open
property, it is sufficient to produce an F -prioritary sheaf with that property.

Every vector bundle on a rational curve is a direct sum of line bundles ⊕r
i=1OP1(ai). The vector

bundle is balanced if |ai − aj| ≤ 1 for all i, j. The next proposition explains the importance of the
prioritary condition.

Proposition 2.6. Let C be a curve on a surface X and let Fs/S be a complete family of C-prioritary
sheaves which are locally free on C. Then the restricted family Fs|C/S is complete.

Therefore, if C is a rational curve, then Fs|C is balanced for all s in an open dense subset of S.

Proof. The Kodaira-Spencer map of the restricted family

TsS → Ext1(Fs|C ,Fs|C)

factors as a composition

TsS → Ext1(Fs,Fs) → Ext1C(Fs|C ,Fs|C).

The first map is surjective since the family F is a complete family. We have an identification

Ext1(Fs,Fs|C) = H1(X,F∗
s ⊗Fs|C)

= H1(C,F∗
s |C ⊗Fs|C)

= Ext1C(Fs|C ,Fs|C)
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since Fs is locally free along C. Hence, the second map in the factorization appears in the long exact
sequence obtained by applying Hom(Fs,Fs ⊗−) to

0 → OX(−C) → OX → OC → 0.

By the long exact sequence of cohomology

Ext1(Fs,Fs) → Ext1(Fs,Fs|C) → Ext2(Fs,Fs(−C)) = 0

we conclude that the Kodaira-Spencer map is surjective, and Fs|C/S is complete.

In any complete family of vector bundles on P1 parameterized by an irreducible base, the general
bundle is balanced. The second statement follows. �

One advantage of working with prioritary sheaves is that they are well-behaved under elementary
modifications. The following result is well-known but we include the proof for completeness and
lack of a single streamlined reference.

Lemma 2.7. Let L be a line bundle on a smooth surface X. Let V be a torsion-free sheaf on X,
and let V ′ be a general elementary modification of V at a general point p ∈ X, defined as the kernel
of a general surjection φ : V → Op:

0 → V ′ → V
φ
→ Op → 0.

(1) If V is L-prioritary, then V ′ is L-prioritary.
(2) The sheaves V and V ′ have the same rank and c1, and

χ(V ′) = χ(V)− 1

∆(V ′) = ∆(V) +
1

r
.

(3) We have H2(X,V) ∼= H2(X,V ′).
(4) If at least one of H0(X,V) or H1(X,V) is zero, then at least one of H0(X,V ′) or H1(X,V ′)

is zero. In particular, if H2(X,V) = 0 and V has at most one nonzero cohomology group,
then H2(X,V ′) = 0 and V ′ has at most one nonzero cohomology group.

Proof. (1) Clearly V ′ is torsion-free since V is. We have Ext2(V,V(−L)) = 0 since V is L-prioritary.
We would like to show that Ext2(V ′,V ′(−L)) = 0. Applying Ext(−,V ′(−L)) to the sequence, we
obtain a surjection

Ext2(V,V ′(−L)) → Ext2(V ′,V ′(−L)) → 0.

Hence, it suffices to show that Ext2(V,V ′(−L)) = 0. Applying Ext(V,−) to the sequence twisted
by −L, we obtain

Ext1(V,Op) → Ext2(V,V ′(−L)) → Ext2(V,V(−L)).

We have Ext2(V,V(−L)) = 0 by the assumption that V is L-prioritary and Ext1(V,Op) = 0 because
V is locally free at the general point p. We conclude that V ′ is L-prioritary.

(2) The first equality follows from the exact sequence, and Riemann-Roch gives the second.

(3) This follows immediately from the long exact sequence in cohomology.

(4) Consider the long exact sequence in cohomology

0 → H0(X,V ′) → H0(X,V) → H0(X,Op) → H1(X,V ′) → H1(X,V) → 0.

If H0(X,V) = 0, then H0(X,V ′) = 0. SupposeH0(X,V) 6= 0 and H1(X,V) = 0. Then by the choice
of φ : V → Op, the map H0(X,V) → H0(X,Op) = C is surjective. It follows that H1(X,V ′) = 0. �
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2.4. Exceptional collections. We refer the reader to [CH16] for more details on the following dis-
cussion. We will use exceptional collections of sheaves on Fe as basic building blocks for constructing
sheaves with useful properties.

Definition 2.8. A coherent sheaf E is called exceptional if Exti(E , E) = 0 for i ≥ 1 and Hom(E , E) =
C. An ordered collection of exceptional objects E1, . . . , Em is an exceptional collection if Exti(Et, Es) =
0 for s < t and all i. The exceptional collection is strong if in addition Exti(Es, Et) = 0 for s < t and
i 6= 0.

Example 2.9. On Fe, the line bundles

OFe
(−E − (e+ 1)F ),OFe

(−E − eF ),OFe
(−F ),OFe

give a strong exceptional collection (see [CH16, Example 3.2]).

In [CH16], the majority of the following result was proved.

Theorem 2.10. Let E1, . . . , Em,F1, . . . ,Fn be a strong exceptional collection of vector bundles on a
surface X, partitioned into two blocks, and let L be a line bundle on X. Assume that

(1) The sheaf Hom(Ei,Fj) is globally generated for all i, j,
(2) Ext1(Ei,Fj(−L)) = 0 for all i, j, and

(3) Ext2(Fi,Fj(−L)) = 0 for all i, j.

Suppose a1, . . . , am and b1, . . . , bn are nonnegative integers such that
∑

bjr(Fj) −
∑

air(Ei) > 0,
and let

U ⊂ Hom





m
⊕

i=1

Eai
i ,

n
⊕

j=1

F
bj
j





be the open subset parameterizing injective sheaf maps with torsion-free cokernel. For φ ∈ U , let Vφ

be the cokernel:

0 →

m
⊕

i=1

Eai
i

φ
→

n
⊕

j=1

F
bj
j → Vφ → 0.

Then U is nonempty, and the family Vφ/U is a complete family of L-prioritary sheaves.

Proof. If r(Vφ) =
∑

bjr(Fj)−
∑

air(Ei) ≥ 2, then this is [CH16, Proposition 3.6]. When r(Vφ) = 1,
everything follows as in the r(Vφ) ≥ 2 case, except we must verify that Vφ is still torsion-free. The
rank of φ only drops in codimension 2, so any torsion subsheaf T ⊂ Vφ has 0-dimensional support. If
T 6= 0 and M is any line bundle, then H0(X,T ⊗M) 6= 0 and hence H0(X,Vφ ⊗M) 6= 0. However,
if M is sufficiently anti-ample, then tensoring the resolution of Vφ by M shows H0(X,Vφ⊗M) = 0.
Therefore T = 0. �

2.5. Globally generated vector bundles. We now recall some properties of globally generated
sheaves for use in §5. A coherent sheaf V on a projective variety X over a field k is globally generated
if the evaluation map

H0(X,V) ⊗k OX → V

is surjective. The following lemma is immediate.

Lemma 2.11. Any quotient of a globally generated sheaf is globally generated.

If V is globally generated, then there is an obvious restriction on c1(V).

Lemma 2.12. Let V be a globally generated vector bundle on X. Then for every curve C ⊂ X, we
have

C · c1(V) ≥ 0.
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Proof. The standard short exact sequence

0 → V(−C) → V → V|C → 0

implies that V|C is a quotient of V. Hence, by Lemma 2.11, V|C is globally generated. Since a globally
generated vector bundle on a curve has nonnegative degree, we conclude that C · c1(V) ≥ 0. �

We warn that while many properties of sheaves that we consider in this paper are open properties,
the property of being globally generated is not in general open. However, in a family V/S of sheaves
with no higher cohomology, the locus of globally generated sheaves is clearly open. The next example
shows that in an arbitrary family the locus of globally generated sheaves can fail to be open.

