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ABSTRACT

Efficient allocation of tasks to workers is a central problem in crowd-
sourcing. In this paper, we consider a special setting inspired from
spatial crowdsourcing platforms where both workers and tasks
arrive dynamically. Additionally, we assume all tasks are heteroge-
neous and each worker-task assignment brings a distinct reward.
The natural challenge lies in how to incorporate the uncertainty in
the arrivals from both workers and tasks into our online allocation
policy such that the total expected rewards are maximized. To at-
tack this challenge, we assume the arrival patterns of worker “types”
and task “types” are not erratic and can be predicted from historical
data. To be more specific, we consider a finite time horizon T and
assume in each time-step, a single worker and task are sampled
(i.e., “arrive”) from two respective distributions independently, and
this sampling process repeats identically and independently for the
entire T online time-steps.

Our model, called Online Task Assignment with Two-Sided Arrival
(OTA-TSA), is a significant generalization of the classical online
task assignment where the set of tasks is assumed to be available
offline. For the general version of OTA-TSA, we present an optimal
non-adaptive algorithm which achieves an online competitive ratio
of 0.295. For the special case of OTA-TSA where the reward is a
function of just the worker type, we present an improved algorithm
(which is adaptive) and achieves a competitive ratio of at least 0.343.
On the hardness side, along with showing that the ratio obtained
by our non-adaptive algorithm is the best possible among all non-
adaptive algorithms, we further show that no (adaptive) algorithm
can achieve a ratio better than 0.581 (unconditionally), even for the
special case of OTA-TSA with homogenous tasks (i.e., all rewards
are same). At the heart of our analysis lies a new technical tool
(which is a refined notion of the birth-death process), called the
two-stage birth-death process, which may be of independent inter-
est. Finally, we perform numerical experiments on two real-world
datasets obtained from crowdsourcing platforms to complement
our theoretical results.
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1 INTRODUCTION

Assigning workers to tasks is a central challenge in various crowd-
sourcing platforms. For example, in mobile crowd-sensing [29, 30],
a central platform allocates mobile users to complex data collection
and analysis tasks; in joint crowdsourcing [5, 16], workers answer
small questions with varying difficulties; and in spatial crowdsourc-
ing [26, 27], workers and tasks are matched in the context of a
metric space.

More recently, a special class of the worker-task assignment ,
called the online task assignment (OTA), has attracted lots of at-
tention. The basic setting is as follows: the set of tasks are known
beforehand while the set of workers is revealed sequentially in an
online manner; once a worker arrives, they have to be instanta-
neously and irrevocably assigned to a task. Each assignment gives a
known profit (uniform or non-uniform) and the goal is to design an
allocation policy such to maximize the (expected) total profit, while
satisfying various practical constraints such as the total budget
for payments for workers, deadlines of tasks, etc (e.g., Assadi et al.
[3]). There are three common arrival assumptions for the online
workers: adversarial order (AO, the arrival sequence is unknown
and can be arbitrarily fixed by an adversary), random arrival order
(RAO, the arrival sequence is sampled from the set of all permu-
tations over the workers) and known independent and identical
distribution (KIID, a worker is sampled, with replacement, from a
known distribution each time). Ho and Vaughan [14] considered
OTA under RAO where they assume the profit for each assignment
has to be learnt. Assadi et al. [3] studied a budgeted version of OTA
under AO and RAO; in the budgeted version we have a global total
budget and each assignment incurs a cost, which is the amount
we need to pay the worker (this is equal to the bid they submitted
for the task after arrival). The budgeted version of OTA and its
generalizations have been vastly studied in the context of truthful
mechanism design, where the goal is to elicit truthful bids from the
online workers (e.g., see [10, 11, 22-24, 31, 32]). In particular, Singer
and Mittal [23], Singla and Krause [24] considered the KIID setting
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while Zhao et al. [32] and Subramanian et al. [25] considered the
RAO setting.

In OTA, the main limiting assumption is that tasks are static
(known in advance). This fails to capture various applications where
the tasks are not all available at once and come in an online manner
similar to the workers. This is a common scenario in spatial crowd-
sourcing platforms. Hassan and Curry [13] considered a practical
worker-task assignment under a converse setting to the OTA, where
the spatial tasks come dynamically while the workers are static.
The worker has to travel to the specific location of the task to finish
it. [27] studied a generalized setting where both workers and tasks
come online which was motivated from a spatial crowdsourcing
platform on university campus, where anyone on campus can both
post micro-tasks, (e.g., buying drinks or collecting a package), and
perform tasks as a worker. They assumed that the arrivals is sam-
pled from the distribution over all permutations of both workers
and tasks together and is unknown to the algorithm. They tested
their algorithms on two real-world crowdsourcing datasets, namely
gMission [7] and EverySender.

