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a b s t r a c t 

The management of infrastructure involves accounting for factors which vary in space over the system domain and in time as the system changes. Effective system 

management should be guided by models which account for uncertainty in these influencing factors as well as for information gathered to reduce this uncertainty. In 

this paper, we address the problem of optimal information collection for spatially distributed dynamic infrastructure systems. Based on prior information, a monitoring 

scheme can be designed, including placement and scheduling of sensors. This scheme can be adapted during the management process, as more information becomes 

available. Optimality can be defined in terms of the value of information (VoI), which provides a rational metric for quantifying the benefits of data gathering efforts 

to support system management decision-making. However, the computation of this metric in spatially and temporally extensive systems can present a practical 

impediment to its implementation. We describe this complexity, and investigate a special case of system topology, termed as a temporally decomposable system with 

uncontrolled evolution, in which the complexity of assessing VoI grows at a manageable rate with respect to the system management time duration. We demonstrate 

the evaluation and optimization of the VoI in an example of such a system. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Motivation and background 

In this paper, we examine the optimization of sensor placements and
cheduling to support the management of infrastructure systems. For the
anagement of large systems with numerous components whose states

volve in time, the determination of optimal policies both for maintain-
ng these systems and for inspecting these systems to determine what
anagement actions are needed are important questions [1–5] . As a
otivating example of sensing and decision-making in an evolving sys-

em, consider a system whose performance is influenced by a physical
uantity which varies in both space and time, such as depicted in Fig. 1 ;
 square region, described by horizontal coordinates x 1 and x 2 , is rep-
esented at different time instants 𝑡 = 1 and 𝑡 = 2 . The set of random
alues for this physical quantity at each coordinate in space and time is
escribed as the random field. For instance, this field might represent the
emperature to which a population is subjected, which can cause health
ifficulties, placing strain on a medical system e.g., [6,7] . An underly-
ng probabilistic model of the random field captures its characteristics,
ncluding its expected value, variability, and interdependence relation-
hips in space and time e.g. [8] . In Fig. 1 a, a map of the field at one
ime is depicted, showing its variation in space. Fig. 1 c depicts the ran-
om field at a subsequent time; note the similarities in the field shape,
temming from the modeled correlation of the field across time. The in-
rastructure system might then consist of a continuous domain, e.g. in
he case of population in a region exposed to extreme temperatures, or
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f discrete components occupying positions within this domain, e.g. in
he case of several critical assets vulnerable to high temperature. 

Based on prior knowledge, where the field is predicted to exceed
 threshold, an appropriate intervention activity can be carried out to
void the negative consequences of this exceedance. For example, heat
dvisories might be issued for specific regions and times, which can mit-
gate the consequences of the population being exposed to extreme heat.
ntervention decisions take into account the consequences of different
ossible outcomes, the costs of response options, and the inherent un-
ertainty in the field. Measurements of the field can also be made and
sed to update the prior model. For example, in Fig. 1 a, x’s indicate loca-
ions where measurements of random field values are made, and Fig. 1 b
resents an example of decision-making based on these measurements.
he red area denotes where the field exceeds a set threshold (causing a

ocal failure in the system), while the blue area depicts where, based on
he updated knowledge of the field obtained by processing the available
easures, threshold exceedance is predicted, and therefore an appro-
riate intervention is taken. Note that there is not perfect overlapping
etween these regions, since there remains residual uncertainty in the
eld. 

Information can be costly to acquire, and therefore should be pri-
ritized in both time and space to trade off the costs of collecting this
nformation against its potential benefits. In Fig. 1 a, measurements at
nitial time 𝑡 = 1 are distributed evenly over the domain of the system, to
rovide adequate spatial coverage. In Fig. 1 c, at a later time, measures
re again distributed evenly, but at different locations; this reflects the
emporal correlation of the field, which makes repeated measures at the
7 

https://doi.org/10.1016/j.ress.2017.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.11.019&domain=pdf
mailto:cmalings@andrew.cmu.edu
https://doi.org/10.1016/j.ress.2017.11.019


C. Malings, M. Pozzi Reliability Engineering and System Safety 172 (2018) 45–57 

Fig. 1. A motivating example of the monitoring and management of a system in space and time. 
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ame location somewhat redundant. This represents the related prob-
ems of sensor placement, i.e., determining an appropriate spatial ar-
angement of sensors, and of scheduling, i.e., determining at what times
easures should be collected. 

Decisions about sensor placement and scheduling take a variety of
actors into account. High prior uncertainty in the random field can be
educed through sensing. However, factors relevant to decision-making,
uch as the likelihood and potential consequences of making an incorrect
ecision without additional data, should also be accounted for. Further-
ore, the interdependence structure of the random field, in both space

nd time, should inform the sensing plan. In space, collecting many mea-
ures in highly interdependent fields can be redundant, but in fields with
eak interdependence, more closely spaced measures may be necessary

o avoid missing features of interest. In time, earlier measurements can
elp to identify trends and support later decision-making, but need also
e updated as information becomes out-of-date. Finally, the relative pre-
isions and costs of different sensors, especially costs relating to sensor
lacement (whether it is cheap or expensive to gather a measurement
t a new location) and scheduling (whether it is cheap or expensive to
epeatedly collect measurements at the same location) should be taken
nto account when determining which measures will be cost-effective. 

Finally, there is the problem of online or adaptive sensing, where
ensor placements and schedules can be changed in light of new infor-
ation. Fig. 1 e depicts such a case, where, because of the high observed

andom field values in the upper right, at a later time more measure-
ents are allocated for this area to better determine whether or not the
eld will exceed the threshold. By comparing Fig. 1 d and Fig. 1 f, the
reater number and concentration of measurements in the upper-left al-
ows the intervention zone to more closely match the area of exceedance.
his illustrates the potential benefits of adaptive or online sensing, but
hese benefits should be traded off against the additional costs of eval-
ating and implementing a revised sensing plan. 