Example 2.13. On P2, the locus in M(v) of globally generated semistable sheaves is not generally
open, and even if it is nonempty, it need not be dense. For example, for any d ≥ 1 the bundle V

0 → OP2(−d) → Hom(OP2(−d),OP2)∗ ⊗OP2 → V → 0

given by the cokernel of the coevaluation map is globally generated and semistable [LeP97, Lemma
9.2.3]. Let v = chV. By the Brill-Noether theorem of Göttsche and Hirschowitz [GHi94], a general
sheaf in M(v) has only one nonzero cohomology group.

• If d = 1 or 2, then the bundle V is exceptional, and M(v) = {[V]} is a point.
• If d = 3, then χ(v) = r(v), the moduli space M(v) is positive-dimensional, and the general
sheaf in M(v) has r(v) sections but is not globally generated.

• If d ≥ 4, then χ(v) = 3d <
(

d+2
2

)

− 1 = r(v) and the general sheaf doesn’t even have r(v)
sections, so has no hope of being globally generated.

Thus, sheaves with “extra” sections can be globally generated even if the general sheaf is not.

3. The Brill-Noether theorem

In this section, we prove the Brill-Noether theorem for vector bundles on Hirzebruch surfaces and
compute the Betti numbers of a general sheaf. The next result summarizes the various results in
this section; it is instructive to compare the statement with the line bundle case, Theorem 2.1.

Theorem 3.1. Let v ∈ K(Fe) be a Chern character with positive rank r = r(v) and ∆(v) ≥ 0.
Then the stack PF (v) is nonempty and irreducible. Let V ∈ PF (v) be a general sheaf.

(1) If we write ν(v) = k
r
E + l

r
F , then

χ(v) = r(P (ν(v)) −∆(v))

= r

((

k

r
+ 1

)(

l

r
+ 1

)

−
ek

2r

(

k

r
+ 1

)

−∆(v)

)

(2) If ν(v) · F ≥ −1, then h2(Fe,V) = 0.
(3) If ν(v) · F ≤ −1, then h0(Fe,V) = 0.
(4) In particular, if ν(v) · F = −1, then h1(Fe,V) = −χ(v) and all other cohomology vanishes.

Now suppose ν(v) · F > −1. Then H2(Fe,V) = 0, so either of the numbers h0(Fe,V) or h1(Fe,V)
determine the Betti numbers of V. These can be determined as follows.

(5) If ν(v) ·E ≥ −1, then V has at most one nonzero cohomology group. Thus if χ(v) ≥ 0, then
h0(Fe,V) = χ(v), and if χ(v) ≤ 0, then h1(Fe,V) = −χ(v).

(6) If ν(v) · E < −1, then H0(Fe,V) ∼= H0(Fe,V(−E)), and so the Betti numbers of V can be
determined inductively using (3) and (5).

(If ν(v) · F < −1 and r(v) ≥ 2, then the cohomology of V can be determined by Serre duality.)



BRILL-NOETHER THEOREMS AND GAETA RESOLUTIONS 9

Remark 3.2. In particular, if H is an arbitrary ample divisor on Fe and there are µH -semistable
sheaves of character v, then Theorem 3.1 allows us to compute the Betti numbers of a general sheaf
V ∈ Mµ-ss

H (v).

Statement (1) of the theorem is just Riemann-Roch, reproduced here for the reader’s convenience.
The locus of sheaves V ∈ PF (v) satisfying each of the statements (2)-(5) of the theorem is open in
the stack PF (v), so it suffices to produce a single sheaf V ∈ PF (v) with the given cohomology. We
will construct such sheaves by using direct sums of line bundles as basic building blocks (§3.1) and
applying elementary modifications to them (§3.2). Statement (6) follows easily from the observation
that for a general V ∈ PF (v) the restriction V|E is balanced (see Corollary 3.6).

3.1. Prioritary direct sums of line bundles. We first show that for any rank r ≥ 1 and slope
ν = k

r
E+ l

r
F , there is a prioritary direct sum of line bundles with ∆ ≤ 0. We identify N1(Fe)Q ∼= Q2

with the (k
r
, l
r
)-plane. The particular line bundles we use depend on (k

r
, l
r
). The next lemma shows

that if this point is in a certain triangular region, then we can find such a direct sum of line bundles.

Lemma 3.3. Let a, b, c ≥ 0 be nonnegative integers, and let

W = OFe
(−E − (e+ 1)F )a ⊕OFe

(−F )b ⊕Oc
FE

.

(1) The bundle W is F -prioritary and E-prioritary, and W has no higher cohomology.
(2) We have ∆(W) ≤ 0.
(3) Let r ≥ 1 and represent a total slope k

r
E+ l

r
F ∈ N1(Fe)Q by the point (k

r
, l
r
) ∈ Q2. If (k

r
, l
r
)

is in the convex region with vertices

(−1,−e− 1), (0,−1), (0, 0),

then it is the slope of a rank r bundle W as above.

Proof. (1) The vector space Ext2(W,W(−F )) is a direct sum of vector spaces of the form
H2(Fe,OFe

(αE+βF )) where α ≥ −1, and these are zero. ThereforeW is F -prioritary. Similarly, the
vector space Ext2(W,W(−E)) is a direct sum of vector spaces of the form H2(Fe,OFe

(αE + βF ))
where β ≥ −e − 1, and these are again zero. Therefore W is E-prioritary. The statement on
cohomology follows at once from Theorem 2.1.

(2) We compute

ch(W) =

(

a+ b+ c,−aE − (a(e+ 1) + b)F,
a(e+ 2))

2

)

.

Then

2r(W)2∆(W) = ch1(W)2 − 2r(W) ch2(W)

= −a2e+ 2a(a(e + 1) + b)− (a+ b+ c)a(e + 2)

= −a(be+ ce+ 2c).

Therefore ∆(W) ≤ 0.

(3) The slope (k
r
, l
r
) is in the convex region spanned by (−1,−e−1), (0,−1) and (0, 0) if and only

if the vector (k, l, r) is in the cone spanned by (−1,−e− 1, 1), (0,−1, 1), and (0, 0, 1). This happens
if and only if the linear system





−1 0 0
−e− 1 −1 0

1 1 1









a
b
c



 =





k
l
r





has a solution (a, b, c) ∈ Q3
≥0. But the matrix is in SL3(Z), so actually (a, b, c) ∈ Z3

≥0. The

corresponding bundle W has rank r and slope (k
r
, l
r
). �
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By an analogous construction we can further handle slopes lying in a larger quadrilateral region.
This quadrilateral has the advantage that its shifts by line bundles tile the whole (k

r
, l
r
)-plane.

Corollary 3.4. Suppose r ≥ 1 and the point (k
r
, l
r
) lies in the parallelogram Q bounded by the four

vertices

(−1,−e), (0, 0), (0,−1) and (−1,−e− 1).

Then there is a rank r direct sum W of copies of the line bundles

OFe
(−E − eF ), OFe

, OFe
(−F ), and OFe

(−E − (e+ 1)F )

such that

(1) ν(W) = k
r
E + l

r
F ,

(2) W is F - and E-prioritary, and
(3) ∆(W) ≤ 0.

Proof. The quadrilateral region is split into a lower triangle T1 and an upper triangle T2 by the line
segment from (−1,−e − 1) to (0, 0). If (k

r
, l
r
) is in T1, then everything follows from Lemma 3.3.

