Uncovering Bugs in P4 Programs with Assertion-based
Verification

Lucas Freire*, Miguel Neves*, Lucas Leal”, Kirill Levchenko™
Alberto Schaeffer-Filho*, Marinho Barcellos*

*UFRGS
ABSTRACT

Recent trends in software-defined networking have extended net-
work programmability to the data plane through programming
languages such as P4. Unfortunately, the chance of introducing
bugs in the network also increases significantly in this new context.
Existing data plane verification approaches are unable to model P4
programs, or they present severe restrictions in the set of proper-
ties that can be modeled. In this paper, we introduce a data plane
program verification approach based on assertion checking and
symbolic execution. Network programmers annotate P4 programs
with assertions expressing general security and correctness proper-
ties. Once annotated, these programs are transformed into C-based
models and all their possible paths are symbolically executed. Re-
sults show that the proposed approach, called ASSERT-P4, can
uncover a broad range of bugs and software flaws. Furthermore,
experimental evaluation shows that it takes less than a minute for
verifying various P4 applications proposed in the literature.

CCS CONCEPTS

» Networks — Programmable networks; « Software and its
engineering — Software verification and validation;

KEYWORDS

P4; Verification; Programmable Data Planes

1 INTRODUCTION

Data plane programmability allows operators to quickly deploy new
protocols and develop network services. Through programming
languages such as P4 [2], it is possible to specify in a few instructions
how packet headers should be manipulated by different forwarding
devices in the infrastructure. Despite the flexibility, this paradigm
also increases the chance of introducing bugs into the network.
Several tools have been developed in order to check if a given
network configuration satisfies a set of intended properties [7, 21,
22, 25]. However, they are either unable to model P4 programs or
cannot reason about program-specific properties. In this paper, we
propose a network verification technique capable of modeling and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SOSR ’18, March 28-29, 2018, Los Angeles, CA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5664-0/18/03...$15.00
https://doi.org/10.1145/3185467.3185499

TUC San Diego

checking (at compile time) general security and correctness proper-
ties of P4 programs!. Called ASSERT-P4, it provides an expressive
assertion language allows programmers to specify their intended
properties by simply annotating their P4 programs. Its language
allows the specification of both location-restricted and location-
unrestricted invariants. For example, verifying that packets marked
to be dropped at a specific point of the code (location-restricted) are
not eventually forwarded (location-unrestricted). Once annotated,
a program is symbolically executed, with assertions being checked
while all its paths are traversed.

We built a prototype of ASSERT-P4 using KLEE [3] and the P4
Reference Compiler [18]. To evaluate our approach, we tested it on
four real P4 applications [5, 12, 19, 24] collected from the literature,
and found correctness bugs in the first three.

Our results show that ASSERT-P4 can uncover a broad range of
bugs and software flaws, either in a data plane program itself or
in its control plane configuration. A detailed performance analysis
also shows that, although the verification time grows exponentially
with the number of tables and assertions, ASSERT-P4 needs less
than a minute to verify various P4 applications [5, 11, 12, 14, 20, 23].

2 MOTIVATING EXAMPLES

A P4 program is a collection of domain-specific constructs such
as headers, metadata, parsers, actions, tables, control blocks, and
extern objects. Some basic data types for representing and manip-
ulating packets (e.g., packet_in and packet_out) are also defined
in the P4 specification [27]. Bugs in P4 programs can result from,
e.g., erroneous assignments, poor logic or control misconfiguration.
Next, we present two motivating examples to better explain the
type of problems we face, and the difficulty of finding them.

Code circumvention. Figure 1(a) shows an example of a vul-
nerability stemming from a logic error in a P4 program. This code
snippet specifies a packet processing pipeline containing two match-
action tables (tcp_table and acl_table), invoked inside an ingress
control block. While one would reasonably expect acl_table to be
applied to both TCP and UDP traffic, UDP packets can bypass this
filtering mechanism. Considering that the network security policy
disallows this type of practice, the program in question could be
used as a starting point for many attacks (e.g., UDP flooding). Even
though correcting this problem is simple (moving the table that
implements the access control list outside the conditional struc-
ture is enough), finding it may not be trivial in large and complex
programs.

