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Abstract

We illustrate how methods for non-parametric regression and classification based on Gaussian Processes can be adapted for
inferring the condition state of infrastructure components under spatially distributed stressors. When the stressor is modeled by a
random field, observations collected in one location can reduce the uncertainty about the stressor intensity also in other locations.
Exact inference is possible when the field is Gaussian and observations are perfect or affected by Gaussian noise. However, often the
available observations are binary, as those related to the failure or survival of components, and indicate whether the local field is
above or below a threshold whose value may also be uncertain. While no efficient scheme for exact inference is available in that
setting, we can perform efficient approximate inference when the field is Gaussian and so is the uncertainty on the threshold value.
The mathematical formulation for this problem is analogous to that of classification in machine leaming, that can be based on latent
Gaussian processes. We show how to formulate the problem and how to adapt deterministic methods, as Laplace’s method and
Expectation Propagation, and methods based on random number generation, as Monte Carlo uniform sampling and importance
sampling, to perform approximate inference. Our illustrative application is the condition assessment of assets exposed to a seismic
event. Under specific assumptions, the seismic demand can be modeled as a Gaussian random field, and measures about the demand
and about the survival and failure of assets can be processed globally, to update the risk assessment. Specifically, we evaluate

methods for approximate inference and discuss their merits.
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1. Introduction

Observations collected in-field can have a significant impact in
the condition assessment of infrastructure components. When
physical values at different places are statistically interdependent,
information collected at one location is relevant also for others.
Bayesian analysis provides a consistent framework for this
inference process, propagating information across space. In this
framework, we define the joint probability of the set of variables
related to different locations, and derive conditional probabilities
depending on the observed values. Computationally, inference
among a high number of variables is feasible only under specific
assumptions. One of these settings requires modeling a spatially
distributed stressor with a Gaussian random field, which is
completely defined by its mean and covariance functions. Exact
inference for these fields is possible for perfect observations and
for observations affected by Gaussian noise. This is the traditional
setting for Kriging (Krige, 1951) and Gaussian Process
nonparametric regression (Rasmussen and Williams, 2006), which
has been recently adapted to the monitoring of infrastructure
systems under seismic risk (Malings and Pozzi, 2016a). However,

even when the stressor is modeled by a Gaussian random field,
we camnot effectively perform exact inference when observations
are related to non-Gaussian likelihood functions. A case of
interested is the following: suppose we can observe the value of
binary variables, whose state depends on the stressor being
above or below a threshold. Possibly, the threshold value is also
unknown, and we model this uncertainty by using a Gaussian
variable. In infrastructure condition assessment, this is the case
of observing the condition states (e.g. failed or intact) of a set of
components in certain locations, with the goal of predicting the
condition of uninspected components in other locations. If these
conditions depend on a distributed field, we can update the field
model by processing those binary observations, and base the
prediction on the updated model. For example, observing that
some components failed under seismic excitation in a certain
area should increase the posterior probability of failure of similar
components in a location nearby, as the seismic intensity is likely
to be high in the observed area and, being the field smooth, also
be high in the location nearby. However, the likelihood function
for binary observations is not Gaussian, nor it is the exact
posterior field, and no simple inference approach for conjugate
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distributions can be used. One approach to approximate
inference is to use Monte Carlo methods to generate samples,
possibly weighted, for representing the posterior distribution.
Uniform Sampling, Importance Sampling or Monte Carlo Markov
Chain (MacKay, 2003) can be used for this purpose. As an
alternative, we can adopt a deterministic method to identify the
Gaussian distribution that best approximates the posterior one.
The problem is analogous to that of binary classification in
machine learning (Rasmussen and Williams, 2006), where a
binary classifier is trained by processing a labeled dataset (e.g.
for distinguishing between ham and spam emails). Latent
Gaussian Processes provide a flexible non-parametric approach
for this classification problem, and different methods for
deterministic approximate inference have been proposed. In this
paper we illustrate how, under certain conditions, the probabilistic
condition assessment of spatially distributed systems can be
formulated in analogy with the regression/classification problem
in machine leaming, adapting and generalizing the formulation
of Rasmussen and Williams (2006). We investigate the performance
of approximate methods as Laplace’s Method and Expectation
Propagation, by comparing them with Uniform and Importance
Sampling Monte Carlo.

Bayesian inference for spatially distributed systems under seismic
risk, applied to the processing of structural condition data, has
been presented by Yue ef al. (2012) and Pozzi and der Kiureghian
(2013), both using Gaussian variables, and by Bensi ez al. (2014)
and Cavalieri et al. (2016), discretizing the field to perform inference
using discrete variables. This paper focuses on methods allowing
the process of large datasets, to predict the condition of large sets
of uninspected components.