On the other hand, if (k
r
, l
r
) lies in T2, consider direct sums of the form

W = Oa
Fe

⊕OFe
(−E − eF )b ⊕OFe

(−E − (e+ 1)F )c.

Notice that

(W(E + (e+ 1)F )))∗ = OFe
(−E − (e+ 1)F )a ⊕OFe

(−F )b ⊕Oc
Fe

is of the same form as the line bundles considered in Lemma 3.3. Since tensoring by line bundles
and taking duals preserves discriminants and prioritariness, it follows that the integers a, b, c can be
chosen so that W has the required properties. �

3.2. Elementary modifications. When combined with elementary modifications, Corollary 3.4
has many consequences, which we now investigate. The proof of the next corollary is fundamental
to all the results which follow and makes crucial use of Lemma 2.7.

Corollary 3.5. Let v ∈ K(Fe) be a character of positive rank with ∆(v) ≥ 0. Then PF (v) is
nonempty.

Proof. Since integer translates of the region Q in Corollary 3.4 tile N1(Fe)Q, we may find a line
bundle L such that ν(v(−L)) lies in Q. Then Corollary 3.4 produces an F -prioritary sheaf W of
nonpositive discriminant with r(W(L)) = r(v) and ν(W(L)) = ν(v). Then since ∆(v) ≥ 0, the
integer m = χ(W(L))− χ(v) is nonnegative, since

m = χ(W(L))− χ(v) = r(v)(∆(v) −∆(W(L))).

Thus by Lemma 2.7, if we perform m general elementary modifications to W(L), the resulting sheaf
V is F -prioritary and has chV = v. �

By essentially the same proof, we can deduce that a general V ∈ PF (v) splits as a balanced direct
sum on the exceptional section E.

Corollary 3.6. Let v ∈ K(Fe) be a character of positive rank with ∆(v) ≥ 0. Then the general
V ∈ PF (v) is E-prioritary, and furthermore V|E is a balanced direct sum of line bundles.

Proof. In the proof of Corollary 3.5, the bundle W is E-prioritary, and hence so is W(L). Then the
sheaf V is also E-prioritary by Lemma 2.7. Furthermore, W|E is clearly balanced, and hence so is
W(L)|E and V|E . (Alternately, the balancedness of V|E follows from the general result Proposition
2.6.) �
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When further information about v is known, the possibilities for the twisting line bundle L such
that v(−L) lies in Q are restricted. This fact allows us to deduce further results about sheaves of
character v.

Corollary 3.7. Let v ∈ K(Fe) be a character of positive rank with ∆(v) ≥ 0. Let V ∈ PF (v) be
general.

(1) If ν(v) · F ≥ −1, then h2(Fe,V) = 0.
(2) If ν(v) · F ≤ −1, then h0(Fe,V) = 0.
(3) In particular, if ν(v) · F = −1, then h1(Fe,V) = −χ(v) and all other cohomology vanishes.
(4) Suppose ν(v) · F > −1 and ν(v) · E ≥ −1. Then V has at most one nonzero cohomology

group.

Proof. (1) In the notation of the proof of Corollary 3.5, since ν(v) ·F ≥ −1 we may assume the line
bundle L is of the form OFe

(aE + bF ) with a ≥ 0 and b ∈ Z. Then the line bundles appearing in
W(L) (which are twists by L of the line bundles in the statement of Corollary 3.4) all clearly have
no h2. Then V also has no h2 by Lemma 2.7.

(2) In this case, we may assume the line bundle L is of the form OFe
(aE + bF ) with a ≤ −1 and

b ∈ Z. The line bundles appearing in W(L) all have no h0. Then V is a subsheaf of W(L), so also
has no h0.

(3) This immediately follows from (1) and (2).

(4) This time we may assume the line bundle L is nef. Then by Theorem 2.1, the line bundles
appearing in W(L) all have no higher cohomology. By Lemma 2.7, performing general elementary
modifications on W(L) results in a bundle V with at most one nonzero cohomology group. �

We can combine the last two corollaries to compute the Betti numbers of a general sheaf in the
remaining cases. Together with the other results in this subsection, this completes the proof of
Theorem 3.1.

Proposition 3.8. Let v ∈ K(Fe) be a character of positive rank with ∆(v) ≥ 0, ν(v) · F > −1
and ν(v) · E < −1. Let V ∈ PF (v) be general. Then H0(Fe,V) ∼= H0(Fe,V(−E)), and the Betti
numbers of V can be determined inductively.

Proof. Since V|E is balanced by Corollary 3.6 and ν(v) ·E < −1, we conclude that H0(E,V|E) = 0.
Then the restriction sequence

0 → V(−E) → V → V|E → 0

implies H0(Fe,V) ∼= H0(Fe,V(−E)).

It remains to explain how to compute the Betti numbers of V inductively. Twisting V by −E has
the effect of increasing ν(v) ·E by e and decreasing ν(v) · F by 1. Hence there is a smallest integer
m ≥ 1 such that either ν(v(−mE)) · E ≥ −1 or ν(v(−mE)) · F ≤ −1, and by induction we find
h0(Fe,V) = h0(Fe,V(−mE)).

If ν(v(−mE)) ·F ≤ −1, Corollary 3.7 gives h0(Fe,V) = h2(Fe,V) = 0, and so h1(Fe,V) = −χ(v).

On the other hand if ν(v(−mE)) · F > −1, then ν(v(−mE)) · E ≥ −1. Corollary 3.7 gives
h0(Fe,V) = max{χ(v(−mE)), 0} and h2(Fe,V) = 0, and h1(Fe,V) is determined by Riemann-Roch.
Note that in this case h1(Fe,V) is always nonzero. Indeed, since m ≥ 1, we find ν(v(−E)) ·F > −1.
By Corollary 3.7, we have h2(Fe,V(−E)) = 0. Then H1(Fe,V) → H1(Fe,V|E) is surjective, and
h1(Fe,V|E) > 0 since ν(v) · E < −1. �

3.3. The Brill-Noether theorem. We call a character v ∈ K(Fe) of positive rank special if the
general sheaf V ∈ PF (v) has more than one nonzero cohomology group, and nonspecial otherwise. It
is useful for applications to convert the statement of Theorem 3.1 to a classification of the nonspecial
characters. Again we concentrate on the case ν(v) · F ≥ −1 and rely on Serre duality otherwise.
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Corollary 3.9. Let v ∈ K(Fe) be a character with positive rank and ∆(v) ≥ 0, and suppose
ν(v) · F ≥ −1. Then v is nonspecial if and only if one of the following holds.

(1) We have ν(v) · F = −1.
(2) We have ν(v) · F > −1 and ν(v) · E ≥ −1.
(3) If ν(v) · F > −1 and ν(v) · E < −1, let m be the smallest positive integer such that either

ν(v(−mE)) · F ≤ −1 or ν(v(−mE)) · E ≥ −1.
(a) If ν(v(−mE)) · F ≤ −1, then v is nonspecial.
(b) If ν(v(−mE)) · F > −1, then v is nonspecial if and only if χ(v(−mE)) ≤ 0.

Proof. Theorem 3.1 shows v is nonspecial if we are in case (1) or (2). In case (3), the proof of
Proposition 3.8 shows v is nonspecial if and only if the listed conditions are satisfied. �

It is worth pointing out that when χ(v) ≥ 0, then case (3) in Corollary 3.9 does not occur, so
that the classification takes a particularly simple form.

Corollary 3.10. Let v ∈ K(Fe) be a character with positive rank and ∆(v) ≥ 0, and suppose
ν(v) · F ≥ −1 and χ(v) ≥ 0. Then v is nonspecial if and only if one of the following holds.

(1) We have ν(v) · F = −1.
(2) We have ν(v) · F > −1 and ν(v) · E ≥ −1.

