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Abstract—We propose distributed scheduling algorithms that
guarantee a constant fraction of the maximum throughput for
typical wireless topologies, and have O(1) delay and complexity
in the network size. Our algorithms resolve collisions among pairs
of conflicting nodes by assigning a master-slave hierarchy. When
the master-slave hierarchy is chosen randomly, our algorithm
matches the throughput performance of the maximal scheduling
policies, with a complexity and delay that do not scale with
network size. When the master-slave hierarchy is chosen based
on the network topology, the throughput performance of our
algorithm is characterized by a parameter of the conflict graph
called the master-interference degree. For commonly used conflict
graph topologies, our results lead to the best known throughput
guarantees among the algorithms that have O(1) delay and
complexity. Numerical results indicate that our algorithms out-
perform the existing O(1) complexity algorithms like Q-CSMA.

I. INTRODUCTION

The design of efficient distributed scheduling algorithms is
a fundamental problem in wireless networks. The goal of a
scheduling algorithm is to determine which subset of the non-
interfering nodes should transmit at each time instant so that
the service requirements of all the nodes are met. Based on
the network topology and the interference constraints, there
exists a maximal set of rates that can be achieved, known as
the achievable rate region. The performance of a scheduling
algorithm is measured based on the fraction of rate region that
the algorithm can support, the complexity of determining the
schedules, and the delay incurred under that algorithm. If an
algorithm can support any rate vector in the interior of the rate
region, it is said to be a throughput maximizing policy. Max-
Weight scheduling algorithm [1] is a centralized scheduling
algorithm which is known to be throughput maximizing.
However, due to its high complexity, and the fact that it
requires global information to determine the schedule, it is
not suitable for implementation in large wireless networks.

A. Related work
There have been several efforts [2], [3], [4] in the litera-

ture to design distributed approximations to the Max-weight
algorithms with lower complexity. Greedy algorithms known
as maximal scheduling policies [2] is one such class of
approximations. For network topologies that are modelled
using a conflict graph, these maximal scheduling policies can
provably support 1

χ fraction of the rate region, and they incur
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a complexity of O(logN), where χ denotes the maximum
interference degree of the conflict graph (See Definition 1),
and N is the network size. In other words, maximal scheduling
policies achieve a reasonable fraction of the throughput, but
their complexity scales logarithmically with the network size.

Subsequent efforts [5], [6] have focussed on developing
scheduling algorithms whose complexity does not scale with
the network size. In particular, [5] supports 1

∆ fraction of the
rate region with O(1) complexity, where ∆ is the maximum
degree of the conflict graph, which can be potentially much
higher than the maximum interference degree χ. On the other
hand, an Aloha based protocol [6] supports 1

eχ fraction of the
rate region, and is hence off by a factor of 1

e compared to
the maximal scheduling algorithms. In other words, [5], [6]
improve the complexity at the cost of reduced throughput.

In another line of work, Gibbs sampling [7] based Q-CSMA
algorithms [8], [9] are shown to be throughput maximizing,
and have O(1) complexity in finding the schedules. While
these algorithms are good in terms of throughput, they suffer
from poor delay performance, which often scales exponentially
with the network size [10]. This is due to the slow mixing time
of the underlying Markov chain that governs the CSMA sched-
ules [10]. In particular, one cannot utilize the full throughput
of Q-CSMA based algorithms, without suffering large delay
[10]. The authors in [11] proposed a CSMA based algorithm
called the fast CSMA, which overcomes the problem of large
delay. However, their results are restricted to fully-connected
conflict graph topologies.

B. Our contributions
For a scheduling algorithm to be implementable in a large

wireless network, it is desirable that its complexity, delay and
throughput performances do not scale with the network size.
In this work, we intend to understand the fraction of the
maximum throughput that can be supported, while insisting
that the complexity and delay of the scheduling algorithm be
O(1) in the network size.

To that end, we propose distributed scheduling algorithms
which are guaranteed (i) to have O(1) delay in the size of the
network, (ii) to have O(1) complexity, whenever the maximum
neighbourhood size does not scale with network size, and (iii)
to support a constant fraction of the rate region for typical
wireless network topologies. The central idea is to assign a
master-slave hierarchy for each pair of conflicting nodes, and
whenever there is a possible conflict of transmission between
them, the slave has to back-off transmitting from that slot. The
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maser-slave hierarchy is either chosen randomly, or based on
the conflict graph topology, leading to different performance
guarantees.