Control misconfiguration. Many faults in networks arise from
bugs in forwarding rules (i.e., control plane configurations). In this

1A poster of an early version of this work appeared at the ACM Conference on
Communication Security [10].

1 control ingress() {
2 apply {
3

if (headers.ip.nextHeader == TCP) {

tcp_table.apply();
acl_table.apply();

4
5

6
7}
8 ..
9 }
0

1

}

table mirror {
key = { metadata.egress_port : exact; }
actions = { NoAction; clone_packet; }
default_action = NoAction;

const entries = {
0x00000001 : clone_packet(0x00000002);
0x00000002 : clone_packet(0x00000002);

O©CONOODAWN-=

10}

(a) Code circumvention: ACL filtering is only applied to TCP pack-
ets, allowing other transport layer protocols (e.g. UDP, SCTP) to pass
through.

(b) Control misconfiguration: The forwarding rule in line 8 is cloning
packets to the same egress port as the original packet.

Figure 1: Examples of bugs in P4 programs

sense, Figure 1(b) shows an example of a data plane program whose
tables are erroneously configured at compile-time. The mirror table
clones packets based on their output port (line 2), setting a new port
for cloned packets based on its action parameters. In this example,
one of the forwarding rules is assigning the output port of the
cloned packet to the same value as the original packet (line 8). As a
consequence, both packets will be sent to the receiver.

3 SYSTEM DESIGN

3.1 Overview

This section provides an overview of ASSERT-P4, which is built
on two key ideas: (i) using assertions for specifying properties
about P4 programs; and (ii) verifying models derived from anno-
tated programs. The former allows programmers to easily express
their intended properties, while the latter enables programs to be
efficiently verified. Using models to represent real programs is a
common practice in the verification literature [8, 21, 22, 26], and
although formally proving our models are equivalent to their orig-
inal programs is an ongoing effort, we manually checked all the
results presented in this paper.

Forwarding rules Yield

warning
P4to C
translator

P4 program

Annotated
P4 program

C model

Assertion
violation?

Specification
of assertions

Symbolic
execution

Correct
program

Figure 2: Overview of ASSERT-P4.

Figure 2 shows the ASSERT-P4 workflow. The P4 developer first
annotates his code with assertions expressing general properties of
interest. These properties can reflect a network security policy or
simply represent the expected program behavior. Once annotated,
the P4 program is translated into a C-based model. During this
process, forwarding rules can be optionally added as input to the
translator for restricting the verification to a given network con-
figuration. The generated model is finally checked by a symbolic
execution engine, which tests all its execution paths looking for
assertion failures. If no assertion is violated during this process, the

P4 program is considered correct with respect to the analyzed prop-
erties. Otherwise, the violation is reported, allowing the developer
to correct the program. In the following sections, we describe in
detail each step of the ASSERT-P4 verification process.

3.2 Specifying assertions

Programmers use assertions to express properties of P4 programs.
To this end, we provide an assertion language specially designed
to capture packet processing behaviors (e.g., header extraction and
emission, packet dropping and forwarding) and facilitate the task
of specifying complex networking properties. The purpose of our
language is not to innovate on syntax, but to simplify the way
network programmers encode properties in a programmable data
plane. In fact, we draw inspiration from Beckett et al. [1] to define
primitives capable of minimizing the number of language elements,
while still being expressive.

Figure 3 summarizes the grammar of our assertion language.
Although it resembles C-style assertions found in traditional pro-
gramming languages, our concept of assertion is a bit more general,
in the sense it can involve both location-restricted and location-
unrestricted elements. A location-restricted element is one that tests
the value of a program variable at a specific location (i.e., where
the assertion is specified), as in traditional programming languages
like C or Java. A location-unrestricted element, in contrast, tries to
capture the evolution of the program and how it manipulates its
variables (i.e., packet headers in this case) along its execution as a
whole. Examples are provided at the end of this section.