In this paper, we examine how to optimally place and schedule mea-
urements to best support decision-making for system management by
aking into account the various factors mentioned above. We do this
aking use of the value of information (VoI) to explicitly trade off the

enefits of collected information, in terms of improved decision-making,
gainst the costs of information collection [9] . The VoI metric aligns well
ith many of the intuitive ideas discussed above of what makes a sensor
lacement in space informative to system management [10] . Here, we
xtend these results from static sensor placements to sensor placements
nd schedules in dynamic systems, and also to adaptive sensing, where
 m  

46 
ensor placements can change over time. Previous work has made use
f VoI to quantify the benefits of structural health monitoring efforts
11–13] , optimize the positioning of sensors to support the manage-
ent of structures under uncertain extreme loading [10,14] , and opti-
ize inspection schemes for deteriorating components [15,16] . Other

pproaches to sensor scheduling, making use of concepts such as ob-
ervability and state estimation accuracy, have also been applied to this
roblem e.g., [17,18] . 

In general, the computational cost of VoI evaluation grows exponen-
ially as the size of the system increases; this can be seen by examining
he management decision-making problem via a decision tree and not-
ng that the number of “leaves ” will grow exponentially as the number of
ossible management actions, observations, and system states increases
19] . Previous work in spatial systems identified a special case of sys-
em topology, termed as a cumulative system topology, in which this
xponential growth can be reduced to a linear growth in the number
f system components, provided management activities are conducted
ocally for each component [14] . 

In Section 2 of this paper, the assumption that the actions taken to
anage an evolving system have temporally local effects is used to iden-

ify a corresponding special case in which the computational demand of
oI evaluation is merely linear in the time duration for system man-
gement. In Section 3 , we give a brief overview of greedy offline and
nline approaches to efficient sensor placement and scheduling based
n VoI which are used in this paper; further information on these meth-
ds is available in the companion paper [20] . In Section 4 , we introduce
 Gaussian random field modeling framework for spatio-temporal sys-
ems. This framework is used in Section 5 to demonstrate the application
f the VoI metric in two examples: a simulated system modeling differ-
ntial settlement between structural columns over time and a problem
ased on measurements taken on structural columns during the con-
truction of the Scott Hall building at Carnegie Mellon University. Fi-
ally, some general conclusions are drawn in Section 6 . 

. Value of information in spatio-temporal systems 

This section begins by outlining a model for the monitoring and man-
gement of a system whose behavior is affected by random variables
hich vary in both time and space in Section 2.1 . Within this model,

he VoI metric is defined in general in Section 2.2 . The metric is also ex-
mined under several assumptions on the structure of the system and its
anagement which lead to increasing computational tractability for the
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Fig. 2. Relationships of the assumptions presented in the following sections, which 

present special sub-cases of the general loss function definition. 
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etric. The relationships of these assumptions are depicted in Fig. 2 . The
ssumption that the loss function is temporally decomposable allows for
ore efficient evaluation of the VoI, as described in Section 2.3 . An addi-

ional assumption states that the evolution of the system is uncontrolled,
.e., the evolution of the underlying random fields affecting the system
s not influenced by actions taken for system management. Where this
ssumption overlaps with the previous, as discussed in Section 2.4 , the
omputational demand of evaluating the VoI is reduced to be linear in
he length of the time duration for system management. This represents
n interesting special case of system management (of which the exam-
le discussed in Section 1 is a representative) in which VoI can be used
n a computationally tractable way to support sensor placement and
cheduling. 

.1. Probabilistic spatio-temporal system model 

Let F indicate a random field which affects the performance of an
nfrastructure system over management time duration T . Let T be dis-
retized into m timesteps, denoted 𝑇 = { 𝑡 1 , … , 𝑡 𝑚 } . Let f( x i , t j ) denote
he i th of n random variables which affect the system at timestep t j ,
here the coordinate x i is used as an index or reference coordinate for

he variable, e.g. if the variable is associated with a particular factor at a
articular spatial location, then its coordinate will correspond with this
patial location. In the case of multiple co-located random field affecting
 system (e.g. a temperature and humidity field affecting corrosion), this
oordinate is augmented with an indexing term to distinguish between
o-located fields. The spatio-temporal random field which affects the
ystem should be described by an appropriate spatio-temporal random
eld model which captures the prior knowledge of the distributions of
andom variables, including their uncertainties, spatial interdependen-
ies, and temporal evolution via proper spatio-temporal joint probabil-
ty functions. The selection of such functions represents an important
roblem in itself. Where possible, this selection can be performed by
onducting numerical simulations using a deterministic physics-based
odel of the system, using empirical data collected in similar systems

o the one being modeled, or soliciting expert judgments on the most
ppropriate model forms. The reader is referred to [8] for a compre-
ensive overview of approaches to the spatio-temporal model selection
roblem, and to [6] for a recent application of these approaches to de-
ne a probabilistic model of an environmental hazard impacting an ur-
an system. Alternatively, hierarchical modeling can be used in which
he functional forms and parameters of the random field are described
y probability distributions. This allows for additional flexibility in the
odel but greatly increases the computational cost associated with its
se [21] . 

Let f denote the vector of random variables affecting the system at
ll discrete timesteps over time duration T . This vector can be expressed

s 𝐟 = [ 𝐟 1 T , … , 𝐟 𝑚 T ] 
T 
, with sub-vector f j denoting the random variables

cting on the system at time t j . The prior distribution for the vector
f random variables f is denoted as p F , with p 𝐹 𝑗 indicating the prior
istribution for f j . 

Let Y denote a plan to measure the variables affecting the system over
he management time duration, i.e. a sensor placement and schedul-
47 
ng scheme for the system. Vector y denotes a specific outcome of this
cheme, i.e. a set of possibly noisy measures collected on the system,
ith y j indicating a subset of measures which are first available to the
ecision-making agent at time t j . Thus, indexing of the measures in-
icates not necessarily when they are taken or which time index the
easured random variables are associated with, but when the measures
rst become available to support decision-making; for example, mea-
urement set y j might correspond to observations of variables 𝐟 𝑗−1 if
here is a one timestep delay between when measures are collected and
hen they can be processed to support decision-making. 

