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ARTICLE INFO ABSTRACT

The urban heat island effect, exacerbated by rising average surface temperatures due to climate change, can lead
to adverse impacts on city populations. Fine resolution modeling of the spatial and temporal distribution of
extreme heat risk within a city can improve the strategies used to mitigate this risk, such as the issuance of
targeted heat advisories to city residents. In this paper, we combine a recently developed method for prob-
abilistic modeling of urban temperatures with previously developed vulnerability assessments, and then im-
plement sensor placement optimization techniques to guide temperature monitoring in urban areas. A variety of
metrics are used to optimize the placement of temperature measures to best support decision-making for
monitoring and responding to extreme heat risk. This optimal sensor placement methodology is demonstrated
for the city of Pittsburgh, PA, resulting in several proposed temperature monitoring schemes based on the
various sensor performance metrics investigated. We quantitatively and qualitatively compare these schemes to
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identify the relative merits of each proposed metric.

1. Introduction

It is well established that increasing temperatures exacerbate both
heat-related and air-quality-related illnesses and deaths [1], so it is
important to understand how interactions between hazard, exposure,
and vulnerability to high temperature create risk. These interactions are
typically quantified as a product of terms relating to the hazard posed
by a given factor, and the vulnerability and exposure of the population
to this hazard.

Vulnerability indicates a population's sensitivity to extreme heat,
and is usually quantified in terms of mortality [2], which is positively
correlated with temperature beyond about 27 °C [3,4] (the exact
threshold depends on the background climate to which the population
has adapted). Many factors impacting vulnerability have been identi-
fied, e.g. age, socio-economic status, and whether individuals live alone
[5-9]. Factor analysis has been used to identify which factors con-
tribute the most to vulnerability [10-12]. Exact exposure to extreme
heat is difficult to quantify due to daily population movements, and so
vulnerability and exposure are typically analyzed together, with all
individuals considered equally exposed [13-15].
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Hazard indicates the severity of the heat to which a population is
exposed. Hazard can be assessed in a variety of ways, including average
air temperature [13], surface temperature at a specific time [11,14], or
the number of heat wave days per year [15]. In previous work [16], we
developed a probabilistic surrogate Gaussian process model of spatio-
temporal heat hazard in an urban area that captures the properties of
the urban heat island (UHI) and quantifies the variability in surface
temperatures. Measured temperature data can update this prior model
to an improved posterior (i.e. post-measurement) model via Bayesian
techniques.

In this paper, we investigate the placement of sensors to monitor
surface temperature in urban areas. This monitoring is done in order to
reduce the physical and monetary consequences of extreme heat
through better-informed response and mitigation activities. There have
been numerous efforts to optimize sensing in indoor environments to
support decision-making about temperature [17,18], air quality
[19,20], and energy usage [21] within buildings in an effort to improve
human health and comfort while reducing operational costs. The re-
lationship between the outdoor and indoor environments, their effects
on one another, and the movement of people between these
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environments throughout the day make the monitoring of outdoor
temperatures an important consideration as well [22]. The practical
aim of this monitoring is to support strategies to address urban heat
risk. These include short-term responses such as the issuance of heat
advisories [13] or the opening of heat shelters [23] and long-term
strategies including cool or green roofs [24,25] or green infrastructure
[26]. These actions have intrinsic costs (e.g. economic disruption, in-
creased energy consumption) and benefits (reduced mortality and
morbidity), and can have varying effectiveness [27].

To address the issue of outdoor urban temperature monitoring, we
make use of a calibrated spatio-temporal heat hazard model for the city
of Pittsburgh, Pennsylvania, created using high-resolution WRF-PUCM
urban microclimate simulations [28,29] of the region, as described in a
recent publication [16]. Using this model, we apply a set of sensor
placement metrics for the case study area to optimize the collection of
information [30,31]. Specifically, we investigate the use of conditional
entropy [32], weighted prediction error [33,34], and value of in-
formation [35-37] metrics to improve the predictive capabilities of the
heat hazard model. We compare their performance to draw general
conclusions on their applicability to urban temperature monitoring.

2. Heat hazard, vulnerability, and risk

This section describes the hazard model of [16] and the vulner-
ability assessment of [12], which we combine into an urban heat risk
model.

2.1. Heat hazard modeling

We begin by summarizing the probabilistic urban temperature
model developed in Ref. [16]; the reader is referred to that paper for
details. We denote the spatio-temporal field of surface temperature at
location x and time ¢ as T'(x, t), and decompose it as:

T(x,t) = Ty(t) + H(x, t) + T (%, t) (€D)]

where Ty (¢) is the average temperature of the region at time ¢ (note that
in this paper time is always discretized hourly), T (x, t) is the tem-
perature pattern (which captures the expected or typical daily cyclic
UHI pattern) and T’/(x, t) is the residual, i.e. the variability in tem-
perature that is not captured in the previous terms. Fig. 1 demonstrates
the decomposition of the temperature field for a typical time in and
around the city of Pittsburgh, PA.