Some of our key findings are summarized below:
• When the master-slave hierarchy is chosen randomly,

our algorithm guarantees 1/χ fraction of the rate region
with O(1) delay and complexity. To the best of our
knowledge, this is the only distributed algorithm that
matches the throughput guarantee of maximal scheduling,
with a complexity and delay that do not scale with the
network size.

• When the master-slave hierarchy is chosen based on
the conflict graph topology, our algorithm guarantees
1/(eχm) fraction of the rate region with O(1) delay and
complexity. Here, χm refers to a term called the master-
interference degree, which can be drastically smaller than
the interference degree χ for many relevant conflict graph
topologies.

• When the conflict graph is a disk graph, which is often
used to model the interference in wireless networks, the
above result guarantees a throughput fraction of 1

5e for
any arbitrary disk radii. We note that this is the best
known throughput guarantee for a disk graph with het-
erogeneous radii among algorithms with O(1) delay and
complexity. Furthermore, existing distributed algorithms
[2], [6] fail to provide any constant fraction throughput
guarantees for heterogeneous disk graphs – this is because
the interference degree of an arbitrary disk graph can be
unbounded, while the master-interference degree can be
upper bounded by a constant 5.

• When the conflict graph is a chordal graph (which
includes trees), our algorithm guarantees 1

e fraction of
the throughput.

The rest of the paper is organised as follows. In Section II,
we introduce the network model. In Section III, we propose
our hierarchical scheduling algorithms, and derive throughput
and delay guarantees. In Section IV, we characterize the
performance of our algorithms for specific network topologies
like disk graphs and chordal graphs. In Section V, we provide
numerical results, and conclude the paper in Section VI.

II. NETWORK MODEL

Interference model: We consider a single-hop wireless net-
work, and model the interference constraints using the widely
used conflict graph model [8], [10]. A conflict graph is an
undirected graph G(V,E), in which each vertex corresponds to
a wireless node, and two nodes share an edge if simultaneous
transmissions from the nodes are not allowed. Any two nodes
that share an edge are said to be conflicting. Let Ni denote the
set of neighbours of a node i. Let N denote the total number
of nodes in the network.

We consider a time slotted model. We use the binary vector
x = [xi]

N
i=1 ∈ {0, 1}N to denote the transmission status

(schedule) of the nodes in a given slot. Specifically, if node i
is transmitting (active) in a given schedule x, then xi = 1. If
node i is not transmitting in the given schedule x, then xi = 0.
Further, we assume that a node can successfully transfer unit
data per slot, if that node is scheduled to transmit, and none

of its conflicting nodes are transmitting in that slot. Next, we
define the notion of interference degree of a node.

Definition 1. (Interference degree) Let Gi(Vi, Ei) denote the
graph restricted to the neighbourhood of i, i.e., Vi = {i}∪Ni,
Ei = {(i, j) ∈ E | i, j ∈ Vi}. The size of the maximum
independent set of the local graph Gi(Vi, Ei) is called the
interference degree of node i. It is denoted by ti.

Rate region: A schedule x is said to be feasible if no two
conflicting nodes are active in that schedule. Hence, the set of
feasible schedules is given by

I := {x ∈ {0, 1}N : xi + xj ≤ 1, ∀(i, j) ∈ E}.

Further, we define the service rate of a node as the probability
that a node is active in a given slot. Then the feasible rate
region Λ, which is the set of all the service rates that can be
supported is equal to the convex hull of I, i.e.,

Λ :=
{∑

x∈I
αxx :

∑
x∈I

αx = 1, αx ≥ 0, ∀x ∈ I
}
.

Queuing model: We assume that each node has a separate
arrival process, and λ = [λi]

N
i=1 denote the arrival rates of

the nodes. Each node maintains its own buffer, and q(t) =
[qi(t)]

N
i=1 denote the queue length at time slot t.

We assume that each node can estimate its own arrival rate,
and accordingly set its target service rate, i.e., the average rate
at which it wants to transmit. Let {si}i∈V denote the target
service rates of the nodes in the network.

Definition 2. (Load) Given a feasible rate vector {si}Ni=1, we
define load ρ as the smallest real number in [0, 1] such that
{si}Ni=1 ∈ ρΛ.

Remark: In this paper, we use e to denote exp(1).