2. Problem Statement

2.1 The Engineering Problem

Consider an infrastructure system, or a set of assets, spatially
distributed in a region, exposed to a common stressor. We collect
two types of measurements: N, local observations of stressor
intensity and N observations of the condition of components hit
by the stressors. Intensity measures can be affected by noise,
while the condition state depends on the demand posed by the
stressor and on the component’s capacity. The task is to infer the
spatial intensity map of the stressor and predict the damage of
other N. uninspected components. When the intensity is assumed
to be smooth in space, the observation of some components’ state
should affect the risk for components with similar capacities in the
proximity of the observed ones: the engineering problem is how
to consistently update the risk, by processing observations of
intensity and condition state.

2.2 Mathematical Formulation
Let us model the intensity f of a spatially distributed stressor
affecting a region with a Gaussian random field:

f(x)~g?[uf(x)v kf(x' X,)] (1)
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where xe DcR” identifies a point in the » dimensional domain
D, GP indicates a Gaussian Process, yis the mean function and
ky the covariance function, defined for each pair of points, x and
x, in D. For a 2-D geographical region, » is two. We have
collected N, noisy observations of the intensity. Observation i has
been collected in location x;, where demand is f, = f{(x,), and
measure is y, = f;+¢&, . For the sake of simplicity, we can assume
a homoscedastic noise &~N(0,07), independent respect to all
noise values affecting other measures, and to the intensity field,
Ma,b) indicating a normal distribution with mean a and
variance b. The formulation is not more complicated for any
alternative Gaussian noise model. Moreover, we have observed
the condition state of N; components. By using index j = i—N,
ranging from 1 to N,, component j is at location x, .;, where
intensity is fy.,=f(xy.;), the uncertain capacity of the
component is ¢,~N{(u., o ), and its binary state S;is -1 if the
local intensity is above the capacity, and the component fails, and
1 if, otherwise, the component survives.

Also, we are interested in N. locations, where there can be
additional uninspected components: x;, f; =Ax;) and S,
indicate the location, demand and state of uninspected component 7,
while its uncertain capacity is ¢, ~AN(u. ,0.). Each of the
capacities of inspected and uninspected components is assumed
to be independent of all other variables.

Given vectors of observations y = [y, ---y, ]" ands =[S+, ],
prior functions 4 and ks noise variance o, and capacity
pal?mem' Ll s len} s 4001y oo Oun ) s {)u:.u nu:\} ,and
{0.1...,0.},our goal is to approximate posterior distributions
p(f.s,y) and p(s.[s,y), of vectors listing unmeasured intensity
f.=[f, - f,] and unobserved components’ states s.=

* T

[Si---8k] -
3. Inference Process

3.1 Sequential Bayesian Updating: Processing Observa-
tions of Intensity and of Components’ Condition

For performing inference, we assume the probabilistic graphical
model in Fig. 1: vectors f, = [f; =+ £y ]" and f= [fi.y == fun]'
list demands in locations where intensity and component state is
observed, respectively.

At the core of the graph, the three vectors f, f; and f. are
statistically interdependent. We do not assume any specific
causal relation among these vectors, and we assign directions to
the arrows following the easiness of presentation. The graph
factorizes the vectors’ joint distribution as the product of p(f,),
p(f|f) and p(f./f,f), the product of the latter two factors being

@G
P

Fig. 1. Probabilistic Graphical Model for the Inference Process
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p(f.f|f).
We begin by processing observations y. First we update the
distribution of f, using Bayes’ formula:

p(£)y) <p(f,)p(yIf,) 2
then we predict vectors f. and £:
p(E.1y) = [p(£|y)p(f., £|f,)df, 3)

This formula is valid because, according to Fig. 1, {f.,f,} is
independent of y, conditional on f. We derive two additional
distributions from this outcome: the posterior distribution of f:
p(fy) = [p(f.,fy)df. and the posterior conditional distribution
of f. given f: p(f.|f,y)=p(f.,f|y)/p(f]y). Then we process
observations s, again using Bayes’ formula:

p(L]y,s)«p(f|y)P(s|f.) )
and we propagate the inference to f.:
p(E1y.s) = [p(L. I8, y)p(L]y, )d. )

Again, this is valid because f. is independent of s, conditional
on f;. Finally, we get posterior distribution of components’ state:

P(s.|s,y) = _fp(f.]y, s)P(s.|f.)df. (6)

3.2 Processing Intensity Measures: Gaussian Processes
for Regression
We can perform inference in Eqs. (2)-(3) exactly, adopting the
scheme of Gaussian processes for regression. The prior
distributions of f,, of augmented field vector f. = [f! f.]' and of
noise vector € = [g, -+- &,] are:

£~ N, 2, ) £ ~Np, 20 ); e~ MO, !

where mean vectors p, and p, are derived from the mean
function x, covariance matrixes £, and Z, from covariance
function k; while noise covariance matrix =, is oI, following
the assumption of white homoscedastic noise. Moreover, we let
%, indicate the covariance matrix between f, and f,, again
derived from covariance function k.