Based on these measurements, the prior distribution of random vari-
bles can be updated to a posterior distribution. This updating can be
erformed using standard techniques for Bayesian inference. This poste-
ior distribution after observation of y is denoted as p F | y . Note, however,
hat inference and updating can be performed using partial information,
.e., at time t j , the prior distribution can be updated using all information
vailable up to this time. We denote by Y → j the subset of measurements
hose outcomes will be available to the managing agent at time t j , with
 → j denoting the specific observations obtained up to and including
hat time. Thus, at time t j , the most up-to-date posterior distribution
or the random variables affecting the system, utilizing all information
ollected on the system which is available up to that point, is p 𝐹 |𝐲 →𝑗 

. 
In managing an uncertain system, decision-makers select actions to

ake to intervene in the system. Let a denote a set of selected actions
or managing the system over the entire time duration, selected from
et  of all possible action sequences (including a null or ‘do noth-
ng ’ sequence). Let a j denote the subset of actions decided upon at the
 th timestep of the management duration. Note that this timestep need
ot necessarily denote when the actions are implemented, only the last
imestep in which the actions are free to be altered, i.e. the timestep at
hich the choice of actions is ‘locked in ’ and cannot be changed later. 

Actions taken to manage the system can have an impact on the evo-
ution of the random field underlying the system. Thus, the distribution
f the random variables is in general denoted as p F | a . We denote the
rior distribution p F as a special case where a sequence of actions des-
gnated as the null sequence is taken, i.e. no interventions are taken to
ffect the evolution of the system. To preserve causality, it is assumed
hat actions decided upon at the j th timestep can affect the evolution
f the system from timestep 𝑗 + 1 onward, i.e. it takes a minimum of
ne discrete timestep for the impacts of actions to have an effect of the
andom variables which describe the future performance of the system.
lso note that the effects of future actions cannot propagate backward

n time, affecting the state of the system in earlier timesteps. Formally,
e have that p 𝐹 →𝑗 |𝐚 𝑗→ = p 𝐹 →𝑗 

∀ 𝐚 𝑗→ ∈  𝑗→ , i.e. that the distribution for
andom variables affecting the system up to and including time t j is the
ame regardless of the choice of actions taken from that timestep onward
denoted a j → ). 

The last element needed to define the system management decision-
aking problem is the loss function, denoted L( f, a ), which represents a
apping from the variables affecting the system and the actions taken

o manage it to a scalar quantity representing the utility of that outcome
o the system’s managing agent. Typically, this is expressed in monetary
erms as the lifetime cost (or negative revenue) of managing the system
ver the time duration T . 

The loss function captures all costs which are relevant to the
ecision-making problem resulting from certain combinations of vari-
ble states and actions. These include the cost of taking management
ctions, such as repairing a potentially damaged component or closing
own part of a system for safety reasons. They also include the cost of
otential failures or reductions in system performance, such as the cost
f lost revenues due to system down-time, costs or penalties of failing
o meet serviceability requirements, and costs of property damage and
otential loss-of-life in the case of catastrophic failure. The loss func-
ion also captures instantaneous effects of management actions on the
ystem; while it is assumed that actions a j cannot affect variables f j , dif-
erent combinations of actions and variables at the same timestep can
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ave different consequences, as captured by the loss function. We as-
ume that the loss function does not capture the costs of monitoring the
ystem; these are taken into account by a separate sensing cost function
( Y ), so that sensing and management costs can be examined separately
nd traded off. In Sections 2.2 through 2.4, various assumptions on the
tructure of the loss function and the effects of management actions on
he system are used to define the VoI of observations in various contexts.

.2. General loss functions 

First, we consider the case of a general loss function with no special
roperties. The loss incurred by the system manager is, under this most
eneral definition, a function of all variables f affecting the system and
ll actions a taken for system management. 

Without access to any measurements of the system, the best an infras-
ructure manager can hope to do is select a set of management actions
hich will minimize (in an expected sense) the loss function. This is

ermed the prior expected loss, and is evaluated as: 

 L 
(
∅
)
= min 

𝐚 ∈ 

𝔼 𝐹 |𝐚 L ( 𝐟 , 𝐚 ) (1)

here 𝔼 𝐹 |𝐚 denotes the statistical expectation with respect to p F | a . There
s no advantage to waiting to select management actions, as no addi-
ional information will be available to alter the decision-making process,
nd so the entire set of optimal actions for managing the system through-
ut the time duration can be selected at once; this set (also referred to
s the “open-loop policy ”) is denoted a ∗ ( ∅), and is the argument which
inimizes Eq. (1) . 

If, on the other hand, measurements of the system are available to
he managing agent during the time duration, choices of actions can and
hould be changed based on new information. The standard approach to
his type of sequential information collection and decision making prob-
em is dynamic programming [22] . We follow this approach to define
he posterior expected loss 𝔼 L( 𝑌 ) , or the expected loss for managing the
ystem with access to measurements from the set Y . We define this re-
ursively, beginning with the final timestep of system management and
orking backward. In timestep m , the complete set of measurements y is
vailable, and the record of past (or implemented) management actions
 →( 𝑚 −1 ) is known. Based on this information, the agent should select a
et of actions for managing the system at the final timestep, 𝐚 ∗ 𝑚 , which
inimizes the expected loss given all observations, all past actions, and

he current action: 

 

∗ 
𝑚 

(
𝐚 →( 𝑚 −1 ) , 𝐲 

)
= argmin 𝐚 𝑚 ∈ 𝑚 

𝔼 𝐹 |𝐚 , 𝐲 L ( 𝐟 , 𝐚 ) (2)

here 𝐚 = { 𝐚 →( 𝑚 −1 ) , 𝐚 𝑚 } concatenates the past and present actions. 
We now introduce a value function which defines the expected cost

o manage the system given all implemented actions and collected ob-
ervations before that timestep. For timestep m , the value function is:

 L ∗ 𝑚 
(
𝐚 →( 𝑚 −1 ) , 𝐲 →( 𝑚 −1 ) 

)
= 𝔼 𝒀 𝑚 |𝐚 →( 𝑚 −1 ) , 𝐲 →( 𝒎 −1 ) 

min 
𝐚 𝒎 ∈ 𝒎 

𝔼 𝐹 |𝐚 , 𝐲 L ( 𝐟 , 𝐚 ) (3)

That is, it is the expectation (over the final set of measures) of the
inimum (over the final set of actions) of the expected loss for managing

he system. Expectations are conditioned on all available information
nd all previous action choices. 