Syntactically, each assertion is composed of a boolean expres-
sion b, which may include primitive methods m. The set of al-
lowed methods is {forward, traverse_path, constant, if, extract_header,
emit_header}. Both expressions and methods can operate over one
or more values v, header fields f or headers h. Semantically, each
assertion represents a boolean that should evaluate to true or false,
where values and header fields evaluate to true if they are non-zero
and false otherwise. Integer expressions i have the same seman-
tics as their equivalents in the P4 language, as well as boolean
expressions, which include the equality and inequality relational
operators to compare logical values.

Each method m has its own meaning. Specifically, forward re-
turns true when the packet being processed is not dropped by the
program. traverse_path indicates if a given structure in the program

m ::= forward
| traverse_path
| constant(f)
| if(b, b, [bI)
| extract_header(h)
| emit_header(h)

- = |l
& 3
= <
It eo
T oo
[}
<

I'VAAV.-
== nn

I © B © i © i © R

Figure 3: Assertion language grammar.

(e.g., an action) was executed. constant(f) is true if the field f is
not changed from the assertion location to the end of the program
execution. if(by, bz, [b3]) is similar to traditional conditional state-
ments (i.e., if the condition represented by expression b; is true,
then the expression by will be evaluated, otherwise the optional
expression b3 will be verified). extract_header(h) is true if the header
h is extracted from the packet during the parsing process. Finally,
emit_header(h) returns true if the outgoing packet contains the
header h at the end of the program execution.

Figure 4 shows an example containing an annotated P4 program,
where assertions are in bold. Due to space restrictions, only the
most relevant parts of the program are displayed. This program
describes a packet processing pipeline with a single table (dmac),
which is instantiated inside the TopPipe control block. Each entry
of this table can invoke one of two actions (Drop or Set_dmac).
The annotated assertions aim to verify that: (i) packets marked to
drop are never forwarded (line 7), and (ii) only packets with TTL
greater than zero are forwarded (line 21). The two assertions contain
both location-unrestricted elements (e.g., the method forward cap-
tures the state of the program at the end of its execution) and also
location-restricted ones (e.g., the expression "headers.ip.ttl > 0"
tests the value of headers.ip.ttl at the point in which the assertion
is inserted).

3.3 Constructing C models

Once a P4 program is annotated, our tool generates an equivalent
program in the C language through a translation process. This sec-
tion describes how we designed this process in detail, taking the
main P4 structures as a base (i.e., headers, tables, actions, parsers,
control blocks, and external objects). Figure 5 exemplifies the trans-
lation process.

Headers. Given their similar representations, P4 headers are
properly modeled by structs in C. Each header field is mapped to a
struct member, and bit fields in C are used to match between the size
of the header field and the size of its corresponding member in the
generated struct. Each basic type in P4 is mapped to a corresponding
type in C, based on its declared size. Fields with more than 64 bits
can be modeled using bit arrays.

Tables. Each table in a P4 program is modeled as a function
in C. Functions created from tables are constructed in different
ways depending whether the forwarding rules are supplied to the
translator or not. If the rules are provided, the match fields in the P4

1 ..

2 control TopPipe(inout Parsed_packet headers,
3 out OutControl outCtrl) {

4 ..

5 action Drop {

6 outCtrl.outputPort = DROP_PORT;

7 @assert("if(traverse_path, !forward)");
8}

9 action Set_dmac(EthernetAddress dmac) {
10 headers.ethernet.dstAddr = dmac;

11 }

12 table dmac {

13 key = { nextHop : exact; }

14 actions = { Drop; Set_dmac; }

15 default_action = Drop;

16 }

17 apply {

19 dmac.apply();

21 @assert("if(forward, headers.ip.ttl > 0)");

Figure 4: Example of an annotated P4 program.

table are tested against their corresponding rule values using the
specified matching approach (e.g., exact, ternary or longest-prefix
match). Otherwise, the decision of which action to execute is made
based on a symbolic value specially declared to force the creation
of multiple execution paths by the symbolic engine (one for each
action listed in the table). To avoid conflicts caused by tables from
different scopes having the same name, we append an ID to their
names. This solution is also applied in any situation where name
conflicts may be an issue (e.g. action names).