We can process in closed form any observations y linearly
related to f, (Malings and Pozzi, 2016b). Here, we assume the
simple model outlined in previous section: y = f,+¢ . Hence, the
marginal distribution of y is Gaussian, with mean vector
wy = p, and covariance matrix X, = X, +Z, . The distribution of
f., posterior with respect to y, is again normal, with mean vector
and covariance matrix given by:

ey = Pr,+ Zr s Zr (V=B Zryr =5 ~Zp - Zr Er i, ®)

3.3 Processing Condition Observations: Gaussian Pro-
cesses for Classification
Now that the measures in vector y have been processed, we
can focus on inferring f. from s. By partitioning posterior mean
vector p, , and covariance matrix X, , of ., as computed in
Eq. (8), we get corresponding quantities for f. and f,. Let p,
and p, , indicate the posterior mean vectors for f. and £, X, ,
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and Z, , the corresponding covariance matrixes, and let Z, , |
indicate the posterior covariance matrix of f. and ..

We perform the inference process in the domain of vector f,.
When processing observations s, the Gaussian distribution
p(f]y) , posterior respect to processing y, plays the role of a prior
distribution. The likelihood function of component ; in f; is:

P(S)[fy) = (a) ©)

where j' =j+N,, a,= S,y-‘-é.;f-‘: and @ is the cumulative standard
normal distribution. The joint log-likelihood, related to the
observation of all conditions, is:

logP(sif.) = ¥, logP(S|f.) (10)

By applying Eq. (4) we get the updated distribution of f;.
However, the likelihood in Eq. (9) is not conjugate to the
Gaussian prior, and no closed form is available for the
posterior distribution. We can adopt deterministic numerical
methods for approximating the posterior distribution with a
Gaussian distribution. The Laplace’s method and the Expectation
Propagation method are alternative approaches for identifying this
distribution.

3.3.1 Laplace’s Method X

The Laplace’s Method (LM) identifies the value f, that maximizes
the product of prior distribution and likelihood function, as this
product is proportional to the posterior distribution, according to
Eq. (4). The logarithm ¥ of this product is:

¥(f) = logP(s|f) +logp(f|y) (1)

By substituting Egs. (9)-(10) and the Gaussian prior in Eq.
(11), we get the following form for the gradient of ‘¥:

V\P(f\) = _E;_l\_\'(f.\'_l'l!'_\ y)+“ (12)

where o= VlogP(s|f) is a vector of N, components, and its
component j is:

a = OlogP(S\f;) - S, oa)
, o o.,@(a)

where ¢ is the standard normal distribution density. The Hessian
matrix of ‘¥ is:

(13)

VV¥(f) =27 ,-I" (14)

where T - -V VlogP(s|f,) is a diagonal matrix, and the entry j
on its diagonal is:

_ JlogP(S\f) _ 1 ela)[

?’(ai)
@5y a:’.,-d’(a,-)L“"+d>(a,-)]

Function ¥ is concave, and the Newton-Raphson method
(Theodoridis, 2015) can be applied to iteratively identify value
fs, relying on the gradient and the Hessian matrix defined in Eqs.
(12), (14). The posterior probability is then approximated with a
Gaussian distribution with mean p, ,, equal to f,, and with
covariance matrix X, ., related to the Hessian matrix computed
atf,:

(15)

i
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PESY=NEL-VVEE) ) =N, .5,.,)  (16)

We propagate the inference to vector f., as in Eq. (5), by
following the same scheme of Eq.8. The resulting posterior
distribution p(f.|y,s) is Gaussian, with mean vector:

p’l 5y p’l ‘+zl Fg z_l ("’I\\‘ "’I ‘) (17)
and covariance matrix:
Bty ™ By Bra [ A Bl Borg, (18)

with £ computed at f. By following this scheme, we obtain an
approximate Gaussian posterior distribution of the intensity for
all locations of interest, which can be used for risk assessment.