The value function can be defined recursively by noting that, at each
imestep, a set of actions are selected to minimize the expected loss,
nd a new set of observations are taken (which are influenced by all
ast information and actions). Therefore, the recursive definition of the
alue function is: 

 L ∗ 𝑗 
(
𝐚 →( 𝑗−1 ) , 𝐲 →( 𝒋 −1 ) 

)
= 𝔼 𝑌 𝑗 |𝐚 →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

min 
𝐚 𝑗 ∈ 𝒋 

𝔼 L ∗ ( 𝑗+1 ) 
(
𝐚 →𝒋 , 𝐲 →𝒋 

)
(4)

hile in the final timestep the value function has a special, explicit def-
nition: 

 L ∗ ( 𝑚 +1 ) 
(
𝐚 →𝑚 , 𝐲 →𝑚 

)
= 𝔼 𝐹 |𝐚 →𝑚 , 𝐲 →𝒎 

L 
(
𝐟 , 𝐚 →𝑚 

)
(5)
48 
The posterior expected loss under measurement scheme Y is the
alue function at the first timestep: 

 L ( 𝑌 ) = 𝔼 L ∗ 1 
(
𝐚 →0 , 𝐲 →0 

)
(6)

here a →0 and y →0 are by definition empty. Using the recursive defi-
ition of Eq. (4), Eq. (6) can be expanded as: 

 L ( 𝑌 ) = 𝔼 𝒀 1 min 𝐚 1 ∈ 1 
𝔼 𝒀 2 |𝐚 1 , 𝐲 1 min 𝐚 2 ∈ 2 

⋯ 𝔼 𝒀 𝒎 |𝐚 →( 𝒎 −1 ) , 𝐲 →( 𝒎 −1 ) 

min 𝐚 𝒎 ∈ 𝒎 
𝔼 𝑭 |𝐚 , 𝐲 L ( 𝐟 , 𝐚 ) (7) 

Here it is clear that the posterior expected loss involves repeated
esting of expectations (with respect to observations) and minimiza-
ions (with respect to actions) down the decision tree. This parallels the
equential collection of information and determination of actions which
s necessary for system management. 

In general, in timestep j , actions should be selected so as to minimize
he value function for the next timestep, a function of all information
ollected and all actions taken up to that point: 

 

∗ 
𝑗 

(
𝐚 →( 𝑗−1 ) , 𝐲 →𝒋 

)
= argmin 𝐚 𝑗 ∈ 𝒋 

𝔼 L ∗ ( 𝑗+1 ) 
(
𝐚 →𝑗 , 𝐲 →𝑗 

)
(8)

For a measurement outcome y , beginning from the first timestep and
oving to the last, a sequence of optimal actions a ∗ ( y ) is defined via

terative solution of Eq. (8) . 
The VoI of measurement scheme Y is defined as the difference be-

ween the prior and posterior expected losses under this scheme, i.e. as
he expected reduction in loss due to the taking of more appropriate
ctions based on the gathered information [9] : 

oI ( 𝑌 ) = 𝔼 L 
(
∅
)
− 𝔼 L ( 𝑌 ) (9)

Evaluation of the VoI for a given observation scheme can be a com-
utationally daunting task in spatio-temporal systems. It involves, for
ll possible measurement outcomes y , determining an optimal action
equence a ∗ ( y ) and evaluating the expected loss under this action se-
uence. We quantify the problem dimensionality in a reference case
here random variables are discrete, having 𝜃f possible outcomes, there
re 𝜃a possible choices for each management action in  , and each ob-
ervation in Y has 𝜃y possible results. The computational bottleneck is
he evaluation of Eq. (5) for every sequence of observations and ac-
ions. Therefore, using order notation, the search space of general VoI
valuation is  ( 𝜃|𝑌 |𝑦 𝜃

| |
𝑎 𝜃𝑚𝑛 

𝑓 
) , representing the fact that, for each of 𝜃|𝑌 |𝑦 

ossible observation sequences and 𝜃| |
𝑎 possible management action

equences, the loss must be averaged across 𝜃𝑚𝑛 
𝑓 

possible random field
ariable states to determine the value function. If we further assume that
ariables, actions, and observations are binary, i.e. that 𝜃𝑦 = 𝜃𝑎 = 𝜃𝑓 = 2 ,
nd that at each timestep n y observations are made and n a actions are
aken, i.e. the number of observations and actions is linear with respect
o the management time duration, then |𝑌 | = 𝑚 𝑛 𝑦 and | | = 𝑚 𝑛 𝑎 , and

he dimensionality can be expressed as  ( 2 𝑚 ( 𝑛 𝑦 + 𝑛 𝑎 + 𝑛 ) ) . 
The computational complexity of VoI assessment under a general loss

unction via the methods outlined above is intractable for large systems
23,24] . Although the above example of complexity growth focused on
iscrete states, observations, and actions, the complexity growth rate is
nalogous in problems with continuous states, observations, and actions.
ote also that for systems with continuous action variables, while effi-
ient solution to the minimization problem over actions might be possi-
le where the problem structure is convex, there is in general no guaran-
ee that this will be the case, and computationally intensive non-convex
ptimization techniques would need to be employed. Many approximate
olution approaches have been developed to address this problem of
omplexity growth. Sampling-based approaches, including Monte Carlo
nd Markov Chain Monte Carlo techniques, have been used for perform-
ng Bayesian inference and approximating VoI. However, appropriate
election of sample size is important to avoid biased estimates of the
oI, and many samples may be required to produce a suitably accurate
esult in large systems [25] . Surrogate or emulator models have also
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Fig. 3. Probabilistic graphical model for a system with a general loss function. Potential 

interdependencies between measurements have been removed to improve clarity. 
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Fig. 4. Probabilistic graphical model for a system with a decomposable loss function. Po- 

tential interdependencies between measurements have been removed to improve clarity. 
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een used, approximating VoI in large problems using more easily eval-
ated functions [26,27] . Hierarchical dynamic Bayesian models with as-
ociated approximate inference methods have also been used [28–31] .
n this paper, we develop an approach to tractable and exact evalua-
ion of VoI in large evolving systems by exploiting particular structures
hich the loss function might have. These loss function structures, their

mpacts on VoI evaluation complexity, and the consequences of these
tructures in terms of assumptions about the type of system being mod-
led, are introduced and discussed in Sections 2.3 and 2.4 . 