Proof. Let V ∈ PF (v) be general. Assume ν(v) · F > −1 and ν(v) · E < −1; we must show v is
special. Since χ(v) ≥ 0, it will suffice to show h1(Fe,V) is nonzero.

The inequality ν(v) · E < −1 gives h1(E,V|E) 6= 0, so if h2(Fe,V(−E)) = 0, then the surjection
H1(Fe,V) → H1(E,V|E)) shows h1(Fe,V) 6= 0. Now if ν(v) · F ≥ 0, then ν(v(−E)) · F ≥ −1 and
h2(Fe,V(−E)) = 0 follows from Theorem 3.1, completing the proof in this case.

If instead −1 < ν(v) · F < 0, then the assumptions χ(v) ≥ 0, and ∆(v) ≥ 0 together imply
ν(v) · E ≥ −1, contradicting our assumption. Indeed, write ν(v) = k

r
E + l

r
F . By the Riemann-

Roch formula,

χ(v) = r

((

k

r
+ 1

)(

l

r
+ 1

)

−
ek

2r

(

k

r
+ 1

)

−∆(v)

)

= r

((

k

r
+ 1

)(

l

r
+ 1−

ek

2r

)

−∆(v)

)

.

Then ν(v) · F = k
r
, so our assumptions ν(v) · F > −1, ∆(v) ≥ 0, and χ(v) ≥ 0 imply l

r
≥ −1 + ek

2r .
Hence,

ν(v) ·E =
l

r
−

ek

r
≥ −1 +

ek

2r
≥ −1

since k
r
= ν(v) · F < 0. Thus this case never arises. �

4. Gaeta-type resolutions

In this section, we study resolutions of sheaves on Fe analogous to the Gaeta resolution of general
sheaves on P2. Families of such resolutions give unirational parameterizations of moduli spaces of
sheaves, and so give an important tool for studying general sheaves.

Definition 4.1. Let L be a line bundle on Fe. An L-Gaeta-type resolution of a sheaf V on Fe is a
resolution of V of the form

0 → L(−E − (e+ 1)F )α → L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ → V → 0

where α, β, γ, δ are nonnegative integers. We say a sheaf V has a Gaeta-type resolution if it admits
an L-Gaeta-type resolution for some line bundle L.
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Our main result in this section constructs Gaeta-type resolutions of general prioritary sheaves
V ∈ PF (v) on Fe under mild assumptions on v.

Theorem 4.2. Let v ∈ K(Fe) be a Chern character of positive rank, and assume

∆(v) ≥ 1/4 if e = 0
∆(v) ≥ 1/8 if e = 1
∆(v) ≥ 0 if e ≥ 2.

Let V ∈ PF (v) be a general prioritary sheaf. Then V admits a Gaeta-type resolution.

In particular, if there are µH-semistable sheaves of character v, the same result holds for a general
V ∈ Mµ-ss

H (v).

First we observe that if a sheaf V admits an L-Gaeta-type resolution, then the exponents in the
resolution are determined by v = chV, and they are easily computable.

Lemma 4.3. Suppose V is a sheaf on Fe with an L-Gaeta-type resolution

0 → L(−E − (e+ 1)F )α → L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ → V → 0.

Then the exponents α, β, γ, δ are the integers

α = −χ(V(−L− E − F ))

β = −χ(V(−L− E))

γ = −χ(V(−L− F ))

δ = χ(V(−L))

which depend only on v = chV. In particular, L must be a line bundle such that the inequalities

χ(v(−L)) ≥ 0

χ(v(−L− E)) ≤ 0

χ(v(−L− F )) ≤ 0

χ(v(−L− E − F )) ≤ 0

(†)

are satisfied.

Proof. For example, to establish the equality α = −χ(V(−L−E−F )) we tensor the resolution of V
by OFe

(−L− E − F ) and use the additivity of the Euler characteristic and Riemann-Roch for line
bundles to find

χ(V(−L−E − F )) = βχ(OFe
(−2E − (e+ 1)F ))

+ γχ(OFe
(−E − 2F )

+ δχ(OFe
(−E − F ))

− αχ(OFe
(−2E − (e+ 2)F )

= −α

The other equalities are proved in the same way. �

Conversely, if a line bundle L can be found such that the numerical inequalities (†) are satisfied,
then the next result shows that general sheaves admit L-Gaeta-type resolutions. Thus the problem
of constructing Gaeta-type resolutions is reduced to the numerical problem of finding a line bundle
L satisfying the inequalities (†).

Proposition 4.4. Suppose v ∈ K(Fe) is a Chern character of positive rank and there is a line bundle
L such that the inequalities (†) are satisfied. Then PF (v) is nonempty and a general V ∈ PF (v)
admits an L-Gaeta-type resolution.
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Proof. Define positive integers α, β, γ, δ as in the statement of Lemma 4.3 and define

A = L(−E − (e+ 1)F )α B = L(−E − eF )β ⊕ L(−F )γ ⊕ Lδ.

Then any complex A
φ
→ B sitting in degrees −1 and 0 has Chern character v. Indeed, K(Fe) ⊗ Q

has a basis given by the four line bundles

−L− E − F,−L− E,−L− F,−L.

If w is the character of the complex A
φ
→ B, then by the choice of the integers α, β, γ, δ we find

that v − w is orthogonal to each of these four line bundles under the Euler pairing (u,u′) =
χ(u⊗ u′). Since the Euler pairing is nondegenerate, v = w. In particular, the rank of the complex
r(B)− r(A) = r(v) is positive.

Let U ⊂ Hom(A,B) be the open subset parameterizing injective sheaf maps φ with torsion-free
cokernel Vφ. We check the hypotheses (1)-(3) of Theorem 2.10. Note that each of the line bundles

Hom(L(−E − (e+ 1)F,L(−E − eF )) = OFe
(F )

Hom(L(−E − (e+ 1)F ), L(−F )) = OFe
(E + eF )

Hom(L(−E − (e+ 1)F ), L) = OFe
(E + (e+ 1)F ))

are globally generated. The vanishings Ext1(A,B(−F )) = 0 and Ext2(B,B(−F )) both follow
immediately from Theorem 2.1. We already saw r(B)− r(A) > 0. Thus the hypotheses of Theorem
2.10 are satisfied, and Vφ/U is a nonempty complete family of F -prioritary sheaves which admit
L-Gaeta-type resolutions. Since PF (v) is irreducible, this completes the proof. �

Finally we show that under the assumptions on ∆(v) in Theorem 4.2 it is possible to find a suitable
line bundle L. Together with Proposition 4.4, the next result completes the proof of Theorem 4.2.

Lemma 4.5. Let v ∈ K(Fe) be a Chern character of positive rank, and assume

∆(v) ≥ 1/4 if e = 0
∆(v) ≥ 1/8 if e = 1
∆(v) ≥ 0 if e ≥ 2.

Then there exists a line bundle L such that the inequalities (†) hold.

Proof. For simplicity we first assume ∆(v) > 0, and handle the case ∆(v) = 0 (if e ≥ 2) later.
Consider the curve Q : χ(v(−La,b)) = 0 in the (a, b)-plane, where La,b is the variable line bundle

La,b = ν(v)−
1

2
KX + aE + bF (a, b ∈ R)

“centered” at ν(v) − 1
2KX . Then by Riemann-Roch,

χ(v(−La,b))

r(v)
= (1− (a+ 1))(1 − (b+ 1 +

e

2
))

−
e(−(a+ 1))(−(a + 1) + 1)

2
−∆(v),

so Q is the hyperbola

∆(v) = a

(

b−
1

2
ae

)

with asymptotes

ℓ1 : a = 0 and ℓ2 : b =
1

2
ae

meeting at the origin. Since ∆(v) > 0, the right branch Q1 (resp. left branch Q2) of Q lies right of
ℓ1 and above ℓ2 (resp. left of ℓ1 and below ℓ2). The function χ(v(−La,b)) is negative for any (a, b)
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on ℓ1, so it is negative for all points lying between the two branches and positive for all points which
are either below Q2 or above Q1.

