
Uncovering Bugs in P4 Programs with Assertion-based
Verification

Lucas Freire*, Miguel Neves*, Lucas Leal*, Kirill Levchenko2

Alberto Schaeffer-Filho*, Marinho Barcellos*
*UFRGS 2UC San Diego

ABSTRACT

Recent trends in software-defined networking have extended net-
work programmability to the data plane through programming
languages such as P4. Unfortunately, the chance of introducing
bugs in the network also increases significantly in this new context.
Existing data plane verification approaches are unable to model P4
programs, or they present severe restrictions in the set of proper-
ties that can be modeled. In this paper, we introduce a data plane
program verification approach based on assertion checking and
symbolic execution. Network programmers annotate P4 programs
with assertions expressing general security and correctness proper-
ties. Once annotated, these programs are transformed into C-based
models and all their possible paths are symbolically executed. Re-
sults show that the proposed approach, called ASSERT-P4, can
uncover a broad range of bugs and software flaws. Furthermore,
experimental evaluation shows that it takes less than a minute for
verifying various P4 applications proposed in the literature.

CCS CONCEPTS

· Networks → Programmable networks; · Software and its

engineering→ Software verification and validation;

KEYWORDS

P4; Verification; Programmable Data Planes

1 INTRODUCTION

Data plane programmability allows operators to quickly deploy new
protocols and develop network services. Through programming
languages such as P4 [2], it is possible to specify in a few instructions
how packet headers should be manipulated by different forwarding
devices in the infrastructure. Despite the flexibility, this paradigm
also increases the chance of introducing bugs into the network.

Several tools have been developed in order to check if a given
network configuration satisfies a set of intended properties [7, 21,
22, 25]. However, they are either unable to model P4 programs or
cannot reason about program-specific properties. In this paper, we
propose a network verification technique capable of modeling and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SOSR ’18, March 28ś29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185499

checking (at compile time) general security and correctness proper-
ties of P4 programs1. Called ASSERT-P4, it provides an expressive
assertion language allows programmers to specify their intended
properties by simply annotating their P4 programs. Its language
allows the specification of both location-restricted and location-
unrestricted invariants. For example, verifying that packets marked
to be dropped at a specific point of the code (location-restricted) are
not eventually forwarded (location-unrestricted). Once annotated,
a program is symbolically executed, with assertions being checked
while all its paths are traversed.

We built a prototype of ASSERT-P4 using KLEE [3] and the P4
Reference Compiler [18]. To evaluate our approach, we tested it on
four real P4 applications [5, 12, 19, 24] collected from the literature,
and found correctness bugs in the first three.

Our results show that ASSERT-P4 can uncover a broad range of
bugs and software flaws, either in a data plane program itself or
in its control plane configuration. A detailed performance analysis
also shows that, although the verification time grows exponentially
with the number of tables and assertions, ASSERT-P4 needs less
than a minute to verify various P4 applications [5, 11, 12, 14, 20, 23].

2 MOTIVATING EXAMPLES

A P4 program is a collection of domain-specific constructs such
as headers, metadata, parsers, actions, tables, control blocks, and
extern objects. Some basic data types for representing and manip-
ulating packets (e.g., packet_in and packet_out) are also defined
in the P4 specification [27]. Bugs in P4 programs can result from,
e.g., erroneous assignments, poor logic or control misconfiguration.
Next, we present two motivating examples to better explain the
type of problems we face, and the difficulty of finding them.

Code circumvention. Figure 1(a) shows an example of a vul-
nerability stemming from a logic error in a P4 program. This code
snippet specifies a packet processing pipeline containing twomatch-
action tables (tcp_table and acl_table), invoked inside an ingress

control block. While one would reasonably expect acl_table to be
applied to both TCP and UDP traffic, UDP packets can bypass this
filtering mechanism. Considering that the network security policy
disallows this type of practice, the program in question could be
used as a starting point for many attacks (e.g., UDP flooding). Even
though correcting this problem is simple (moving the table that
implements the access control list outside the conditional struc-
ture is enough), finding it may not be trivial in large and complex
programs.

Controlmisconfiguration.Many faults in networks arise from
bugs in forwarding rules (i.e., control plane configurations). In this

1A poster of an early version of this work appeared at the ACM Conference on
Communication Security [10].