Inspired by the above work (Hassan and Curry [13], Tong et al.
[27]), we propose the online task assignment with two-sided arrival
(OTA-TSA) where both workers and tasks come online but under
the arrival setting of KIID. We first briefly review the setting in the
OTA under KIID — a known bipartite graph G = (U, V, E) is given
as input (this graph is also called the compatibility graph throughout
this paper), where U and V represent the respective set of worker-
types and task-types; we have a finite time horizon of T in which
vertices in U are revealed step-by-step in each time-step (while all
vertices in V are already given). In every time-step a worker of a
particular type is sampled from a known distribution over U and
the samples are independent across all the T rounds. We generalize
the KIID setting from one-sided arrival to two-sided arrival in the
following natural way — in each round (for a total of T rounds)
a worker of type u is sampled from a known distribution over U,
while simultaneously a task of type v is sampled from another
known distribution over V independently. We now motivate the
key assumptions in OTA-TSA.

Known independent and identical arrival distributions (KIID).
In many crowdsourcing platforms, one collects meta-data about
the tasks and workers. This data is used to predict both the perfor-
mance and the arrival times of various workers and tasks in future
(e.g., [8], [21]). Hence allowing the underlying compatibility graph
G and the arrival sequence of tasks and workers to be arranged by
an adversary seems strong. We can exploit the rich historical data
to predict both the compatibility graph and the arrival distributions
of workers and tasks. This motivates us to consider the KIID model,
which is assumed by many previous work (e.g., [23, 24]).

The number of types: workers versus tasks. The majority of
previous work in the OTA assumes that the number of task-types
is far lesser than that of worker-types. This assumption is true in
crowdsourcing platforms such as Amazon Mechanical Turk where
individuals or organizations have a certain number of offline tasks
and try to “crowdsource” the workers from Internet. In many spa-
tial crowdsourcing platforms where both tasks and workers come
online, as studied in this paper, the opposite is true: the number of

task-types is far larger than that of worker-types. Hassan and Curry
[13] run experiments on a real-world dataset of a location-based
social network, called Gowalla, where the number of task-types is
nearly 50 times that of worker-types. Moreover, in the two datasets
considered by Tong et al. [27], namely gMission [7] and Every-
Sender, the task-types are more than worker-types. We use the
same in our experiments in Section 9.

Retention in the system: workers versus tasks. In the OTA-TSA
model, we assume that (a) once a task arrives, it has to be instanta-
neously and irrevocably assigned to one of the workers who has
arrived so far or reject the task; (b) once a worker arrives, they
will stay in the system until being assigned. The assumption (2)
here differs significantly from OTA since the motivating application
is vastly different. OTA is primarily motivated by applications in
crowdsourcing platforms such as Amazon Mechanical Turk where
the tasks are offline while the number of available workers are
plenty. In this context, once a worker comes into the system they
expect to be allocated a task immediately; they have very little
incentive to stay since they need to compete with a large pool of
other workers for a limited set of tasks. However OTA-TSA is in-
spired from applications in spatial crowdsourcing platforms where
worker-types are outnumbered by task-types. Any time a worker
arrives but doesn’t get a task assigned, they still have an incentive
to stay since eventually they would be assured of an assignment.

In OTA-TSA, we consider a similar objective as that of OTA—
every assignment e = (u, v) fetches a non-uniform profit w, and
our goal is to design an allocation policy such that the expected
total profit is maximized.

1.1 Our Contributions

Before detailing our contributions, we first review briefly some
basic terminologies used in online algorithms.

Adaptive versus non-adaptive algorithms. Suppose we have a
finite time horizon T. An algorithm ALG is called non-adaptive if
the strategy for assigning a task v, when v comes for the k? h time
forany k = 1,2,...,T is specified before the start of the algorithm.
In other words, the strategy does not depend on the realization of
the arrival process thus far. If not, ALG is called adaptive.

Competitive ratio. Let ALG(Z, Py, Qo) denote the expected value
obtained by an algorithm ALG on an input J with arrival distri-
butions being P, and Q,, respectively for workers and tasks. Let
OPT(Z) denote the expected offline optimal, which refers to the op-
timal value when we are allowed to make decisions after observing
the entire sequence of online workers and tasks. The competitive
ratio for a maximization program as studied in this paper, is defined
%. Thus when we say ALG
achieves a ratio at least « € (0, 1), it means that for any instance
of the problem, the expected profit obtained by ALG is at least «
fraction of the offline optimal.

asusual [4],inf 7 p q.

Our contributions. First we propose a novel theoretical model,
called Online Task Assignment with Two-Sided Arrival (OTA-TSA),
where both workers and tasks arrive in an online manner. We
consider the arrival setting of KIID and assume that the distributions
can be learned from historical data.



Second we present a non-adaptive algorithm (NADAP) for the
OTA-TSA, which is optimal among all possible non-adaptive algo-
rithms (see Section 6). We show that NADAP achieves a ratio of
almost 0.3, which is larger than that of 1/4 achieved by an adaptive
algorithm shown in Tong et al. [27] for the same problem but under
the arrival setting of RAO. This is a theoretical evidence showing
the advantage of using historical data to predict the arrival distribu-
tions. Our main approach is to construct and solve an appropriate
linear program (abbreviated as LP) and use that LP solution to guide
the online actions.