For each term in Eq. (1), we calibrate a Gaussian process model.
Similar models have been proposed for a wide variety of spatio-tem-
poral phenomena, such as rainfall intensity, corrosion initiation, and
seismic risk [36,38,39]. For a general overview of Gaussian process
modeling, the reader is referred to [40]. To perform model calibration,
we use fine resolution (1 km grid scale, 1h temporal resolution) nu-
merical weather simulation data from an historical extreme tempera-
ture event in the region. The resulting calibrated spatio-temporal
temperature field model is:

T, 1) ~ 92 (g, Kt 1) + K, 6, x5, 1) + K (i, ti, X;, 1))
(2)

where u; denotes the mean temperature for the region and the cov-
ariance functions Kp(t;, tj), KX, 4, X, tj), and KT,'(X,-, ti, Xj, t;) de-
scribe the covariance between the regional average temperature, cyclic
temperature pattern, and residual temperatures, respectively, at dif-
ferent spatio-temporal coordinates {x;, t;} and {x;, t;}. This Gaussian
process model defines a multivariate Gaussian distribution for T, the
vector of temperatures at all space-time coordinates in the spatial do-
main X = {X,,...,X,y} (i.e. the set of points in a 1km by 1km grid cov-
ering the region of interest) and time duration 7 = {,...,t,,} (i.e. the set
of time steps spaced at 1 h intervals over the analysis period of interest):

T ~ A (. Ky) ®)
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where ;. is the mean vector and Ky is the covariance matrix obtained
by evaluating the Gaussian process model at all pairs of space-time
coordinates.

Observations of the temperature at specific locations and times (or
observations of related quantities such as the regional average tem-
perature) can update this prior model. Let Y denote a set of such ob-
servations (i.e. a set of locations and times where observations are
taken) and y be the specific data collected under measurement scheme
Y. We model these data as a linear function of T with zero-mean
Gaussian noise:

y=BT+e e~ (0, Ko @)

where matrix 8, specifies which elements (or linear combinations of
elements) in T are observed under scheme Y, and € denotes the ob-
servation noise, which is potentially correlated between measures as
described by noise covariance matrix K.. For problems with measure-
ments taken over time, matrix §, should be defined differently at dif-
ferent times, such that observations which are planned for the future
but have not yet been made are not included when defining the matrix.

Since any linear combination of Gaussian variables is itself de-
scribed by a multivariate Gaussian, the distribution of measurement
values is:

y ~ A (Ry, Ky) (5)

where the expected value of the observations is p, = Bym; and the
covariance of the observations is Ky = ﬁYKTﬁiT, + K.. Given measure-
ment data y, we update the prior model in Eq. (3) to a posterior model:

Tly ~ A" (W Kry) (6)
where the parameters are evaluated as:
Moy = Br + KKy (y — py)

Kry = Kr — KryKy'KLy 7

with Kyy = KTﬁXT,. Note that Kyy is a function of measurement scheme
Y only, while py, is a function of specific measurements y. Following
this procedure, we can process any measurement of the temperature
field described by Eq. (4) to update the prior temperature model of Eq.
(3) to a posterior model as in Eq. (6). We then use the posterior model
for temperature prediction, taking any remaining uncertainty into ac-
count. Note that measurements processed as above may come from a
variety of sources, e.g. measurements of local temperature T (X, t),
predictions of regional temperature Tp(¢t) from coarse-resolution
weather models, and assessments of temperature pattern T; (x, t) from
prior fine resolution simulations of the region or remote sensing data
(e.g. Ref. [41]).

2.2. Heat vulnerability

We quantify heat vulnerability using an index previously developed
for Pittsburgh [12]. The index was created after analyzing 13 socio-
economic metrics (listed in Table 1), such as age, income, and educa-
tion. These metrics are identified in the literature as contributing to
heat-related vulnerability [10,11,15]. A factor analysis was conducted
to group these metrics into factors that explain at least 70% of the
variance in all metrics. These factors were then averaged and binned
into 6 increments for each city census block. The result was an index
from 1 to 6, with 6 corresponding to a higher vulnerability (with the
factors 2 or more standard deviations above the mean) and 1 to a lower
vulnerability (2 or more standard deviations below the mean) [12]. In
this paper, we define the vulnerability index V (x) for location x (which
applies to the one-square-kilometer box centered at that coordinate) as
the area-weighted average of vulnerability indices associated with the
census blocks located within that one-square-kilometer box. This vul-
nerability index field is depicted in Fig. 2.

The vulnerability index used here already considers exposure-
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Fig. 1. Example of decomposition of the temperature field for Pittsburgh, PA, for ¢t = 17: 00 local time: a) total temperature field across the region at this time; b)
regional average temperature for the day, with the current time indicated; c) temperature pattern for the region at this time of day; d) residual between the

temperature pattern and the true temperature for this time.

related factors, such as access to air conditioning and to green spaces.
Therefore, following the approach of [13], we consider exposure and
vulnerability together in this work. We assume that all areas except
those which are mostly made up by rivers have populations exposed to
extreme heat. While a spatio-temporal model of urban population
movements might be created to describe the varying distribution of
people in a city throughout the day, no such models were identified in
the literature and the development of a separate model is beyond the
scope of this work. Therefore, we assume vulnerability and exposure
are constant with time, i.e. variations in population distributions
throughout the day are not considered, although the framework de-
veloped here could easily be extended to consider temporal variations
in these properties when such data become available.

Table 1

2.3. Heat risk

We combine our hazard value, i.e. the surface temperature T (x, t),
with our spatial vulnerability index V (x) to define a spatio-temporal
risk index:

Rx, t) =T, t) V(%) ®

The spatio-temporal risk is described by a Gaussian process model,
since it is the product of a Gaussian process model with a deterministic
scaling field. While we must note that actual health hazard is related to
air temperature, humidity, wind speed, and ambient radiation as well
as the surface temperature, here we seek to demonstrate a proposed
methodology for optimizing sensor placement, and therefore, we re-
strict our analysis to surface temperature. The methodology presented
here can be readily replicated for all other hazard factors, or for a

Factors considered in the vulnerability index. The list is reproduced from Ref. [12].