III. HIERARCHICAL SCHEDULING ALGORITHMS

In this section, we propose distributed scheduling algo-
rithms based on hierarchical collision resolution strategies.
The central idea is to assign a master-slave hierarchy for each
pair of conflicting nodes, and whenever there is a possible
conflict of transmission between them, the slave has to back-
off transmitting from that slot. The maser-slave hierarchy
is either chosen randomly, or based on the conflict graph
topology, leading to different performance guarantees. If an
algorithm chooses the master-slave hierarchy randomly in each
time-slot, we refer it as random ordering based algorithm. If
an algorithm fixes the hierarchy based on the graph topology,
and uses the same hierarchy in each time-slot, we refer it as
fixed ordering based algorithm.

A. Random ordering based algorithm

We now propose a random ordering based algorithm called
Exp-IndSet. We assume that the time is slotted, and each time
slot is divided into a control slot and a data slot. All the
nodes contest for the channel in the control slot, and resolve
any possible collisions using a master-slave hierarchy defined
as follows: Each node i ∈ V independently generates an
exponential random variable Ti. Then for any pair (i, j) ∈ E,
we define i to be a master-neighbour of j, if Ti < Tj .
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Once the collisions are resolved1, the nodes transmit in the
data slot. The procedure is repeated to generate independent
schedules in each time slot. The algorithm is described below.

Algorithm 1: Exp-IndSet

1) In the control slot, each node i ∈ V independently
generates an exponential random variable Ti ∼ exp(si),
and broadcasts to its neighbours.

2) Node i will transmit in the data slot if it does not have
any master-neighbours, i.e., Ti < Tj , ∀j ∈ Ni.

Remarks on complexity: In each time slot, for computing the
schedule, a node should exchange information only with its
neighbours, and hence (i) the algorithm can be implemented
in a distributed manner, and (ii) the complexity of generating
a schedule depends only on the size of the neighbourhood.
In other words, for graphs whose neighbourhood size does
not scale with the network size, the complexity of Exp-IndSet
algorithm is O(1) with respect to the network size.

The throughput performance of Exp-IndSet is characterized
in the following theorem.

Theorem 1. Let {si}Ni=1 be a feasible target rate vector, and
let ρ ∈ [0, 1] be the load associated with it. Let {ti}Ni=1 denote
the interference degrees of the nodes. Then the Exp-IndSet
algorithm supports atleast 1

ρti
fraction of the target rate, i.e.,

P(node i is active) ≥ si
ρti

, ∀i ∈ V.

Proof. Proof is provided in Appendix A.

From Theorem 1, it can be observed that, when the load
is less than 1

ti
, a node achieves its full target service rate

si. In other words, the Exp-IndSet algorithm can support any
arrival rate λ that is in 1

χ fraction of the rate region, where
χ := maxi ti is the maximum interference degree. This is
achieved by setting the target service rate si = λi.

This result implies that our Exp-IndSet algorithm has the
same throughput guarantee as that of the maximal scheduling
algorithm [2], while incurring a much lower complexity. In
particular, the complexity of the maximal scheduling algorithm
is O(logN), while the complexity of our Exp-IndSet algorithm
is O(1).

Next, we present our algorithm which uses a fixed ordering,
i.e., the ordering of the nodes is fixed initially, and the same
ordering is used in every time slot.

B. Fixed ordering based algorithm

In this section, we propose an algorithm called Fixed-IndSet
that can be used when there is a natural ordering associated
with the nodes in the network. For example, if we consider a
rooted tree graph, there exists a natural ordering of the nodes
based on their distance from the root node. Similar orderings
can be defined for various topologies of interest such as disk-
graphs and chordal graphs (Refer Section IV for more details.).

1CSMA algorithms [8] also employ exponential random variable based
back-off counters to resolve collisions. However, the schedules of CSMA are
correlated correlated across time slots, which often leads to a phenomenon
called ‘locking’ and hence incur large delays.

Given a graph, and an ordering of the nodes in the graph,
we define the terms master-neighbour and master-interference
degree as follows. We refer any neighbouring node j ∈ Ni,
that occur before the node i in the order, as a master-neighbour
of i.

Definition 3. (Master-interference degree) Given a conflict
graph G(V,E), and an ordering associated with the nodes V ,
let Li denote the set of master-neighbours of i. Let Gi(Vi, Ei)
denote the graph restricted to the master-neighbourhood of i,
i.e., Vi = {i} ∪ Li, Ei = {(i, j) ∈ E | i, j ∈ Vi}. The size of
the maximum independent set of the graph Gi(Vi, Ei) is called
the master-interference degree of node i, and is denoted by li.

