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Abstract— We provide a comprehensive solution to the esti-
mation problem of the state for a linear time-invariant system in
a distributed fashion over networks that allow only intermittent
information transmission. By attaching to each node an observer
that employs information received from its neighbors triggered
by asynchronous communication events, we propose a distributed
state observer that guarantees global exponential stability of the
zero estimation error set. The design of parameters is formulated
as linear matrix inequalities (LMIs). A thorough robustness
analysis of the proposed observer to unmodeled dynamics,
unknown communication times, as well as measurement and
communication noise characterized in terms of input-to-state
stability (ISS) is presented. These properties of the proposed
observer are shown analytically and validated numerically.

I. INTRODUCTION
A. Motivation and Problem Statement

In this paper, we consider the problem of robustly esti-
mating the state of a continuous-time plant from intermittent
measurements of functions of its output over a network of N
agents. Under nominal conditions, the model governing the
state x € R" is given by a linear time-invariant system, while,
under perturbations, assumes the form

&= Ax+6(x,t) (1)

where A € R™*™ is the state matrix, 0 : R” x R>g — R”
is an unknown function modeling the perturbation and ¢t > 0
denotes ordinary time. The i-th agent in the network receives
a measurement y; at time instances t%, s € {1,2,...}, which
define the incoming information events for that agent. The
nominal model for y; € RP¢ is a linear function of the state,
while the perturbed case takes the form

yi = Hiw + pi(x,1) (2)

where @; : R” xR>g — RP? is an unknown function and H; €
RPi*™ ig the local output matrix of the i-th agent for each i €
{1,2,...,N}. The event times ¢’ are independently defined
for each agent; the only restriction imposed on communication
times is that they must satisfy

sy —ty € [T1, T3] Vs e {1,2,...} 3)
where T} and T3 are nominal parameters that define the lower
and upper bounds, respectively, of the time allowed to elapse
between consecutive communication events and are such that
T4 > T} > 0. Hence, the event times ¢’ can potentially be
determined by a random variable taking values in the interval
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[T}, T4]. The parameters 7} and T4 are assumed to be known
but are not necessarily the same for each agent. Moreover,
these parameters may be further perturbed; see Section IV-C.

The main challenges to solve this problem include the
following:

1) Asynchronous and heterogeneous communication events
at unknown times: the time instances at which agents
receive information are not synchronized, meaning that
each agent may receive information at different time
instances. Furthermore, the amount of ordinary time
elapsed between communication events for each agent
can be different; for instance, an agent can receive
information at a much faster rate than others. In addition,
the exact event times are not known a priori.

2) Lack of full information to reconstruct the state at each
agent and at the same time: information is not available
continuously, but rather, at isolated time instances. There-
fore, none of the agents may have enough information to
fully reconstruct z alone. In fact, in the nominal case,
(H;,A) may not necessarily be detectable for any .
This suggests that information must be shared among
agents, but, even then, the needed information to fully
reconstruct x may be available at different time instances
(see item 1), which, in particular, makes detectability of
((Hy,Hs,...,Hy), A) not very useful when solving the
nominal problem.

3) Perturbations in the dynamics, parameters, and mea-
surements: the lack of knowledge of the actual pertur-
bation functions § and {p;}, (in particular, the lack
of a Lipschitzness property on J) precludes from fully
compensating for their effect. Furthermore, perturbations
on the parameters 7} and T4 could lead to diverging
estimates when the estimation algorithm has little margin
of robustness to such parameters.

B. Related work

State estimation in networked systems has seen increased
attention recently. Several observer architectures and design
methods have been proposed in the literature. Results for the
case when information is continuously available include those
in [1] and [2] for the estimation of the trajectories of a moving
target using distributed sensor networks, and the results in
[3] for robust estimation with performance guarantees. In
particular, [3] provides performance guarantees for robust
estimation of interconnected observers when information is
available continuously, not sporadic communication as this
paper considers. Discrete-time approaches with information



arriving at common discrete time instances are also available.
In [?], under nominal conditions and for linear time-invariant
plants, a network of local observers communicating at the
same time instances is designed to achieve an attractivity
property (called omniscience) between the estimates and the
state of the plant. In [5], the optimal linear estimation problem
for discrete time-varying networked systems over a shared
communication channel is considered.

Approaches that keep the continuous dynamics of the
plant and treat the communication events as impulsive events
have also been developed. An observer-based controller for
a network control system modeled as a time-varying hybrid
system is proposed in [6] and its design is performed us-
ing the Lyapunov-Krasovskii functional. When information is
available periodically, the work in [7] established an observer-
protocol pair to asymptotically reconstruct the states of a
linear time-invariant plant with multiple sensors. In [8], a
distributed algorithm for observer design for linear time-
invariant continuous-time systems is designed by partitioning
the dynamics into disjoint areas and attaching an algorithm
to each area that updates the estimates over time windows
with common length. In [9], an emulation-like approach is
used to guarantee that a single robust continuous-time observer
(when available) can be used for estimation in network control
systems. Such general result is obtained using trajectory-based
and small-gain arguments. In [10], for a second order system
capturing the dynamics of a leader-follower problem, a dis-
tributed observer allowing for switching inter-agent topologies
is proposed using switched systems theory.

In addition to the above deterministic continuous, discrete,
and hybrid approaches for distributed estimation, the litera-
ture of network control and estimation is rich on stochastic
approaches over a variety of time domains. These include
information-oriented approaches [11], distributed Kalman-like
filters with ([12]) and without communication constraints
([13], [14]), and spatially-distributed estimators [15].

The literature of observer design with no underlying net-
work includes several results that allow for measurements be-
ing available at isolated times. Specifically, in [16], conditions
guaranteeing that a continuous-time observer for a class of
nonlinear systems provides states estimates with robustness
to samples and delays of the measurement are provided. In
particular, the main result requires an input-to-output stability
of the observer-plant pair. In [17], the authors propose a
method to design observers for a class of continuous-time sys-
tems with Lipschitz nonlinearities under nonuniform sampled
measurements. The approach therein consists of composing
a continuous-time high-gain observer with an inter-sample
output predictor. Closely related to this work and also under
the name “continuous-discrete observer,” [18] provides a way
to design observers for a class of Lipschitz continuous-time
systems of small dimensions through the computation of finite-
time reachable sets. A survey of recent advances in the design
of continuous-discrete observers is available [19]. A hybrid
observer guaranteeing global exponential stability of the zero-
estimation error under sporadic measurements is available in
[20]. A preliminary version of these results appeared without
proofs and fewer examples in [?] which primarily focuses

on the robust stability of the case of synchronous sporadic
communication and includes a brief mention of asynchronous
communication.

C. Outline of Proposed Solution

Motivated by the challenges in Section I-A, we propose a
distributed hybrid observer that is capable of asymptotically
reconstructing (with an exponential rate) the state of the plant
x locally, at each agent, with stability and by only exchanging
information from the plant and its neighbors at communication
events t. In the nominal case, the algorithm guarantees global
exponential stability of a set of points where the produced
estimate and the state of the plant are equal. In the presence
of unknown perturbations, the algorithm guarantees that such
property is preserved, semiglobally and practically, when the
perturbations are small enough, while when bounds on certain
perturbations are known, the said global exponential stability
can be guaranteed through a robust observer design procedure.
Our distributed hybrid observer assures such properties by
running a decentralized algorithm that, at the ¢-th agent,
generates an estimate of the state x, which is denoted ; € R",
and an information fusion quantity, which is denoted 7; € R".
These state variables are continuously updated by a differential
equation, which takes the general form

i = A+ (4a)
0 = foi(Zi,mi) (4b)
when no information is received, while when information is

received, the states Z; and 7); are updated according to

At oA
T, = Ij

nt = ZgikGfi(ii,ik,yi,yk)
kev

where V := {1,2,...,N} defines the set of all agents;
gir, defines a connectivity graph, namely, g;; = 1 if the
k-th agent can share information to agent ¢ and g;; = 0
otherwise; the map f,; : R” x R® — R" defines the con-
tinuous evolution of the information fusion state and the map
Gk, R"xR" x RPi x RPk — R™ defines the impulsive update
law when new information is collected from the plant and
the k-th neighbor.! The information fusion state 7; is injected
into the continuous dynamics of the local estimate Z; and,
at communication events, injects new information impulsively
— the right-hand side of (5) is the “innovation term” of the
proposed observer. The continuous and discrete dynamics in
(4) and (5), respectively, along with a proper autonomous
model triggering the communication events, define a hybrid
observer at each agent as well as hybrid dynamical system
modeling the entire networked system.

(5a)
(5b)

D. Contributions

Distributed estimation algorithms that simultaneously cope
with all of the challenges introduced in Section [-A are
not yet available, being perhaps the main challenge the
asynchronous and heterogeneous communication events at

IThe actual forms of f,; and G’;i are in Section III-A.



which information is available. In this paper, we propose
a distributed estimation algorithm that copes with the said
challenges. The main contribution of this work lies on the
establishment of sufficient conditions for nominal and robust
estimation over networks. The proposed design conditions
guarantee reconstruction of the state with an exponential rate
when information is only available at asynchronous and non-
periodic time instances, cf., e.g., [3], [?], [7], [10]. Precisely,
as shown in Section III, sufficient conditions are developed
to assure global exponential stability of the zero-estimation
error set when information is transmitted according to the
nondeterministic law in (3). The rationale behind the choice
of linear continuous-time dynamics of the proposed observers
is to allow for a tractable design procedure. More precisely, in
Section III-D, constructive linear matrix inequalities (LMIs)
are developed based on the established sufficient conditions
to efficiently determine parameters for the proposed observer.
These sufficient conditions are satisfiable even if each agent
may not have a measurement model such that (H;, A) is
detectable (see, e.g., Example 5.3) or if the local output
measurements cannot be transmitted to all neighbors (see, e.g.,
Example 5.2).

