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ABSTRACT

Recent trends in software-defined networking have extended net-
work programmability to the data plane through programming
languages such as P4. Unfortunately, the chance of introducing
bugs in the network also increases significantly in this new context.
Existing data plane verification approaches are unable to model P4
programs, or they present severe restrictions in the set of proper-
ties that can be modeled. In this paper, we introduce a data plane
program verification approach based on assertion checking and
symbolic execution. Network programmers annotate P4 programs
with assertions expressing general security and correctness proper-
ties. Once annotated, these programs are transformed into C-based
models and all their possible paths are symbolically executed. Re-
sults show that the proposed approach, called ASSERT-P4, can
uncover a broad range of bugs and software flaws. Furthermore,
experimental evaluation shows that it takes less than a minute for
verifying various P4 applications proposed in the literature.
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1 INTRODUCTION

Data plane programmability allows operators to quickly deploy new
protocols and develop network services. Through programming
languages such as P4 [2], it is possible to specify in a few instructions
how packet headers should be manipulated by different forwarding
devices in the infrastructure. Despite the flexibility, this paradigm
also increases the chance of introducing bugs into the network.

Several tools have been developed in order to check if a given
network configuration satisfies a set of intended properties [7, 21,
22, 25]. However, they are either unable to model P4 programs or
cannot reason about program-specific properties. In this paper, we
propose a network verification technique capable of modeling and
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checking (at compile time) general security and correctness proper-
ties of P4 programs1. Called ASSERT-P4, it provides an expressive
assertion language allows programmers to specify their intended
properties by simply annotating their P4 programs. Its language
allows the specification of both location-restricted and location-
unrestricted invariants. For example, verifying that packets marked
to be dropped at a specific point of the code (location-restricted) are
not eventually forwarded (location-unrestricted). Once annotated,
a program is symbolically executed, with assertions being checked
while all its paths are traversed.

We built a prototype of ASSERT-P4 using KLEE [3] and the P4
Reference Compiler [18]. To evaluate our approach, we tested it on
four real P4 applications [5, 12, 19, 24] collected from the literature,
and found correctness bugs in the first three.

Our results show that ASSERT-P4 can uncover a broad range of
bugs and software flaws, either in a data plane program itself or
in its control plane configuration. A detailed performance analysis
also shows that, although the verification time grows exponentially
with the number of tables and assertions, ASSERT-P4 needs less
than a minute to verify various P4 applications [5, 11, 12, 14, 20, 23].

2 MOTIVATING EXAMPLES

A P4 program is a collection of domain-specific constructs such
as headers, metadata, parsers, actions, tables, control blocks, and
extern objects. Some basic data types for representing and manip-
ulating packets (e.g., packet_in and packet_out) are also defined
in the P4 specification [27]. Bugs in P4 programs can result from,
e.g., erroneous assignments, poor logic or control misconfiguration.
Next, we present two motivating examples to better explain the
type of problems we face, and the difficulty of finding them.

Code circumvention. Figure 1(a) shows an example of a vul-
nerability stemming from a logic error in a P4 program. This code
snippet specifies a packet processing pipeline containing twomatch-
action tables (tcp_table and acl_table), invoked inside an ingress

control block. While one would reasonably expect acl_table to be
applied to both TCP and UDP traffic, UDP packets can bypass this
filtering mechanism. Considering that the network security policy
disallows this type of practice, the program in question could be
used as a starting point for many attacks (e.g., UDP flooding). Even
though correcting this problem is simple (moving the table that
implements the access control list outside the conditional struc-
ture is enough), finding it may not be trivial in large and complex
programs.

Controlmisconfiguration.Many faults in networks arise from
bugs in forwarding rules (i.e., control plane configurations). In this

1A poster of an early version of this work appeared at the ACM Conference on
Communication Security [10].









Table 1: Expressiveness of the proposed assertion language

Program Properties / Assertions

MRI [17] Switch IDs added to packets are authentic
constant(swid)

Added IDs are not removed
if(extract_header(swid), emit_header(swid))

Timestamp
switching [11]

Out of range timestamps are not forwarded
to receivers
if(forward, rtp.ts < max_timestamp)

sTag [21] Hosts connected to ports of different colors
cannot communicate
if(ingress_port == color_a &&

ipv4.dstAddr == color_b_host, !forward)

Dapper [12] Only SYN packets register new flows
If(traverse_path*, tcp.ack == false)

*path that register new flows
Load flow registers when is Ack packet
if(tcp.ack == 1, traverse_path*)

*path that load registers

DC.p4 [24] L3 ACL is effective
if(ipv4.dstAddr == blocked_addr, !forward)

Cloned and original packet have different
output ports
! (cloned_outport == original_port &&

constant(cloned_outport))

The same happens whenever multiple actions can be invoked by
the same table, generating a new branch for each possibility.