We now propose an algorithm called Fixed-IndSet that
assumes that the nodes are ordered, and each node knows
its master-neighbours. In this algorithm, each time slot is
divided into a control slot and a data slot. In the control
slot, each node will contest for the channel with a prob-
ability that depends on its target service rate and master-
interference degree. A node that has contested for the chan-
nel will transmit in the corresponding data slot, if none
of its master-neighbours have contested for that slot. The
procedure is repeated in each slot to generate independent
schedules across time-slots. The algorithm is described below.

Algorithm 2: Fixed-IndSet

1) Each node will contest for the slot with probability
pi = 1− exp(−siLi ), where Li := maxj∈{i}∪Li lj .

2) Node i will transmit its packets in the data slot, if
a) It has contested for that slot, and
b) None of its master-neighbours have contested for

that slot.

Since a node has to just communicate with its neighbours
to compute their schedule, the complexity of Fixed-IndSet is
O(1) for bounded degree graphs. We now characterize the
throughput performance of the Fixed-IndSet algorithm.

Theorem 2. Let {si}Ni=1 be a feasible target rate vector, and
let ρ denote the load associated with it. Then the Fixed-IndSet
guarantees at least e−ρ

Li
fraction of the target rate, i.e.,

P(node i is active) ≥ sie
−ρ

Li
≥ si
eLi

. ∀i ∈ V.

Proof. Proof is provided in Appendix B.

This result implies that the Fixed-IndSet algorithm can
support any arrival rate λ in 1

eχm
fraction of the rate region,

where χm := maxi∈V li is the maximum master-interference
degree of the conflict graph. This is achieved by setting
the target service rate si = eLiλi, or equivalently setting
the contention probability in the Fixed-IndSet algorithm as
pi = 1− exp(−λie).
Remarks on Implementation:
• It is noteworthy to observe that the probability pi =

1− exp(−λie), with which a node has to contest for the
channel, depends only on its arrival rate. In particular, the
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nodes do not require the knowledge of the parameter Li
or the master-interference degrees of its neighbours.

• To execute the Fixed-IndSet algorithm, each node should
have the knowledge of its master-neighbours. This can be
implemented as follows: We assume that each node in the
network has a unique ID. Since the ordering is fixed, and
remains the same throughout the time, there can be an
initialization phase, where the nodes communicate, and
identify their master-neighbours, and store their unique
ID’s. Later in each slot, when a node is requesting for
channel, it should broadcast its unique ID in the control
slot, which will help the neighbours to understand if it
is their master. The specific control signals that are to be
exchanged depend on the topology, and the ordering that
is considered. This will be discussed in Section IV.

C. Delay performance
The delay of our algorithms does not scale with the network

size. Specifically, we consider the queue at a node i, and
prove that the expected HOL (head-of-line) delay of a packet
is bounded above by a constant that is independent of the
network size. Here, HOL delay is defined as the number of
time-slots that a packet has to wait at the head of the queue
before it starts receiving the service. The following proposition
derives an upper bound on the expected HOL delay of a node
under the Exp-IndSet algorithm.

Proposition 1. For any given arrival rate λ = [λi]
N
i=1 that is

in the interior of 1
χΛ, the expected HOL delay at node i is

upper bounded by 1
λi

.

Proof. Let µi denote the probability that node i is active in
a given time slot. Since Exp-IndSet can support any arrival
rate λ in the interior of 1

χΛ, we have µi ≥ λi. Since the Exp-
IndSet algorithm (i) generates independent schedules across
time slots, and (ii) the probability of a node i being active is
identical in each time slot, the service received by the node i
is governed by a Bernoulli process with mean µi.

Further, the expected HOL delay at a node i, can be upper
bounded by the expected inter service time of the Bernoulli
server, which is equal to 1

µi
. Since µi ≥ λi, the expected

HOL delay is upper bounded by 1
λi

, which is independent of
the network size.

Similarly, for any arrival rate λ ∈ 1
eχm

Λ, it can be proved
that the HOL delay of a node under the Fixed-IndSet is upper
bounded by 1

λi
.

Till now, we considered a general topology, and derived the
throughput guarantees in terms of the interference degree and
the master-interference degree of the graph. In the next section,
we consider specific topologies that are of interest to wireless
networks, and derive constant factor throughput guarantees.