Third we propose two adaptive algorithms for two special cases
(see Section 7). The first one is a warmup algorithm, which is greedy
(GREEDY), for the simple unweighted case. We show that it is as
good as the best non-adaptive algorithm NADAP even when us-
ing a loose analysis. In fact there might exist a tighter analysis for
GREEDY which shows that its performance is much better than
NADAP. Our experimental analysis in Section 9 confirms this intu-
ition. The second is an adaptive (ADAP) algorithm for the OTA-TSA
when all the edges incident to each worker—representing the set
of all acceptable tasks for that worker—have the same weight. We
show that ADAP achieves an improved ratio of nearly 0.34. To
accomplish this, we construct and solve a stronger LP than the one
used for the non-adaptive algorithm and combine this with other
ideas previously used for other online matching problems.

Fourth we show an unconditional hardness result for the OTA-TSA:
no adaptive algorithm can achieve a ratio better than 0.58 even for
the unweighted case (Section 8). Note that Brubach et al. [6] gave
an adaptive algorithm, which yields a ratio of 0.729 for the classical
online matching on an unweighted bipartite graph under KIID but
with only one-sided arrival. This formally corroborates our intu-
ition that the complexity significantly increases from one-sided
arrival to the two-sided arrival.

Finally, we run numerical experiments on two real-world crowd-
sourcing datasets, namely gMission [7] and EverySender [27]. In
particular, we find that despite having provable guarantees, we are
able to obtain much better performance by using GREEDY algo-
rithm. Our experimental analysis also generalizes this model, where
we assume that at each time-step a batch of workers and batch of
tasks arrive. We discuss intuitions and scenarios on when greedy
is the right choice and when the LP based algorithms are the better
option.

While building the theory in this paper, we construct a novel
technical tool, called two-stage birth-death process, to attack the
challenges arising in the competitive ratio analysis and derivation
of hardness results. This technical tool might be of independent
interest to prove competitive ratios in other settings.

2 OTHER RELATED WORK

We now briefly overview related research in the classical online
matching; for a more in-depth review, we direct the readers to a
recent review article by Mehta [19].

Modern online matching research is primarily motivated by
Internet advertising applications. In this model, we are given a
bipartite graph G = (U, V, E) where U and V represent respectively
the offline advertisers and online keywords (impressions). Each
time, once a vertex v € V arrives, we have to make an instant and

irrevocable decision: either reject v or assign v to an unmatched
neighbor u € U and obtain a profit w, for the match e = (u, v). The
central question is to design an online allocation policy such that the
expected profit is maximized under different arrival assumptions
such as AO, RAO, and KIID (see e.g., [1, 2, 6, 9, 12, 15, 17, 18, 20]).
Departing from the traditional online matching, Wang and Wong
[28] introduced a theoretical model of online matching (and online
vertex cover) on a general graph G admitting the online arrival
from all vertices. Their setting is as follows: each time a single
vertex comes ( in an adversarial order) and all its incident edges to
previously arrived vertices are revealed. We are required to maintain
a fractional matching (or vertex cover) on the revealed subgraph
so far at all times and the goal is to maximize the size of the final
matching (or minimize the size of the final vertex cover).

3 PROBLEM STATEMENT

Before we describe our OTA-TSA model, we define the following
terminology. We group a set of similar tasks and call them “task
types”. Similarly, we group similar workers and call them “worker
types”. For example, in the context of spatial crowdsourcing, all
workers present at a particular location belong to a single worker
type.

Our model is as follows: suppose we have a bipartite graph
(known to the algorithm) G = (U, V, E) where U and V represent
the set of worker-types and task-types respectively and E represents
the set of worker-task pairs that are “compatible”, i.e., (u,v) € E
iff any worker of type u can work on tasks of type v. We have
a finite time horizon T (known beforehand) and for each time
t € [T], a worker u from U and a task v from V is sampled (we
also say u or v arrives or comes interchangeably) independently
from known probability distributions P, = {p,} and Q, = {qo}
respectively (i.e., >, pu = 1 and ), go = 1). The sampling process
is independent across the different time-steps.

At each time ¢ € [T], we first observe the online arrivals from U
and V (in that order). Let u and v be the respective arrivals. We then
need to make an instantaneous and irrevocable decision to either
reject v or assign v to one of its available compatible workers in U.
For each u € U, once it arrives, it will stay in the system until being
assigned to some task.! As discussed in introduction, we have that
|U| < |V|. In our model, we additionally assume that each u has
an integral arrival rate, i.e., T * py, is an integral for every u, and
thus w.l.o.g. we can assume this integer to be 1 (by splitting each u
into T * p,, copies). Hence, we assume that |[U| = T and p,, = 1/T
for all u.?

With each assignment f = (u,v) we associate a non-negative
profit wy. Let r, = T * qo (referred to as the arrival rate of v)
be the expected number of arrivals of v during the T rounds. We
assume this rate to be any number between [0, 1] (upper bounding
it by 1 is again w.l.o.g. via simple scaling). Our goal is to design
an online assignment policy such that the total expected profits
of all assignments made is maximized. Throughout this paper, we
use edge f = (u,v) and the assignment of v to u interchangeably.