Those (a, b) ∈ R2 such that La,b is integral form a shift Λ ⊂ R2 of the standard integral lattice
Z2 ⊂ R2. Thus to construct the line bundle L we only need to find a point (a, b) ∈ Λ such that
(a, b) lies below Q2 and the points (a + 1, b), (a, b + 1), (a + 1, b + 1) lie between Q2 and Q1. It is
easy to find a point (a, b) ∈ Λ such that (a, b) lies below Q2 and (a + 1, b) and (a, b + 1) are both
above Q2: start from an arbitrary point (a, b) ∈ Λ below Q2 and repeatedly increment a and/or b
by 1 until increasing either will cross Q2. Let (a, b) ∈ Λ be any point below Q2 such that (a+ 1, b)
and (a, b+1) are both above Q2. The point (a+1, b) still lies below ℓ2, and the point (a, b+1) still
lies left of ℓ1, from which we conclude that the points (a+ 1, b) and (a, b+ 1) both lie between Q2

and Q1. For this choice of (a, b) we claim that additionally (a+ 1, b+ 1) is between Q2 and Q1.

Since Q2 can be described as the graph of a function b = f(a), the fact that (a+1, b) is above Q2

implies (a+ 1, b+ 1) is above Q2. It remains to show that (a+ 1, b+ 1) is below Q1. If e ≥ 2, then
since (a, b) is below ℓ2 and ℓ2 has slope e/2 ≥ 1, we find that (a + 1, b + 1) is below ℓ2 and hence
(a+ 1, b+ 1) is below Q1.

On the other hand, for e = 0 a simple computation shows that the translate of Q2 by the vector
(1, 1) is disjoint fromQ1 if ∆(v) > 1/4 and tangent toQ1 if ∆(v) = 1/4. Thus assuming ∆(v) ≥ 1/4,
the point (a+1, b+1) is on or below Q1. An identical computation shows that an analogous result
holds when e = 1 and ∆(v) ≥ 1/8.

If e ≥ 2 and ∆(v) = 0, the hyperbola Q degenerates to the union of lines ℓ1 ∪ ℓ2, and a similar
argument works. Thus a suitable line bundle L can be found in each case. �

Remark 4.6. The stronger inequalities on ∆(v) needed in case e = 0 or e = 1 are in general
necessary. For an easy example, suppose e = 0, ν(v) = 1

2E + 1
2F (so r(v) is even), and assume

0 < ∆(v) < 1/4, which can certainly be arranged if r(v) is sufficiently large. The shifted lattice
Λ ⊂ R2 is Z2 + (12 ,

1
2). The hyperbola Q becomes ab = ∆(v), so the points (a, b) ∈ Λ such that

χ(V(−La,b)) > 0 are exactly the points of Λ in the first and third quadrants. No choice (a, b) making
the inequalities (†) hold exists, so no sheaf of character v admits a Gaeta-type resolution.

5. Globally generated bundles

Throughout this section we let v ∈ K(Fe) be a character of positive rank such that ∆(v) ≥ 0 and
ν(v) is nef. In this section we classify those characters v such that the general sheaf V ∈ PF (v) is
globally generated. We say that v is globally generated if a general sheaf V ∈ PF (v) is. There is no
loss of generality in assuming ν(v) is nef. Indeed, if r(v) ≥ 2 then the general sheaf V ∈ PF (v) is a
vector bundle, and if it is globally generated then c1(v) is nef by Lemma 2.12. In the rank 1 case,
if L is a line bundle and Z ⊂ X is a general collection of n points, then L⊗ IZ can only be globally
generated if L is, and therefore L is again nef by Lemma 2.12.

Since ν(v) is nef, it follows from Theorem 3.1 that a general V ∈ PF (v) is nonspecial. While
the substack of PF (v) of globally generated sheaves is not necessarily open, the substack of PF (v)
of globally generated sheaves with no higher cohomology is open. Thus, a character v is globally
generated if and only if there exists a sheaf V ∈ PF (v) which is globally generated and has no higher
cohomology. As usual, if v is globally generated and there are µH -semistable sheaves of character
v, then the general V ∈ Mµ-ss

H (v) is also globally generated.

The classification of globally generated Chern characters on Fe falls into three main cases. First,
if ν(v) · F = 0, then we will see that v can only be globally generated if it is pulled back from P1.
This imposes strong restrictions on v. When ν(v) · F > 0, it is convenient to discuss two separate
cases depending on the sign of χ(v(−F )). Note that since ν(v) is nef, we have ν(v(−F )) · F > 0
and ν(v(−F )) ·E ≥ −1. Thus by Theorem 3.1, the cohomology of V(−F ) is determined by its Euler
characteristic. When χ(v(−F )) ≥ 0, a general sheaf V of character v has H1(Fe,V(−F )) = 0 and it



16 I. COSKUN AND J. HUIZENGA

is easy to prove global generation by restricting to a fiber. On the other hand when χ(v(−F )) < 0,
any sheaf V of character v has H1(Fe,V(−F )) 6= 0 and the restriction to a fiber is not so useful. In
this case we construct globally generated vector bundles by first constructing a suitable “Lazarsfeld-
Mukai” type bundle

0 → M → O
χ(v)
Fe

→ V → 0.

Our Gaeta-type resolutions provide a key tool in analyzing the bundle M.

We now state the full classification theorems. The classification is slightly different depending
on if e = 0, e = 1, or e ≥ 2. To make the statements as clean as possible we state the e = 0 case
separately.

Theorem 5.1. Suppose e ≥ 1, and let v ∈ K(Fe) be a Chern character of positive rank such that
∆(v) ≥ 0 and ν(v) is nef. Then v is globally generated if and only if one of the following holds.

(1) We have ν(v) · F = 0, and there are integers a,m ≥ 0 such that

v = (r(v)−m) chOFe
(aF ) +m chOFe

((a+ 1)F ).

(2) We have ν(v) · F > 0 and χ(v(−F )) ≥ 0.
(3) We have ν(v) · F > 0, χ(v(−F )) < 0, and χ(v) ≥ r(v) + 2.
(4) We have e = 1, ν(v) · F > 0, χ(v(−F )) < 0, χ(v) = r(v) + 1, and

v = (r(v) + 1) chOF1
− chOF1

(−2E − 2F ).

The classification changes slightly in the case of P1 × P1 since F and E are the fiber classes for
the two rulings.

Theorem 5.2. Let v ∈ K(P1 × P1) be a Chern character of positive rank such that ∆(v) ≥ 0 and
ν(v) is nef. Let F1, F2 be fibers in opposite rulings. Then v is globally generated if and only if one
of the following holds.

(1) We have ν(v) · Fi = 0 for some i ∈ {1, 2}, and there are integers a,m ≥ 0 such that

v = (r(v) −m) chOP1×P1(aFi) +m chOP1×P1((a+ 1)Fi).

(2) We have ν(v) · Fi > 0 for i = 1, 2, but χ(v(−Fj)) ≥ 0 for some j ∈ {1, 2}.
(3) We have ν(v) · Fi > 0 and χ(v(−Fi)) < 0 for i = 1, 2, and χ(v) ≥ r(v) + 2.