IV. THROUGHPUT GUARANTEES FOR SPECIFIC NETWORK
TOPOLOGIES

In this section, we consider specific network topologies and
derive constant factor throughput guarantees. We also compare
the performance of Exp-IndSet and Fixed-IndSet algorithms
for these topologies. The Exp-IndSet algorithm supports 1

χ

fraction, while the Fixed-IndSet supports 1
eχm

fraction of the
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rate region. Since the master-neighbourhood is a subset of the
actual neighbourhood, it is clear that χm ≤ χ. However, it
is not clear whether eχm ≤ χ. In other words, depending
upon the topology of the network, and the ordering used to
define the master-neighbours, one algorithm might perform
better than the other.

A. Line, Star, and Tree topologies

Line topology: Consider the line topology shown in Figure
1. For each node, we define the node that is on the left of
that node as its master-neighbour. Then it is easy to see that
χ = 2, and χm = 1. Hence, the Exp-IndSet algorithm supports
1
2 fraction of the rate region while the Fixed-IndSet supports
only a fraction of 1

e .
Star topology: Consider a star topology shown in Figure 2.

We define an ordering in which, the center node node is placed
ahead of all the leaves (See Figure 2). Then each node has at
most one master node, i.e., χm = 1. However, the maximum
interference degree χ = n, where n is the number of leaves.
In other words, Fixed-IndSet can always guarantee 1

e fraction
of the rate region, while the fraction of rate region supported
by the Exp-IndSet can be arbitrarily low, as the number of
leaves increases.

Tree topology: Consider a tree topology shown in Figure 3.
We define an ordering as follows: One of the node is selected
as a root, and the nodes are ordered based on their distance
from the root node. Since the root node is the first in that
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(a) (b)

Fig. 4: (a) Homogeneous disk graphs (b) Heterogeneous disk
graphs
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Fig. 5: A chordal graph, and discussion about perfect elimi-
nation ordering

order, it will not have any master-neighbours, and its master-
interference degree is 0. Further, any other node in the network
will have only one node, namely its parent node as its master-
neighbour, and hence a master-interference degree of 1. In
other words, the maximum master-interference degree χm =
1, and the Fixed-IndSet can guarantee 1

e fraction of the rate
region. On the other hand, it can be seen that the maximum
interference degree χ = ∆, where ∆ is the maximum degree
of a node in the tree. Hence, the Exp-IndSet supports only 1

∆
fraction of the rate region.

Remark on Implementation: To implement the Fixed-IndSet
algorithm, the nodes in the network should elect one of the
nodes as a leader (root node), and then each node should
know which of its neighbours is its parent. This can be done
with O(logN) time complexity using the existing distributed
algorithms for leader selection [12]. It may be noted that this
is a one time initialization that has to be done, and is not
required to be repeated in each slot.

We now consider the disk graphs that are typically used to
model the interference in wireless networks.

B. Disk graphs
Homogeneous disk graphs: In this model, the conflict graph

is generated as follows: Each node in the network is associated
with a location on the two-dimensional euclidean plane, and
has a disk of a fixed radius R around it. Two nodes conflict
with each other, if their disks overlap. Under this model, the
maximum interference degree χ will be equal to the maximum
number of non-overlapping circles that can overlap with a
given circle. Using this observation, χ can be upper bounded
by a constant 5. This is because, not more than five non-
intersecting disks can overlap (or intersect) a given disk of
the same radius. This fact can be inferred from Figure 4(a),
which shows that, if there are six circles that intersect with a
given circle, then they are bound to intersect with each other.

In the Fixed-IndSet algorithm, we define any neighbouring
disk, whose center is to the left of a given disk, as its master.
Then, it is easy to observe from Figure 4(a), that the maximum
master-interference degree χm is bounded by 3. Hence, the
Fixed-IndSet algorithm supports 1

3e fraction of the rate region,
while the Exp-IndSet supports a slightly better fraction of 1

5 .
Heterogeneous disk model: This is a generalization of the

homogeneous disk model, where each node v ∈ V is associ-
ated with a disk of radius rv around it. Two nodes u, v ∈ V
are said to conflict with each other if their corresponding disks
overlap. It can be seen from Figure 4(b), that the interference
degree of a node in this model, can be arbitrarily high,

depending on the radii of the disks. Hence, the Exp-IndSet
algorithm cannot guarantee any constant fraction of the rate
region.