'Here w.l.o.g. we assume that each worker has the capacity to perform only one task.
In case, some worker type u can perform multiple tasks, we can split © into multiple
copies. This forms the matching constraint for a worker.

2The assumption of integral arrival rate is a standard assumption in the classical online
bipartite matching under known distributions, see e.g., [9].



Additionally, when we say at time t € [T], we mean we are at the
beginning of time t either before or after observing the arrivals from
U and/or V (clarified in the context) but before the algorithm has
made an online action.

4 TWO STAGE BIRTH-DEATH PROCESS

We propose a new stochastic process, called two-stage birth-death
process (TS-BDP), and use it as a main tool to analyze our algorithms
and derive hardness results. This technical tool seems more general
and could be of independent interest. The process (described on
random variables {X;, Y;} and parameterized by values p and q)
is described as follows. Consider a stochastic process with time
horizon T such that, (1) the process starts at t = 1 with X; = 0;
(2) at every round t, first there is a birth event followed by an
independent death event. For the birth event, we have Y; = X; + 1
with probability p/T and Y; = X; with probability 1 — p/T. For
the death event, it has a left boundary point of 0; i.e, if Y; = 0,
then X;+1 = Yy, else when Yy > 1, we have X;41 = Yy — 1 with
probability q/T and X;+1 = Y; with probability 1 — q/T. We refer to
p and q as the birth and death rate of TS-BDP respectively. TS-BDP
differs from the classical birth-death process (BDP) in that, BDP
is described as a process where in every round, birth and death
occur each with a respective probability. On the other hand, in
TS-BDP the two events occur independently in a sequential manner
(the birth event is followed by the death event). Thus, TS-BDP is a
special case of BDP. (TS-BDP is a BDP with time-horizon 2T where
every odd step is a birth event and even step is a death event).

Definition 4.1. A two-stage birth-death process parameterized
by (T, p, q) (time horizon, birth rate, death rate) refers to a sequence
of random variables {X;, Y|t € [T]} U {XT4+1} which satisfies (1)
X1 = 0 with probability 1; (2) For every t € [T], Y; = X; + 1
with probability p/T and Y; = X; otherwise; (3) For every t € [T],
if Y = 0, then X;y; = Y; with probability 1; if ¥; > 1, then
Xt+1 = Y; — 1 with probability /T and X;4+1 = Y; otherwise.

In this paper, we are particularly interested in the case when
p =1,q > 01is a constant for a sufficiently large T (T — o). We
denote this specialization with TS-BDP(1, q) (or TS-BDP(q) when
the context is clear). For every t € [T], let A(t,T) := Yy — X 41
and A(T) := ;¢ A(t, T), which can be interpreted as the total
number of death events in which Y; is decreased by 1. Let x(q) :=
lim7_c E[A(T)]. We now state some useful lemmas which we use
later.

LEmMMA 4.2. (1)k(0) =0, (2) k’(0) = 1/e, where k' (0) is the first
derivative of k(q) at q = 0.

LEmMA 4.3. (1) 0.295 < k(1) < 0.302 and (Z)K(l + ﬁ) >
0.343.

LEMMA 4.4. k(q) is non-decreasing and concave over q € [0, co].

Parts of the proof for the above lemmas require rigorous as well
as computer-based analysis. To perform these numerical computa-
tions we use Mathematica 10. All numerical results are precise up
to the third decimal place.

5 LINEAR PROGRAMS (LP)

As is common in this line of work, our algorithms use optimal
solutions to linear programs (LP) constructed on the offline graph
as a guide to the online algorithm. Additionally, this benchmark LP
is used to upper bound the expected value of the optimal solution
on a particular (offline) instance. Hence, to compute a lower bound
on the competitive ratio, it suffices to compute the ratio of the
value obtained by the algorithm to the optimal solution of this
benchmark LP. We now describe the benchmark LP we use for our
non-adaptive algorithm. Later, we show that this can further be
strengthened based on some observations, which is used in our
adaptive algorithm.

We associate a variable with every edge f in the graph. For each
edge f, xy denotes the expected number of matches in any offline
optimal matching. For each u (resp. v), let E, (resp Ey) be the set
of its neighboring edges. Consider the following LP:

maximize 3 r g WrXs (1)
subjectto i rep, xf <1p YU EV (2)
ZfGEu xp <1 YueU (3)
xp 20 VfeE 4)

The constraints (2) represent the fact that the expected total
number of matches incident to a task v is no more than the ex-
pected number of arrivals of v. The same reasoning applies to
constraints (3) but for workers. The constraint (4) represents the
fact that the expected number of matches is non-negative. The
objective function computes the expected reward obtained in the
optimal offline solution. Thus we claim that for any offline optimal,
{xr} should be feasible to the above LP. This suggests that LP-(1) is
a valid benchmark LP (i.e., the optimal value is an upper bound on
the offline optimal). Throughout the paper we assume that {x7}} is
an optimal solution to this LP (or the stronger LP we define later,
as appropriate). We now formally state the following lemma 5.1
showing the correctness of the benchmark LP.

LEMMA 5.1. The optimal value to LP~(1) is a valid upper bound
for the offline optimal.