Unlike previous works, and enabled by the hybrid systems
approach, an in-depth robustness analysis and design proce-
dure are presented in Section IV. In particular, we establish
several key robustness properties. In Section IV-A, results
on robustness with respect to perturbations emerging from
unmodeled dynamics, skewed clocks, as well as measurement
and communication noise are established. In Section IV-B,
robustness in the form of an input to state stability (ISS)
property with respect to measurement and communication
noise is provided, for which an explicit ISS bound is given. A
procedure to design our distributed observer with robustness
to the communication parameters 7} and T4 in (3) is given in
Section I'V-C, while Section IV-D presents a design procedure
for robustness to random packet dropouts. In Section V-B, we
illustrate these results in several examples.

II. NOTATION AND PRELIMINARIES
A. Notation

Given a matrix A, the set eig(A) contains all eigenvalues
of A and |A| := max{|A|z : \ € eig(AT A)}. Given two
vectors u,v € R", |u| := Vu'u and notation [u' v']T
is equivalent to (u,v). Given a function m : R>o — R”,
|m|eo = sup,sq|m(t)]. Z>1 denotes the set of positive
integers, ie., Z>; = {1,2,3,...}. N denotes the set of
natural numbers including zero, ie., N := {0,1,2,3,...}.
Given a vector x € R™ and a closed set A C R™, the distance
from x to A is defined as |z|4 = inf,c4 |z — z|. Given
a symmetric matrix P, A\(P) := max{\ : X € eig(P)}
and A(P) := min{\ : X € eig(P)}. Given matrices A, B
with proper dimensions, we define the operator He(A, B) :=
ATB+BT A; A® B defines the Kronecker product diag(A, B)
denotes a 2 x 2 block matrix with A and B being the diagonal
entries; and A x B defines the Khatri-Rao product between A
and B.2. Denote x as the symmetric block of a matrix. Given

2For more information on Kronecker and Khatri-Rao products, see [?].

N € Z>1, Iy € RNV*N defines the identity matrix and 1y is
the vector of IV ones. Given a set S, con S is the closed convex
hull of the points in S. A function & : R>g — R>g is a class-K
function, also written o € K, if « is zero at zero, continuous,
strictly increasing; it is said to belong to class-K ., also written
a € Ky, if @ € K and is unbounded; « is positive definite,
also written o € P, if a(s) > 0 for all s > 0 and «(0) = 0.
A function 3 : R>gxRx>0 = R>¢ is a class-KL function, also
written 5 € KL, if it is nondecreasing in its first argument,
nonincreasing in its second argument, lim,._,o+ 3(r, s) = 0 for
each s € R>g, and lim,_,o, B(r,s) = 0 for each r € Rx>q.
Given s € R, [s] denotes the largest integer that is smaller
than or equal to s. A set-valued mapping G : R® = R" is
outer semicontinuous if its graph {(z,¢) : x € R", g € G(z)}
is closed; see [21, Lemma 5.10]. Given a closed set S, Tg(z)
denotes its tangent cone S at z; see, e.g., [21, Definition 5.12].

B. Preliminaries on hybrid systems

In this paper, a hybrid system # has data (C, f, D, G) and
is defined by

= f(2)
2 e G(z)
where z € R" is the state, f defines the flow map capturing the
continuous dynamics and C' defines the flow set on which f
is effective. The map G defines the jump map and models the
discrete behavior, while D defines the jump set, which is the
set of points from where jumps are allowed. A solution ¢ to H
is parametrized by (¢, j) € R>( x N, where ¢ denotes ordinary
time and j denotes jump time. The domain dom ¢ C R>¢ x N
is a hybrid time domain if for every (T,.J) € dom ¢, the set
dom ¢ (([0,T] x {0,1,...,J}) can be written as the union
of sets U;.]IO(IJ- x {j}), where I; := [t;,t;41] for a time
sequence 0 = ¢y < 11 < to < ... < ty4q. The t;°s with
j > 0 define the time instants when the state of the hybrid
system jumps and j counts the number of jumps. A solution
to H is called maximal if it cannot be extended, i.e., it is not
a truncated version of another solution. It is called complete if
its domain is unbounded. A solution is Zeno if it is complete
and its domain is bounded in the ¢ direction. A solution is
precompact if it is complete and bounded. The set Sy contains
all maximal solutions to A, and the set Sy (§) contains all
maximal solutions to H from &. See [21] for more details.

A hybrid system is said to satisfy the hybrid basic condi-
tions if [21, Assumption 6.5] holds. The definition of global
exponential stability of a closed set for  is given as follows.

Definition 2.1 ([?, Page 1591]): Consider a hybrid system
H on R™. The closed set A C R”" is said to be globally
exponentially stable (GES) for H if there exist x, &« > 0 such
that every ¢ € Sy is complete and satisfies

¢(t,5)]a < mexp(—a(t +5))[6(0,0)].4 ©)
for each (¢,7) € dom ¢.

For a given hybrid system with inputs, we are interested
in a closed set .4 being input-to-state stable as defined next.
Similarly to (6), a solution to (8) is given by the solution pair
(¢, u) with dom ¢ = domu(= dom(¢,u)) that satisfies the

z € C,

ze D, ©



dynamics therein with the property that, for each j € N, ¢ —
o(t,7) is absolutely continuous and ¢ — w(t,j) is Lebesgue
measurable and locally essentially bounded on {¢ : (¢,j) €

dom(¢p, u)}.
Definition 2.2 ([?, Definition 2.1]): Given a compact set A,
the hybrid system with state z, and input « given by

z=f(z,u) (z,u)eC
2t e G(z,u) (2,u) €D
is input-to-state stable (ISS) with respect to A if there exist
B € KL and v € K such that, for each ¢(0,0) € R", every
solution pair (¢, u) satisfies

for each (¢,j) € dom ¢.

®)

The Lo norm of (¢,7) — u(t,j) is given by

Jull(e,5) == max{ ess sup lu(t’, 51,

(t',5")€dom u\Y (u),t'+j' <t-+j

sup lu(t’, 5]
(t,3")EX (u),t'+j' <t+j
where Y(u) = {(¢,7) € domw : (¢,j + 1) € domu}; see [?,
Definition 2.1] for details.

C. Preliminaries on graph theory

A directed graph (digraph) is defined as T' = (V, £, G). The
set of nodes of the digraph are indexed by the elements of V =
{1,2,..., N}, and the edges are the pairs in the set & C Vx V.
Each edge directly links two nodes, i.e., an edge from ¢ to k,
denoted by (4, k), implies that agent i can receive information
from agent k. The adjacency matrix of the digraph I is denoted
by G € RV*N where its (i, k)-th entry g;;. is equal to one if
(i,k) € £ and zero otherwise. A digraph is undirected if g;;, =
gr: for all ¢, k € V. Without loss of generality, we assume that
gii = 0 for all ¢ € V. The in-degree and out-d(]e\gree of agent 7
are defined by di" = S | gi and d2"* = S0 gpi. The in-
degree matrix D is the diagonal matrix with entries D;; = d"
for all 7 € V. The Laplacian matrix of the graph I', denoted
by L € RNV*N ' is defined as £ = D — G. The set of indices
corresponding to the neighbors that can send information to
the i-th agent is denoted by N (i) := {k € V : (i,k) € E}.
A digraph is said to be all-to-all connected if every pair of
distinct vertices is connected by a unique edge; in that, g;; = 1
for each i,k € V, i # k.

III. DISTRIBUTED HYBRID ESTIMATION PROTOCOL AND
NOMINAL PROPERTIES

A. Hybrid model

Consider N agents that are connected via a directed graph
and where each agent runs a local observer of the state x
of the linear time-invariant plant in (1). Each local observer
uses its own measurement and information received from its
neighbors. Due to the impulsive nature of such communication
mechanism, the communication events are triggered by a
decreasing timer 7;. Namely, 7; decreases and upon reaching

zero it is reset to a point in [T}, T%]. Such dynamics of 7; at
agent ¢ can be modeled by a hybrid system given by

T; € [O,Tzl],

TiZO.