In the Fixed-IndSet algorithm, we define the master-slave
hierarchy as follows: In any given pair of conflicting nodes, the
node which has the larger disk radius is the master node. Under
this hierarchy, the master-interference degree is bounded by a
constant 5. This follows from the definition of the master-
interference degree, and the fact that not more than 5 non-
intersecting circles of radius larger than R, can be neighbours
of a given disk of radius R. This fact can be inferred from
Figure 4(a). Hence, the Fixed-IndSet algorithm can support 1

5e
fraction of the rate region.

We note that this is the best known throughput guarantee
for a disk graph with heterogeneous radii, among algorithms
with O(1) delay and complexity.

Remark: To implement the Fixed-IndSet algorithm in wire-
less networks, the nodes need to estimate the transmission
power of their neighbours (which is an indication of their disk
radii that is required to assign hierarchy). This can be done in
the initialization phase using a neighbour discovery algorithm
[13] that estimates the transmission power.

C. Chordal graphs
Recent studies on CSMA (Carrier sense multiple access)

algorithms [14], [15] observed that the performance guarantees
derived on chordal graphs closely match with the performance
of random geometric graphs. Hence, it would be interesting to
study the performance of our algorithms for chordal graphs.

A graph is said to be chordal if all of its cycles consisting
of more than 3 nodes, have a chord. Here, a chord of a cycle
refers to an edge joining two non-consecutive nodes of a cycle.
See Figure 5(a) for an example of a chordal graph. It is known
that the maximum interference degree of a chordal graph can
be equal to the maximum degree of the graph2. Hence, the
Exp-IndSet cannot guarantee any constant fraction of the rate
region, if the maximum degree is unbounded. However, with
an appropriate choice of master-slave hierarchy, the Fixed-
IndSet algorithm can guarantee a constant fraction of the rate
region, even when the degree is unbounded. We now define
a property called the perfect elimination ordering [14], which
will be used to define the ordering for Fixed-IndSet algorithm.

Definition 4. (Perfect elimination order) An ordering of the
nodes of the graph G(V,E) such that, for each v ∈ V , the
neighbours of v that occur before v in the order, form a clique.

It is known that for every chordal graph, there exists a
perfect elimination order of its vertices [14]. Figure 5(b) shows
a perfect elimination ordering of the chordal graph shown
in Figure 5(a), i.e., the set of all the neighbours that occur
before any given node in the ordering of Figure 5(b) form a
clique. Figure 5(c) shows an ordering which is not a perfect
elimination order. This is because, all the neighbours of node
1 occur before it in the order, but they do not form a clique.

In the Fixed-IndSet algorithm, if we consider the ordering
given by the perfect elimination ordering, all the master-
neighbours of any node form a clique. Hence, the size of the

2For example, in a star graph, which is a special case of a chordal graph,
the maximum degree is same as the maximum interference degree.
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maximum independent set among the master-neighbours of
any node is 1, i.e., χm = 1. Hence, Fixed-IndSet can support
1
e fraction of the rate region.

Remarks on Implementation: The complexity of the initial-
ization phase for Fixed-IndSet depends on the complexity of
computing the perfect elimination ordering which is given
by O(|V | + |E|) complexity. A distributed algorithm for
computing the perfect elimination order in a wireless network
is discussed in [14].

Remark on the choice of ordering: The comparisons in
this section suggest that, if there is enough symmetry in the
topology like line graphs or homogeneous disk graphs, where
every node has structurally similar properties, random ordering
seems to be a good choice. However, when there is asymmetry
in the topology like a star graph or heterogeneous disk graphs,
the fixed-ordering seems to be a good choice.

V. NUMERICAL RESULTS

In this section, we consider different network topologies
and numerically evaluate the performance of our algorithms.
Specifically, the topologies that we consider are: (i) disk
graphs (ii) star graph (iii) trees and chordal graphs. For each
topology, we verify the bounds on the achievable throughput
derived in Theorem 1 and Theorem 2. Then, we numerically
compare the performance of the proposed algorithms with

various algorithms in the literature. Since the complexity of
our Exp-IndSet and Fixed-IndSet algorithms is O(1), we first
compare our algorithms with (i) Q-CSMA [9] and (ii) random
access protocol in [6], which also incur O(1) complexity in
the network size. Further, we compare with two other well-
known algorithms, namely the maximal scheduling algorithm
[2] that incurs O(logN) complexity, and the longest queue
first (LQF) algorithm [16] that incurs a complexity of O(N).