3.3.2 Expectation Propagation

Expectation Propagation (EP) is an alternative approach for
approximating the posterior probability with a Gaussian distribution.
While LM is based on a local investigation of the posterior
distribution around its maximum, EP aims at minimizing the KL
divergence between the actual and the approximate distribution.
The likelihood function related to the observed condition at
location x, is approximately proportional to a Gaussian density
with mean 7; and standard deviation &; :

P(SI£) &N fi, @)

as if intensity z was measured there, with noise variance 5'f ;
Once appropriate values of mean and variance are assigned to
each location where the component state is observed, the
posterior distribution of the demand in those locations is jointly
Gaussian, with covariance matrix given by:

19)

Y (20)
where diagonal matrix T lists terms {&,&,...,5%) on its
diagonal, and with mean vector:

l"l'[- s¥ == EI- PL] 3‘[E;l )"'l'l- ¥ +£_lﬁ] (21)

where vector p lists terms {,ul, I, ..., v} . To identify the
appropriate values of pair {z, o;} , we adapt the iterative method
presented by Rasmussen and Williams (2006), as reported in the
Appendix. Then, we use Eq. (17)(18), with 2= .

3.3.3 Monte Carlo estimation

Monte Carlo (MC) methods provide an alternative numerical
approach for approximate inference. Using uniform sampling, we
generate #, samples of the field values in all the N, locations where
condition observations are collected, from Gaussian distribution
M .2, ) , posterior with respect to the intensity observations y.
Then, we assign to every sample k, g, weight w, = P(s|f,),
computed according to Eq. (10), and we normalize the », weights so
that their sum is one: W, = w /2, ,w,, . Eventually, we represent
the posterior distribution, following the approach of Eq. (5), as:

p(fy,s)= A Wap (£, ¥) (22)

For every sample k, p(f.|f.;),y) is a Gaussian distribution,
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whose variance is the same for all samples, and whose mean is
an affine function of f,,, following the approach of Eq.8. In
facts, that distribution represents the posterior probability after
observing exactly the intensities listed in vector f,,, in the N
locations. While Eq. (22) represents the posterior distribution as
a mixture of Gaussians, we can also easily get samples of f. if
needed, eg. by generating samples in the joint domain of
{f.f.}.

To reduce the variance of the estimator, we can adopt the
alternative MC approach of Importance Sampling (IS), selecting
a proposal distribution 4, on the domain of f;, that concentrates
the samples where the posterior distribution is high. The weight
associated to sample k is now:

_ h(f..)p(s|f )
p(f,ly)

After normalization of the weights, we can use again Eq. (22)
for predicting the stressor intensity. In Eq. (23), the density at the
denominator is Gaussian, and so is 4 if we select the outcome of
LM or of EP as a proposal distribution. We conclude by noting
that the estimate based on Monte Carlo, either with uniform or
importance sampling, is consistent but not necessarily unbiased,
because of the sample normalization related to Bayes” formula
(MacKay, 2003).

(23)

Wi

3.3.4 Condition Assessment of Uninspected Components

Following LM or EP, the posterior distribution of f. is
approximated by a single Gaussian distribution. To implement
Eq. (6) and, specifically, to obtain the marginal probablhty of
failure of the uninspected components, we let 4., and o,
indicate the posterior mean and variance of the intensity at
location x; . The corresponding posterior reliability index £, ; is
(Der Kiureghian, 2005):

f=Lte (24)
O- + n: i
and, consistently with Eq.9, the posterior probability of failure is
P;.n;.i = (D(_ﬁ:u,i) "
When using MC methods, the posterior distribution is
represented by a mixture of Gaussians, and the corresponding
distribution of the states of uninspected components is:

P(s.|s,y) =3y Wi Ip(f. [0, ¥ ) P(s+|f)df. (25)

As distribution p(f.|f,,,y) is Gaussian, we obtain, for each
sample, a corresponding failure probability for the component in
location x; , following the approach of Eq. (24) to solve the
integral in Eq. (25). Then, the posterior probability of failure is
estimated using the weighted average of Eq. (25).

3.3.5 Extension to Systems with Multi-state Components
While our framework refers to binary components, we briefly
outline how to extend it for dealing with multi-state components.
The first issue is related to the processing of observations related
to intermediate damage states. By observing that a component is
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in an intermediate state, we conclude that the local field cannot
be too high or too low as, in those cases, the component would
be respectively undamaged or failed. A path to extend LM to
multi-state classification is presented by Williams and Baber
(1998) and reviewed by Rasmussen and Williams (2006) as
“multi-class Laplace approximation”. For EP, the likelihood
functions related to these intermediate states may be closer to a
Gaussian density, and so the approximation of Eq.19 may be
even more acceptable. A recent work in this direction is that of
Villacampa-Calvo and Hernandez-Lobato (2017).