7= —1 (102)
7t e [T, Ty (10b)

This hybrid system generates any possible sequence of time
instances {t%}°, at which events occur and satisfy (3). Note
that 7} and T4 may not be equal for each i € V, in this way
the intervals which observer can update their estimates may
be vastly different. 3

In this paper, we consider the following dynamics for 7;
defining a specific hybrid information fusion strategy:

foi(%i,mi)=hin; (11)

for all (Z;,7;) € R™ x R™, and, for all (&;, Zx, v, yr) € R™ X
R™ x RP: x RPk,

G e 90) = i K + Kb (s — 1) (12)

7

where, for each i,k € V, vy = H;Z; — y; is the output
estimation error; and the constants h; € R, K;;, € R™"*P+ and
v € R define the parameters of the observer. The constants g;,
in (5) and dﬁ” in (12) are associated with the communication
graph, which is assumed to be given. Note that due to the
specific update law in (12) and the definition of g;j, the second
term in (12) uses the output error of each k-th agent that is
a neighborhood of the ¢-th agent, and the third term in (12)
uses the difference between the estimates Z; and Zj. These
are the quantities that are transmitted at communication events
only. For simplicity, for the remainder of this section, we will
assume that 6 = 0 and ¢; = 0 for all ¢ € V, that is, the
nominal case where perfect knowledge of the plant and its
output is assumed — the scenario when these perturbations are
nonzero is addressed in Section IV.

Remark 3.1: The nondeterministic time-invariant hybrid
system model of the network in (10b) conveniently captures
the event times in [9], [28], [19], which lead to a time-
varying system and make analysis more difficult. Similar
hybrid models were used in [?], [20]. When h; = 0 for all
1 € V), the hybrid information fusion strategy in (11)-(12) falls
into the category of zero-order sample-and-hold control; see,
e.g., [22] and [23]. Note that the work in [22] and [23] pertain
to single-agent systems and that robustness properties of the
observer therein are not studied. 0

Remark 3.2: The maps f,; and G,; in (11) and (12), respec-
tively, enable other choices for the dynamics of the variable
n;. The parameter v in (12) could be further generalized to
k. Although not pursued in this paper, one could potentially
choose sliding mode-like dynamics, such as those employed
in [16]. It might also be possible to exploit the ideas in [?]
to reduce the dimension of the estimation state, in particular,
when the consensus term (&; — 2, ) is zero. In fact, in such a
case, the dimension of the state 7); could potentially be reduced
using the construction in [?], where the augmented state z;

3Consider the case of N = 2, T12 = T11 and T22 = 2T21. At jumps, the
timer states 71,72 are reset by 7-1+ S [Tll,T 21} when 71 = 0 and 7—27L (S
[T11,2T 21} when 79 = 0, for such a jump map, 71 could potentially jump
twice as fast as 7o.



therein has a dimension that is potentially smaller than our 7;;

see (5) therein. [l

Inspired by the coordinates proposed in [25] for the study
of single observers, let e, = &; —x and e = (e1,e2...,en),
0= (91,92,...,91\/), T = (Tl,Tg,...,TN), and

0; = Kuyf+z gir Kiryn+v Z gik(ei —er) —mi. (13)
Y Y

Then, the resulting closed-loop system is given by the in-
terconnection between the plant in (1), all local observers
and the dynamics of the information fusion states in (4)-
(5). In particular, the resulting system in coordinates e, 6,
and 7 can be written as a hybrid system H = (C, f, D, G)
with state Y = (0,7) € X = R"™W x R™™ x T, where
T = [0,T3] x [0,TF] x -+ x [0,T2"], o = (e, ), and data
given by

f(x) == (Aggo, —1n) (14)
for each y € C':= &, and
G(x) =={Gi(x) : x € D;,i € V} (15)
when x € D :=J;cy, Di, Dy :={x € C: 7, = 0},
e
GZ(X) = (917921'-'79i—11_079_i+11"'79N) )
(7-15727 ey Ti—1, [TfaTé]vT’i+la .. aTN)
where
o A0 —4inN
Agpg = [ KAy —K ] ; (16)
Ay = Iy ® A + K, Ag = A9~— Hﬁ’ K =
(K4Hy) * (In + G) + 7L ® I,, and K = K — H,,
the matrices H, = diag(Hi,Ho,...,Hy) and H, =

diag(hiIp, holy, ..., hyI,) are block diagonal and K, €
R™V*P js a N x N block matrix with the (i, k)-th entry
given by Ky, € R"*Px for all i,k € V with p = >\, ps.
The matrix K H, is treated as an N x N block matrix for
the Khatri-Rao product. As the objective of each agent is to
estimate the state x of the plant, i.e., for each ¢ € V, make Z;
converge to x asymptotically, and since 7; approaches zero as
e; approaches zero, the set of interest is defined as

A= {OnN} X {OnN} xT. 17)

Remark 3.3: The dynamics in (12) are quite general as they
allow for the transmission of measurements y;’s and estimates
Z;’s through the network. As we will show later (Example 5.1),
the transmission of Z;’s are essential as when certain agents
do not have enough information directly from measurements,
the consensus term (Z; — &) enables the reconstruction of
the state x. As we will illustrate in Section V-A, the scenario
when the transmission of yy is not possible when 7; = 0 can
be addressed by assigning K;, =0, i,k € V, i # k. O

Remark 3.4: Note that the flow set C' and the jump set
D of H are closed. Moreover, the flow map f is continuous
and the jump map G is outer semicontinuous and locally
bounded. Therefore, the hybrid system 7 satisfies the hybrid
basic conditions. Note that satisfying the hybrid basic con-
ditions implies that the hybrid system 7 is well-posed and

asymptotic stability of a compact set is robust to small enough
perturbations; see Section IV-A for more information. It turns
out that the proposed hybrid observer is also robust to other
important network perturbations and it can be designed to fully
reject them; see Sections IV-B, IV-C, and IV-D. OJ

Below, we illustrate these basic properties in an example.

B. Properties of Solutions

As mentioned in Section II, solutions to general hybrid sys-
tems H can evolve continuously and/or discretely depending
on the differential and difference equations/inclusions (and the
sets where those apply) that govern the evolution of solutions.

Due to the fact that the timer variables being zero is the
only trigger of the jump map, properties on the domain of
solutions can be characterized in the following results.

Lemma 3.5: Let 0 < T{ < Ti be given for all i € V. Every
¢ € Sy satisfies the following:

1) ¢ is complete, i.e., dom ¢ is unbounded;
2) for each (t,j) € dom ¢,

(% - 1) Tmin < ¢ < %TQ‘W,
where T := min;ey T} and T = max;ey T4,

3) for all j € Z> that  (tjyiyn,(J +
1)N), (tjn,jN) € dom ¢,

ey — tin € [T, T3

such

The proof of Lemma 3.5 can be found in Appendix A.

C. A Sufficient Condition for Global Exponential Stability

In this section, we establish sufficient conditions that guar-
antee the GES property of the set A for H. With the change
of coordinates in (13), our choice of a Lyapunov function
candidate is given by

V(x):=e'Pe+0"Q(1)0 VyekX (18)

where P and @ are symmetric and positive definite for all
7 € T, and precisely defined below. Note that this is a proper
choice since it satisfies V(x) = 0 for each x € A, while
for any y € X \ A, V(x) is positive. More importantly,
intuitively, regardless of which timer 7; triggers a jump, this
function satisfies the useful property that V(x*) — V(x) is
upper bounded by a nonpositive function of #; for all y € D.
Such a property is possible due to the convenient choice of
the update law of the observer used at jumps, which, in the
coordinates in (13), leads to e being mapped by the identity
and 6; to zero. The injection of 7; in the flows of the local
estimate in (4) and the continuous dynamics of 7; with flow
map (11) further permit a decrease of V' during flows, which
conveniently uses exponential functions in the definition of ().
These properties are exploited in the following result, which
are also illustrated in several examples in Section V-A.

Theorem 3.6: Let 0 < T} < Tj be given for all i € V.
Suppose N agents are connected via a digraph T' = (V, &, G).
Moreover, suppose there exist 6 > 0 and matrices K, €



RNXp, p e RPNXAN ) ¢ R sarisfying P = PT > 0,
Qi=Q >0forallicV, and
He(4g, P) —P+AJKTQ(v)

*  —=6Q(v) — He(K,Q(v))
SJorall v= (vi,va,...,un) € T, where K is defined in (16),
Q(v) = diag (Ql(Vl)vQQ(V2>a o -vQN(VN)) and Q;(v;) =
exp(0v;)Q; for each i € V. Then, the set A is GES for the

hybrid system H. Furthermore, every solution ¢ € Sy satisfies
the bound in (7) with

—max,er AMW)) {e, (1—¢) i }

M(v):=

1 <0 (19)

o =

203 N 0)
K= \/Z:iexp (% (1+e) T{“i“)
where € € (0,1),
o = min {A(P).2 (Q(0)) }. @n
(= max {X(P),X (@(Tg)) } , 22)

and Ty = (T4, T%,...,TI).

Proof Consider the Lyapunov function candidate V' : X —
R>( given by (18). It follows that

arlx|% < V(X) < aalx|% (23)

for all x € C, where a7 and as are in (21) and (22),
respectively.