We note that an analogous result for P2 follows from the classification of globally generated
characters on F1. Let H ⊂ P2 be the class of a line. We say a character v ∈ K(P2) is globally
generated if a general H-prioritary sheaf is globally generated. By Hirschowitz-Laszlo [HiL93] and
Göttsche-Hirschowitz [GHi94], the stack PP2,H(v) is irreducible and a general V ∈ PP2,H(v) has
only one nonzero cohomology group. This result completes the classification of globally generated
characters on P2 begun in Bertram-Goller-Johnson [BGJ16].

Corollary 5.3. Let v ∈ K(P2) be a Chern character of positive rank such that ∆(v) ≥ 0 and
µ(v) ≥ 0. Then v is globally generated if and only if one of the following holds.

(1) We have µ(v) = 0 and v = r(v) chOP2 .
(2) We have µ(v) > 0 and χ(v(−1)) ≥ 0.
(3) We have µ(v) > 0, χ(v(−1)) < 0, and χ(v) ≥ r(v) + 2.
(4) We have µ(v) > 0, χ(v(−1)) < 0, χ(v) = r(v) + 1, and

v = (r(v) + 1) chOP2 − chOP2(−2).

Proof. Let π : F1 → P2 be the blowdown map, and let w = π∗(v) ∈ K(F1) and r = r(v) = r(w).
The result is clear if r = 1, since then the pullback of a general sheaf in PP2,H(v) is a general sheaf
in PF1,F (v), and clearly v is globally generated if and only if w is. So suppose r ≥ 2.
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The main technical difficulty is to compare the notions of F -prioritary sheaves on F1 and H-
prioritary sheaves on P2. We have c1(w) · E = 0 and ∆(w) = ∆(v) ≥ 0, so by Corollary 3.6 a
general W ∈ PF1,F (w) restricts to a trivial bundle on E: W|E ∼= Or

E . Furthermore, since W is
general it is actually (E + F )-prioritary. This can be shown by an argument similar to the proof of
Lemma 3.3: since c1(w) ·E = 0, we can construct a direct sum of line bundles

W ′ = OF1
(mE +mF )a ⊕OF1

((m+ 1)E + (m+ 1)F )b

having the same rank and c1 as w. Then we compute

2r2∆(W ′) = −ab ≤ 0.

Since ∆(w) ≥ 0, we can obtain a sheaf of character w fromW ′ by repeated elementary modifications.
Since W ′ is clearly (E + F )-prioritary, so is the general W ∈ PF1,F (w) by Lemma 2.7.

Furthermore, (E + F )-prioritary vector bundles on F1 are automatically F -prioritary. Indeed, if
W is an (E + F )-prioritary vector bundle, then the sequence

0 → W(−E − F ) → W(−F ) → W(−F )|E → 0

yields

Ext2(W,W(−E − F )) → Ext2(W,W(−F )) → Ext2(W,W(−F )|E).

The first group vanishes by assumption, and the last vanishes since it is the H2 of a sheaf supported
on a curve (as W is locally free). Therefore W is F -prioritary.

Now let P ′ ⊂ PF1,F (w) be the open dense substack parameterizing (E+F )-prioritary vector bun-
dles with restriction W|E ∼= Or

E , and let P ′′ ⊂ PP2,H(v) be the open dense substack parameterizing
vector bundles. If W ∈ P ′, then π∗W is locally free and π∗π∗W ∼= W by Walter [Wal98, Lemma
6]. Furthermore, we have an isomorphism Ext2(W,W(−E − F )) ∼= Ext2(π∗W, π∗W(−H)), which
shows that π∗W is H-prioritary. Thus there is an induced map π∗ : P ′ → P ′′. On the other hand,
if V ∈ P ′′ then π∗π

∗V ∼= V since V is a vector bundle and, furthermore, π∗V is (E + F )-prioritary.
Therefore π∗V ∈ P ′ and pullback gives an inverse map π∗ : P ′′ → P ′.

Under the correspondence between P ′ and P ′′, globally generated bundles correspond to globally
generated bundles. We conclude that v is globally generated if and only if w is globally generated,
and the result follows from Theorem 5.1. �

Note that Corollary 5.3 can also be proved more directly by mimicking the proof of Theorem 5.1.
We discuss each of the three main cases (1)-(3) of the classification in its own subsection.

5.1. Pullbacks. We begin the proof of the classification by analyzing the case ν(v) ·F = 0. In this
case a globally generated bundle must be a pullback from P1, which imposes strong restrictions on
the character.

Proposition 5.4. Suppose ν(v) ·F = 0. Then v is globally generated if and only if v is of the form

v = (r(v) −m) chOFe
(aF ) +m chOFe

((a+ 1)F )

for some integers a,m ≥ 0.

Proof. (⇐) The bundles

V = OFe
(aF )r−m ⊕OFe

((a+ 1)F )m

are F -prioritary, globally generated, and have no higher cohomology, so their Chern characters are
globally generated.

(⇒) Suppose V ∈ PF (v) is general and globally generated. The result is clear if r(v) = 1,
so suppose r(v) ≥ 2. Then V is a vector bundle. The restriction V|F to any fiber F ∼= P1 of
π : Fe → P1 has degree 0. If any factor of V|F has negative degree, then V|F is not globally



18 I. COSKUN AND J. HUIZENGA

generated, a contradiction. Therefore V|F ∼= O
r(v)
F is trivial on each fiber. Consider the exact

sequence

0 −→ V(−E) −→ V −→ V|E −→ 0

and apply π∗. Since V(−E)|F ∼= OF (−1)r(v) for any fiber F , we conclude that π∗V(−E) =
R1π∗V(−E) = 0 and π∗V ∼= π∗(V|E). Hence, by [Wal98, Lemma 5], V ∼= π∗(π∗(V|E)). Since
V|E is balanced by Corollary 3.6, it follows that

V ∼= OFe
(aF )r(v)−m ⊕OFe

((a+ 1)F )m

for some integers m ≥ 0 and a ∈ Z. As V is globally generated, a ≥ 0. �

5.2. Restriction to a fiber. The case where χ(v(−F )) ≥ 0 and ν(v) · F > 0 is the simplest to
analyze.

Proposition 5.5. Suppose χ(v(−F )) ≥ 0 and ν(v) · F > 0. Then v is globally generated.

Proof. First suppose r(v) ≥ 2, so that the general V ∈ PF (v) is a vector bundle. Since ν(v) ·F > 0,
the bundle V restricts to a globally generated vector bundle on every fiber F of the projection
π : Fe → P1 by [Wal98, Lemmas 3 and 4]. Let V be such a bundle which also has no higher
cohomology. Let p ∈ Fe be any point, and let Fp := π−1(π(p)) be the fiber through p. Since
χ(v(−F )) ≥ 0, as explained in the introduction to this section, we know that H1(Fe,V(−F )) = 0.
Then the restriction sequence

0 → V(−F ) → V → V|Fp
→ 0

shows that H0(Fe,V) → H0(Fp,V|Fp
) is surjective. Since V|Fp

is globally generated, this implies
that V is globally generated at every point of Fp. Therefore V is globally generated, and so is v.

If r(v) = 1, suppose the general sheaf of character v is of the form L⊗ IZ , where L is a nef line
bundle and Z ⊂ X is a collection of n general points. For p ∈ Fe we have an exact sequence of one
of the following two forms, depending on whether or not the fiber Fp contains a point of Z:

0 → L(−F )⊗ IZ → L⊗ IZ → L|Fp
→ 0

0 → L(−F )⊗ IZ′ → L⊗ IZ → L|Fp
(−1) → 0.

Here Z ′ ⊂ Z consists of n−1 points, with the nth point of Z lying on Fp. Note that both L(−F )⊗IZ
and L(−F )⊗ IZ′ have no higher cohomology, and L|Fp

and L|Fp
(−1) are both globally generated.