Fig. 3 represents a probabilistic graphical model (PGM) of a sys-
em with a general loss function. This follows a common convention
or PGMs, with circles representing random variables, shaded circles
or ovals) representing observed variables, squares (or rectangles) rep-
esenting inputs or decisions, rhombi representing deterministic out-
omes, and lines and arrows indicating probabilistic or deterministic
elationships among variables [19] . Random variables f , observations
 , and actions a are split into three categories: those before timestep j
i.e. the past), those at this timestep (i.e. the present), and those after
his timestep (i.e. the future). Note that past actions and variable states
ffect present and future variable states, and that present variable states
nd actions affect future variable states. Also note that present actions
re made with knowledge of past and (depending on the problem con-
ext) present observations, as indicated by the shaded arrows. The loss,
n general, is a function of past, present, and future actions and variable
tates. 

.3. Temporally decomposable loss functions 

We now assume that the loss function is decomposable across time
s follows: 

 ( 𝐟 , 𝐚 ) = 

𝑚 ∑
𝑗=1 

𝛾𝑗 L 𝑗 
(
𝐟 𝑗 , 𝐚 𝑗 

)
(10)

That is, the total loss is expressed as the discounted sum of losses
ssociated with each timestep, where loss L j ( f j , a j ) is associated with
he j th timestep and 𝛾 j is the positive discounting factor associated with
his timestep. Such loss functions are commonly encountered in engi-
eering applications where the costs of system failures and of executing
ctions are associated with specific timesteps and are discounted back
o their present value to evaluate the lifetime loss for the system. This
ecomposable form for the loss function is also commonly used for par-
ially observable Markov decision processes, or POMDPs, e.g. [16] . Note,
owever, that in this case the Markovian assumption of POMDPs is not
pplied, and that a more general discounting scheme is used. Fig. 4 de-
icts a PGM for a system with a decomposable loss function. 

The assumption of a decomposable loss function, together with the
inearity of the expectation, allows for the evaluation of expected loss
o be performed in a different and more efficient way. For example,
49 
q. (5) can now be expressed as: 

 L ∗ ( 𝑚 +1 ) 
(
𝐚 →𝑚 , 𝐲 →𝑚 

)
= 

𝑚 ∑
𝑗=1 

𝛾𝒋 𝔼 𝐹 𝑖 |𝐚 →𝑚 , 𝐲 →𝑚 
L 𝑗 

(
𝐟 𝑗 , 𝐚 𝑗 

)
(11)

Note that the linearity of the expectation allows it to be passed
hrough the summation, and that, since the losses associated with each
imestep are functions of the random variables associated with that
imestep only, the expectation need only be taken over these variables.
hus, while the number of expectations is increased, the dimensionality
f each expectation is decreased significantly. 

The general value function is also expressed differently. It is now
nterpreted as a ‘cost-to-go ’ function, i.e. the total expected cost to man-
ge the system from a given timestep forward, with the slight notational
hange from 𝔼 L ∗ 

𝑗 
to 𝔼 L ∗ 

𝑗→ to reflect that it is now the ‘cost-to-go ’ rather
han the total expected cost. The recursive definition from Eq. (4) now
ecomes: 

 L ∗ 𝑗→
(
𝐚 →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
= 𝔼 𝑌 𝑗 |𝐚 →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

min 
𝐚 𝑗 ∈ 𝑗 

𝔼 L 𝒋 →
(
𝐚 →𝑗 , 𝐲 →𝑗 

)
(12)

here: 

 L 𝑗→
(
𝐚 →𝑗 , 𝐲 →𝑗 

)
= 𝔼 𝐹 𝑗 |𝐚 →( 𝑗−1 ) , 𝐲 →𝑗 

L 𝑗 
(
𝐟 𝑗 , 𝐚 𝒋 

)
+ 

𝜸𝑗+1 

𝛾𝑗 
𝔼 L ∗ ( 𝑗+1 ) →

(
𝐚 →𝑗 , 𝐲 →𝑗 

)
(13) 

That is, the cost to optimally manage the system from timestep j
nward is the expectation (over the new measures which first become
vailable at timestep j ) of the minimum (over the actions selected at
imestep j ) of the expected loss at timestep j plus the discounted loss of
anaging the system from timestep 𝑗 + 1 onward. Note that 

𝛾𝑗+1 
𝛾𝑗 

repre-

ents the factor for discounting the loss at timestep 𝑗 + 1 back to timestep
 . 

The posterior expected loss, similar to Eq. (6) , is: 

 L ( Y ) = 𝛾1 𝔼 L ∗ 1 →
(
𝐚 →0 , 𝐲 →0 

)
= 𝔼 𝒀 1 min 

𝐚 1 ∈ 1 [
𝔼 𝑭 1 |𝐲 1 𝜸1 L 1 (𝐟 1 , 𝐚 1 ) + 𝜸2 𝔼 L ∗ 2 →

(
𝐚 →1 , 𝐲 →1 

)]
(14) 

The prior expected loss is evaluated similarly by dropping any con-
itioning on observations from Eqs. (12 –14) , and VoI is again evaluated
s in Eq. (9) . 