Persons over 65 years old

Persons living alone

Persons over 65 years old and living alone
Persons below the poverty line

Persons with poor English language skills
Persons without high school diplomas

Ethnic minorities

Immigrants from Latin America

Persons with Diabetes

Persons in homes lacking central air conditioning
Persons in homes lacking any air conditioning
Access to green space (average)

Access to nearby green space (variance)

(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block population)
(by percent of census block area)

(by percent of census block area)
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Fig. 2. Vulnerability index map for Pittsburgh, PA. Blue areas correspond to
sparsely populated zones, usually due to the prevalence of parks, water, and/or
industrial areas. Based on results from Ref. [12]. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

combined thermal comfort indicator (e.g. Ref. [42]). Furthermore, note
that this formulation ignores any potential synergistic effects or non-
linear interactions between the temperature hazard and vulnerability
index.

The probabilistic character of the heat hazard model allows for
different heat risk indices to be derived from it. For instance, previous
studies, e.g. Refs. [11,14], quantify hazard using the temperatures ob-
served at a specific time during a heat wave. Such information can be
derived in the Gaussian process hazard model via appropriate appli-
cations of Egs. (6)—(8) to define a posterior temperature field condi-
tioned on available observations. Alternatively [15], defines hazard
using the number of heat wave days (i.e. days with peak temperatures
exceeding a set threshold) per year. This measure can also be obtained
from the Gaussian process hazard model by conducting a forward
propagation analysis (e.g. using Monte Carlo simulations) and counting
the number of days the threshold is exceeded.

As an example of how the probabilistic model can be used to gen-
erate a static heat risk index map (such as has been used in previous
work), we consider the 95th percentile of the local temperature
throughout the day as a metric to quantify the heat hazard. Let
Tose (%, t) be the 95th percentile temperature at location x and time ¢, as
predicted by the probabilistic model. We take the maximum of these
temperatures over a 24 h period as the hazard, or Tys¢ (x). This quantity
is the peak of a time series for the 95th percentile of the probabilistic
temperature distribution at a given location, and represents a con-
servative estimate for the peak daily temperature. The model T (x, t)
used to define these percentiles is calibrated for the region of Pittsburgh
and conditioned on measurements of T (x, t) obtained from the training
data set as discussed by Ref. [16]. The resulting Tys¢(x) temperature
field is depicted in Fig. 3. Note that this is only one potential method for
defining hazard and is used here for illustrative purposes only. To allow
comparison between hazard and vulnerability, these hazards are binned
into 6 increments based on the range of values across the city. This is
denoted by bin[-], which describes a mapping from the continuous
temperature values to a integer between 1 and 6 (this is the same
binning function used to develop the vulnerability index, as described
in 2.2). Following this transformation, the hazard and vulnerability
measures are both indices ranging from 1 to 6, and are directly multi-
plied to define a risk metric:
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Fig. 4. An example risk index based on 95th percentile peak daily temperature
in Pittsburgh, PA, and the vulnerability map of Fig. 2. This index is normalized
between 0 and 1. Downtown Pittsburgh is indicated with a red circle. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Rosq (%) = bin[ max Tosy (X, f)] V(%)
te[0,24] 9

The resulting risk index map is shown in Fig. 4, normalized to vary
from O to 1. High-risk areas include downtown Pittsburgh (indicated
with a circle in the figure) as well as the northeast and northwest.

Many heat risk indices, including that of Eq. (9), involve non-linear
functions of the temperature field, and so can no longer be described as
Gaussian. Therefore, it is computationally more difficult to analyze
these mappings directly in order to determine the utility of sensor
placements in reducing uncertainty and supporting risk mitigation ac-
tions. Furthermore, static hazard measures (e.g. using the 95th per-
centile temperature, as demonstrated above) ignore the changing
nature of hazard and risk over time, while the full spatio-temporal
hazard model captures these changes. For these reasons, the following
sections apply sensor placement metrics directly to the underlying
Gaussian temperature and risk fields, as in Eq. (8). While not used di-
rectly, the risk index of Eq. (9) and Fig. 4 provides context on the nature
of the urban heat risk in Pittsburgh.
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3. Sensor placement optimization theory

Many factors should be considered when selecting optimal locations
to measure temperature in an urban area. These include the uncertainty
or variability in the local temperature field, the vulnerability of people
in different areas to extreme heat, and the available actions (and their
consequences) which can be undertaken to mitigate extreme heat risk.
A map of the spatially distributed risk, such as Fig. 4, may not be suf-
ficient. For example, monitoring temperature in places where risk is
high is an intuitive solution, but may neglect areas where additional
information could significantly reduce uncertainties in the risk; con-
versely, focusing on areas of high uncertainty but very low overall risk
is also inefficient.

We investigate three sensor placement metrics for the urban tem-
perature monitoring problem: a conditional-entropy-based metric, a
metric based on the predictive performance of the temperature model
through its weighted error, and a value of information (VoI) metric.
Each of these metrics corresponds to a particular viewpoint on what
information is important when monitoring temperature. The condi-
tional entropy metric's goal is to reduce the uncertainty in the tem-
perature field. The weighted prediction error metric is also focused on
reducing uncertainty, but puts higher weight on uncertainty in areas
which are assessed to be more vulnerable to extreme heat. VoI models a
decision-making problem for issuing heat advisories and identifies ad-
ditional information which might best support this decision-making.
Additional details on these metrics are provided below as well as in
Appendix C. To optimize sensor placement via these metrics, we make
use of an efficient but approximate forward greedy optimization algo-
rithm.