A. Disk graphs
Homogeneous disk radii: We simulate a random geomet-

ric graph to obtain a disk graph with homogeneous radii.
Specifically, we consider a square of side length 3, and place
50 nodes uniformly at random. Any two nodes within unit
distance are connected by an edge. A realization of this
random graph is shown in Figure 6. We consider a Bernoulli
arrival process and assume homogeneous arrival rates at each
node. A homogeneous arrival rate of 0.2 corresponds to an
upper bound on the rate that can be supported under this
topology, ie, no algorithm can support an arrival rate larger
than 0.2 under this topology.3 We increase the arrival rate of
the nodes till 0.2, and plot the time-average of the total queue
length of all the nodes in the network after 106 time-slots. The
queue length performance of all the considered algorithms is
shown in Figure 7.

Firstly, from Figure 7, the throughput guarantee of Exp-
IndSet in Theorem 1 can be verified. Specifically, the max-
imum interference degree for the topology in Figure 6 is 4.
Hence, the Exp-IndSet should stabilize any arrival rate less
than 1

4×(0.2) = 0.05. As seen from Figure 7, the queue length
under the Exp-IndSet algorithm is close to zero till an arrival
rate of 0.1, and hence the Exp-IndSet meets the throughput
guarantee of 0.05.

Further, among all the algorithms with O(1) complexity, our
Exp-IndSet algorithm has a better queue length performance.
In particular, our Exp-IndSet algorithm results in smaller
queue lengths than the Q-CSMA algorithm4, [9], and the
random access algorithm [6]. The maximal scheduling policy,
and the LQF policy which incur a larger complexity have
similar queue length performance as that of our Exp-IndSet till
an arrival rate of 0.1. In the high load regime, for arrival rates
larger than 0.1, which are outside the guaranteed fraction of
the throughput, the high complexity algorithms perform better
than our Exp-IndSet algorithm.

Heterogeneous disk radii: We repeat this experiment for
disk graphs with heterogeneous radii and verify the theoretical
guarantees of our Exp-IndSet and Fixed-IndSet algorithms.
The results can be found in our technical report [17].

B. Star graph
We now consider an example of a star topology which

illustrates that for asymmetric topologies, the Fixed-IndSet
algorithm might be a good choice. Specifically, in a star

3This is an upper bound on the maximum achievable rate vector, which
can be computed from the degrees and the interference degrees of the nodes
using (2).

4Although Q-CSMA algorithm is technically a throughput maximizing
policy, the algorithm does not converge for practical time scales and results
in larger queue lengths in the shown plots.
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Fig. 8: Performance of various algorithms for a star topology
with 50 nodes
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Fig. 9: Performance of various algorithms for a 6-ary tree with
259 nodes

graph, we demonstrate that the Fixed-IndSet algorithm not
only performs better than the existing algorithms of O(1)
complexity, but it also outperforms the maximal scheduling
algorithm that has a complexity of O(logN). The specific
details of the simulations are described below.

We now consider a star network with 50 nodes, and first ver-
ify the throughput guarantees that we derived, i.e., the Fixed-
IndSet algorithm supports 1

e fraction of the full throughput,
and the Exp-IndSet algorithm supports 1

N fraction of the full
throughput. Under this topology, a homogeneous arrival rate
of 0.5 corresponds to the maximum throughput, and hence
arrival rates of 0.01 and 0.18 correspond to the throughput
guarantees of Exp-IndSet and Fixed-IndSet respectively. As
seen from Figure 8, under the Exp-IndSet algorithm the queue
length is close to zero till an arrival rate of 0.02. Under the
Fixed-IndSet algorithm, the queue length is close to zero till
an arrival rate of 0.2. Hence both our algorithms comfortably
meet their respective throughput guarantees.

Further, it can be observed from Figure 8 that for all the
algorithms except our Fixed-IndSet and the LQF algorithm,
there is a steep increase in the queue lengths for arrival rates
larger than 0.05. In particular, the Fixed-IndSet algorithm
results in queue lengths close to zero till an arrival rate of 0.2,

and thereby outperforms the maximal scheduling algorithm
that has O(logN) complexity. Further, it can be observed
that the performance of our Fixed-IndSet algorithm closely
matches the performance of LQF algorithm which has a larger
complexity of O(N).