6 NADAP: AN OPTIMAL NON-ADAPTIVE
ALGORITHM
In this section, we present a non-adaptive algorithm, denoted by

NADAP, which is optimal among all possible non-adaptive algo-
rithms. Algorithm 1 describes our algorithm formally.

Algorithm 1: An optimal non-adaptive algorithm (NADAP)

1 Let v; be a task arriving at time t € [T].
2 Sample an edge f = (u,v;) € Ey, with probability xjf/rvt. If

worker u is available, then assign v; to u; otherwise, skip v;.

Constraint . fep, x]’i /ru < 1in LP (2) justifies line 2 in NADAP.

THEOREM 6.1. The non-adaptive algorithm NADAP achieves a
competitive ratio of k(1) > 0.295 for the OTA-TSA.



Proor. Consider a given u. Let X; and Y; be the number of
copies of u before and after the arrival process from U at time t,
respectively. From the assumption that u arrives with probability
1/T in each round, we have Y; = X; + 1 with probability 1/T and
Y; = X; with probability 1-1/T. From NADAP we have that ifY; >

1, then it decreases by 1 with probablhty T = feE, r£ rTv < %

and it remains unchanged with the remaining probability (here
Xy = XifeE, x;;). From the definition of TS-BDP in 4.1, we have
that {X;, Y;} is a TS-BDP(1, x;,) with time horizon of T.

Let Ar be the (random) number of matches for f = (u,v) in
NADAP over the T online rounds. Thus, we have:

ElAf] = Zrerr) rva_iPr[Yt 2 1] = Yierr / Pr[Y; > 1]
= z—’: 2te[T] %Pr[Yt > 1]
= ,t—f Y te[r] E[A¢] (by the definitions of A;)
= ; Kix 2 (taking T — oo and by the definition of k)

From Lemma 4.4, we have that « is non-decreasing and concave
over [0, 1]. Thus w should be non-increasing over x € [0, 1].
We also have that x(0) = 0. Therefore,

k(xg) _ K(xg)=x(0) K(li:g(O) = k(1)

x5 x5—0

Thus, we have that E[A¢] > x} xk(1). Since LP (1) is a valid upper
bound on the optimal offline solution, by linearity of expectation,
we have that NADAP achieves a competitive ratio of x(1). o

Hardness of non-adaptive algorithms. We will now show that
any algorithm that is non-adaptive, cannot achieve a ratio better
than k(1). In particular, we prove the following lemma.

LEMMA 6.2. No non-adaptive algorithm can achieve a competitive
ratio better than k(1) even for the unweighted OTA-TSA.

7 TWO ADAPTIVE ALGORITHMS
7.1 Warmup: Greedy for the unweighted case

Consider a simple special case of OTA-TSA where all assignments
have uniform weights and all tasks have an integral arrival rate.
In other words, we assume |U| = |V| =T, py = py = 1/T for all
u € Uwv eV, and wy = 1forall f € E. We formally state our
greedy algorithm in Algorithm 2.

Algorithm 2: Greedy Algorithm (GREEDY)

1 Let v; be a task arriving at time ¢ € [T].

2 Choose an edge f = (u,v;) such that f has the largest weight
among all available assignments to v; at time ¢ and assign v;
to u (break ties arbitrarily). Skip v; if none is available.

Notice that for the unweighted case, GREEDY will choose an
arbitrary available worker u whenever a task v arrives. We show
that for the unweight case, GREEDY has a performance at least as
good as that of the optimal non-adaptive algorithm NADAP.

THEOREM 7.1. GREEDY achieves a competitive ratio of at least
k(1) > 0.295 for the unweighted OTA-TSA.

Proor. Consider an input graph G = (U, V, E) and suppose we
use LP-(1) as the benchmark. Since G is unweighted, we observe
that the optimal value to LP-(1) is exactly equal to the size of a
largest matching, say M, on G. Let G’ be the graph consisting of
a perfect matching induced by M. Note that the performance of
GREEDY on G is no worse than G’. This can be seen as follows.
Recall that during the online process, both u and v will join the
system stochastically; each time when a v comes, GREEDY will
match it to an arbitrary available neighbor u at that time, in which
case we say u is shot down by v. The final performance of GREEDY
is exactly the expected number of u which gets shot down. Consider
a given arrival sequence from U and V, say S, and S, Since the
set of neighbors of v on G includes that of v on G’ as a subset, v
will always have more choice to shoot on G than G’. This implies
that for any given S;, and S;,, the number of u shot down on G will
be at least as much as that on G’.