3.1. Conditional entropy

Entropy is a way of measuring the uncertainty in a random field
[32]. Observations of this field can reduce its uncertainty, with this
uncertainty after observation (termed the “posterior uncertainty”)
quantified as the conditional entropy. An optimal sensor placement
scheme will minimize uncertainty after observation, i.e., it will mini-
mize the conditional entropy:

Y* = argmin, H(T|Y) 10)

where H(T|Y') denotes the conditional entropy of temperature field T
conditioned on measurement set Y.

3.2. Weighted prediction error

Prediction error measures the sum of square differences (i.e. the
square of the L-2 norm) between temperature T (x, t) and predicted
temperature T (x, t). The expected prediction error is:

Err(T) = D) o Y wxEr(T(x, 1) — T(x, )’

xeX

1D

tet

where [Er denotes the expected value with respect to the uncertain
temperature field. To account for the effects of spatially and (poten-
tially) temporally-varying vulnerability, weighting coefficients w, and
wy are used. In this paper, we use the vulnerability index V (x) of 2.2 to
define the weight, with wy = V(x) V x € X. In this way, prediction
errors in more vulnerable areas are penalized more heavily, with pe-
nalties proportional to the product of the local vulnerability and the
temperature variance. Note that, under this choice of weighting, this
metric measures the uncertainty in the risk field R(x, t) of Eq. (8). Also
note that we assign w, to be constant (i.e. w, =1 V t € 7) since we
assume (as discussed in 2.2) that vulnerability and exposure do not vary
with time. The optimal sensor placement by this weighted prediction
error metric is that which minimizes the prediction error:

Y* = argmin, Err(TY ) 12)
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where Err(T|Y ) denotes the expected weighted prediction error using
the best possible prediction T of T, informed by the information col-
lected under measurement scheme Y.

3.3. Value of information

Vol measures the utility of sensor measurements, quantifying how
costs can be reduced in a decision-making problem by incorporating
additional information to make better decisions [35]. In such a pro-
blem, an agent must select a set of actions A for managing an uncertain
system. For this paper, we consider the actions to be choices of whether
or not to issue heat advisories to certain areas. Based on the selected
actions and the true temperature field T, the agent suffers a loss or
penalty L(T, A). This penalty can be a monetary value, or any other
mapping from the actions and temperatures to a descriptive quantita-
tive value. A higher value of L(T, A) represents a less desirable out-
come. In this paper, the vulnerability index V (x) of Section 2.2 is in-
corporated into the penalty function, such that failing to issue an
appropriate heat advisory in a more vulnerable area will incur a higher
penalty (see Appendix C for details). Vol is then defined as the differ-
ence between the prior and posterior expected losses:
VoI(Y) = minE;L(T, A) — [Ey minEpyL(T, A) 13)

A A

That is, Vol is the amount by which the penalty is expected to be
reduced by having access to information from Y prior to making deci-
sions A, and thereby being able to make more appropriate decisions
based on more complete information. The optimal sensor placement
scheme under the Vol metric is the set of measurements Y that max-
imizes the net Vol:

Y* = argmax, VoI(Y) — C(Y) 14

where C(Y) denotes the cost to the managing agent of carrying out
measurement scheme Y (expressed in the same units as VoI). Appendix
C provides further information about Vol and how it is evaluated, and
introduces the concept of regret, the complement to the Vol.

3.4. Greedy optimization

Sensor placement is a problem of combinatorial optimization, i.e.
selecting a few measurements from the set of potential measurements
being considered. In general, the only guaranteed way to find the true
optimal solution in this type of problem is to enumerate every possible
set of measurements, compute the sensor placement metric value for
each set, and finally select the best set from among all possibilities. In
most practical problems, this exhaustive search method is infeasible,
and so a fast but approximate approach is used [31].

For this paper, we use a forward greedy algorithm: this approach
builds up the set of measurements one at a time. It does so by selecting
the single measurement that most improves the sensing metric at each
step and adding this measurement to the chosen set. Pseudo-code for
forward greedy maximization is presented in Algorithm 1. This algo-
rithm can be directly used for the Vol metric with Eq. (14) as the ob-
jective. For the minimization of conditional entropy and weighted
prediction error, the objectives of Eq. (10) and Eq. (12) respectively
should be multiplied by negative one for use as the objective.

In general, because this algorithm is an approximate solution
method, there is no guarantee that it will produce an optimal result.
However, both the conditional entropy and weighted prediction error
metrics exhibit a set functional property known as submodularity, and
theoretical guarantees on the performance of the greedy optimization
approach on functions with this property are available [33,43]. For the
Vol metric, there is unfortunately no such guarantee, but empirical
evidence suggests it performs sufficiently well to justify its use in most
problems [36].

Algorithm 1. Pseudo-code for forward greedy maximization
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Inputs: Set of candidate measurements: Yan
Objective function: Objective(-)
Constraint function: Constraint(+)
Upper limit for constraint: b

Initialize: Ygecteq < 0

Ypossible < yall

while |Ypossible| >0
Ynew < argmaXyEYpossibleOb]'ECtive(Yselected u y)
if Constraint(Yyejected U Ynew) < b

yselected < Yselected U Ynew

end
Ypossible < Ypossible\)’new
end
Output: Set of selected measurements: Yselected

In the above code, « denotes assignment, @ denotes the empty
set, | - | denotes the size of a set, € denotes an element of a set, U
denotes the union operator, and \ denotes set subtraction.

4. Case study: Pittsburgh, PA

We conduct sensor placement using a previously calibrated prob-
abilistic model for urban temperatures in Pittsburgh [16] together with
the three metrics discussed in 3, using the objective functions of Egs.
(10), (12) and (14), optimized by using the greedy algorithm discussed
in 3.4. We assume that a) accurate forecasts of the average temperature
in the city (Tp), b) prior simulations of the cyclic temperature pattern
(Th), and c) local temperature measurements are available to update the
probabilistic model (note that this corresponds with use case number 4
in Ref. [16]). It is the locations of these latter local measurements which
are being optimized. We consider this the most realistic use case be-
cause accurate regional temperature forecasts are commonly available
(e.g., from the National Weather Service) and historical simulations of
temperature patterns can be generated by WRF-PUCM (as in Ref. [16]).