Actions. Like tables, actions are also modeled as C functions.
The action parameters should be translated taking into account the
table modeling strategy. When the forwarding rules are unknown,
the action parameter values are also unknown. In this case, the
actions parameters are treated as symbolic variables. If the forward-
ing rules are supplied, then the values specified by the rules are
assigned to the corresponding parameters.

Control Blocks. Since a control block in P4 also includes its
action and table declarations, each block is translated to multiple
C functions. Local scope variables in control blocks are declared
as global variables in the model to allow them to be referenced
by any table and action in the block. The block body usually con-
tains invocations to tables and actions, which are modeled as their
corresponding C function invocations.

Parser. Parsers are translated to multiple C functions: one for
the parser declaration itself and another for each of its states. Since
local parser parameters and variables can be accessed by any state
in its scope, both structures are modeled as global variables in C.
Parser output parameters, which represent the packet headers, are
modeled as symbolic variables, as they correspond to inputs in the
model.

Assertions. Each assertion element is modeled in C using a
particular approach. Numeric and boolean expressions, as well as
the if method, are directly translated to their equivalent statements

P4 Program

C Model

Comments

1 header ethernet_t {
2 bit<48> dstAddr;

typedef struct {
uint8_t isvalid : 1;
uint64_t dstAddr : 48;

Header fields are mapped to struct members.
The C struct also contains a header validity field.

3 bit<48> srcAddr;
Header 4 bit<16> etherType; uint64_t srcAddr : 48;
5% uint32_t etherType : 16;
6 } ethernet_t;
7 table forward_table() { void forward_table() { Tables are modeled as C functions. In this
8 actions = { int symbol; example, the table rules are unknown. A symbolic
9 forwardl; make_symbolic(symbol); variable is used to make the symbolic execution
10 NoAction; switch(symbol) { traverse both actions.
11 } case 0: forward(); break;
Table 12 key={ default: NoAction(); break;
13 hdr.ethernet.dstAddr: exact; }
14 } }
15 size = 32;
16 default_action = NoAction();

17}

18 action forward(bit<9> port) {
19 standard_metadata.egress_spec = port;
Action 20}

void forward() {
uint32_t port;
make_symbolic(port);

Actions are mapped to C functions. The action
parameters are modeled with symbolic values when
forwarding rules are unknown.

21 standard_metadata.egress_spec = port;

22 }

23 control ingress(inout headers hdr,
24 inout metadata meta) {

Control 25 applv{
26 forward_table.apply();

Block 27 }

headers hdr;

// global variables
metadata meta;

void ingress() {

Control blocks correspond to functions in the
C model. Their parameters are mapped to global
variables in the model.

28} forward_table();

29 }

30 parser TopParser(packet_in b, Parsed_packet hdr; A function is created in the model for each parser
31 out Parsed_packet hdr) { and parser state. The Parsed_packet parameter is
32 void TopParser() { made into a global variable in the C model.

33 state start { make_symbolic(hdr);

34 transition parse_ethernet; start();

35 } }

36

37 state parse_ethernet { void start(){
38 b.extract(hdr.ethernet);
39 transition select(hdr.ethernet.etherType) { }

40 0x0800: parse_ipv4;

Parser

parse_ethernet();

41 default: accept; void parse_ethernet() {

42) hdr.ethernet.isValid = 1;

43 } switch(hdr.ethernet.etherType){

44 } case 0x0800: parse_ipv4(); break;
45 default: accept(); break;

46 }

47 }

Figure 5: Example of P4 to C translation for the main P4 structures.

in C. For the remaining methods, a separate process (which we omit
due to the lack of space) is applied. Location-unrestricted methods,
such as forward, are modeled as a single boolean variable that is
initialized at the point where the assertion is declared, set at other
relevant points, and usually tested at the end of the model, after it
gets its final state when executed.

External objects. This type of structure is specific to each for-
warding device, and P4 programs only interact with their interfaces.
For this reason, the behavior of each external object should be previ-
ously known. In practice, this means integrating its corresponding
model into the translator by using libraries, for example. In this
work, we support the external objects necessary to translate the
examples presented in Section 4 (e.g. counters and meters of the
standard architecture).