Then, for each y € C, we have
(VV(X), f(x)) = ¢ Pe+e  Pe+6TQ(1)0 +07Q(r)f
+07Q(r)Y
= ¢ He(Ag, P)e — 2¢' PO+ 207 Q(7)K Age
— 0 He(K,Q(r))0 — 60" Q()0
=0 Mo
since o = (e, #), where M is the matrix in (19). Therefore,
by using inequality (19), we have

(VV(x), f(x)) < —Blxl4,

where 3 = —max,e7 A(M(v)). Moreover, for each y =
(e,0,7) € D and for each g € G(x), there exists at least one
component of 7, say, the i-th component, such that 7; = 0.
Then, at jumps we have

Vig) = V(x) < -6 Qi6; <0. (25)

Now, for each ¢ € Sy, pick any (¢,j) € dom ¢ and let 0 =
to S tl S s S thrl S t satisfy

Yy € C 24)

J
d0m¢ﬂ([0,t]‘+1] x{0,1,...,4}) = U ([tsstss1] x {s}).
s=0
For each s € {0,1,...,7} and almost all r € [ts,tsy1],
o(r,s) € C. Then, (19) and (24) imply that, for each
s€{0,1,...,7} and for almost all r € [ts,tsy1],
d B

5.V (@(r,s)) < —Blo(r,s)% < —a—2V(¢(T75))-

Integrating both sides of this inequality yields

V(6(tss,s) < exp (—O%@sﬂ - m) V(olte.s) Q6)

for each s € {0,1,...,5}. Similarly, for each s €
{1,2,...,7}, ¢(ts, s — 1) € D, and using (25), we get
V(o(ts,s)) — V(gp(ts,s—1)) <0 Vse{l,2,...,5}.
(27)
From inequalities (26) and (27), we have that
Vi) <o (-2 veoo). e

Therefore, by using (23), for any (¢, j) € dom ¢,

16(t, )] < \/ji exp <—2%t) 16(0,0)| .

From Lemma 3.5, we have that ¢ > (% — 1) Tlmi“, which
implies that

ot 7)|a < Z—j exp (—Q%t) 16(0,0)| 4

<y Zew (-5 (wra-a(F-1) 7)) o001

< mexp(—a(t +7))[¢(0,0)[4.

where € € (0,1) and we used the property that ¢ = et + (1 —
e)t > et + (1 —¢) (L — 1) T/, Along with the fact that
every maximal solution to H is complete, this bound implies
GES of A for H. [

Remark 3.7: Note that when N = 1, condition (19) reduces
to the condition in [20, Theorem 1]. Moreover, this condition
is tight as it governs the growth of the estimation error between
jumps. U

Remark 3.8: The matrix inequality in (19) arises from the
asymptotic stability analysis in the proposed new coordinates
x = (e,0,7), namely, the analysis during flows; see (24).
However, this approach introduces conservativeness as the
seminegativity of the change of 1 at the events (see (25)) is not
necessarily exploited. Another source of conservativeness in
Theorem 3.6 comes from the bounding techniques used in the
derivation of the upper bound on the change of V' during flows.
The strict inequality (19) could be further relaxed to a less than
or equal to inequality, in which case, the invariance principle
for hybrid systems in [21, Corollary 8.9] can be applied. In
such a case, GES will not be guaranteed, but rather global
asymptotic stability of .4 for #H as in [21, Definition 3.6] can
be assured. O

Condition (19) needs to be checked over the compact set T,
which might be a numerically challenging task. The following
result relaxes this requirement.

Proposition 3.9: Let 0 < T} < T4 be given for all i € V.
The inequality in (19) holds if there exist § > 0 and matrices
K, € RNxp P ¢ RN . € R™" satisfying P =



PT" >0, Q;=Q >0 foralli€V such that

He(Ag,P) —P+AJKTQ
. sQ-ne(k,q) <% @
He(Ag,P)  —P+AJKTEQ
. _((BQ+He(K, BQ)| = G0

where E = diag(exp (673 ) ,exp (67%) ,...,exp (613")) ®
I, and ) = diag(Q1,Q2, ..., QN).

The proof of Proposition 3.9 can be found in Appendix A.

We can further relax the conditions in Proposition 3.9 by
noting that, by definition of 75"** in Lemma 3.5, each 7; €
[0, T3] C [0, T4"aX]. This leads to the following result.

Proposition 3.10: Let Ts > 0 be given for each i € V.
The inequality in (19) holds if there exists § > 0 and matrices
K, € RV p g RNXnN ), ¢ R"™" satisfying P =
PT">0,Q;=Q] >0 foralli€V such that

He(4y, P) —P+AJKTQ
* —5Q—He(l€,Q) <0, Gh

He(Ag, P)  —P+exp (0T5") AJKTQ
s —exp(0TF) (5Q+He(K,Q))| <% P

where Q = diag(Q1,Qa, . ..,Qn) and TP = max;cy Ta.
Proof First, note that if the inequality in (19) holds for
all v = (v1,v0,...,vn) € [0,75%X]N, it holds for all
v = (v1,va,...,vN) € T. Then, the result follows by
applying Proposition 3.9. ]

Remark 3.11: In practice, one may want to search for
parameters to maximize the allowable value for 75"%* (often
called “maximum allowable transfer interval” (MATTI); see [9])
that satisfies (32). By doing so, information is allowed to be
transmitted at low frequency, which, in turn, would reduce
the amount of energy consumed but may take longer for the
estimates to converge to the state of the plant. (]

D. Nominal Design of Parameters via LMIs

The conditions in (29) and (30) discussed in the previous
section guarantee exponential stability of the set A in (17).
However, because of the existence of the nonlinear cross term
KK from the multiplication of LAy in (29) and (30), these two
conditions are not computationally tractable. In this section,
we focus on a decomposition of this cross term and propose
design methods in terms of LMIs that can be efficiently solved
numerically. Below, we will use the fact that the matrix Agg
in (16) can be written in the form Ay = A; Ay, where

~ |1 0 ~ | A —InN
A= [/c I} ) Az= [—/CH,7 H, } '
We have the following result with its proof in Appendix A.

Proposition 3.12: Let 0 < T} < T4 be given for all i € V.
The positive definite symmetric matrices P,Q € R"N*nN,
the constants § > 0, v € R, and the matrices H,, and K, €
RN XP satisfy conditions (29) and (30) if and only if there
exist matrices O;, M; € RMV>*nN 4 c N1 <4 < 6, such

(33)

that
He (2, Ionn) QL+ Py
~ 0 34
* Y+He(Qg,12nN)‘| < ’ ( )
He(Al,IgnN) A2 +ﬁ2
~ 0 35
* 7 + He(Ag,IgnN)‘| < ’ ( )
where
Py = diag(P,Q), Z = diag(0,n, —6EQ), G6)
P, = diag(P, EQ), Y = diag(0,n, —0Q),
and
O — -—(91 + ICTO4 -0 + ICTOE,
Tl oy ~05
0, — _OlTAg — 03+ KT0g — (’)ZICH77 —(’)IT + (’)ZH77
T | 054-0s-0JKH, -0] + O] H,
O = -Agol% _HJK:TOG 0
3 i —03 + HnOG 0
A — -—Ml + ICTM4 —Ms + ICTM5
T My ~Ms
A, — _MIAQ—Mg-I—ICTMﬁ—MIICHn —MI-FMIHW
T MJA-Me-MIKH, Mg +MJ H,
Ao = [AdMs = H/K Mg 0
3 | —M3+HnM6 0|

By the transformation in Proposition 3.12, it can be seen
that, in the new set of inequalities (34) and (35), the cross term
KK from the multiplication of LAy in (29) and (30) vanishes.
In fact, the conditions (34) and (35) lead to several designs
by choosing the matrices O;, M; € R*™™*"N properly. The
following result illustrates one particular design when the
graph is all-to-all connected.

Corollary 3.13: Let 0 < T} < T4 be given forall i € V. The
set A is GES for H if N agents are connected via an all-to-all
connectivity graph and there exist 6 > 0, v € R and positive
definite symmetric matrices P € R"N>"N Q. € R™*" for all
i€V, Qe RP"W and R € RMN>"N sych that

He(Z1, Irnn) ~ 22+ P <0, 37
* Y+HG(Z3,IZ1LN)
He(Zi, Iony)  Zo+ P <0, (38
* Z+HG(Z3,IZ1LN)
where Q = diag(Ql, - ,QN), and ﬁl,ﬁg, }7, Z are in (36),
and
2 _[-R+H]Q+LTR HJQ+LTR
1 — ?
L _R _R
. RTA+He(Q, H,)+He(R,L)~R —RT(I-H,)
R R'H, 7
Z3:-ATR—FH;Q‘FETR_HWH;Q_HWETR 0 7
_ ~R+H,R 0

R=R+Q H,H,+R"LH,), A=Ix®A L=7L& 1,
K] = QR

Proof When the graph is all-to-all connected, (K,Hy)* (In +
G) = Ky H,. By choosing 01 = O3 =04 =05 =0 =R



and M :./\/lp,:./\/l4:./\/l5:./\/16:R,andK;r
RO, Oy = My = 0, conditions (34) and (35) reduce to
(37) and (38), respectively. [ |

Remark 3.14: The design for the case when N agents are
connected via a generic graph can be treated similarly. The
inequalities in (31) and (32) can be transformed into LMIs
similarly as done in Proposition 3.12 and Corollary 3.13. [

IV. ROBUSTNESS PROPERTIES AND DESIGN

In this section, we consider the effect of general pertur-
bations and unmodeled dynamics on the plant. In such a
setting, the perturbed plant is given in (1) and the measurement
taken by agent i are given by (2), where the functions
5:RnXRZQ_>Rn and ¢; RnXRzoﬁRm
are unknown functions that capture unmodeled dynamics,
disturbances and measurement noise. Moreover, the values of
Zr and y received from its k-th neighbor (k € N(i)) may
also be affected by channel noise, i.e., the i-th agent receives
Ti(ts) = Tp(ts)+cE(ts) and §i(ts) = yr(ts)+c?(ts) at event
time ts, where ¢; = (c¥,c¢!) : R>g — R™Pi models chan-
nel noise. Furthermore, the timers triggering communication
events at each node may be governed by the perturbation of
(10) given by

1+
T €T + 91, T; + 03

7, € [0, T4 4 93],

7'1':0.