We further assume that, once placed, a temperature sensor will
continuously gather data over time at a negligible additional cost. Thus,
we need only choose the locations within the domain (X) to place these
monitors. By adjusting the method, simultaneous placement and sche-
duling of measurements could also be considered at the cost of in-
creased computational time [44]. The potential measurement sites
considered correspond to a 1 km grid over the city. This set of possible
measurement sites, which we denote Yy, consists of 122 locations, one
for each grid point.

4.1. Optimal sensor placement via the conditional entropy metric

First, sensor placements are optimized to reduce the conditional
entropy of the posterior temperature field within the city of Pittsburgh.
For reference, the prior standard deviation (which is related to the prior
entropy) is shown in Fig. 5. The results in Fig. 6 plot the locations of 9
greedily optimized temperature measurement locations throughout the
city. These sensor locations are distributed evenly over the domain of
interest to reduce overall uncertainty in temperature values throughout
the city. The posterior standard deviation of the temperature field, i.e.
the remaining uncertainty in the field after measurements are taken at
the prescribed locations, is also indicated. Note that conditional entropy
decreases as more sensors are considered, and therefore the set Yy,
would have the smallest conditional entropy. However, the use of this
set is assumed to be impractical due to the high cost of installing so
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Fig. 5. Prior standard deviation of the temperature field T’ (x, t) for Pittsburgh,
PA, before the placement of sensors.
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Fig. 6. Optimized measurement locations for reducing the conditional entropy
of the temperature field in Pittsburgh, PA. Sensing locations are indicated by
x's, while the pseudocolors indicate the posterior standard deviation of the
temperature field conditional to these measurements. Numbers next to the
sensing locations indicate the order they were selected by the greedy optimi-
zation algorithm. The city's outline is also indicated.

many sensors. The number of sensors to use is chosen such that the sets
optimized under each metric have the same number (nine) of sensors,
allowing for direct comparison between them, as discussed in Appendix
B.

4.2. Optimal sensor placement via the weighted prediction error metric

Next, sensing locations are optimized based on the residual pre-
diction error weighted by the local vulnerability to extreme tempera-
tures, as discussed in 3.2. The results are shown in Fig. 7, plotting the
nine locations where sensors should be placed to reduce the overall
weighted temperature prediction error throughout the city. Again, even
though adding more sensors will always decrease the prediction error,
we use an optimized subset of Y;; with the same number of sensors as
selected under other metrics. Because the vulnerability index is used as
a weighting factor, the sensing scheme shown here is different from that
indicated in Fig. 6, although one sensor placement is common to both
schemes. Here, sensor placements generally correspond with areas
where temperature variability and vulnerability are both relatively
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Fig. 7. Optimized measurement locations for reducing prediction error of the
temperature field weighted by the vulnerability field in Pittsburgh, PA. Sensing
locations are indicated by x's, while the pseudocolors indicate the posterior
weighted prediction error conditional to these measurements. Numbers next to
the sensing locations indicate the order the placements were selected by the
greedy optimization algorithm. The city's outline is also indicated.

high. Using this metric, the error in the temperature prediction across
the city is higher than when using the conditional entropy metric, al-
though the error in the risk prediction is lower, as we will illustrate in
4.4.

4.3. Optimal sensor placement via the value of information metric

Finally, we optimize sensor placements using the Vol metric as
described in 3.3 to support the issuance of heat advisories. In this case,
we assume that the cost for measuring temperature continuously during
a summer is 0.025 per location (in the same units as the penalty
function L(T, A)), representing about 1% of the economic penalty for
issuing a heat advisory for that location for 1h. Using this cost, the
optimal number of sensors to use for this problem is evaluated to be 9
(the sensitivity of this result to the sensing cost is examined in Appendix
B). The results of this optimization are shown in Fig. 8. The chosen
measurement locations are superimposed on the expected regret (i.e.
the difference between the Vol provided by all potential sensors, or
VoI(Y,y), and that provided by the selected set of sensors, VoI(Y)) for a
particular date and time, spatially distributed over the city. The regret
plotted in Fig. 8 illustrates how information collected at just a few lo-
cations within the city (less than one tenth of the possible measurement
locations) allows the predicted temperature field to be updated
throughout the area, and for these updated predictions to be used to
improve decision-making to reduce losses even in places where no di-
rect measurements are made.

4.4. Comparison of metrics

Table 2 compares the performance of the sensor sets selected using
the three metrics considered. The set optimized under the conditional
entropy metric, depicted in Fig. 6, is denoted Y7,,. The set optimized
under the weighted prediction error metric, depicted in Fig. 7, is de-
noted Yy,,. The set optimized under the Vol metric, depicted in Fig. 8, is
denoted Yy,;. The performance of each set is assessed using the three
different metrics. Performances are listed as percentages of the value for
each metric which would be achieved by measuring Y,;;. A higher per-
centage corresponds to a better sensor placement under all metrics in
this table. Note that sets Yy, Yg,;, and Yy, all contain 9 sensing loca-
tions, while Y,; contains 122.
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Fig. 8. Optimized measurement locations supporting decision-making for heat
advisory issuance via the Vol metric in Pittsburgh, PA. Sensing locations are
indicated by x's, while the pseudocolors indicate the expected regret (the dif-
ference between the Vol of all possible measures and the Vol provided by
measuring at the selected locations) corresponding with the indicated sensor
placements, distributed over space, for June 27, 2012 at 1630 h. Numbers next
to the sensing locations indicate the order the placements were selected by the
greedy optimization algorithm. The city's outline is also indicated.