3.4 Symbolically executing program models

After being generated by the process described in the previous
section, the C model of a P4 program is verified by a symbolic
engine. The symbolic execution of a program requires that all its
feasible control flows (i.e., its execution paths) are evaluated through
symbolic input variables.

Essentially, P4 programs describe how a data packet should be
processed when entering a forwarding device, generating an out-
put packet at the end or simply dropping the original packet. In
this scenario, the incoming packet headers entering the device are
treated as inputs to the model and thus are always assigned to sym-
bolic values. The number of execution paths of a P4 program, in
turn, is essentially given by its packet processing pipeline structure.
Whenever a table can only be accessed under some condition (e.g.,
depending on the used protocol), a new execution path is created.

Table 1: Expressiveness of the proposed assertion language

Program Properties / Assertions
MRI [17] Switch IDs added to packets are authentic
constant(swid)
Added IDs are not removed
if(extract_header(swid), emit_header(swid))
Timestamp Out of range timestamps are not forwarded

to receivers
if(forward, rtp.ts < max_timestamp)

switching [11]

sTag [21] Hosts connected to ports of different colors
cannot communicate
if(ingress_port == color_a &&

ipv4.dstAddr == color_b_host, !forward)

Dapper [12] Only SYN packets register new flows
Ifltraverse_path”, tcp.ack == false)
*path that register new flows
Load flow registers when is Ack packet
if(tcp.ack == 1, traverse_path™)

*path that load registers

DC.p4 [24] L3 ACL is effective
if(ipv4.dstAddr == blocked_addr, forward)
Cloned and original packet have different
output ports
! (cloned_outport == original_port &&
constant(cloned_outport))

The same happens whenever multiple actions can be invoked by
the same table, generating a new branch for each possibility.

4 EVALUATION

We have prototyped ASSERT-P4 on top of the KLEE symbolic exe-
cution engine (version 1.3.0). To build C models, we first convert
a P4 program to its JSON representation using the reference com-
piler provided by the P4 Language Consortium, and then translate
the JSON representation (a DAG) to C code using a translator we
developed specifically for this purpose. The translator contains
approximately 750 lines of Python code. Shell scripts are used to
automatically coordinate the invocation of each tool in the verifica-
tion process. We make all the source code as well as the workloads
employed in this evaluation publicly available.? The tool may be
used by other researchers, who may want to reproduce our results.
All experiments have been performed using a Linux virtual machine
(kernel version 4.8.0) with a 3 GHz core and 16 GB of RAM.

4.1 Bug finding

First, we demonstrate the effectiveness of ASSERT-P4 in finding
bugs and policy violations in programmable data planes. We uncov-
ered several of them in recent P4 applications, a few of which we
present here. All identified bugs were manually confirmed in their
respective source code. With the exception of the DC.p4 example,

Zhttps://github.com/ufrgs-networks-group/assert-p4

it was not necessary to provide forwarding rules to expose these
issues.

Dapper [12]: Dapper is a data plane performance diagnosis tool
that infers TCP bottlenecks by analyzing packets in real time. It
forwards traffic based on IPv4 addresses and uses SYN flags as well
as sequence and ack numbers for calculating metrics such as loss
rate and path latency. A failed assertion (packets with a time to live
(TTL) value of zero are not forwarded) found that Dapper forwards
packets without checking their TTL field, which can enable routing
loops in the network.

NetPaxos [5]: NetPaxos is a network-based implementation of
the Paxos consensus protocol. There are two different types of P4
programs in this application, one for Leaders/Coordinators and an-
other for Acceptors. According to the protocol, Leaders determine
a round number and ask acceptors for acknowledging it. Acceptors,
in turn, decide whether they acknowledge or not a given request
from a Leader. This process is repeated until a quorum of accep-
tors acknowledges the same round number, allowing the leader to
establish a value for a given variable and consensus is achieved.
ASSERT-P4 was able to find a bug in the current acceptor imple-
mentation. More specifically, each acceptor marks every packet that
contains a round number to be dropped before it decides whether
to acknowledge the packet or not. However, packets are not un-
marked even if they are acknowledged, which means they will not
be forwarded and consequently, the vote will not be counted by the
Leader. Ultimately, this will prevent the protocol from achieving
consensus. According to the authors feedback on this bug, the code
was ported to P46, leaving the old code base unmaintained and
exposed to bugs.