(39a)
(39b)

where g; € (—o0, 1) is a constant modeling a possible skew on
the timer dynamics for 7;, while ¥J; = (9%,9%) is a constant
that satisfies 0 < 77 + ] < T4 + 9% and models perturbations
on the known nominal values of 7% and 7.

Following (11)-(12), the perturbed versions of the dynamics
of the proposed observer are

7i

M = hin (40)

when 7; € [0, Tzi + 9], and, at every event time,
nt = Ki;Hie; +Zgik(Kika€k+”Y€i—’78k)+Ci
kev
when 7; = 0, where

Gi(w,t) = —Kupi(x,t) + Y gie Kir (Hyef — ! — pi(x,1))

key
-7 Z gikcfv

kev
where, for simplicity, we drop the arguments of some of the
perturbations. Then, following the definition of #; in (13),
which without perturbations is given by

0 = Kuyi+ > ginKintvi+7 Y ginlei — ex) — s

(41)

kev kev
= K;;H;e; +Zgik(Kikaek+'7€i_'7€k) — 14,
kev

the resulting perturbed hybrid system H = (C, f, D, G) with
state x = (0,7) = (e, 0, 7) is given by

FO) =00 + (=1y @6(x,t), =K1y @ 6(x, 1)), <)

when x € C:=R"™W x R"™W x %, where
T = (0,15 + 93] x [0, T3 + 93] x --- x [0, T2 + 9]

and ¢ = (1,2, . ..,5n). Moreover, when y € D= Uiev D;,
Di:{XECZTi:O},

G(x,¢) = {Gi(x,¢) : x € Dy, i € V}

and
e
Gi(x, ) = | (01,00, 0i 1, —Ci(2, 1), 0541, .., ON) |
(T1, T2y e e oy Tim 1, iy i1y« - s TN)
where =; = [T} 4+ 9%, T4 + 93],
C(@,t) = (G2, 1), G2(2, 1) ..., (v (1)),
o(x,t) = (p1(z,t), p2(x, 1), ..., on (3, 1)),
and
C(z,t) = Kppo(z,t) + Kec,
K, =-Kg+(I+G), 42)
K. = [(KgHg ) xG  —K, *g] )
c = (), & = (cf,6,....c%), and ¢¢ =
(cf,c8,. ... %) 4

A. Robustness properties with respect to small perturbations

Motivated by Remark 3.4, in this section, we focus on
the generic robustness property to small perturbations. Below,
given a set S, C R, R*(S,) denotes the infinite horizon
reachable set of & = Az + d§(x,t) from S,.

Theorem 4.1: Let 0 < T{ < Ti be given for all i € V.
Suppose the parameters K, v, h; for all i €V are chosen
such that the set A is GES for the unperturbed hybrid system
‘H. Then, there exists B € KL such that for every compact
sets Se C X and S, C R™, and every € > 0, there exists
p* € (0,00) such that if

max{pluﬁ27|c|oo7|<|00} S p*v (43)
where
P = sup lp(, t)],
(z,t)ER®(Sz)xR>q
Py = sup |0z, )],

(z,t)ER®(Sz)xR>q
then, every ¢ € Sﬁ(Se) under the effect of solutions to (1)
from S, satisfies
¢, 5)a < B(16(0,0)|a,t +j) + €
Sor all (t,j) € dom ¢.
Proof Consider the hybrid system # and a continuous function

p: R™W xR"™N x T — R, the p-perturbation of H, denoted
H,, is the hybrid system

x e,
x €D,

X € Fp(x)
X+ € Gp(X)

“4Note that the Khatri-Rao product — Ky * (I +G) is such that the (i, k)-th
entry K5 of K is multiplied by the (i, k)-th scalar entry of the matrix 1 +G
for all 7,k € V.



where

Cp={xeX:(x+p(x)B)NC# 0},
F,(x) =7conf((x + p(x)B) N C) + p(x)B
Dy,={xeX:(x+p()B)ND#0},
Go(x) ={veX:veg+p(g)B,geG((x+px)B)ND)}

Vx € &,

Yy € X.

Since the set A is GES for #, it is also UGAS for .° Since
the hybrid system H satisfies the hybrid basic conditions, by
[21, Theorem 6.8], H, is nominally well-posed and, moreover,
by [21, Proposition 6.28] is well-posed. Then, [21, Theorem
7.20] implies that A is semiglobally practically robustly KL
asymptotically stable for H. Namely, for every compact S. C
X and every ¢ > 0, there exists p € (0,1) such that every
6 € Su,,(Se) satisfies |p(t, )4 < B(16(0,0) 4t + ) + ¢
for all (t,j) € dom¢. Then, the result follows by picking
p* > 0 such that

max {1, || + K|, K|} o~ < 7

and relating solutions to H and solutions to Hzp- n

In simple terms, the above result establishes that the solu-
tions to the hybrid system () with small enough perturbations
do not differ much from those of the unperturbed system (7).

Remark 4.2: 1f §(x, t) = 0(t) for all ¢ € R>q, the arguments
in Theorem 4.1 apply without using the reachable set R*(S,.).
A typical form of §(x,¢) is AAzx with AA € R"*", which
captures linear unmodeled dynamics. Furthermore, rather than
requiring boundedness of §(z,t) over the reachable set from
Sz, one could state the KL-bound in Theorem 4.1 under
boundedness of the solutions to the plant (1) that correspond
to the solutions to the perturbed system #, which are in error
coordinates. (]

Remark 4.3: In general, though not pursued here, the result
in Theorem 4.1 is also applicable to the case when the
measurement and communication noise have specific statis-
tical properties, such as Gaussian noise. Furthermore, if the
proposed observer includes an estimate of the perturbation &,
which is possible by adding §(#) to the right-hand side of
equation (4), then under typical assumptions in the literature
(see, e.g., those in [28, Lemma 2. 1]), we can bound the
difference between & and 6 by |6(z) —d(z+2*)| < L|a*|+ Lo
for all x,2* € R", where L, Ly € R>(. Moreover, for such
robustified observer, a result guaranteeing asymptotic stability
of the zero estimation error follows similar to the proof in
Theorem 3.6. (]

B. Robustness to measurement and communication noise

In this section, we consider the hybrid system H in Sec-
tion IV where only the communication noise and channel
noise are present. Namely, 6 = 0, ¢; = 0, ¥; = 0, for all
i € V), and the function ¢; reduces to a function m;, i.e.,
m;(t) := @;(x,t) forall t € R>(. Then, we have the following
result.

SWe consider the definition of uniform global asymptotic stability (UGAS)
for a set given in [21, Definition 3.6].

Theorem 4.4: Let 0 < Ti < Ti be given for all
i € V. Suppose there exist matrices K, € R"™W*P and
P e R?"N*20N gych that P = PT > 0 and condition (19)
holds. Then, the set A is ISS with respect to measurement noise
and communication noise, in particular, for each ¢ € Sz and
for any (t,j) € dom ¢,

6t )|a < max {V2k exp (~a(t+7)) [6(0,0)|as Fmlmlc,
Feleloo }

where o and K are deﬁned in (20), o1 and «o are given in

(21) and (22) respectively, B = ’\(M) and

N exp ( pTmin E

E- N( _ ), T = 24 —N(Q) Ko,
exp (BT{“‘“) -1 @

. FE—

Ye = 2 a_)‘(Q)chl

with K,,, and K. as in (42) and M as in (19).

Proof Consider the Lyapunov function candidate V' : X —
R>( given by (18). It follows that V' satisfies (23) for all
x € C, where a; and ao are given by (21) and (22). Then,
as in the proof of Theorem 3.6, during flows, by using (19),
we have

(VV(x), f(x) < =BIx%, VxeC,

where # = —A(M) and M is given in (19). Moreover, for
each x = (e,0,7) € D and for each g € G(x), there exists at
least one component of 7, say, the i-th component, such that
7; = 0. Then, at jumps we have

Vig) = V(x) £ =0 Qibi + ¢ QiGi
<¢TQC
Now, pick ¢ € Si- By item 3 in Lemma 3.5, we have
tg+yn — tiy € [T, T3] for all j € Z>; such that
(tG+1yn, (F +F 1)N), ( jN,JjN) € dom ¢. Then, from Propo-
sition B.1 with a = 2 , and T2 T57%*, we have that

V(6(t.4)) < exp (—%t) V(6(0,0))

I S exp (- Lorr).,

s=0

+ NXQ
where j = {%J Note that for each n € N
exp ( Tm”“) exp (—O%nTlmi“)

Z exp ( sTlmm) = .
exp (a—lemm) —1
Then, by the definition of E and with (23), we have that

1 —
6. < 2 exp <—§2t) 60,04 + - X(Q)BICE




Since (|2, < 2|K,,|?|m|% + 2|K.|?|c|, it follows that, for
each (t,j) € dom ¢,

o011 < max {222 oxp (-2 60,0,

E E—
—ANQ)|Kom||m]o, 2 a—lx\(Q)lKCHCIw}.