4 EVALUATION

We have prototyped ASSERT-P4 on top of the KLEE symbolic exe-
cution engine (version 1.3.0). To build C models, we first convert
a P4 program to its JSON representation using the reference com-
piler provided by the P4 Language Consortium, and then translate
the JSON representation (a DAG) to C code using a translator we
developed specifically for this purpose. The translator contains
approximately 750 lines of Python code. Shell scripts are used to
automatically coordinate the invocation of each tool in the verifica-
tion process. We make all the source code as well as the workloads
employed in this evaluation publicly available.2 The tool may be
used by other researchers, who may want to reproduce our results.
All experiments have been performed using a Linux virtual machine
(kernel version 4.8.0) with a 3 GHz core and 16 GB of RAM.

4.1 Bug finding

First, we demonstrate the effectiveness of ASSERT-P4 in finding
bugs and policy violations in programmable data planes. We uncov-
ered several of them in recent P4 applications, a few of which we
present here. All identified bugs were manually confirmed in their
respective source code. With the exception of the DC.p4 example,

2https://github.com/ufrgs-networks-group/assert-p4

it was not necessary to provide forwarding rules to expose these
issues.

Dapper [12]: Dapper is a data plane performance diagnosis tool
that infers TCP bottlenecks by analyzing packets in real time. It
forwards traffic based on IPv4 addresses and uses SYN flags as well
as sequence and ack numbers for calculating metrics such as loss
rate and path latency. A failed assertion (packets with a time to live
(TTL) value of zero are not forwarded) found that Dapper forwards
packets without checking their TTL field, which can enable routing
loops in the network.

NetPaxos [5]: NetPaxos is a network-based implementation of
the Paxos consensus protocol. There are two different types of P4
programs in this application, one for Leaders/Coordinators and an-
other for Acceptors. According to the protocol, Leaders determine
a round number and ask acceptors for acknowledging it. Acceptors,
in turn, decide whether they acknowledge or not a given request
from a Leader. This process is repeated until a quorum of accep-
tors acknowledges the same round number, allowing the leader to
establish a value for a given variable and consensus is achieved.
ASSERT-P4 was able to find a bug in the current acceptor imple-
mentation. More specifically, each acceptor marks every packet that
contains a round number to be dropped before it decides whether
to acknowledge the packet or not. However, packets are not un-
marked even if they are acknowledged, which means they will not
be forwarded and consequently, the vote will not be counted by the
Leader. Ultimately, this will prevent the protocol from achieving
consensus. According to the authors feedback on this bug, the code
was ported to P416, leaving the old code base unmaintained and
exposed to bugs.

DC.p4 [24]: DC.p4 implements the behavior of a data center
switch. It containsmultiple functionalities such as L2/L3 forwarding,
ECMP, VLAN, packet mirroring, tunneling and multiple ACLs (i.e.,
L2, L3 or based on more specific headers). Interestingly, ASSERT-P4
found that configuring only a layer-3 ACL (i.e., an ACL based on
IP addresses) is not enough for dropping IPv4 packets regardless
of the policy being enforced. In fact, we checked that the L3 ACL
only flags packets to be filtered by another module in the system,
which must also be appropriately configured. Although this is not
effectively a bug, it can be a dangerous design decision since there
is no documentation explaining how to properly configure the
program.

Switch [19]: Since the introduction of the DC.p4 paper, its code
base has evolved to the switch.p4 program, where it is actively
maintained. We have used ASSERT-P4 to reproduce a known, re-
ported bug on its repository: Themodification of a field of an invalid
header.3 This is demonstrated by testing with an assertion if the
header is valid before setting its fields.

4.2 Language expressiveness

To evaluate our assertion language, we tested its expressiveness in
terms of the properties we can specify for different P4 programs.
Table 1 shows a subset of the properties we tested for each P4 ap-
plication. The associated assertions are italicized. We can specify
a large set of properties, both program-dependent (e.g., the ones
testing if registers are correctly manipulated in Dapper) and generic

3https://github.com/p4lang/switch/pull/102
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