DC.p4 [24]: DC.p4 implements the behavior of a data center
switch. It contains multiple functionalities such as L2/L3 forwarding,
ECMP, VLAN, packet mirroring, tunneling and multiple ACLs (i.e.,
L2, L3 or based on more specific headers). Interestingly, ASSERT-P4
found that configuring only a layer-3 ACL (i.e., an ACL based on
IP addresses) is not enough for dropping IPv4 packets regardless
of the policy being enforced. In fact, we checked that the L3 ACL
only flags packets to be filtered by another module in the system,
which must also be appropriately configured. Although this is not
effectively a bug, it can be a dangerous design decision since there
is no documentation explaining how to properly configure the
program.

Switch [19]: Since the introduction of the DC.p4 paper, its code
base has evolved to the switch.p4 program, where it is actively
maintained. We have used ASSERT-P4 to reproduce a known, re-
ported bug on its repository: The modification of a field of an invalid
header.? This is demonstrated by testing with an assertion if the
header is valid before setting its fields.

4.2 Language expressiveness

To evaluate our assertion language, we tested its expressiveness in
terms of the properties we can specify for different P4 programs.
Table 1 shows a subset of the properties we tested for each P4 ap-
plication. The associated assertions are italicized. We can specify
a large set of properties, both program-dependent (e.g., the ones
testing if registers are correctly manipulated in Dapper) and generic

Shttps://github.com/p4lang/switch/pull/102

© 10000 = 100000 ¢ 3
€ 1000 & 4 10000 & &l
'4; r] 1000 = =
g 100 F 3 100 £ E
g 10 = = 10 =
s 1 & | |] 1k | | g

—_
n

16 20

n
£

12 16 20

n
=

Number of tables Number of assertions

@) (b)

—_

o N A OO OO

800
600
400
200

240

320 30 60 90

120

80 160
Number of rules per table

© @

Number of actions per table

Figure 6: Performance analysis of the proposed tool.

ones (e.g., testing whether headers have been removed from packets
or not). Furthermore, both security and correctness properties can
be specified, like header integrity and well-formedness, respectively.
As a research direction, we envision the automatic translation of
high-level networking and security policies to our assertion lan-
guage. This will allow network operators to easily verify complex
network topologies.

4.3 Performance analysis

In this section, we assess how our verification approach scales ac-
cording to different characteristics of P4 programs. To this end, we
used the Whippersnapper [6] benchmark to generate data plane
programs and verified instances varying the number of the follow-
ing elements, while maintaining the other parameters constant: (i)
tables in the packet processing pipeline; (ii) actions associated with
each table; (iii) forwarding rules used to configure a program; and
(iv) assertions used to express properties. Figure 6 shows the results.
When held constant, we used no forwarding rules and assertions, 1
(Fig. 6(b)) and 2 tables (Figs. 6(c) and 6(d)), and 3 actions in the first
table and 2 actions in every subsequent table.

Verification time grows exponentially with all the tested factors.
However, it is less susceptible to the increase in the number of rules
(Fig. 6(c)) and actions per table (Fig. 6(d)) compared to the number
of tables (Fig. 6(a)) and assertions (Fig. 6(b)). This complexity is
intrinsic to symbolic execution, and although we understand this is
a limitation for our tool, we envision optimizations to this scalabil-
ity problem as a research direction. Furthermore, ASSERT-P4 was
efficient on most of the tested programs, while revealing relevant
bugs. Pragmatically, most of the existing P4 programs fit into this
same efficiently verifiable class at this time [5, 11, 12, 14, 20, 23].