We can conclude the proof by following similar arguments as
in the proof of Theorem 3.6. |

C. Robustness properties with respect to T} and T3 perturba-
tions

In a real-world setting, the bounds on update communication
times 7} and T4 may not be explicitly known and may be
affected by a perturbation ¥; = (9%, 19%), as modeled in (39).
In this section, we consider the case of H with § =0, ¢; = 0,
¢; = 0, and with 9J; being a constant perturbation parameter.
We have the following results for this particular case. Its proof
follows from an application of Proposition 3.6.

Corollary 4.5: Let 0 < T} < T4 be given for each i € V.
Suppose N agents are connected via a digraph T = (V, &, G).
The set {0n,n} X {Opn} X T is GES for the hybrid system H
if there exists 6 > 0 and matrices K, € R"N>P P = PT €
RPNXeN Q. = Q] € R™™ for each 1 € V such that (19)

holds for each v = (vy,va,...,vy) € T.

From Corollary 4.5, in particular, we have that the global
exponential stability property of the nominal system H is
robust to perturbations on T2i, which, in turn, implies ro-
bustness to perturbations on 75"**. Employing the idea used
in Proposition 3.10, which, in the nominal case, allows to
only check the pertaining inequalities at 75"**, we propose
the following result to check the condition in Corollary 4.5
over the larger range of values due to perturbations. Its proof
follows from an application of Proposition 3.10.

Corollary 4.6: Let 0 < T} < Ti be given for all i € V.
Suppose the assumptions in Proposition 3.9 hold. The_set
{0,n} X {Opn} X T is GES for the hybrid system H if
there exists 6 > 0 and matrices K, € R*N>xr P = PT ¢
RV>N 0, = Q € R™™ for each i € V and

_ ATiT
He(Ay, P) P +exp(dv)4y K Q <0 (44
* —exp(0v)(0Q + He(K, Q))
for v = e 4 maXiGVNﬁé, where Q) =

diag(Q1,Q2,...,QnN), As, Ag and K are given in (16).

D. Robustness to information dropout

In the proposed model, at each communication event, a data
packet containing the information (yy, @) for all k € N (7) is
received by agent . In this section, we study the robustness of
the exponential stability of the set .4 to information dropout,
i.e., the situation when some of such data packets are lost. We
assume the following properties.

Assumption 4.7: A Bernoulli random variable by indicates
whether the packet with index k is successfully received. If
it is received successfully, then b, = 1; otherwise, by = 0.

For each k € Z>1, by is I.LD. with probability distribution
P(by =1) =d, and P(by, =0) =1 —d,, where d,. € (0,1).
Note that this model is one of the simplest and often used to
model for information dropouts in large-scale networks, see,
e.g., [29, Section 2]. A simulation of the proposed observer
subject to this information dropout model is discussed in
Example 5.6.

On the other hand, if further information about dropouts
is available, for example, if one knows that for the overall
network, at most £* packets could be dropped consecutively,
then, we can use the following result to robustify the design.

Corollary 4.8: Let 0 < T} < Ti be given for all i € V.
Moreover, suppose at most k* packets could be dropped
consecutively. Then, the set A is GES if there exists § > 0 and
matrices K, € R"™N>*P P = pT ¢ RN 9, = Q[ €
R™*™ for each i € V such that if there exists 6 > 0 and
matrices K, € RMV>P, p ¢ RMVXnN 0, e R"™ ™ satisfying
P=P" >0, Q;=Q] >0foralli€V such that

He(Ag,P) —P+AJKTQ
. sqoHe(R.Q| T W
He(Ag,P)  —P+exp(ov) AJKTQ
N exp (o) (0Q+He(K, Q) | =% @O
where v = (k* +~1)T2max,l, Q = diag(Qla R QN), TQmaX =

max;ey T4, Ag, Ag and K are given in (16).

Proof Under the assumption that the maximum number of
consecutive packets dropouts are bounded by £*, it follows that
the resulting maximum time interval between two successfully
received data packets are 75" 4 k*T5"**. Then, the proof
follows from applying Proposition 3.10. |

V. NUMERICAL EXAMPLES
A. Examples for the Nominal Case

In this section, we exemplify the main results developed
for the nominal case. Namely, we consider multiple examples
showcasing the key attributes of our estimation algorithm, in
particular, the fact that the estimates converge exponentially
to the state of the plant when communication is asynchronous
under general graphs, and, potentially, when the full state is
not measurable at each agent. First, we showcase an example
pertaining to two agents for which, if communication between
them is not possible, they cannot individually estimate the
state of the plant. In that example, when information is shared
between them, our observer guarantees that the state of each
agent converges exponentially to the state of the plant.

Example 5.1: Consider a plant with state z =
(71, 22,73) € R3 that has oscillatory dynamics for (x1,z2)
and trivial dynamics for 3, in particular,

0 -1 0
A=|1 0 0 47)
0 0 0

Consider the case of two agents that are all-to-all connected,

. 0
ie., G = 1 ol

Hy =0 0 1],Hy = [1 1 0]. Since the pairs (Hi, A)

and measure z according to (2) with



(w3, %i3)

2

1
(w2, #42)
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0 A (fl'?-i‘,l)
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(a) Phase plots of z,%1,Z2 from (b) Estimation error for the third
initial conditions denoted . state component.

Fig. 1. Phase portrait and estimation errors for the third state component for
the system in Example 5.1, where © = (z1,x2,23), &; = (Zi1, Ti2, £i3),
ek = Tip—xk. fori € {1,2}, k € {1, 2, 3}. Initial conditions are (0, 0) =
(17 1, 1)’ i‘l(ov 0) = (17 0, 6)’ 771(07 0) = (17 1, 1)’ i‘Q(Ov 0) = (_17 0, 35)’
72(0,0) = (—1,—1,—1), 71(0,0) = 0.2 and 72(0,0) = 0.

and (Hy, A) are not detectable, neither agent can estimate
the full state of the plant by running an observer that does
not use information from the other agent. However, when
communication between agents is allowed, our observer is
able to reconstruct x. In fact, given 77 = 0.2 and 75 = 0.4,
by solving conditions in (29) and (30), we obtain the fol-
lowing parameters: K1; = [ —-0.5 —-0.2 -0.1 ]T , Ko =
[-02 —02 -05] Ky = [02 03 03],
Koo =[ 0.1 =05 02]", hy=hy=0,5=10, and
gain v = —0.4. The simulation shown in Figure 1 indicates
that the estimates ; and Z converge to = exponentially.
Figure 1(a) shows the trajectory of x = (x1,x2,x3), and the
observer states fl = (ill,flg,{flg), fz = (le,i‘QQ,i‘Qg).
Figure 1(b) shows their third components, denoted x3, T3
and Zo3.  Note that even though the data in this example
would satisfy the conditions in [?], in our setting, the infor-
mation is arriving at different time instances, which makes the
reconstruction of the state not possible with the results therein.

A

Unlike the previous example, the next example considers the
case when the pair (H; + Hy, A) for each (4, k) € £ may not
be observable. Due to the consensus terms, when information
is shared between them, our observer guarantees that the state
of each agent converges exponentially fast to the state of the
plant.

Example 5.2: Consider a plant with state =z =
(x1,22,23) € R? that has unstable dynamics, in particular,
0.1 O 0
A= 0 01 O (48)
0 0 0.1

Consider the case of three agents that are connected via a
graph with

g:

= o O

1
0
0

O = O

and measure x according to (2) with H; = [1 0 O} L Hy =
0 1 0} ,Hy = [O 0 1]. Since, for each i € V), the
H;, A) pair is not detectable, no single agent can estimate

6Code at https://github.com/HybridSystemsLab/ObsSyncTimes3rdAsyn.

11

2
L — i1 |
Gl g ———a e TTenn
o 5 10 15 20
05 ‘ ‘ ]

' ONNNNV\NNNN’\WN'\E\N\.\NN]\!\E'\}\.

0 1 2 3 4 5
05f ‘ ‘ ‘ ‘ ]
P NN
0 1 2 3 4 5

05

» AN AN

(a) The first component of the estimation error for each
agent (top) and timer states trajectories (bottom three). The
red dashed lines indicate the jumps of 7;.

5 T
4 — K #0| ]
Ky =0

3, 4
lel

2+

1+

O 1 1 I

0 5 10 15 20 25 30

t

(b) The estimation error |e| for the unstable three agent
system as in Example 5.2.

Fig. 2. Numerical simulation over flow time for the cases of K, in
Example 5.2, for i,k € {1,2,3}, i@ # k. Note that the update times,
as shown by 7;, occur at different intervals (as indicated by the dashed
black lines). Initial conditions are z(0,0) = (1,1,1), #1(0,0) = (1,1,1),
532(07 O) = (_1717_1)’ 1‘3(0,0) = (_17_17_1)’ 771(07 O) = (17171)’
772(070) = (_17_17_1)’ $3(070) = (_1717_1)’ 7—1(070) = 0,
72(0,0) = 0.2 and 73(0,0) = 0.3.

the full state of the plant by running an observer that does
not use information from the other agent. Note that, even
though agent 1 can access both y; and ys when 71 = 0,
the combination of measurements would not allow for local
state reconstruction since (H; + Hs, A) is also not detectable
(a similar argument applies for the other agents). However,
when communication between agents is allowed over the
network with adjacency matrix G, each agent would be able
to reconstruct z. In fact, given T? = 0.3, T2 = 0.6, and
T32 = 0.5, by solving conditions in (29) and (30), we obtain
the following parameters’:

Ku=[-25 0 0],
Ke=[0 -3 0], Kyp=[02 —03 —04]",
Ksu=[-02 0 —03]", Ku=[0 0 -25]",

h1 = hg = hs = —2.1, 6 = 4, and gain v = —0.7. The
simulation shown in Figure 2(a) indicates that the estimates
Z;’s converge to x exponentially. Furthermore, note that our
observer exploits the parameters h; to update the estimates in
between events.