Table 2
Comparative results for sensor placement metrics.

Sensor Set Percent of Metric Value for Yy

H(TIY) Err(T]Y) VoI(Y)
Yiine 11.3% 68% 23%
Yie 10.8% 72% 35%
Yvor 9.7% 57% 42%

The set optimized under each metric is the best set when evaluated
by that metric (e.g. Y5, is the best set as evaluated by the conditional
entropy metric); this result is to be expected, and indicates how the
greedy optimization approach used, although approximate, is still ef-
fective. Comparing across metrics, the conditional entropy metric does
not vary greatly across sets, with Yy,; performing only slightly worse
than Yg,,. By contrast, under the Vol metric, Yz, achieves only about
half the value of Yy,. The set Y, always performs either best or
second-best, while the set Yy, performs worst except under the Vol
metric. This suggests that the weighted prediction error may be a good
proxy for the other metrics for performing optimization, but that the
Vol metric tends to select sensor placements that are not favored by the
other metrics.

Comparing sensor placements qualitatively, those selected under
the conditional entropy metric seem to be evenly dispersed across the
region, as well as along its perimeter. Placements selected under the
weighted predication error metric are similarly distributed, but with
fewer measurements along the perimeter. Placements selected under
the Vol metric are concentrated in the downtown area, as well as south
and southeast of there. Comparing these results with the risk index map
of Fig. 4, there is no clear indication that high-risk or low-risk areas are
particularly focused on by any metric. For example, while the Vol
places some measures in the high-risk downtown area, similarly high-
risk areas to the north are ignored, while many sensors are allocated to
more moderate-risk areas in the south.

This comparison supports the assertion in 3 that heat risk alone is
not sufficient to identify areas of interest for temperature monitoring.
Some combination of the temperature pattern, prior uncertainty, and
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vulnerability should be considered. Of the metrics considered here, the
Vol takes all of these factors into account through a decision-making
problem taking into account temperature thresholds and vulnerability.
The conditional entropy metric does not take local vulnerability into
account, and the weighted prediction error metric seeks to minimize
uncertainty in risk, even in areas where the magnitude of the risk may
be low. Therefore, we assert that the Vol metric should be preferred, as
it accounts for relevant decision-making factors that the other metrics
do not. However, these other metrics may still be of use in cases when
the decision-making problem being supported is not well-defined, when
the inputs needed for evaluating the losses are too uncertain, or when
the goal of the sensing effort is to reduce temperature uncertainty or
prediction errors only, without consideration for heat response deci-
sion-making implications. Furthermore, the computational costs asso-
ciated with evaluating conditional entropy and weighted prediction
error are lower than those related to evaluating Vol.

For temperature monitoring in the city of Pittsburgh, this case study
suggests two alternative approaches to temperature monitoring. First,
sensing efforts can be distributed across the city; this will best support
accurate prediction of temperature throughout, even when taking into
account differing vulnerabilities between neighborhoods. Second,
monitoring efforts can be focused in central and southern Pittsburgh, as
these will best support heat wave advisory issuance under the current
decision-making model, depending on the priorities of city or local
government, and/or the National Weather Service.

5. Conclusion

In this paper, we optimize the locations of temperature measure-
ments for updating the Gaussian temperature field model of [16]. This
allows sensing resources to be used optimally to support decision-
making for the response to and mitigation of extreme heat events in
urban areas. The Gaussian temperature model decomposes the tem-
perature field into consistent time- and space-varying components (T
and T;) and an uncertain perturbation component (T’/), and provides a
statistical framework for optimizing sensor placement that is not fea-
sible using temperature fields obtained by numerical models alone.

We present a case study application for Pittsburgh, Pennsylvania,
comparing three potential sensing metrics. Of these, only Vol captures
information about uncertainty, vulnerability, and decision-making in
guiding sensor placement. Although the relationship between extreme
temperatures and their impacts is still incompletely understood, the Vol
has the potential to become the key metric for supporting decision-
making for urban heat risk response.

The methods presented in this paper can support targeted heat wave
advisory issuance. Location- and time-specific warnings (e.g. “any
outdoor activities in Schenley Park should be rescheduled until after

Appendix A. Nomenclature
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4P M due to extreme heat”) might overcome the lack of understanding
regarding response to city-wide heat advisories in Pittsburgh identified
by Ref. [27]. More generally, these methods support an improved un-
derstanding of urban heat risk, including its uncertainty, which is im-
portant for robust urban decision-making regarding climate change
[45].

In order to extend this methodology to other urban areas, two main
components are needed. First, the probabilistic temperature model
must be created and calibrated, which requires fine-resolution tem-
perature data obtained through numerical simulation using WRF-PUCM
or a comparable modeling approach. Second, an assessment of the
vulnerability is needed. This can be conducted using the same vulner-
ability index used here, or a different methodology can be used to assess
local vulnerability to extreme temperature based on the specific char-
acteristics of the urban area in question. With these two inputs avail-
able, the methodologies presented in this paper should be directly ap-
plicable to any urban area.