A second issue is the prediction of the condition of uninspected
components among more than two possible states, once the
inference of the latent Gaussian process has been performed. In
the application of the next Section, we will illustrate how this can
be done in a given setting.

4. Applications to Spatially Distributed Systems

4 1 lllustrative Application to a 1-D Domain

To illustrate the inference process, we define the following
problem. In a one-dimensional domain, where the spatial coordinate
x ranges from 0 to 10 Km, spatial stressor f is defined by a
stationary Gaussian process, with mean z/(x) = 1.4 and standard
deviation oy(x) =0.5 for every location x. The corresponding
95% credible region for the stressor, CRosva(f), is reported in
each graph in the middle row of Fig. 2(a). The covariance
function follows the squared exponential model:

-

k(x,x") = 0,(x) a,(x')exp[_ﬁﬂl}

21 (26)

with correlation length A = 2 Km. By using this model, we
assume a smooth field, with correlation equal to 97%, 88%, 60%
and 13% for a pair of points at distance 0.5 km, 1 km, 2 km and 4
km respectively. We observe the state of 30 components distributed
along the domain: 28 are undamaged, while 2 failed at x equal to
6.12 km and 6.74 km respectively. The upper graphs in Fig. 2(a)
show the observations in the domain: letters U and F indicate an
Undamaged or a Failed condition (corresponding to s =1 or s =—1)
respectively. All components have independent capacities defined
by standard deviation o, =0.3, and mean z. We consider
different values of ., to show how the results are affected by this
parameter. In the left column in Fig. 2(a), x = 2.146 , so that the
prior probability of failure for each component is P, . =10%.
The 95% credible region of the capacities is reported in the
middle graph, as CR,...(c). To cover the domain, we define a
regular grid of N. = 1,000 points, and the covariance related to
points in the grid, or between them and observed locations,
follows Eq. (26). That graph also reports the posterior credible
region for the stressor in the grid, CR,.,.(f) , as a function of the
spatial coordinate, for different inference approaches: LM stands
for Laplace’s Method, EP for Expectation Propagation, MC for
uniform Monte Carlo, IS for Importance Sampling Monte Carlo,
where the proposal distribution / is the Gaussian approximation
of the posterior distribution identified by LM. Both MC and IS

-1020-

estimates are based on 10° samples.

By observing the middle graph in the first column of Fig. 2(a),
we note that the updated marginal stressor is not much affected
by the observations of the undamaged components. For example,
all 15 components for x < 6 km are undamaged, but the updated
intensity is not significantly lower than the prior one: this
happens because, as the prior probability of components being
undamaged is high (it is 1-P, . =90% ), the observation that
many components survived is not much informative. On the
contrary, the failure of two components indicates that the stressor
could be high in a region, and the posterior field is significantly
updated there: as the (prior) lower bound of CR,..,(c) is 1.55, it
is unlikely that a stressor below that value could have destroyed
any component, and so the lower bound of CRs.,.(f) is now
above that level near the location of failures. All methods agree,
but LM assigns a higher upper bound to CR,,,,(f) for low
values of x. The graph below reports the corresponding prediction of
failure or survival of a test component, depending on its location,
in terms of posterior reliability index. Here we assume that
4 =y, and 6. = o, , so that the prior probability of failure of this
test component is also P, .= P,,=10%, comresponding to
B.=1.28. This index grows in the regions where undamaged
components are observed, and decreases where failures are
observed. We note that, even if the impact of the updating to the
intensity field looks minor for x<4 km, the consequences in
terms of reliability index are significant, as CRys..(c) overlaps
much less with CRys.,(f) than with CRy...(f) in that region.
Finally, we note that the EP inference is in good agreement with
that performed by MC and IS, and so we conclude that EP
provides accurate results.

We note that no method performs any explicit inference about
the capacity. The capacity of the observed component is
“marginalized out” in the definition of the likelihood function in
Eq. (9). If needed, we can obtain the posterior distribution of the
capacity of observed components, and we would tend to infer,
for example, that the posterior expected capacity of the failed
components is lower than the prior expected one. However, there
is no need to update the distribution of the capacity of the
uninspected components, as it has been assumed to be marginally
independent of those of the observed ones. Hence, when we
predict the fate of the uninspected components, the inference of
the stressor intensity is the only relevant one.