5 RELATED WORK

Network verification. Many tools were proposed for verifying
correctness and security properties in computer networks over the
last few years. They are based on a myriad of techniques and address
different properties and/or network architectures. Our intention
while describing them is not to be exhaustive, but summarize the
main techniques developed over the years. Flover [25] and NICE
[4] use model checking to prove that the set of rules installed in
OpenFlow switches satisfies a given networking policy. Symnet
[26] verifies data plane models built with SEFL, a language designed

to be symbolically executed. VMN [22] focuses on verifying reach-
ability and isolation in networks containing stateful middleboxes.
HSA [15] proposes header space algebra as a technique for check-
ing reachability, isolation of network slices and packet leakage.
VeriFlow [16] and DeltaNet [13] are customized solutions that use
special representations of the data plane for allowing property ver-
ification in real time. None of them, however, are able to model P4
programs. NOD [21] uses Datalog to model both the network and
its reachability properties. Recently, a solution that translates P4
programs to Datalog was proposed in the literature [21], but un-
like ASSERT-P4 it cannot reason about program-specific properties.
Finally, [9] is a concurrently ongoing work that shares the goals
of ASSERT-P4 and some of its design details. Our paper, however,
provides an in-depth evaluation of the effectiveness and scalability
of ASSERT-P4 in finding bugs and verifying properties in real P4
applications.

Assertion language. Beckett et al. [1] present an assertion lan-
guage to verify SDN applications. It enables expressing properties
that the data plane should satisfy at different points of a control
program. The assertions are verified using the VeriFlow [16] tool,
which, like Flover, acts over forwarding rules instantiated in Open-
Flow devices. While the language Becket et al. propose is used in
SDN applications, our approach is to directly annotate a data plane
program to prove properties of interest.

6 CONCLUSION AND FUTURE WORK

State-of-the-art network verification tools are unable to prove gen-
eral security and correctness properties of P4 programs. Our solu-
tion, ASSERT-P4, provides an expressive assertion-based language
for specifying properties, and a reasonably efficient tool for ver-
ifying them on data plane programs. Our evaluation shows that
ASSERT-P4 can find a broad range of bugs on real P4 applications.
In future work, we plan to investigate alternatives to improve its
performance on programs containing complex packet processing
pipelines (i.e., with dozens of match-action tables) as well as control
configurations.

ACKNOWLEDGMENTS

We thank Nate Foster and the anonymous reviewers for the feed-
back. This work has been supported by grants NSF CNS-1740911
and RNP/CTIC (P4Sec), as well as FAPERGS (APE).

REFERENCES

(1]

=

8

=

[9

=

[10]

(1

[12]

[13]

Ryan Beckett, Xuan Kelvin Zou, Shuyuan Zhang, Sharad Malik, Jennifer Rexford,
and David Walker. 2014. An Assertion Language for Debugging SDN Applications.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking
(HotSDN ’14). ACM, New York, NY, USA, 91-96. https://doi.org/10.1145/2620728.
2620743

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87-95. https://doi.org/10.
1145/2656877.2656890

Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI'08). USENIX Association, Berkeley, CA, USA, 209-224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kosti¢, and Jennifer Rexford.
2012. A NICE Way to Test Openflow Applications. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI'12).
USENIX Association, Berkeley, CA, USA, 10-10. http://dl.acm.org/citation.cfm?
1d=2228298.2228312

Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Comput. Commun. Rev. 46, 2 (May 2016), 18-24.
https://doi.org/10.1145/2935634.2935638

Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,
Jennifer Rexford, Robert Soulé, and Hakim Weatherspoon. 2017. Whippersnapper:
A P4 Language Benchmark Suite. In Proceedings of the Symposium on SDN Research
(SOSR ’17). ACM, New York, NY, USA, 95-101. https://doi.org/10.1145/3050220.
3050231

Mihai Dobrescu and Katerina Argyraki. 2014. Software Dataplane Verification.
In 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14). USENIX Association, Seattle, WA, 101-114. https://www.usenix.org/
conference/nsdil4/technical-sessions/presentation/dobrescu

Seyed K. Fayaz, Tianlong Yu, Yoshiaki Tobioka, Sagar Chaki, and Vyas Sekar.
2016. BUZZ: Testing Context-Dependent Policies in Stateful Networks. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 275-289. https://www.usenix.org/
conference/nsdil6/technical-sessions/presentation/fayaz

Nate Foster, Cole Schlesinger, Robert Soulé, and Han Wang. 2017. A Program
Logic for Automated P4 Verification. In P4 Workshop.