Now we analyze the performance of GREEDY on G’. For a given
f € M, we have that the expected number of matches of f is
equal to k(1) (from the definition of k). Thus we can claim that
GREEDY has a performance of k(1) *| M| on G’. Therefore the ratio

of GREEDY is at least % =x(1). O

7.2 Adaptive algorithm for the node-weighted
case

In this section, we consider a relaxed version of the problem where
for any u € U, all edges in E,, have the same weight w,, > 0. We
denote this relaxed problem as OTA-TSA with left-hand side (LHS)
vertex weighted. For this relaxation, one can strengthen the bench-
mark LP (1) by making the following observation; the probability
that an edge can be matched is at most the probability that both the
worker and the task is present at least once in the arrival sequence.
This boils down to computing the expected value of the minimum
of two ii.d. Poisson random variables with mean upper bounded
by 1. We later show that this expected value is at most (1 — 1/e)ry,
and hence adding this stronger constraint, we obtain the following
strong LP (5). As a side note, this constraint is also valid for the
general version of edge-weighted OTA-TSA, but the simpler LP
suffices for an optimal non-adaptive algorithm.

maximize Yy ey Wu XifeE, Xf (5)
subject to Y rep, Xf < Tv YoeV (6)
2feE, Xf <1 YueU (7)
0<x < (1——)rv VfeE (8)

LEMMA 7.2. The optimal value to LP (5) is an upper bound on the
offline optimal for the OTA-TSA with LHS vertex weighted.

Our adaptive algorithm is inspired from an idea used in [17].
Let {x;} be an optimal solution to LP (5). At a particular time-step,
when a task v arrives, we generate a random ordered list £ of two
choices from E,, such that it satisfies properties (P1) and (P2).

(P1):Pr[L(1) = f] = for each f € Ey.
(P2): Pr[£(2) = f A L(l) #f]> —j% for each f € Es.

7

Here £(1) and .£(2) denotes the first an
L, respectively.

d second choice on this list



Later in this section, we will describe how to efficiently generate
a random list satisfying the above two properties. Property (P2)
relies critically on the stronger constraint (8) added into LP (5). On
constructing a random list £ at time ¢, ADAP will make the online
decision as follows: try the first choice £(1) if it is available; then
go to the second choice £(2); skip v; if neither of the two choices
are available. Thus compared to NADAP, ADAP offers each edge f
a second chance to be tried. Property (P1) ensures that the marginal
distribution is maintained for the first choice; Property (P2) gives
a lower bound that each f can be tried as a second choice — this
is the exact source for the improvement on the final ratio over the
previous NADAP. Algorithm 3 formally describes ADAP.

Algorithm 3: An adaptive algorithm (ADAP)

1 Let v; be a task arriving at time ¢ € [T].

2 Generate a random list £ satisfying properties (P1) and (P2).

3 If first choice £(1) is available, assign v; to L(1); else if
second choice £(2) is available, assign v; to £(2); otherwise
skip vy.

THEOREM 7.3. The adaptive algorithm ADAP achieves a compet-
itive ratio of at least K(l + ) > 0.343 for the OTA-TSA with

LHS vertex weighted.

J
e(e-1)

Proor. Consider a worker u. Let X; and Y; be the number of
copies of u at time t before and after observing the arrival from
U. Notice that from the assumption that u arrives with probability
1/T in each round, we have Y; = X; + 1 with probability 1/T and
Y; = X; with probability 1 —1/T.

Consider the case when Y; > 1 and one compatible task v of
u arrives at t. Let £ be the random list that is generated for v at
t. From ADAP, we have that Y; decreases by 1 iff either (1) the
assignment f = (u,v) is made as a first choice (£(1) = f) or (2)
the assignment f = (u,v) is made as a second choice (£(2) = f)
and the first choice £(1) is unavailable. Thus, we have:

Pr[Xy+1
=Pr[L(1) = f]
FPIL(2) = f A L) % fIPL(

=Yy — 1|v comes at ¢ ]

) is not available]

x*

X
> E+Z%P r[.£L(1) is not available]
X x5 x*
F X1 11
2;+r——15—rv(1+—12)

The inequality on the second line directly follows from properties
(P1) and (P2). The inequality on the third line is due to the fact that
for each given £L(1) = (u’,v), the probability that it is unavailable
is at least (1 — 1/T)? > 1/e (this refers to the probability that u’
never comes in the first t time-steps). Thus, after considering all
possible neighbors of u, we have

Pr(X;41 =Y —1] 2 Z r—vx—f(1+ ! l)

Note that, x;;
in LP (5). We have that {X;, Y;} is a TS-BDP with death rate of

X5 % q =X, (l + L —) From the definition of the function k, we

= YifeE, x5 < 1 due to the constraint on each u

e-le
have that x(x}, * q) is equal to the expected number of matches for
worker u. Note that x;, is the expected number of matches for u
from the benchmark LP (5). Thus the resultant ratio is,

K(xyrq) _ K(x,+q)—x(0)
x;, =q* x5,q—0

>q* K(q) =k(q) —K( +ﬁ%)

The inequality above is due to the fact that « is a concave function
over [0,00] and x}, < 1. O

Generating £ satisfying properties (P1) and (P2). We can gen-
erate a random list L satisfying properties (P1) and (P2) as fol-
lows ([17] first use this idea). For every e € Ey, let ye = x}/ru;
we have that Y.cp, ye < 1. Add a dummy edge e’ = (u’,0)
with yo = 1 = Ycp, Ye (the edge e’ = (u',v) means we do
nothing when v comes). Create two unit intervals, 7; and I as
follows: (1) Sort {yele € Ey} U {ye’} in an increasing order; let
Ye, < Yo, < ... < Ye, be this order; (2) Let S; be a segment of
length y., with a label of e; for each i € [n]. Let J7 be the unit inter-
val formed by {S1, 82, S3, ..., S} and let 73 be the unit interval
formed by {Sp,S1,S2, ..., Sn-1}.