Evaluation of VoI in systems with decomposable loss functions in-
olves a lower problem dimensionality with respect to the evaluation of
oI under general loss functions. Under the assumption of decompos-
bility, the bottleneck is the need to evaluate 𝔼 L ∗ 𝑚 →( 𝐚 →( 𝑚 −1 ) , 𝐲 →( 𝑚 −1 ) ) for
ach possible sequence of past actions and measurements. Returning to
he reference case of discrete variables and actions, this dimensional-
ty is quantified as  ( 𝑚 𝜃

|𝑌 |
𝑦 𝜃

| |
𝑎 𝜃𝑛 

𝑓 
) , i.e., for each of the 𝜃|𝑌 |𝑦 𝜃

| |
𝑎 possible

equences of measurements and actions, an expectation must be taken
ver the 𝜃𝑛 

𝑓 
possible states of random variables in the final timestep.

inear dependence on m results from the need to repeat a similar eval-
ation for each timestep, working backwards from j = m to j = 1. Assum-
ng that variables are binary and that | Y | and | | grow linearly with
ime, the overall dimensionality for the computation can be expressed
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Fig. 5. Probabilistic graphical model for an uncontrolled system with a decomposable 

loss function. Potential interdependencies between measurements have been removed to 

improve clarity. 
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s  ( 𝑚 2 𝑚 ( 𝑛 𝑦 + 𝑛 𝑎 )+ 𝑛 ) . Note that this dimensionality, while still growing ex-
onentially in the management time duration, will do so at a slower rate
han in the case of a general loss function, especially considering that
ypically the number of action choices and measurements are smaller
han the number of random variables governing system performance in
ach timestep, i.e. n y ≪ n and n a ≪ n . 

Finally, it should be noted that POMDPs represent a special case
f systems with decomposable loss functions discussed here. First, in
 POMDP, it is assumed that the loss function associated with each
imestep is of the same form, and therefore that the same sets of possible
ctions and random variables are present for each timestep. Second, the
ey assumption of a Markov process is that the current joint state of the
andom variables affecting the system is independent of all past states
iven the joint state of the previous timestep and any actions taken and
bservations made between these steps. For this reason, POMDP solu-
ion methods typically make use of a belief state which is the posterior
robability distribution over the state variables at the current timestep,
 𝐹 𝑗 |𝐚 →𝑗 , 𝐲 →𝑗 

. This belief state represents a sufficient statistic describing the
urrent and future state of the system, since the belief state at timestep
 + 1 can be obtained from that at timestep j given actions a j and obser-
ations y j made between these timesteps. This contrasts with the gen-
ral case, where p 𝐹 𝑗+1 |𝐚 →𝑗+1 , 𝐲 →𝑗+1 

must be obtained from prior distribu-
ion p 𝐹 𝑗+1 together with all actions 𝐚 →𝑗+1 and all observations 𝐲 →𝑗+1 . In
OMDPs, the value function is defined as a function of the belief state
ather than of all past observations and actions to take advantage of
he Markovian property. For a POMDP, if 𝓫 𝑗 denotes the belief state at
imestep 𝓫 𝑗 , then Eqs. (12) and (13) are expressed together as: 

 L ∗ 𝑗→
(
𝓫 𝑗 

)
= 𝔼 𝑌 𝑗 |𝓫 𝑗 min 𝐚 𝑗 ∈ 𝑗 

[ 
𝔼 𝐹 𝑗 |𝓫 𝑗 , 𝐲 𝑗 L 𝒋 (𝐟 𝑗 , 𝐚 𝑗 ) + 

𝛾𝑗+1 

𝛾𝑗 
𝔼 L ∗ ( 𝑗+1 ) →

(
𝓫 ( 𝑗+1 ) 

)] 
(15)

here 𝓫 ( 𝑗+1 ) is a function of 𝓫 𝑗 , a j , and y j . This is an example of the
lassical Bellman Equation used for the solution of POMDP problems
22] . In the case of discrete variables, 𝓫 𝑗 would be a vector encoding
he probabilities of all joint states of the variables at timestep j . Also
ote that in some Bellman Equation formulations, the expectation over
bservations at timestep j , which is the outermost operation performed
ere, can be moved within, forming the innermost expression, i.e., as
n expectation over observations at timestep 𝑗 + 1 of 𝔼 L ∗ ( 𝑗+1 ) →( 𝓫 ( 𝑗+1 ) ) ,
here under this formulation 𝓫 ( 𝑗+1 ) would be a function of 𝐲 ( 𝑗+1 ) 

ather than y j . 

.4. Uncontrolled system evolution 

We now consider that, in addition to the system having a decom-
osable loss as in Eq. (10) , that the actions taken to manage the system
ave no effect on the evolution of the random variables which affect
he system. That is, p 𝐹 |𝐚 = p 𝐹 ∀ 𝐚 ∈  . Thus, the influence of actions
n the system is felt only through the decomposable loss function. In
ther words, while the agent cannot control the evolution of the sys-
em directly, he or she can control the impact which the system state
ill have on the system management cost for each timestep by choos-

ng an appropriate response action. Recall that the example problem of
ection 1 had such a form, where decisions made in response to the ran-
om field state reduced the penalties incurred without changing the field
tself. In general, any system where the effects of management actions
re confined to a single timestep only, or are relatively limited in scope
ompared to the management lifetime, might be effectively modeled as
n uncontrolled system. Preparation for extreme events is a natural ap-
lication, since emergency precautions taken to protect the system will
ot alter the underlying mechanisms by which the extreme event pro-
ess occurs. Although this assumption is quite restrictive in terms of the
ypes of system management activities which can be modeled, it is also,
s demonstrated below, quite powerful in terms of reducing the over-
ll computational complexity of VoI evaluation. Therefore, in situations
50 
here the system of interest can be appropriately modeled as an uncon-
rolled system, it is computationally of great advantage to make use this
ssumption. 

Fig. 5 depicts a PGM for such an uncontrolled system. Note that ac-
ions now only influence the loss associated with each timestep, rather
han the evolution of the underlying random variables as in previous
ases. 