Table 1: Expressiveness of the proposed assertion language

Program Properties / Assertions

MRI [17] Switch IDs added to packets are authentic
constant(swid)

Added IDs are not removed
if(extract_header(swid), emit_header(swid))

Timestamp
switching [11]

Out of range timestamps are not forwarded
to receivers
if(forward, rtp.ts < max_timestamp)

sTag [21] Hosts connected to ports of different colors
cannot communicate
if(ingress_port == color_a &&

ipv4.dstAddr == color_b_host, !forward)

Dapper [12] Only SYN packets register new flows
If(traverse_path*, tcp.ack == false)

*path that register new flows
Load flow registers when is Ack packet
if(tcp.ack == 1, traverse_path*)

*path that load registers

DC.p4 [24] L3 ACL is effective
if(ipv4.dstAddr == blocked_addr, !forward)

Cloned and original packet have different
output ports
! (cloned_outport == original_port &&

constant(cloned_outport))

The same happens whenever multiple actions can be invoked by
the same table, generating a new branch for each possibility.

4 EVALUATION

We have prototyped ASSERT-P4 on top of the KLEE symbolic exe-
cution engine (version 1.3.0). To build C models, we first convert
a P4 program to its JSON representation using the reference com-
piler provided by the P4 Language Consortium, and then translate
the JSON representation (a DAG) to C code using a translator we
developed specifically for this purpose. The translator contains
approximately 750 lines of Python code. Shell scripts are used to
automatically coordinate the invocation of each tool in the verifica-
tion process. We make all the source code as well as the workloads
employed in this evaluation publicly available.2 The tool may be
used by other researchers, who may want to reproduce our results.
All experiments have been performed using a Linux virtual machine
(kernel version 4.8.0) with a 3 GHz core and 16 GB of RAM.

4.1 Bug finding

First, we demonstrate the effectiveness of ASSERT-P4 in finding
bugs and policy violations in programmable data planes. We uncov-
ered several of them in recent P4 applications, a few of which we
present here. All identified bugs were manually confirmed in their
respective source code. With the exception of the DC.p4 example,

2https://github.com/ufrgs-networks-group/assert-p4

it was not necessary to provide forwarding rules to expose these
issues.

Dapper [12]: Dapper is a data plane performance diagnosis tool
that infers TCP bottlenecks by analyzing packets in real time. It
forwards traffic based on IPv4 addresses and uses SYN flags as well
as sequence and ack numbers for calculating metrics such as loss
rate and path latency. A failed assertion (packets with a time to live
(TTL) value of zero are not forwarded) found that Dapper forwards
packets without checking their TTL field, which can enable routing
loops in the network.

NetPaxos [5]: NetPaxos is a network-based implementation of
the Paxos consensus protocol. There are two different types of P4
programs in this application, one for Leaders/Coordinators and an-
other for Acceptors. According to the protocol, Leaders determine
a round number and ask acceptors for acknowledging it. Acceptors,
in turn, decide whether they acknowledge or not a given request
from a Leader. This process is repeated until a quorum of accep-
tors acknowledges the same round number, allowing the leader to
establish a value for a given variable and consensus is achieved.
ASSERT-P4 was able to find a bug in the current acceptor imple-
mentation. More specifically, each acceptor marks every packet that
contains a round number to be dropped before it decides whether
to acknowledge the packet or not. However, packets are not un-
marked even if they are acknowledged, which means they will not
be forwarded and consequently, the vote will not be counted by the
Leader. Ultimately, this will prevent the protocol from achieving
consensus. According to the authors feedback on this bug, the code
was ported to P416, leaving the old code base unmaintained and
exposed to bugs.

DC.p4 [24]: DC.p4 implements the behavior of a data center
switch. It containsmultiple functionalities such as L2/L3 forwarding,
ECMP, VLAN, packet mirroring, tunneling and multiple ACLs (i.e.,
L2, L3 or based on more specific headers). Interestingly, ASSERT-P4
found that configuring only a layer-3 ACL (i.e., an ACL based on
IP addresses) is not enough for dropping IPv4 packets regardless
of the policy being enforced. In fact, we checked that the L3 ACL
only flags packets to be filtered by another module in the system,
which must also be appropriately configured. Although this is not
effectively a bug, it can be a dangerous design decision since there
is no documentation explaining how to properly configure the
program.

Switch [19]: Since the introduction of the DC.p4 paper, its code
base has evolved to the switch.p4 program, where it is actively
maintained. We have used ASSERT-P4 to reproduce a known, re-
ported bug on its repository: Themodification of a field of an invalid
header.3 This is demonstrated by testing with an assertion if the
header is valid before setting its fields.