C. Trees and chordal graphs

In Figure 9, we illustrate the results obtained for a large 259
node tree topology (6-ary tree of height 4). Similar to the star
topology, our Fixed-IndSet algorithm outperforms all the O(1)
complexity algorithms and the O(logN) complexity maximal
scheduling algorithm.

The results for chordal graphs are qualitatively similar, and
can be found in our technical report [17].

VI. CONCLUDING REMARKS AND FUTURE WORK

We proposed distributed scheduling algorithms that have
O(1) delay and complexity in the network size, and guarantee
a constant fraction of the maximum throughput for typical
wireless topologies such as disk graphs. Our algorithms re-
solve collisions among pairs of conflicting nodes by assigning
a master-slave hierarchy. When the master-slave hierarchy
is chosen randomly, our algorithm has the same throughput
guarantee as that of the maximal scheduling policies, with a
complexity and delay that do not scale with network size.
When the master-slave hierarchy is chosen based on the
network topology, our algorithm guarantees a fraction of the
throughput that is at most off by a factor of master-interference
degree. For commonly used conflict graph topologies, our re-
sults lead to the best known throughput guarantees among the
algorithms that have O(1) delay and complexity. Numerical
results indicate that our algorithms outperform the existing
O(1) complexity algorithms like Q-CSMA. Further for topolo-
gies like tree graphs, which have an inherent hierarchy, our
Fixed-IndSet algorithm outperforms the maximal scheduling
algorithm which has a higher complexity of O(logN).

APPENDIX

A. Proof of Theorem 1

The probability that a node i is active in a slot is given by

P(node i is active) = P(Ti < Tj , ∀j ∈ Ni),
(a)
=

si
si +

∑
j∈Ni sj

, (1)

where (a) follows from the properties of the exponential
distribution.

Recall that the interference degree is defined as the size
of the maximum independent set in the neighbourhood graph
Gi(Vi, Ei). Since any schedule generated by Exp-IndSet al-
gorithm is an independent set, no more than ti nodes in that
neighbourhood can transmit in a given slot. Hence, for any
feasible rate vector {µi}Ni=1 ∈ Λ, the sum of the rates over
the local neighbourhood cannot be more than ti, i.e.,

µi +
∑
j∈Ni

µj ≤ ti, ∀i. (2)
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Since ρ is the load associated with the target rate vector, we
have 1

ρ{si}
N
i=1 ∈ Λ. Then from (2), we obtain

1

ρ
(si +

∑
j∈Ni

sj) ≤ ti. (3)

Substituting (3) in (1) completes the proof of this theorem.

B. Proof of Theorem 2

Recall that the master-interference degree is defined as
the size of the maximum independent set in the master-
neighbourhood graph. Since any schedule generated by the
Fixed-IndSet algorithm is an independent set, no more than
li nodes in the master-neighbourhood can transmit in a given
slot. Hence, for any feasible rate vector {µi}Ni=1 ∈ Λ, we have

µi +
∑
j∈Li

µj ≤ li. (4)

Since ρ is the load associated with the target rate vector, we
have 1

ρ{si}
N
i=1 ∈ Λ. Using this fact along with (4), we obtain

the constraints

0 ≤ si ≤ ρ, i = 1, . . . , N,

si +
∑
j∈Li

sj ≤ ρli, i = i, . . . , N. (5)

The probability that a node is active is given by

P(node i is active)

=

(
1− exp

(
− si
Li

)) ∏
j∈Li

exp

(
− sj
Lj

)
,

(a)

≥
(

1− exp

(
− si
Li

)) ∏
j∈Li

exp

(
−sj
li

)
,

=

(
1− exp

(
− si
Li

))
exp

−∑
j∈Li

sj
li

 , (6)

where the inequality (a) follows from the definition of Lj
which implies Lj ≥ li. Now using the observation (5) in (6),
we have

P(node i is active)

(b)

≥
(

1− exp

(
− si
Li

))
exp

(
si
li
− ρ
)
,

(c)

≥
(

1− exp

(
− si
Li

))
exp

(
si
Li
− ρ
)
,

=

(
exp

(
si
Li

)
− 1

)
e−ρ,

(d)

≥ si
Li
e−ρ.

The inequality (b) follows from the observation in (5). The
inequality (c) follows from the fact that Li ≥ li. The inequality
(d) follows since ex ≥ 1 + x.
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