Several future improvements to the methods presented here are
possible. First, temporally varying vulnerability models, based on the
movements of populations throughout the day and their activities in
response to extreme temperatures, might be incorporated. These
models, together with the spatio-temporal hazard model, would create
a full spatio-temporal model for the heat risk, allowing for more robust
analysis of the problem of urban heat monitoring and mitigation across
time as well as space. Second, improved models of sensor noise can be
used. These models would account not only for the intrinsic uncertainty
in temperature measurement but also for the fact the measurements at
specific locations may be more or less representative of the average
temperature across the surrounding local area (e.g. Ref. [46]). Third,
the proliferation of low-cost temperature sensors may allow for the
incorporation of data obtained from mobile sensing platforms and/or
from “crowd-sourced” temperature data contributed by citizen volun-
teers (e.g. Ref. [44]). Finally, the potential of the modeling and sensing
optimization approaches discussed in this paper to support long-term
extreme temperature mitigation decisions, such as investments in cool
and/or green roofs or green infrastructure investments, remains to be
investigated.
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The following table lists some of the common notations and symbols used in this paper.

Table A.1
Standard nomenclature used in this paper

Term Definition Units
t time [h]
X spatial location or coordinate [km]
T surface temperature [°C]
Ty global average temperature [°C]
T cyclic temperature pattern [°C]
i residual temperature [°C]
T temperature predictions [°C]
T vector of temperature values [°C]

(continued on next page)
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Table A.1 (continued)
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Term Definition Units

y vector of measurements [°Cl

N normal or Gaussian distribution

M mean function

K covariance function

E statistical expectation (with respect to subscripted variable)

w weight parameter [dimensionless]
14 vulnerability index [dimensionless]
R risk index [dimensionless]
T temporal domain

X spatial domain

H(-) entropy [dimensionless]
Err(-) expected prediction error [°C]

VolI(-) value of information [dimensionless]
L(-) loss function [dimensionless]
Cc() cost function [dimensionless]
Y set of measurements, with subscript denoting the metric used for optimization

GP Gaussian process model

® mean vector

K covariance matrix

1 indicator function (takes value 1 if argument is true, O otherwise)

Q matrix of weight parameters

Tosq 95th percentile temperature [°C]

Rogs 95th percentile risk index [dimensionless]
T temporal domain

Appendix B. Sensor set size selection

The plots below show the benefit derived from greedily chosen sensor sets of various sizes under the metrics in question. For the Vol metric, this
benefit is directly traded off against sensing cost to determine the optimal number of sensors. The same number of sensors is then used across all
metrics to allow for comparison.

60

40

H(TI@) - H(TY)

O‘ L Ly
01234567 891011121314151617181920
Number of Sensors |Y|

Fig. B.1. Entropy reduction resulting from greedy sensor placement (solid line). The tangent line to this curve at 9 sensors is also indicated (dashed line).
Conditional entropy reduction is the difference between the marginal entropy H(T|@) and conditional entropy H(T|Y), where @ denotes the
empty set of measurements. Note that this reduction is nearly linear in the number of sensors, as shown in Fig. B.1. Note that this metric is a
logarithmic function of the probabilistic volume spanned by the posterior covariance, quantified via the determinant of Kry. Because this volume is
reduced at an almost exponential rate as more sensors are added, the metric reduction is nearly linear. The tangent line indicates that the ninth
sensor placed yields 82% of the entropy reduction of the first.
80
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Fig. B.2. Weighted prediction error reduction resulting from greedy sensor placement (solid line). The tangent line at 9 sensors is also indicated (dashed line).

Weighted prediction error reduction is measured as the difference between the marginal weighted prediction error Err(T|@) and conditional
weighted prediction error Err(T|Y). Fig. B.2 shows a strong diminishing returns property, i.e. the slope decreases quickly as the number of sensors
increases, with the ninth sensor providing only 6% of the reduction of the first. Note the contrast with the weak property exhibited in Fig. B.1 due to
differences in the definitions of these metrics.
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Cv)=0

C(Y) = 0.025 Y|

C(Y)=0.03 |Y[

0
01234567 891011121314151617181920
Y]

Fig. B.3. Net Vol resulting from greedy sensor placements, which is maximized when |Y| = 9 for a cost of 0.025 per sensor. This is the optimal number of sensors
indicated in Fig. 8. The net Vol for other costs are also shown.

Finally, the net Vol, VoI(Y) — C(Y), is plotted directly in Fig. B.3, and the peak of this curve identifies the optimal number of sensors as nine.
Note that for the given cost per sensor (0.025) any number of sensors between 2 and 14 would provide roughly the same net VoI, and so the optimal
number of sensors is sensitive to cost in this case. For example, a cost of 0.03 per sensor indicates 4 sensors are optimal. However, Vol remains strictly
increasing with the number of sensors.

Appendix C. Additional details of sensor placement metric computation
Conditional entropy

For Gaussian process models, conditional entropy can be efficiently computed from the posterior covariance Ky of Eq. (7). Efficient and
provably near-optimal sensor placement in Gaussian process models using the conditional entropy metric and greedy optimization is discussed in
detail by Ref. [43]; the same general method is used in this paper.

Weighted prediction error

In the specific case of a Gaussian process model, the optimal prediction T (x, t) with respect to the L-2 norm is the mean of the model, i.e. Rpjy in
the posterior case. The expected square error of a prediction at a given space-time coordinate is the posterior variance of the temperature field at that
coordinate. Therefore, the prediction error can be expressed as:
Err(TY ) = min Err(T) = tr(QKyyQF)

U (C.1)
where tr(-) denotes the matrix trace and Q is a diagonal weight matrix, incorporating square roots of the coefficients w, and wy. Thus, as with
conditional entropy, this metric is a function of the posterior covariance of the Gaussian model only, and therefore can also be efficiently evaluated.
In this paper, optimal sensor placement via this metric is performed similarly to that for optimal placement via conditional entropy.