More interestingly, in this case, conditions (29) and (30)
(and hence, condition (19)) can be satisfied when y; is not
communicated between agents; namely, K;; = 0 for each k €
N (i) and each i € V. It can be verified that the same set
of parameters with K12 = Koz = K31 = 0 also satisfies

Kz=[0 —02 0]",

7Code at https://github.com/HybridSystemsLab/ObsAyncTimesNoObsNeig.
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(a) Phase plots of =, Z1,Z2 from ini- (b) Estimation error and timer states,

tial conditions that are denoted by *. where z = (1, z2), &; = (Zi1, Li2),
€1 = Ti1 — T1, €2 ZTio — x2,
for ¢ € {1,2}. The red dashed lines
indicate the jumps of 6;; and 7;.

Fig. 3. Phase plots of x,21 and Z2 as well as the first component of the
estimation errors e; and ez, the first component of the 6; coordinates and
the timer state 7; for two all-to-all connected agents using the observer in
Example 5.3. Initial conditions are z(0,0) = (2,2), £1(0,0) = (15,5),
#2(0,0) = (~1,0), 11(0,0) = (1,1), 72(0,0) = (~1,~1), 71(0,0) =
0.1 and 72(0,0) = 0.25.

the conditions in (29) and (30). A simulation of this scenario
compared with the case when K;; may not be zero for i # k
(as in the previous example) is in Figure 2(b).

Next, we illustrate Corollary 3.13. We consider the above
system when the graph is all-to-all connected. Given that T% =
0.3 for each 7 € V, it can be verified that the linear matrix
inequalities given by (37) and (38) can be solved by choosing
h1 = ho = 0.2 and 7 = —0.4, with the resulting gain matrix
K qT being

0.68 0 0 102 0 0102 0 O 0

-1 0 1.02 0 0 0.68 0 0 1.02 O
0 0 1.02 O 0 1.02 0 0 0.68
A

The following example illustrates the result in Proposition 3.9.
Example 5.3: Consider the case of two agents that are all-to-

all connected, namely, G = (1) (1) . Let the measurements
of x at agent 1 be y3 = Hyx, H; = [1 0] and the
measurements at agent 2 be yo = Hox, Hs = [0 1].

By solving inequalities® (29) and (30) in Proposition 3.9, we
obtain the following parameters: K13 = [ —-0.5 —-0.2 }T,
Kip=[—-02 —02]", Ky =[02 03], Ky =
[ =01 =05 ], with by = hy = 0, y = —0.1, T} =
T? = 0.1, T} = T? = 0.2 and § = 10. A simulation
with these parameters is shown in Figure 3. The estimates
1 and Zo converge to x exponentially as guaranteed by
Proposition 3.9.° Moreover, as seen in Figure 3(b), as expected
the novel coordinate #; jumps to zero when 7, = 0 and flows
away from zero during flows. This tendency to move away
from zero during flows is precisely the reason behind the
choice of the Lyapunov function V' in (18) which compensates
this flow action by utilizing the negativity of the flow map of
the timer to ensure negativity of V' during flows.

More interestingly, consider the scenario where agent 1

8Note that the inequality in (29) and (30) are not linear. The tool developed
in [26] provides a way to solve it.
9Code at https://github.com/HybridSystemsLab/ObsSyncTimes2ndAsyn.
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Fig. 4. The estimation error |e| for two agents connected all-to-all as in
Example 5.3 are compared for two cases of A1 with identical initial conditions
to those in Figure 3. Specifically, in Example 5.3, the case when H; = [1 0]
(in blue) and when H; = 0 (in red) is considered.

loses the capability of receiving measurements, i.e., [{; = 0.
A simulation with same initial conditions and gains as those
in Figure 3 is shown in Figure 4. As suggested from the
simulation, it can be seen that even though the agent has
measurement y; = 0, through the consensus-like term (the
third term in (12)), the components z; and Z5 get close to
each other first and then converge to = exponentially. This
highlights further a benefit of the third term in the dynamics
of 1 in (12). In fact, the third term enforces consensus between
the estimates 7 and 22 which can be seen from the dynamics
of the error between 27 and Z. More precisely, due to the
fact that the parameters satisfy the conditions in Theorem 3.6,
the error state exponentially converges to zero. This implies
that 21, 2o converge to the state of the plant x exponentially
and, therefore, converge to each other. As argued in Section I,
a distributed observer guaranteeing such properties under such
a complex setting is not available in the literature.

Next, we illustrate Corollary 3.13. We consider this systems
dynamics with TQZ' = 0.4 for each 7 € V, it can be verified
that the inequalities (37) and (38) can be solved by choosing
hy = hy =0, § = 10 and v = —0.2, which lead to

KT~ —1.11 —-0.43 -0.41 -0.09
9 0.09 —-0.41 0.43 -—-1.11}"
Note that (37) and (38) are LMIs that can be solved efficiently.

A

B. Examples for the Robustness Cases

In this section, we showcase the main results of the partic-
ular cases of robustness we consider. The following example
revisits the system in Example 5.1 under the effect of skewed
clocks.

Example 5.4:  Consider the system in Example 5.1 with
same set of parameters. Furthermore, we consider a particular
perturbation where d(x,t) = 0, p1(z,t) = @a(x,t) = 0,
Y9i(ri) = 0 for all 7, € [0,74] and ¢; = ¢ = ¢* where
¢* € (—o00,1) is a constant. Figure 5 shows numerical
simulations to % when ¢ € {0.5,0.7,0.8} and all other
perturbations are zero. Following this process, Table I shows
the average relative error for varying ¢* with respect to the
nominal case ¢* = (. Due to the non-deterministic nature
of solutions we simulate 40 solutions from the same initial
conditions as those in Figure 5 for each case of ¢*. The average
error was found for the last 10 seconds of flow time for each of



(a) Estimation error for the first state (b) Estimation error for the third state
component component.

Fig. 5. Estimation error under different choice of perturbation ¢*.

<* 0 0.10 050 0.70 0.73 0.76 0.77 0.78
relative error | 0 0.01 0.13 0.28 0.32 198 5.72 10.01
TABLE I

COMPARISON BETWEEN THE AVERAGE STEADY STATE ERROR e; FOR
VARYING ¢* RELATIVE TO THE NOMINAL CASE, (¢* = 0). WHEN THE
TIMER SKEW CONSTANT ¢* > (.77, THE RESULTING ESTIMATION ERROR
TENDS TO DIVERGE, AS SHOWN IN FIGURE 5.

the 40 simulations. The overall average was found across the
40 simulations and the relative error to the nominal is given
in Table I. Note that for ¢* > 0.77 solutions to /4 may no
longer converge to zero as indicated by the large relative error
and the bottom plots in Figure 5. A

Example 5.5: Consider the system and parameters in Ex-
ample 5.3 with T} = T4 = 0.2 for each i € {1,2} and the
perturbation ¥} = 9% = 9¥*. From Corollary 4.6, we can show
that (44) is satisfied when * = 0.17. A series of simulations
are shown in Figure 6. In particular, these simulations compare
the nominal case when ¥* = 0 with several perturbed
cases from the same initial condition; namely, for values of
¢*€{-0.15,0.1,0.6}. Note that when ¢* =0.6, condition (44)
cannot be satisfied with the parameters, but the estimation error
still converges to zero. This is due to the fact that the condition
in Corollary 4.6 is only sufficient but not necessary. AN

Example 5.6: Consider the system in Example 5.1 with
same set of parameters as in Example 5.1. For each dropout
rate d. € {0,0.2,0.4,0.6,0.7,0.8}, under the same initial
conditions as used in Example 5.1, the projection of average
estimation error |e| from twenty simulations on the ¢ direction
is shown in Figure 7. Note that in this particular study, larger
dropout rate degrades convergence and when the dropout rate
d, is larger than 0.6, the average estimation error diverges. A

VI. CONCLUSION

We presented a comprehensive solution to the problem of
robustly estimating the state of a plant in a distributed fashion
and under intermittent information communication. In contrast
to classic observers for linear time-invariant systems, with
enough information from its neighbors, but likely obtained at
different time instances, an agent in a network can estimate
the plant state even without detectability or even taking
measurements of the plant output. Sufficient conditions that
guarantee global exponential stability of the convergence of
estimation error to zero are presented through the use of novel
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Fig. 6. The estimation error |e| for the two agent all-to-all connected system
in Example 5.3. Initial conditions are z(0,0) = (2,2), 1(0,0) = (15, 5),
#2(0,0) = (—1,0), 71(0,0) = (1,1), 52(0,0) = (-1, -1), 71(0,0) = 0,
72(0,0) = 0.3.
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Fig. 7. The relationship between the dropout rate d, and the corresponding
average estimation error |e| for 20 solutions and projected onto the flow time
t.