The random list £ is obtained from (77, 13) is as follows. Choose
a value x € [0, 1] uniformly at random. Let 71 (x) and Z2(x) be the
respective label of the segment where x falls on, in the intervals 73
and 1. Set L(1) = I1(x) and L(2) = I3(x).

LEMMA 7.4. The random list L generated by the procedure de-
scribed above satisfies properties (P1) and (P2).

Proor. To verify property (P1), notice that x is takes a value in
[0, 1] uniformly at random. Thus for each given f € E,, x falls in
the segment labelled by f in 7; with probability yr = x} /ro.

To verify property (P2), we use Observation 4.1 from [17]. From
this Observation, we have that Pr[£(1) = £(2) = f] = 0, for every
f € Ey with yp < 1/2. Hence we have, Pr[£L(2) = f A L(1) #
f1=ys. Consider the harder case when y¢ > 1/2. The event that
L(2) = f A L(1) # f occurs only when x falls in the segment
labelled by f in 75 and x does not fall in the segment labelled by f
in 7. Thus,

Pr{L£(2) = fALO) # f]= -(zyf-n:yf(#_l)

Yr

—yf(l l/e_l) e-1
The last inequality is because yy = x}/rv < 1 - 1/e for every
f € Ey (this follows from the constraint (8)). o

8 HARDNESS RESULTS

We will now prove a hardness result, which also holds for the special
case when there are no weights. (i.e., unweighted) This hardness
result does not depend on the choice of the benchmark LP and
hence is unconditional. This hardness result is obtained due to the
inherent nature of the online process and can be viewed as the



online-offline stochastic gap. In particular, we have the following
theorem

THEOREM 8.1. No algorithm can achieve a competitive ratio better

than 1'6_18)6 = ﬁ ~ 0.581, even for the unweighted OTA-TSA.

Proor. Consider an unweight bipartite graph G = (U,V,E)
where |U| = |V| = T and |E| = T which consists of a perfect
matching. Let the arrival rates for every u be 1 with p, = 1/T
and let every v have an arrival rate of € (where ¢ is very small)
with p,, = €/T. Here we can arrange a dummy node v’ such that
P = 1— € and v’ has no any neighbor of u.

Consider a given f = (u, v). Let OPT-A and OPT-B be the respec-
tive offline and online optimal algorithms. Let Xy be the number
of matches of f in OPT-A after the T rounds. Let X;, and X,, be
the respective number of arrivals of  and v in an offline instance.
We have that Xy = min(Xy, Xy). Observe that X;, ~ Pois(1) and
Xy ~ Pois(€). Thus, we have:

E[min(Xy, Xy)]
= ZZ’:] Pr[Xu > k] * PI'[XU > k]
= %%, Pr[Pois(1) > k] « Pr[Pois(e) > k]

= (1—%)(1—8_5)+(1—%)(1—e_€—ee_e)+...

= (1 - %)e + o(€)

Hence we have E[Xf] = (1 - %)e + o(e). Let Yy be the number of

matches of f in OPT-B. Similar to the proof in Theorem 6.1, we
can verify that E[Yr] = x(e).Thus the online ratio on the above
instance should be

E[Yr] K (€)

EXel (1—%)64—0(6)

Taking € — 0, we have that the above value is

lim, g (@) K& 1 _ K0
(l—é)e-#o(e)

= lime—o = I-1/e ~ 1-1/e o

From Lemma 4.2, k’(0) = 1/e and thus we get our claim.

9 EXPERIMENTS

In this section, we describe the experimental results in this paper.
We consider two datasets from popular crowdsourcing platforms,
namely gMission [7] and EverySender [27]. We test our adaptive
and non-adaptive algorithms on these two datasets. Additionally,
we also consider a generalized version of our model and run experi-
ments to show that these algorithms are robust enough for practical
scenarios which might slightly vary from the actual model.

Dataset and preprocessing. Both the datasets have the following
information. With every worker there is an associated location
(x,y) where the worker is present, range of the worker which
denotes the distance up to which they can perform a task, and a
success probability which denotes the chance that this worker will
complete any task. With every task there is an associated location
(x,y) and a payoff value for completing the task. We group the
workers (likewise for tasks) into a “type” if they share the same
location in the sense that the first two decimal points in the x and

y coordinates are the same. For example, workers at (0.345, 3.546)
and (0.342,3.549) are grouped as the same “type”. To construct
the compatibility graph between the tasks and workers (i.e., the
potential tasks a worker can perform), we consider every pair of
task and worker type and add an edge between a task and worker
type if the Euclidean distance between them is within the range
of the worker type. To construct the edge weight, we multiply the
payoff of the corresponding task type with the success probability
of the corresponding worker type. In the (LHS) vertex-weighted
version of the problem, we use the success probability as the edge-
weight for all the edges incident to this worker. Recall that in our
model all worker types have an uniform arrival probability 1/|U]|.
We generate the task arrival probabilities by choosing a random
vector {p,} such that each p,, is uniformly distributed over [0, 1]
conditioning on ), p, = 1. We achieve this by running the file
randfixedsum.m due to Roger Stafford.® Finally to simulate large
batch sizes for workers and tasks, we derive a sparse version of
EverySender, called EverySenderSample, where each worker and
task is chosen with probability 0.25. Table 1 gives basic statistics
of the dataset, which corroborates some of our assumptions as
discussed in the introduction.