Lucas Freire, Miguel Neves, Alberto Schaeffer-Filho, and Marinho Barcellos.
2017. POSTER: Finding Vulnerabilities in P4 Programs with Assertion-based
Verification. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). ACM, New York, NY, USA, 2495-2497.
https://doi.org/10.1145/3133956.3138837

Tomas G. Edwards and Nick Ciarleglio. 2017. Timestamp-Aware RTP Video
Switching Using Programmable Data Plan. Industrial Demo. In ACM SIGCOMM.
Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017. Dapper: Data
Plane Performance Diagnosis of TCP. In Proceedings of the Symposium on SDN
Research (SOSR °17). ACM, New York, NY, USA, 61-74. https://doi.org/10.1145/
3050220.3050228

Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked

[14

[15]

=
&

(17

[18

[19

[20

[21

[25

[26

[27]

Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 735-749. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/horn-alex

Theo Jepsen, Leandro Pacheco de Sousa, Huynh Tu Dang, Fernando Pedone, and
Robert Soulé. 2017. Gotthard: Network Support for Transaction Processing. In
Proceedings of the Symposium on SDN Research (SOSR ’17). ACM, New York, NY,
USA, 185-186. https://doi.org/10.1145/3050220.3060603

Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space
Analysis: Static Checking for Networks. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation (NSDI’12). USENIX Associ-
ation, Berkeley, CA, USA, 9-9. http://dl.acm.org/citation.cfm?id=2228298.2228311
Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey.
2012. VeriFlow: Verifying Network-wide Invariants in Real Time. In Proceedings
of the First Workshop on Hot Topics in Software Defined Networks (HotSDN ’12).
ACM, New York, NY, USA, 49-54. https://doi.org/10.1145/2342441.2342452

The P4.org language consortium. 2017. MRI Exercise. https://github.com/p4lang/
tutorials/blob/master/SIGCOMM_2017/exercises/mri/solution/mri.p4. (2017).
The P4.org language consortium. 2017. P4 reference compiler. https://github.
com/p4lang/p4c. (2017).

The P4.org language consortium. 2018. Switch. https://github.com/p4lang/switch.
(2018).

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. LossRadar: Fast

Detection of Lost Packets in Data Center Networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and Technolo-

gies (CoNEXT ’16). ACM, New York, NY, USA, 481-495. https://doi.org/10.1145/
2999572.2999609

Nuno P. Lopes, Nikolaj Bjerner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX
Association, Oakland, CA, 499-512. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/lopes

Aurojit Panda, Ori Lahav, Katerina Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks with Mutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX
Association, Boston, MA, 699-718. https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/panda-mutable-datapaths

Salvatore Signorello, Radu State, Jérome FranAgois, and Olivier Festor. 2016.
NDN.p4: Programming information-centric data-planes. In NetSoft.

Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-
center Switch. In Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research (SOSR ’15). ACM, New York, NY, USA, Article 2,
8 pages. https://doi.org/10.1145/2774993.2775007

Sooel Son, Seungwon Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu.
2013. Model checking invariant security properties in OpenFlow. In 2013 IEEE
International Conference on Communications (ICC). IEEE, 1974-1979.

Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. 2016. Sym-
Net: Scalable Symbolic Execution for Modern Networks. In Proceedings of the
2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY, USA,
314-327. https://doi.org/10.1145/2934872.2934881

The P4.org language consortium. 2017. P4_16 Language Specification.
https://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html. (2017). Accessed:
2017-11-08.

	Abstract
	1 Introduction
	2 Motivating examples
	3 System design
	3.1 Overview
	3.2 Specifying assertions
	3.3 Constructing C models
	3.4 Symbolically executing program models

	4 Evaluation
	4.1 Bug finding
	4.2 Language expressiveness
	4.3 Performance analysis

	5 Related work
	6 Conclusion and future work
	Acknowledgments
	References