Therefore, L ⊗ IZ is globally generated except possibly at points in Z. So suppose p ∈ Z. In this
case, we can construct two curves in Fe:

(1) There is a curve C of class L that contains Z and intersects Fp transversely.
(2) Since χ(L(−F ) ⊗ IZ′) > 0, there is a curve D of class L(−F ) which contains Z ′ and does

not contain p. (Note that the points in Z are general, so impose the expected number of
conditions on sections of L(−F ).)

Then the curves C and D + F give two sections of L which contain Z and intersect transversely at
p. Therefore L⊗ IZ is globally generated at p. �

Remark 5.6. When e = 0, we find by symmetry that results analogous to Propositions 5.4 and 5.5
hold for the opposite ruling E. So, going forward, we may assume χ(v(−E)) < 0 and ν(v) · E > 0
when e = 0.
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5.3. Lazarsfeld-Mukai bundles. It remains to classify globally generated characters v with
χ(v(−F )) < 0 and ν(v) · F > 0. Throughout this section, we put

m = χ(v) ch(OFe
)− v.

Thus, if v is globally generated, then m is the character of the Lazarsfeld-Mukai bundle

0 → M → O
χ(v)
Fe

→ V → 0

which is the kernel of the canonical evaluation map. The next lemma is the main tool we use in this
case.

Lemma 5.7. Suppose χ(v(−F )) < 0. Then v is globally generated if and only if there is a vector
bundle M of character m such that

(1) M has no cohomology,
(2) h1(Fe,M(−F )) = 0, and
(3) M∗ is globally generated.

Proof. (⇒) Suppose v is globally generated. Then there is a globally generated (torsion-free) sheaf
V ∈ PF (v) which has no higher cohomology. Furthermore, since χ(V(−F )) < 0 we can assume
V(−F ) only has h1. Then the kernel M of the canonical evaluation map

0 → M → O
χ(v)
Fe

→ V → 0

has the required properties.

(⇐) Conversely, suppose there is a vector bundle M of character m with properties (1)-(3). Let

V be a sheaf defined as the cokernel of a general map φ : M → O
χ(v)
Fe

. Since r(v) ≥ 1 and M∗ is
globally generated, the map φ is injective and V is torsion-free (see [Hui16, Proposition 2.6], and
the proof of Theorem 2.10). The sequence

0 → M
φ
→ O

χ(v)
Fe

→ V → 0

shows that V is globally generated, and V has no higher cohomology since M and OFe
have no

higher cohomology.

Finally, we must check that V is F -prioritary. But Ext2(V,V(−F )) is a quotient of a direct sum
of copies of

Ext2(V,OFe
(−F )) ∼= Hom(OFe

(−F ),V(KFe
))∗ ∼= H0(Fe,V(KFe

+ F ))∗.

There is an injection V(KFe
+ F ) → V(−F ) since −F − (KFe

+ F ) = 2E + eF is effective, and
H0(Fe,V(−F )) = 0 since we are assuming H1(Fe,M(−F )) = 0. Therefore H0(Fe,V(KFe

+F )) = 0
and Ext2(V,V(−F )) = 0. �

The remainder of the classification of globally generated characters v with χ(v) ≤ r(v)+1 follows
quickly; there is only one such character that was not already studied in the previous subsections.

Corollary 5.8. Suppose χ(v(−F )) < 0, ν(v) · F > 0, and χ(v) ≤ r(v) + 1. If e = 0, then further
assume χ(v(−E)) < 0 and ν(v) · E > 0. Then v is globally generated if and only if e = 1 and

v = (r(v) + 1) chOF1
− chOF1

(−2E − 2F ).

Proof. (⇒) Suppose v is globally generated, and let V be a globally generated sheaf of character v
with no higher cohomology. Then χ(v) = h0(Fe,V), so χ(v) ≥ r(v). If χ(v) = r(v) then we must

have V ∼= O
r(v)
Fe

, but then ν(v) · F = 0. So, going forward we may assume χ(v) = r(v) + 1. By
Lemma 5.7, the kernel M of a general evaluation map

0 → M → O
χ(V)
Fe

→ V → 0
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is a line bundle with no cohomology such that H1(Fe,M(−F )) = 0 and M∗ is globally generated.
Suppose M = OFe

(−aE − bF ). Since M∗ is globally generated, we have a ≥ 0 and b ≥ ae. Since
ν(V) · F > 0, we further have a > 0. If a = 1, then χ(M(−F )) = χ(OFe

(−F )) = 0 and so
χ(V(−F )) = 0, a contradiction. Therefore a ≥ 2 and so b ≥ 2e. Then

H2(Fe,M) ∼= H0(Fe,M
∗(KFe

)) = H0(Fe,OFe
((a− 2)E + (b− e− 2)F )),

and since M has no cohomology we must have b < e+ 2. But b ≥ 2e and b < e+ 2 together imply
e ∈ {0, 1}. If e = 0, then since a ≥ 2 we find by symmetry that we must also have b ≥ 2. But then
M has h2, so there is no suitable M. If e = 1, then the only possibility is a = b = 2.

(⇐) Conversely, for any integer r ≥ 1 the cokernel V of a general injection

0 → OF1
(−2E − 2F ) → Or+1

F1
→ V → 0

is a globally generated torsion-free sheafe with no higher cohomology, and v satisfies the necessary
hypotheses. �

Finally, we construct bundles M with the necessary properties in the remaining cases. We write
mD for the Serre dual character m∗(KX). The next lemma will allow us to apply our theory of
Gaeta-type resolutions to study bundles of character m.

Lemma 5.9. Suppose χ(v(−F )) < 0, ν(v) ·F < 0, and χ(v) ≥ r(v). If e = 0, then further suppose
χ(v(−E)) < 0 and ν(v) ·E < 0. The character mD satisfies

χ(mD) = 0

χ(mD(−F )) < 0

χ(mD(−E)) ≤ 0

and, if e ≥ 2, then furthermore

χ(mD(−E − F )) < 0.

Proof. By Serre duality it is equivalent to show

χ(m) = 0

χ(m(F )) < 0

χ(m(E)) ≤ 0

χ(m(E + F )) < 0 (if e ≥ 2)

The first statement is clear. For the second, we use Lemma 2.3 to compute

χ(m(F )) = χ(v)χ(OFe
(F ))− χ(v(F ))

= 2χ(v) − (χ(v) + c1(v) · F + r(v)(2 − 1))

= χ(v)− r(v)− c1(v) · F

= χ(v(−F ))

< 0.

If e = 0, then the third inequality follows by symmetry. If instead e ≥ 1, then

χ(m(E)) = χ(v)χ(OFe
(E)) − χ(v(E))

= χ(v)(2 − e)− (χ(v) + c1(v) ·E + r(v)(2 − e− 1))

= (χ(v) − r(v))(1 − e)− c1(v) ·E

≤ 0

since χ(v) ≥ r(v) and c1(v) is nef.



BRILL-NOETHER THEOREMS AND GAETA RESOLUTIONS 21

Finally, we similarly compute

χ(m(E + F )) = χ(v)χ(OFe
(E + F ))− χ(v(E + F ))

= χ(v)(4 − e)− (χ(v) + c1(v) · (E + F ) + r(v)(4 − e− 1))

= (χ(v)− r(v))(3 − e)− c1(v) · (E + F ).

Since χ(v) ≥ r(v) and c1(v) is nef with c1(v) · F > 0, it follows that χ(m(E + F )) < 0 if e ≥ 3.
Suppose e = 2. Then the above expression reduces to

χ(m(E + F )) = χ(v) − r(v) − c1(v) · (E + F ) = χ(v(−E − F )).