4.2 Language expressiveness

To evaluate our assertion language, we tested its expressiveness in
terms of the properties we can specify for different P4 programs.
Table 1 shows a subset of the properties we tested for each P4 ap-
plication. The associated assertions are italicized. We can specify
a large set of properties, both program-dependent (e.g., the ones
testing if registers are correctly manipulated in Dapper) and generic

3https://github.com/p4lang/switch/pull/102

REFERENCES
[1] Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford,

and DavidWalker. 2014. AnAssertion Language for Debugging SDNApplications.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 91ś96. https://doi.org/10.1145/2620728.
2620743

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87ś95. https://doi.org/10.
1145/2656877.2656890

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209ś224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[4] Marco Canini, Daniele Venzano, Peter Perešíni, Dejan Kostić, and Jennifer Rexford.
2012. A NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI’12).
USENIX Association, Berkeley, CA, USA, 10ś10. http://dl.acm.org/citation.cfm?
id=2228298.2228312

[5] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18ś24.
https://doi.org/10.1145/2935634.2935638

[6] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and HakimWeatherspoon. 2017. Whippersnapper:
A P4 Language Benchmark Suite. In Proceedings of the Symposium on SDNResearch
(SOSR ’17). ACM, New York, NY, USA, 95ś101. https://doi.org/10.1145/3050220.
3050231

[7] Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Verification.
In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 101ś114. https://www.usenix.org/
conference/nsdi14/technical-sessions/presentation/dobrescu

[8] Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
2016. BUZZ: Testing Context-Dependent Policies in Stateful Networks. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 275ś289. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/fayaz

[9] Nate Foster, Cole Schlesinger, Robert Soulé, and Han Wang. 2017. A Program
Logic for Automated P4 Verification. In P4 Workshop.

[10] Lucas Freire, Miguel Neves, Alberto Schaeffer-Filho, and Marinho Barcellos.
2017. POSTER: Finding Vulnerabilities in P4 Programs with Assertion-based
Verification. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). ACM, New York, NY, USA, 2495ś2497.
https://doi.org/10.1145/3133956.3138837

[11] Tomas G. Edwards and Nick Ciarleglio. 2017. Timestamp-Aware RTP Video
Switching Using Programmable Data Plan. Industrial Demo. In ACM SIGCOMM.

[12] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
Plane Performance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research (SOSR ’17). ACM, New York, NY, USA, 61ś74. https://doi.org/10.1145/
3050220.3050228

[13] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 735ś749. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/horn-alex

[14] Theo Jepsen, Leandro Pacheco de Sousa, Huynh Tu Dang, Fernando Pedone, and
Robert Soulé. 2017. Gotthard: Network Support for Transaction Processing. In
Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New York, NY,
USA, 185ś186. https://doi.org/10.1145/3050220.3060603

[15] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI’12). USENIX Associ-
ation, Berkeley, CA, USA, 9ś9. http://dl.acm.org/citation.cfm?id=2228298.2228311

[16] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
ACM, New York, NY, USA, 49ś54. https://doi.org/10.1145/2342441.2342452

[17] The P4.org language consortium. 2017. MRI Exercise. https://github.com/p4lang/
tutorials/blob/master/SIGCOMM_2017/exercises/mri/solution/mri.p4. (2017).

[18] The P4.org language consortium. 2017. P4 reference compiler. https://github.
com/p4lang/p4c. (2017).

[19] The P4.org language consortium. 2018. Switch. https://github.com/p4lang/switch.
(2018).

[20] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast
Detection of Lost Packets in Data Center Networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Technolo-
gies (CoNEXT ’16). ACM, New York, NY, USA, 481ś495. https://doi.org/10.1145/
2999572.2999609

[21] Nuno P. Lopes, Nikolaj Bjùrner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499ś512. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/lopes

[22] Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks withMutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 699ś718. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-mutable-datapaths

[23] Salvatore Signorello, Radu State, Jérôme FranÃğois, and Olivier Festor. 2016.
NDN.p4: Programming information-centric data-planes. In NetSoft.

[24] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-
center Switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 2,
8 pages. https://doi.org/10.1145/2774993.2775007

[25] Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
2013. Model checking invariant security properties in OpenFlow. In 2013 IEEE
International Conference on Communications (ICC). IEEE, 1974ś1979.

[26] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
314ś327. https://doi.org/10.1145/2934872.2934881

[27] The P4.org language consortium. 2017. P4_16 Language Specification.
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html. (2017). Accessed:
2017-11-08.

	Abstract
	1 Introduction
	2 Motivating examples
	3 System design
	3.1 Overview
	3.2 Specifying assertions
	3.3 Constructing C models
	3.4 Symbolically executing program models

	4 Evaluation
	4.1 Bug finding
	4.2 Language expressiveness
	4.3 Performance analysis

	5 Related work
	6 Conclusion and future work
	Acknowledgments
	References