In the second column, all assumptions are the same as before
(including the set of binary data collected in-field), except for the
higher components’ capacity, that is now assumed to be
u = 2.756 , so that P, _= 1%, corresponding to S, =2.33 . The
results are similar as before, except for the following features. As
the components are now stronger, the observation of some
failures makes the updated stressor model go higher. Also, the
impact of the observations of undamaged components is less
significant, both in terms of intensity and reliability index, as we
do expect (with 99% probability) that components do not fail.
The third column refers to an even higher capacity: . = 3.202,
sothat P, . = 0.1%, and graphs in Fig. 2(b) to x. = 3.568 , 3.887,
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Fig. 2. (a) Inference Process in the 1-D Domain. Binary Observations (upper graphs), Posterior Credible Region of the Stressor (middle
graphs) and Posterior Reliability Index (lower graphs), for Components’ Prior Failure Probability from 10% to 0.1%, (b) Corre-
sponding Graphs for Components’ Prior Failure Probability from 10 to 108

4.171 respectively, so that P, .= 10", 107, 107°. We observe
that the same trend persists: observations of failure of
stronger components make the updated field go higher, while
observations of stronger components being undamaged are
less significant. Moreover, we note that the inferences of IS,
EP and LM are in good agreement (specifically, the agreement
of LM with IS and EP is even better than that for weaker
components).

However, as the considered components are stronger and less
prone to failure, the MC estimate becomes significantly biased.
The effective number of samples can be defined as:

Vol. 22, No. 3/ March 2018

=175, W @7
and the ratio of effective samples as r,, = n,/n, . Table 1 reports
ng and r.p for IS and MC, depending on the components’
capacity. For high capacity, Pk, is low, and so is the probability
of observing two failures. Hence, most simulated fields are in
poor agreement with the observations. When P, =107, n,
goes down to 2.3 samples for MC, so that the posterior belief is
represented just by a pair of samples, and this explains the poor
performance shown in Fig. 2. n4is always high for IS, with the
corresponding r,; even increasing from 58% to 92%: this may
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Table 1. Number and Ratio of Effective Samples in the MC and IS

Simulations
Py, g LLEYTE Leris Letme
10% 58,274 9,253 58% 9.3%
1% 76,748 3,078 T77% 3.1%
10” 84,428 464 84% 4.6 x10"
10* 88,347 41 88% 4.1x10"
10° 90,769 6.2 91% 6.2x107
10 92,455 23 92% 23x107

indicate that the Gaussian distribution identified by LM for
approximating the posterior is more accurate when Py, is low, as
also indicated, in Fig. 2, by the better agreement with EP.

In the previous analysis we used z = 4, but this is not at all a
requirement of any method outlined above. Generally, the
moments of each capacity (for observed or unobserved components)
can be different. For example, we may observe the condition of
strong components and predict the behavior of weak ones.

In Fig. 3, we expand previous example considering two levels
of components’ damage: low (L) and high (H), defined by a
probability of occurrence P, . equal to 1% and to 10
respectively. In Fig. 3(a), we assume that the observed failures
refer to any damage level (L or H), while the lower and upper
sets of lines refer to the prediction of any damage and to the
prediction of high damage respectively. Hence, the lower set is
identical to that in the second column of Fig. 2(a). We note that
the observations that no damage (not even low damage)
occurred in the region where x < 6 km significantly increases
the reliability index related to high damage in that region. Also,
both deterministic methods perform poorly in that region. In
Fig. 3(b), we assume that the observed failures refer to high
damage, while the “undamaged” components may actually be
at no damage or low damage. The inference process is as
before, and the upper set of lines are identical to the first
column of Fig. 2(a). The lower set of lines refers to the
prediction of any damage level: we conclude that it is highly
likely that components around location 6.5 km are damaged,
when two highly damaged components have been observed in
the surrounding region.

damage
level
H

et H OF L

(a) x [km) (b)

Fig. 3. Prediction for Two Damage Levels, in the 1-D Domain
Application: Observations of Damage Refer to: (a) Any
Damage or to (b) High Damage Only
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Fig. 4. Monte Carlo Estimates for Different Numbers of Samples:
for: (a) 1,000 Samples and for (b) 10,000 Samples

Figure 4 shows the impact of the number of samples, #,, in the
reliability assessment based on MC and IS. We refer to the case
when g, = 3202, so that P, .= 0.1%, as reported in the third
column of Fig.2(a). While, as reported above, that graph made
use of 10° samples, Fig. 4(a) and (b) uses 10° and 10* samples,
respectively. As expected, with a lower number of samples the
accuracy degrades, and the estimates can be significantly biased.
The number of samples needed for a good estimate depends on a
combination of factors: how rare the evidence collected by the
observations is, and how low the probability of the event we
want to estimate is.