Dataset #worker types | #task types | #edges
gMission 532 712 39758

EverySender 817 3994 340051
EverySenderSample || 204 999 21247

Table 1: Properties of our datasets

Heuristics. Alongside our main algorithms NADAP and ADAP,
we adapt certain heuristics previously used for such problems
(e.g., [26]) and compare and contrast them with our algorithms
under various practical scenarios. In particular, we consider the fol-
lowing three heuristics— GREEDY, LP-SCALED and UR-ALG. Both
GREEDY and UR-ALG are agnostic to the underlying LP. The heuris-
tic GREEDY matches the incoming task to the available worker
where the weight of the assignment is the largest (breaking ties
arbitrarily) while UR-ALG chooses one of the available workers
uniformly at random. The heuristic LP-SCALED uses the optimal
solution ¥ to LP (1) as a guide to its online actions. When a task
arrives, let wi, wy, ..., wy denote the set of compatible workers
who are available. Let x4y,, X4,, . . ., X3y, denote the correspond-
ing LP optimal values. We choose the worker w; with probability

Xw; | Z;.‘zl Xwj-

Methodology. We parametrize the model with a parameter  which
denotes the number of workers sampled (a.k.a. batch size of work-
ers) in each time-step. Let A denote the ratio of total number of
task arrivals to that of worker arrivals. For each given integral 7,
in each time-step we sample n workers and 7 * A tasks (by repeat-
ing the sampling process i.i.d., n times for workers and 1 * A for
tasks). We set A = 2 in gMission and A = 5 in EverySender and
EverySenderSample datasets. The values of A are chosen based
on the ratios in the real arrival sequence for a snapshot when the
dataset was curated. Our experiments are as follows with each ex-
periment consisting of taking an average over 20 independent runs.

3 https://www.mathworks.com/matlabcentral/fileexchange/9700-random-vectors-
with-fixed-sum/content/randfixedsum.m
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First we consider the case where the batch size of workers is 1 and
the batch size of tasks is 1. For this case, we run GREEDY, ADAP
and NADAP on the datasets gMission and EverySender with the
node-weighted assumption and compute the average waiting time
for all worker types. In particular, for each run of the algorithm
and each worker in the system we measure the time until which
this worker stays in the system before getting matched to a task.
We then compute the average waiting time for every worker type
across all the runs (counting it multiple times in a single run if
a worker type arrives twice). Next we run our main experiments
as follows. For the edge-weighted case, we test NADAP against
the three heuristics GREEDY, LP-SCALED and UR-ALG, on the
datasets of gMission and EverySenderSample over the choices of
n € {1,5,10, 15, 20, 25, 30, 35}. For the LHS vertex-weighted case,
we test ADAP against the three heuristics, on the datasets gMission
and EverySender over the choices of € {1, 2,3,4,5,6,7}.

Results and discussion. For brevity, we only show the results
of NADAP, ADAP and GREEDY in the plots. The performance of
LP-SCALED and UR-ALG followed a similar pattern as GREEDY
with LP-SCALED performing slightly better on average and UR-ALG
performing slightly worse on average. The following are several
interesting observations. From Figures 1 and 2, we see that NADAP
performs better once the size of batch arrivals in each time in-
creases. This can be explained as follows. When the batch-arrival
size is small, each arriving task has a limited number of workers
to choose from, since the number of workers who have arrived
and are compatible is small. In this case, the advantage of greedily

ple for the edg Performance on gMission for the vertex-weighted version
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matching an available worker outweighs the potential loss from
a mismatch. However, when batch-arrival size increases and each
arriving task has more options to choose from, the guidance from
the LP becomes effective, since it takes the future arrivals into con-
sideration (in expectation). For the vertex-weighted case we have
that GREEDY is near optimal. From Figures 3 and 4 we can see that
the ratio obtained by GREEDY is almost close to 1 in all cases. On
the other hand the performance of ADAP slowly increases as the
batch size increases. Our experiments show that GREEDY is the
best algorithm when there are no edge-weights or the weights are
only on the workers. Finally Figures 5 and 6 show the average wait-
ing time for each worker in the two datasets, in the run of the three
algorithms. Since, GREEDY makes a choice whenever a compatible
worker is available, it has the least waiting times. Similarly since
ADAP makes strictly more assignments than NADAP, the work-
ers in ADAP have the next least waiting time and in many cases
much lesser than NADAP. Note however that the difference in the
average of averages for GREEDY and NADAP is around 1.5-2.5%
with respect to T in both the datasets and hence, is not considerably
large.
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