hybrid system models and analysis tools. Moreover, design
methods involving LMI-like conditions are also proposed,
enabling for efficient numerical design of the observers. The
proposed observer is also shown to be robust to a wide range of
perturbations encountered in real-world settings of estimation.
Future research directions include robustness to variations
of the graph structure and to information delays, which will
require the maturity of tools for time-varying and infinite-
dimensional hybrid systems currently under development.
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APPENDIX A
SELECTED PROOFS OF MAIN RESULTS

Proof of Lemma 3.5 Let ¢ € Sy be arbitrary. Note that, by
the definition of the dynamics of 7; in (10), within any window
of flow with length T{“i“, at most all of the N timers can
jump twice. Moreover, once any of them jumps, the amount
of time to its next jump is less or equal than T/™". Then,

for each (t,j) € dom¢ j < N (L + 1) which leads to

) . Tlmin
(% — 1) Tt < t . Similarly, within any window of flow
with length 757, all N timers jump at least once. Then,

t < %Tgﬁa" for each (¢, j) € dom ¢. Moreover, for ({5, N) €
dom ¢, the next IV jumps take at least 77™" flow time, i.e.,
ton > tn + Tlmi“, and they take at most 75"%* flow time, i.e.,
tan < tn + 1372, Therefore, we have T/" < toy — tn <
T3, In fact, for any (tjn,jN) € dom¢ and j € Z>q,
by using similar arguments, Tlmin <typnpn — v < 5,
which leads to the property in item 3.

Now we show completeness of each ¢ € Sy. First, note that
for any x € C'\ D, we have T (x) N f(x) # 0. Moreover,
when xy € C N D, solutions cannot be extended via flow.
Due to the fact that the flow map is linear, finite escape time
during flows cannot occur. Furthermore, it is easy to check
that G(D) C C'U D. Therefore, according to [21, Proposition
6.10], each maximal solution ¢ to H is complete. [ |

Proof of Proposition 3.9 Given 7% > T > 0 foralli € V and
§ > 0, for each i € V, define the function 7; : [0, T4] — [0,1]
cxp(éui)fcxp(éTg)

l—exp(éTQi) ]
be verified that for any v; € [0, T%]

as r;i(v;) = for all v; € [0, T4]. Then, it can

exp(6v;) = ri(v;) + (1 — () exp (6T3) . (49)
Therefore, for each v = (vy,v9,...,un) €T,
Q) =R@)Q(0) + (I - R(v))Q(T>), (50)
where Ty = (T3, T%,...,T4') and
R(v) = diag(ri(v1),...,rn(vN)) @ L. (51

In light of (50) and (51), the inequality (19) can be rewritten
as

He(Ay, P) —P+AJKTQ(v)
~P+Q()KAy —6Q(v) — He(K,Q(v))
=RW)E, + (I — R(v))E,,
= B1(v)E1B1(v) + B2 (v)Ee B2 (v)

where
g _ | He(4e,P)  —P+AJKTQ(0)
P =P+ Q0)KA, —56Q(0) — He(K, Q(0)) |
B = He(Ag, P) —P+ AJKTQ(T>)

_P+@(T2)KZ0 —(6Q(T2) +He(K,Q(T2)))|’
Bi(v) =diag (\/rl(yl), Vra), ..., \/TN(VN))@@I,L,

BQ(V):diag(\/l—Tl(Vl),\/l—Tg(ug),. y ,\/1_7~N(VN))®JH.

By using (29) and (30), £; < 0 and F> < 0, hence (19) holds
for each v € T. [ |

Proof of Proposition 3.12 Let

soolt] 5= ] 5[]
Ny =1[0an Oun Ouy Ion]' (53)
Then, inequality (29) can be written as
By = Nyy YNy <0, Ny YNy <0, (54)
and inequality (30) can be written as
By = Ny,ZNyy <0, Ny ZNy < 0. (55)



Moreover, the columns of Ny (respectively, Ny) form the
basis of the null space of VW (respectively, }), where VV and
Y are given by

[ 51 1|1 O Ay —Iun
w=[-4, Az}—[,c T okm, H| 69
and

InN OnN OnN OnN
y: OnN InN OnN OnN (57)
OnN OnN InN OnN

Then, using the projection lemma [27], inequalities (54) and
(55) are equivalent to the existence of two matrices O, M €
R22Nx3nN quch that Y+ WTOY +YTOTW < 0, and Z +
WIMY + YT MTW < 0. Therefore, by letting

o 01 02 03 o Ml MQ MS
O—[@ 0 06]’ M_[/m Ms MG]’ (58)
we have
T T AT S |He(Q4,1) Qo+ Py
W Oy+Y O W+Yy= ¥ + He(Qs, 1)

which leads to (29). The proof of (30) follows similarly. W

APPENDIX B

AN ISS PROPERTY FOR A PERTURBED HYBRID SYSTEM

The following property is used to prove the ISS result in
Theorem 4.4.

Proposition B.1: Consider a hybrid system H =
(C,F,D,G) with state © € R". Suppose there exists a
continuous function V. : R"™ — Rsq which is continuously
differentiable on a neighborhood of C and is such that

(VV(2), f) < —aV(z) VeeC, feF(x) (59
V(g) <V(z)+b Ve D,geG(z) (60)

where a,b > 0. Moreover, suppose there exist scalars 0 <
T1 < T2 and N € Z>1 such that each ¢ € Sy satisfies

t tin € 11, T2] (61)

(G+DHN —

for all j € Z>1 such that (t(jﬂ)ﬁ, (j + 1)N), (tjﬁ,j]v) €
dom ¢. Then, for each ¢ € Sy, we have

at)V(4(0,0)) + Nb Z exp(—asﬁ),
s=0

V(o(t,5)) < exp(—

for all (t,j) € dom ¢, where j = HVJ

Proof Given a ¢ € Sy, pick any (¢,j) € dom¢ and let
0=t <ty < <tjy1 <t satisfy

J

U lts tesa] x {s}-

s=0
.7} and almost all 7 € [ts, tsy1], d(r,i) €

dquf)m([O,thrl] x{0,...,j}) =

For each s € {0,. ..

C'. Then, (19) implies that, for each s € {0,...,5} and for
almost all r € [ts,tsy1], from (59) we have that

d ) . .

- V(8(r,1)) < —=Blo(r, i)’ < —aV(e(r,1))

while integrating both sides leads to V(¢(tsy1,s)) <
(exp (—a(tst+1 —ts))) V(o(t,s)) for each s € {0,...,j5}.
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Similarly, for each s € {1,...,j}, ¢(ts,s — 1) € D, and
thus V(¢(ts,s)) < V(¢(ts, s — 1)) + b. Due to the last two
displayed inequalities, we have, for each (t,j) € dom ¢ with
t>t;, that

—at)V($(0,0)) + b > exp(—

V(@(t, 7)) < exp( a(t —t,))
< exp(—at)V(¢(0,0)) + b exp(—alt; — t,)).
s=1

Due to the increasing sequence of times t; < to <ty <
- < t;, we have that there must exist a integer 7 which

defines the maximum multiple of N ie,j= L NJ Then, we

can group the sum Zi:l exp(—a(t; —ts)) as follows:

ji-1 N
Zexp a(t;y —ts)) = ZZexp(—a(tj —tqin)
5=0 k=1
J
+ Y exp(—alt; —tr)).
k—JN-i-l
Note that for each s € {0,...,j — 1}, we have
N
max exp(—a(t; =t 5.;))
tSNM,ke{l ..... Nfl}; / N+k
= Zexp ~tsri)
= Nexp(—a(tj —ternyn))s

which corresponds to the max1mlzer satisfying ¢
forall k € {1,...,N

sN+k
— 1}. Therefore, it follows that

(s+1)N
J
sup Zexp(—a(tj —t5))
¢€S’H =1
(t; J)Gdomqb
j—1
< sup max Zexp (tj—t54n)
$es ke{1,...,N-1
(t;.j)edom ¢ °= 0 fop €L =
J
+  sup exp(—a(t; — tg))
S ;

(t;.7)€dom ¢ k=i N+1

j—1
Z Nexp(=a(t; —t(, 1 5)) + N,
=0

< sup
PESH
(t; j)Gdomd)
j—1
< ¢sup Nexp(—a(t;5 =t y5) + N,
€S =0

(t; j)Gdomd)

where we used the property that j — §N < N. From the
assumption on the hybrid time domain in (61) it follows that
Hosni — i € [Tl,TQ} , for all (5, 5N, (t 15 (5 +
1)N) € dom¢ with ¢ € Sy, which implies that for each
s€{0,1,...,5 —1}, Ly —ty € [(3—S)T1,(§’—S)Tg]



Therefore,
j—1
sup NZ exp(—a(t;y —tynx)) + N
PESH s=0

(tj,j)€dom ¢

j j
< Z exp(asTy) + N = NZ exp(asTh)
s=1 s=0

where j = L%J Therefore, for each (¢,j) € dome¢, V
satisfies

V(@(t, ) < exp(—at)V((0,0)) + Nb > exp(—asTy)
s=0

for j = L%J which concludes the proof. |
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