4.2 Application to Seismic Risk Assessment in a 2-D
Domain

‘We now apply the approach to the risk assessment of a set of
assets exposed to a seismic event. Fig. 4 shows the region where
the assets are located, as described by two spatial coordinates (x;
and x,). We assume that an event of magnitude 7.5 occurs at
location {40 km, 5 km} and that the Peak Spectral Acceleration
(PSA) for a natural period of 0.55s is the appropriate intensity
measure. We use the Akkar and Bommer (2010) attenuation law
for modeling the seismic intensity, assuming a normal fault type
and rock soil class. As the conditional distribution of PSA is
lognormal, we define the Gaussian field f as the natural logarithm of
the PSA in ms™. From the attenuation law, we derive the intra-
event and the inter-event terms: the first term defines a common
uncertainty affecting the entire field, while we adopt a squared
exponential correlation function (as in the Eq. (26)) for the
second term, with correlation length A = 7 km. So, by combining
these two terms, we get the covariance function &

We consider two types of components. Their capacities are
defined by independent log-normal random variables, with
standard deviation of the log-capacity o.= 0.3 (approximately
corresponding to a 30% coefficient of variation in the actual
capacity) and expected capacity depending on the components’
type: the expected log-capacity for strong components is
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Fig. 5. (a) Prior Map of Reliability Index, (b) Locations and Conditions of the Observed Components, (c) Posterior Map of Reliability
Index, after Processing PSA Measures and (d) after Also Processing Observations of Components’ Condition

4. =23, and for weak components is z = 1.6, corresponding
to a median actual capacity of about 10 ms™ and about 5 ms~,
respectively. Fig. 5(a) shows the map of the prior reliability
index for a weak component, depending on its location: it ranges
from -0.37, above the epicenter, where the median PSA is
5.86ms™, up to 3.1. The map is plotted on an 81 x 71 grid, so
that N. = 5,751 . We observe the condition of 500 components in
the region: among the 250 strong ones, 5 fail, and among the 250
weak ones, 32 fail. Their position and observed condition are
reported in Fig. 5(b), where “Su-We” indicates a survived weak
component, “Su-St” a survived strong one, “Fa-We” a failed
weak one and “Fa-St” a failed strong one. The log-PSA has been
measured in two locations, with precision definedby . = 10~ , at
coordinates {15 km, 5 km} and {40 km, 30 km}. Both measures
(v, and y,) are equal to 1.3, corresponding to measuring a PSA
equal to 3.67 ms™, significantly higher than the median prior
value in both locations, of 1.92 ms™2. The locations of these
measures are marked by white crosses in Fig. 5(c), and the map
also shows the updated reliability index for weak components.
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Methods
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Fig. 7. Posterior Map of Reliability Index Assuming that All Observed Components were: (a) Weak and that All were, (b) Strong

Fig. 5(d) shows the posterior reliability index, after processing
the observations on components’ condition: this map fuses the
information contained in (b) and (c). As expected, reliability
grows near survived components, and decreases near failed
components. The outcomes refer to the EP algorithm.

To compare the assessment based on the EP and LM methods,
we define AP, as the difference between the probability of
failure obtained by LM and that obtained by EP, and we plot with
difference, normalized by the estimate obtained by EM, in Fig. 6.
The most significant difference is at location {25 km, 35 km},
where LM assigns a 1.28% probability of failure, while EP
assigns 0.85%, so that the normalized difference is 0.51.

Figure 7 illustrates the role played in the inference process by
the assumptions on the components’ capacity. Keeping the
components’ location as in Fig. 5(b), Fig. 7(a) reports the posterior
map of reliability index (as above, for a weak component)
assuming all observed components were weak, and Fig. 7(b) the
corresponding map (again, for a weak component) assuming all
observed components were strong. We note how observing the
failure of strong components has a higher impact in decreasing
the assessed reliability. In the area above the epicenter, the
minimum reliability index in the latter analysis is -1.4,
corresponding to a probability of failure of about 92% (but we
show all values below -1 at the value of -1, for preserving the
same color scale of other maps).

We close this session with a remark on computational complexity.
For this application, both methods use about 5-6 iterations (for
the Newton-Raphson optimization in LM and for identifying the
approximate likelihood functions in EM, respectively). On a
laptop, with 16Gb of RAM and Intel® Core™ i7-7Y75 CPU
@1.30GHz processor, the processing of components’ states
takes 0.2s for LM and 3s for EP, using MathWorks Matlab. The
prediction for all points in the grid takes about 0.6s, for each of
the two methods.