Value of information

Taking the expectation over (potentially multivariate) sensor observations and field states and minimizing over a potentially large set of possible
actions is computationally intensive, making Vol an inefficient metric for sensor placement in general. However, under certain assumptions on the
problem structure, Vol can be efficiently computed. One such assumption is the cumulative assumption, which states that the loss function can be
expressed as the sum of local loss functions that depend only on subsets of the inputs. In the case of urban temperatures, we assume that the city-wide
loss function can be expressed as the sum of local loss functions:

L(T, A) = ), Y Ly (T(x, 1), A, 1))

ter xeX (C2)
where each local loss is a function only of the temperature and the selected action at the corresponding location and time. The VoI can then be
expressed as:

VoI(Y) = ) D7 Vol (Y)

ter xeX (C.3)
where Vol ,(Y) is computed as in Eq. (13), using the corresponding local loss function. Efficient computation of the VoI under this cumulative
assumption in Gaussian models is discussed by Ref. [36] for spatial random fields and by Ref. [44] for spatio-temporal random fields. In general,
losses for future events may be discounted; a discounting factor can easily be included in the above formulation for this purpose.

In this paper, we use a decision-making problem motivated by heat advisory issuance, and we use the vulnerability to define the loss function in
this problem. Consider that a cost Cy(x) is incurred in an area if the temperature in that area exceeds a threshold Tj;,,; (with Tj,;; = 30°C in this
paper). This cost captures the consequences of the area's population being exposed to extreme temperatures. A heat advisory may or may not be
issued for this area at this time. This decision is indicated by choosing A (x, t) € {0,1}, where a choice of “1” corresponds with the issuance of a heat
advisory, and a choice of “0” corresponds with no warnings being issued. By issuing a warning, people in the region will be encouraged to seek
shelter, and so we assume that the consequences of exposure will be avoided. The cost for issuing this advisory, C,(x), quantifies the effort necessary
to issue the warning, as well as the loss of economic productivity in the area where the advisory is issued due to restrictions on outdoor activity.
Under this decision-making problem, the local loss function of Eq. (C.2) is expressed as:

Leo(T(, 1), A, 1)) = GG T (x, HA = AR, 1)) > Timie] + C:X) AX, 1) c4

where [I[-] is the indicator function, taking on value 1 when its argument is true and 0 otherwise. Under this definition, the Vol represents the average
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hourly reduction in expected loss in the decision-making problem over the city.

Ideally, both Cy(x) and C,(x) can be quantified in monetary values, e.g. by converting mortality, morbidity, and productivity loss to common
monetary quantities using accepted practices. However, such a detailed quantification is beyond the scope of this work. As discussed by Ref. [12], the
heat vulnerability index is not a measure of the consequences of a heat wave event. It is, rather, one input to a utility function (or loss function) for
decision-making in response to extreme temperatures. The relationship between the societal factors captured in this index and the impacts of extreme
temperatures, e.g. in terms of hospitalizations due to heat stress, is an open area of research [4,12,15]. Instead, we assume for illustrative purposes
that consequences are equal to the vulnerability index of an area, and so C;(x) = V (x). On this vulnerability scale, the consequence of issuing a heat
advisory is chosen as C,(x) =3 V x € X: under these assumptions, for some sparsely populated or low-vulnerability areas of the city, the con-
sequence of being exposed to extreme heat is lower than the consequence of issuing an advisory, and so it will never be beneficial to do so. However,
in areas with larger and/or more vulnerable populations, an advisory may be issued to avoid the higher consequences of extreme heat exposure.

In examining Eq. (13), note that Y represents a set of observations (e.g. a plan to measure temperature at specific locations and times), while y
indicates a specific set of measurements related to these observations (e.g. the temperature measurement data gathered as a result of carrying out
plan Y). In the posterior case, because additional information is available to improve temperature estimates, a better set of actions can be chosen,
reducing the losses incurred by the managing agent. Since the possible values y of the observations Y are themselves random quantities, an
expectation must also be taken over these values. Vol thus quantifies the utility of measurements based on how much they can be expected to
improve decision-making outcomes by reducing losses. Note also that the prior expected loss is fixed with respect to the set Y, and so maximizing
VoI(Y) is equivalent to minimizing the posterior expected loss.

It is sometimes useful, as in the case of Fig. 8, to utilize regret rather than Vol. Regret is a complementary concept to the Vol, and assesses how
much additional value might still be gained by including more measurements on the system. Specifically, it is defined as:

Regret(Y) = VoI(Yy) — VoI(Y) (C.5)

where Y,; denotes the set of all measurements which might be made.

In the example of Section 4.3, the VoI and regret are computed using the temperature data generated to calibrate this probabilistic model [16].
Some of these data, corresponding to the locations selected for temperature measurement, are used to update the temperature field prediction at this
time. Therefore, note that these measurements correspond to simulation data rather than actual field temperature measurements. Thus, while for the
previous optimization metrics demonstrated, only the locations of measurements (and not their values) were needed to compute the metrics, the
computation of Vol or regret requires measurement data (or a range of potential measurement data acquired from simulations).

Using the updated field prediction, choices are made on whether or not to issue heat advisories for different areas based on the predicted
temperatures, the remaining uncertainty in these predictions, and the relative consequences of issuing versus failing to use the heat advisory. The
resulting penalties are then calculated based on the decisions made and the city-wide temperature field data at this time. Vol represents the
difference between penalties incurred without and with the updated predictions made using a subset of these data corresponding to the selected
measurement locations. The regret, on the other hand, represents the difference between the Vol and minimum possible penalties which would have
been incurred if data from all measurement locations in Y;; were used to update the predictions (i.e., the amount of additional penalty reductions
which would be possible if more sensors were included).
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