In an uncontrolled system, losses can be again evaluated via the dy-
amic programming approach discussed in Section 2.3 . However, condi-
ioning of current and future measurements and random field variable
tates on past actions can be ignored following the assumption of un-
ontrollability. This allows Eqs. (12) and (13) to be expressed together
s: 

 L ∗ 𝑗→
(
𝐲 →( 𝑗−1 ) 

)
= 𝔼 𝑌 𝑗 |𝐲 →( 𝑗−1 ) 

min 
𝐚 𝑗 ∈ 𝑗 

[
𝔼 𝑭 𝑗 |𝐲 →𝑗 

L 𝑗 
(
𝐟 𝑗 , 𝐚 𝑗 

)]
+ 

𝛾𝑗+1 

𝛾𝑗 
𝔼 𝑌 𝑗 |𝐲 →( 𝑗−1 ) 

𝔼 L ∗ ( 𝑗+1 ) →
(
𝐲 →𝑗 

)
(16) 

This provides a recursive definition for 𝔼 L ∗ 
𝑗→( 𝐲 →( 𝑗−1 ) ) , the value func-

ion in the case of an uncontrolled system. Note that this is only a func-
ion of past measurements; within Eq. (16) , the choice of actions for
imestep j is optimized, and since expectations over current measure-
ents and random field variable states are not a function of past actions,
ependence of the function on these actions is removed. 

The posterior expected loss under measurement scheme Y is evalu-
ted as in Eq. (14) : 

 L ( 𝒀 ) = 𝜸1 𝔼 L ∗ 1 →
(
𝐲 →0 

)
(17)

Note that if we substitute in for the value functions using Eq. (16) ,
istributing the discounting factors and measurement expectations
cross the summands and using the chain rule to collect these expec-
ations, we obtain the following closed-form expression for the poste-
ior expected loss for an uncontrolled system with a decomposable loss
unction: 

 L ( 𝒀 ) = 

𝑚 ∑
𝑗=1 

𝛾𝑗 𝔼 𝑌 → 𝑗 
min 
𝐚 𝑗 ∈ 𝑗 

[
𝔼 𝐹 𝑗 |𝐲 →𝑗 

L 𝑗 
(
𝐟 𝑗 , 𝐚 𝑗 

)]
(18)

Similarly, the prior expected loss can be evaluated in closed form as:

 L 
(
∅
)
= 

𝑚 ∑
𝑗=1 

𝛾𝑗 min 
𝐚 𝑗 ∈ 𝑗 

[
𝔼 𝐹 𝑗 L 𝑗 

(
𝐟 𝑗 , 𝐚 𝑗 

)]
(19)

VoI is again evaluated as in Eq. (9) . 
VoI computation in uncontrolled systems involves evaluating each

erm of Eqs. (18) and (19) separately and summing the results. For the
ntire evaluation, the problem dimensionality referring to the discrete
eference problem is  ( 𝑚 𝜃

|𝑌 |
𝑦 𝜃

| 𝑚 |
𝑎 𝜃𝑚 

𝑓 
) . Assuming a linear growth of bi-

ary measurement and action set sizes with the time duration, this di-
ensionality is expressed as  ( 𝑚 2 𝑚 𝑛 𝑦 + 𝑛 𝑎 + 𝑛 ) . Again, while the growth in
imensionality remains exponential in the management time duration,
he rate of growth is significantly reduced compared to the previous
ases, especially considering that the number of observations taken in
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Algorithm 1 : Pseudo-code for the forward greedy algorithm. 

Input candidate set  , objective function VoI( · ), cost function C( · ), budget b 

𝑘 = 0 , 𝑌 0 = ∅
while || > 0 

𝑘 = 𝑘 + 1 
select 𝑦 ∗ 

𝑘 
= argma x 𝑦 ∈ VoI ( 𝑌 𝑘 −1 ∪{ 𝑦 } ) − C( 𝑌 𝑘 −1 ∪{ 𝑦 } ) 

if C( 𝑌 𝑘 −1 ∪{ 𝑦 ∗ 𝑘 } ) ≤ 𝑏 
𝑌 𝑘 = 𝑌 𝑘 −1 ∪{ 𝑦 ∗ 𝑘 } 

end 

 = ∖{ 𝑦 ∗ 
𝑘 
} 

end 

𝑘 end = 𝑘 
Output 𝑌 ∗ = argma x 𝑌∈{ 𝑌 0 , 𝑌 1 , …, 𝑌 𝑘 end 

} VoI ( 𝑌 ) − C( 𝑌 ) 
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ach timestep is typically small compared to the number of random vari-
bles or management actions, i.e. n y ≪ n and n y ≪ n a . Furthermore, if the
umber of measurements is independent of the management time dura-
ion, e.g., if problem constraints dictate a fixed upper limit to the number
f measures obtained, any exponential dependence between problem di-
ensionality and the management time duration is removed. Thus, un-
er the uncontrolled system assumption, holding all other parameters
i.e. the number of possible states and actions per timestep and the total
umber of observations of the system) fixed, the growth of computa-
ional complexity for evaluation of the VoI is linear in the time duration
ength. Also note that if the loss function is decomposable in space as
ell as in time, as in Eq. (32) , then the complexity will be linear in the
umber of system components [10,14] . 

Finally, mention should be made of the special case of loss quanti-
ed via the L -2 norm of the prediction error, where the actions are in-
erpreted as “guesses ” on the states of the random variables and the loss
s proportional to the sum of the squared error between these guesses
nd the true field values. Note that this is a case of an uncontrolled
ystem, as the guesses have no impact on the behavior of the random
eld. As discussed by Malings and Pozzi [10] for spatial systems, the
oI under this loss function is a function of the prior and posterior co-
ariance of the random field. In Gaussian random fields, this covariance
s not a function of the measurement values, but only of their locations.
imilarly, for spatio-temporal systems described by Gaussian random
elds, the VoI under this loss function is only a function of the sensor
lacement and scheduling scheme, and not of the specific outcomes of
easurements. Therefore, sensor placement and scheduling can be per-

ormed using the VoI metric without the need to take the expectation
ver potential measurement outcomes. 