Let V ∈ PF (v) be general. Then V(−F ) only has h1, and V(−F )|E splits as a direct sum of line
bundles of degree ≥ −1. Then the restriction sequence

0 → V(−E − F ) → V(−F ) → V(−F )|E → 0

shows that the only nonzero cohomology of V(−E−F ) is also h1(Fe,V(−E−F )) 6= 0, and therefore
χ(v(−E − F )) < 0 as required. �

Together with the other results in this section, the next result completes the classification and
proves Theorems 5.1 and 5.2.

Proposition 5.10. Suppose χ(v(−F )) < 0, ν(v) · F > 0, and χ(v) ≥ r(v) + 2. If e = 0, further
assume χ(v(−E)) < 0 and ν(v) · E > 0. Then v is globally generated.

Proof. First assume χ(mD(−E − F )) < 0. Then by Lemma 5.9, OFe
is a line bundle satisfying the

inequalities (†) for the character mD. Therefore by Proposition 4.4, the stack PF (m
D) is nonempty

and a general MD ∈ PF (m
D) admits a resolution of the form

0 → OFe
(−E − (e+ 1)F )α → OFe

(−E − eF )β ⊕OFe
(−F )γ → MD → 0;

there are no copies of OFe
in the resolution since χ(mD) = 0. Since χ(v) ≥ r(v) + 2, we have

r(MD) ≥ 2 and therefore, by Theorem 2.5, MD is a vector bundle. Clearly MD has no cohomology,
so its Serre dual M also has no cohomology. The bundle M fits in a sequence

0 → M → OFe
(−E − 2F )β ⊕OFe

(−2E − (e+ 1)F )γ → OFe
(−E − F )α → 0,

from which it immediately follows that h1(Fe,M(−F )) = 0. The dual M∗ has a resolution

0 → OFe
(E + F )α → OFe

(E + 2F )β ⊕OFe
(2E + (e+ 1)F )γ → M∗ → 0.

The line bundles OFe
(E + 2F ) and OFe

(2E + (e + 1)F ) are each globally generated at all points
p ∈ Fe with p /∈ E, and therefore M∗ is globally generated away from E.

To see that M∗ is globally generated at all points on E, observe that c1(M
∗) = c1(v) is nef, so in

particular c1(M
∗) ·E ≥ 0. The resolution of M∗ shows that h1(Fe,M

∗(−E)) = 0. If M∗|E splits as
a balanced direct sum of line bundles, then M∗|E is globally generated and the restriction sequence

0 → M∗(−E) → M∗ → M∗|E → 0

shows thatM∗ is globally generated on E. By Proposition 2.6, to seeM∗|E is balanced (for a general
M∗) it is enough to show MD (and hence M∗) is E-prioritary. To see Ext2(MD,MD(−E)) = 0,
it is enough to verify Ext2(MD,OFe

(−2E − eF )) = Ext2(MD,OFe
(−E −F )) = 0. Equivalently by

Serre duality, we need

Hom(OFe
(−2E − eF ),MD(KFE

)) = H0(Fe,M
D(−2F )) = 0

and
Hom(OFe

(−E − F ),MD(KFe
)) = H0(Fe,M

D(−E − (e+ 1)F )) = 0.

Both vanishings follow immediately from the resolution of MD. Therefore M∗ is globally generated,
and Lemma 5.7 completes the proof in case χ(mD(−E − F )) < 0.
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Finally suppose χ(mD(−E − F )) ≥ 0. By Lemma 5.9, we must have e ∈ {0, 1}. Define integers

α = −χ(mD(−E − F ))

β = −χ(mD(−E))

γ = −χ(mD(−F )).

By Lemma, 5.9, we have α ≤ 0, β ≥ 0, and γ > 0. Then the direct sum of line bundles

MD := OFe
(−E − (e+ 1)F )−α ⊕OFe

(−E − eF )β ⊕OFe
(−F )γ

has ch(MD) = mD by an argument analogous to the first part of the proof of Proposition 4.4. Its
Serre dual is the bundle

M = OFe
(−E − F )−α ⊕OFe

(−E − 2F )β ⊕OFe
(−2E − (e+ 1)F )γ .

Then M has no cohomology, h1(Fe,M(−F )) = 0, and M∗ is globally generated (since e ≤ 1). By
Lemma 5.7, v is globally generated. �

5.4. Notes on ampleness. We close the paper with some remarks on the question that initially
led us to study globally generated vector bundles. Let X be a smooth surface. Recall that a vector
bundle V on X is ample if the line bundle OPV(1) is ample.

Problem 5.11. Classify the Chern characters of ample vector bundles on X.

On P2 and Fe, ample line bundles are globally generated. In contrast, examples of Gieseker show
that higher rank ample vector bundles need not have any sections. For example, a bundle V defined
by a general resolution of the form

0 → OP2(−d)2 → OP2(−1)4 → V → 0

is ample provided d ≫ 0 (see [Laz04, Example 6.3.17] or [Gie71]). However, if a vector bundle V is
ample, then Symk V has no higher cohomology and is globally generated for sufficiently large k. By
Riemann-Roch this implies the necessary inequality (see also [FL83])

(∗)
ν(V)2

2
>

∆(V)

r(V) + 1
.

Furthermore, ν(V) needs to be ample and its restriction to any curve needs to be ample. On Fe,
this implies that ν(V) · E ≥ 1 and ν(V) · F ≥ 1. If ν(V) · F = 1, the restriction of the bundle to
every fiber must be OP1(1)r, and hence V(−E) is pulled back from P1. One can ask whether the
inequality (∗) suffices to show a general V is ample if ν(V) is sufficiently ample. For the Gieseker
example above, the inequality (∗) implies that if V is ample, then d ≥ 7. The authors do not know
the optimal value of d for V to be ample even in this case.

By the next simple observation, our characterization of globally generated characters on Fe yields
sufficient conditions for a character to be the character of an ample bundle. However, analogues
of Gieseker’s example (see [Laz04, Theorem 6.3.65]) show that these conditions are certainly not
necessary.

Lemma 5.12. Let X be a projective variety with an ample divisor H. Suppose V is a vector bundle
on X such that V(−H) is globally generated. Then V is ample.

Proof. As V(−H) is a quotient of On
X , we find that V is the quotient of an ample bundle. �

On Fe, we take H = E + (e+ 1)F and deduce the following result.

Corollary 5.13. Suppose e ≥ 2, and let v ∈ K(Fe) be a Chern character such that r(v) ≥ 2,
∆(v) ≥ 0, ν(v) · F ≥ 1, and ν(v) · E ≥ 1. Then the general V ∈ PF (v) is ample whenever any of
the following conditions holds.
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(1) We have ν(v) · F = 1, and there are integers a,m ≥ 0 such that

v = (r(v) −m) chOFe
(E + (e+ a+ 1)F ) +m chOFe

(E + (e+ a+ 2)F ).

(2) We have ν(v) · F > 1 and χ(v(−E − (e+ 2)F )) ≥ 0.
(3) We have ν(v) · F > 1, χ(v(−E − (e+ 2)F )) < 0, and χ(v(−E − (e+ 1)F )) ≥ r(v) + 2.

We leave the analogous statements for P1 × P1, F1, and P2 to the reader. Completing the
classification of characters of ample vector bundles remains a very interesting open question for any
of these surfaces.
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un groupe de N points génériques du plan, C. R. Acad. Sci. Paris 233 (1951), 912–913.
[Gie71] D. Gieseker, p-ample bundles and their Chern classes, Nagoya Math. J. 43 (1971), 91–116.
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