-1024 -

5. Conclusions

The approach outlined above allows for inferring, probabilistically,
the condition of uninspected components based on the detected
states of others. The setting closely resembles that of the
classification problem in supervised learning where, after having
observed a set of labeled points, we train a classifier to predict the
class of unobserved locations in the features” space. Traditional
methods for classification capture the intuition that components
may tend to fail in certain sub-regions (e.g. using parametric
functions, as with logistic regression) or that components may
tend to fail in cluster (e.g. using non-parametric functions, as
with k-nearest neighbor classification). However, much relevant
information cannot be included in that traditional analysis. On
the contrary, the framework outlined in this paper is based on a
latent field that models an engineering quantity of interest, i.e.
the stressor intensity; this quantity is probabilistically related to
the components’ condition, but it can also be directly measured.
The prior distribution of this field comes from engineering
models, and the framework allows for consistently processing
measures of the stressor and of the components’ state. When we
adopt the Gaussian model, we can easily handle hundreds of
measures, for projecting the results to thousands of locations,
spending just few seconds (or even less than one second, using
LM) on a common laptop.

A few points deserve further investigation. One issue is related
to the applicability of the framework to specific engineering
problems. In the case of seismic risk assessment, demands as
PSA can be modeled, after the logarithm transformation, as a
Gaussian field. Similarly, the capacity of some components can
be modeled with Gaussian variables, after the same transformation,
as in the illustrative example. However, if the significant natural
period is not uniform among components, more complicate
correlation models, as that proposed by Loth and Baker (2013),
should be used. It is still an open question how a full recording of
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ground motion in one location should globally affect the inference
about the PSA in other locations, for all natural periods. Another
remark is related to the accuracy of the estimate based on
deterministic approximate methods, as EP and LM. As the
posterior distribution is not Gaussian, we cannot expect the
reliability assessment to be exact. Neither of these methods is
specifically focused on the accuracy of predicting the failure of
any component: LM is based on a local approximation at the
mode of the posterior, while EP on the minimization of the KL
divergence. In the numerical examples we have investigated, we
have not noted significant errors, except for the case where the
reliability index is above 4. We have compared those methods
with MC and IS estimates. Uniform MC is ineffective when the
collected measures are highly informative, either due to the high
number of observations or to the observation of some rare
events, because, in these cases, most generated samples are in
poor agreement with the evidence and, consequently, they are
insignificant. The deterministic methods can provide a suitable
proposal distribution, for reducing the variance in the MC
estimate, using IS. Further variance reduction can be achieved by
moving the proposal distribution towards higher values of the
stressor, to better cover the “design point” for unobserved
components, as attempted by Pozzi & Der Kiureghian (2013).
However, it is generally hard to define a proposal distribution
able to cover all these design points in a satisfactory way.
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Appendix: Details on EP

In this section we outline how to identify parameters
{it, I, ..., i} and {0, ,...,5%} to fill vector ji and matrix
% in Egs. (20)-(21). We do this iteratively, by initializing all 7
and & to zero, and identifying each pair {, o } assuming the
other values as known. Following closely Rasmussen and
Williams (2006), the “cavity” distribution g, marginal posterior
for f. including likelihood functions for all components except
component  itself, is ¢g_(f.) = N(f;, 1, &°;) . Its parameters are:

(28)

where z5,and & are entry j on vector p, , and on the diagonal of
matrix X, , respectively.

The product of the cavity distribution and the likelihood
function can be approximated by a Gaussian distribution by
moment matching, to minimize the KL divergence.

LIPS\ & N iy 0 Ny gy & N B, T)

2 2 21 - ~2 e~
0;=(0-0) ;u; =00 -0 W)

(29)

To identify moments 4 and & , we have to combine the
parameters of components’ capacity to that cavity distribution.
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Generalizing the formulas in Rasmussen & Williams (2006), we
start normalizing the parameters of the cavity distribution,
obtaining:

a'ii = aif 0':,:,'; ;= (u.,—u) o, (30)

Then, again from Rasmussen & Williams (2006), we compute

the moments {/z, &} in the normalized space of f, as
w2 -2 f— 2 .o~ — =2
G, = 0,—0orixi(z+r) 5 ;= H S0,

GD

where = @(z)/®(z,), z = sz, and z=(1+G,) . Then
we get the posterior moments for the actual stressor by applying
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the inverse transformation respect to Eq. (30), obtaining:
(32)

Finally, we identify the parameters of the approximate likelihood
function by applying the inverse transformation respect to Eq.
(28), obtaining:

a2 v2 2 ~ v
G =00, H=0 ;0 tU,

(33)

We iterate the updating of {7, } for all observed components,
and then again and again until we get convergence.

~2 A2 N ~2 Aa-2a 2
g =(0 -0)) p=o0(0 —0o;u,)
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