. Sensor placement and scheduling 

The VoI metric can be used to identify an optimal sensing scheme
 

∗ , i.e. a set of measurement locations and times for the system, from a
et  of potential measurement locations and times as follows: 

 

∗ = argmax 𝑌 ⊆ VoI ( 𝑌 ) − C ( 𝑌 ) subject to C ( 𝑌 ) ≤ 𝑏 (20)

here C( Y ) represents the cost of implementing measurement scheme Y
nd b represents a fixed measurement budget. Appropriate definitions
f the cost function can be used to impose constraints relevant to sen-
or placement and/or scheduling. For example, in a sensor placement
roblem, subsequent measures taken at a location which has been mea-
ured previously may not incur any additional cost, or may only incur a
egligible cost. In this way, the low additional costs of interrogating a
ensor which has already been installed at a certain location can be cap-
ured. Furthermore, in a problem where inspections of the system are
arried out via an onsite agent such as a human or robotic inspector,
he cost of additional measurements collected at the same time may be
ather small, while the cost of additional measurements at a time when
o other measures are scheduled is large. This captures the high cost
f deploying the inspector to the site, but the low subsequent costs of
ollecting additional information once an inspector is already present. 

Eq. (20) represents a problem in combinatorial optimization. In gen-
ral, the only approach to combinatorial optimization which guarantees
n optimal solution is exhaustive enumeration, i.e. computing the VoI
f each possible subset of  . This is generally not a feasible solution ap-
roach, since the number of potential subsets grows exponentially with
he size of  . To avoid this computational difficulty in this paper, we
ake use of an approximate greedy optimization approach, as described

n Algorithm 1 . This approach, based on previous work in greedy opti-
ization e.g. [32] , iteratively builds the optimal sensing set by adding

ingle measurements to the set which most improve the objective func-
ion. Unfortunately, this algorithm does not guarantee optimal solutions
o the objective in all cases. However, even when complete enumeration
s infeasible, greedy optimization often leads to near-optimal results in
any practical applications e.g. [14,10] . Further details on the greedy
51 
lgorithm, its performance, and alternative approaches are discussed in
he companion paper [20] . 

Algorithm 1 represents an approach to solving the offline optimal
ensor placement and scheduling problem. In this offline problem, the
ptimal sensing scheme is decided upon before it is implemented, and
s implemented according to the pre-selected scheme. However, as mea-
urements are collected under a given offline scheme, additional infor-
ation about the system may be used to revise this scheme for future

imesteps. This is referred to as the online optimal sensing problem,
n which the sensing scheme is re-evaluated and re-optimized at each
imestep to reflect the latest knowledge of the system. Online sensing
llows for a greater flexibility, as the information collection plan is up-
ated to conform to the current state of knowledge of the system. For
his reason, in an expected sense, the online sensing approach will out-
erform (i.e., perform at least as well as) the offline approach in terms
f the losses incurred for system management. Again, while guarantees
n greedy optimization performance are available for sensing metrics,
hese do not hold in general for the VoI [33,34] . 

To perform online sensor placement optimization based on the VoI
etric, at each timestep, a revised optimal sensing plan should be deter-
ined which selects the best plan for future observations based on data

ollected by past measurements as well as past actions implemented
o manage the system based on these observations. Solutions to these
ensing problems may be obtained using suitable approaches to combi-
atorial optimization, e.g. the forward greedy optimization approach of
lgorithm 1 . In the online case, the optimal set of future observations

s based on maximization of the net marginal VoI. The marginal VoI,
.e. the additional benefit of obtaining future measurements Y j → given
hat past measures 𝐲 →( 𝑗−1 ) have already been collected and that actions
 

∗ 
→( 𝑗−1 ) have already been implemented, is evaluated as: 

VoI 
(
𝑌 𝑗→|𝐚 ∗ →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
= 𝔼 L 

(
∅|𝐚 ∗ →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
− 𝔼 L 

(
𝑌 𝑗→|𝐚 ∗ →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
(21) 

here the marginal loss is evaluated in general, following Eq. (6) , as: 

 L 
(
𝑌 |𝐚 ∗ →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
= 𝔼 L ∗ 𝑗 

(
𝐚 ∗ →( 𝑗−1 ) , 𝐲 →( 𝑗−1 ) 

)
(22)

Note that in systems with decomposable loss functions, the efficient
omputational approaches of Sections 2.3 (for controlled systems) and
.4 (for uncontrolled systems) can also be applied to evaluate marginal
oI. Also note that online optimization is computationally more chal-

enging than offline optimization due to the need to re-optimize the se-
ection of the sensing scheme for future measurements at each timestep.
hus, the computational complexity of online optimization is greater
han that of offline optimization by a factor of m . Furthermore, on-
ine optimization will be impossible when the computational time re-
uired for the optimization is longer than the timestep duration. Also
ote that the marginal VoI should be traded off against the total cost
f all measurements C( 𝑌 ∗ 

→( 𝑗−1 ) ∪ 𝑌 𝑗→) . However, the budget constraint of
q. (20) might either be applied to the total cost of all measurements or
o the cost for measurements in the next timestep only, i.e., C( Y j ) ≤ b j .
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n the latter case, the constraint in Algorithm 1 should be appropri-
tely modified. Finally, note that for the special case of the L -2 norm
f the prediction error in Gaussian random fields, there is no benefit to
nline sensor placement, as the VoI based on this loss is merely a func-
ion of the prior and posterior covariance of the random field, which
re not affected by the specific outcomes of measurements. For general
oss functions, however, different measurement outcomes will lead dif-
erent future measurement schemes to be optimal, e.g. as symptoms of
mpending future events are detected (as in Fig. 1 e–f). 

. Gaussian random field models 

In the examples which follow, Gaussian random field models are
sed to define the distributions of the random variables affecting sys-
ems. It should be noted that the approaches for VoI evaluation pre-
ented in the preceding sections do not require the use of such a model;
ny appropriately structured PGM, such as a dynamic Bayesian network,
ight be used. However, Gaussian random field models are one of the

ew model types which allow for efficient closed-form Bayesian updat-
ng, as in Eq. (26) below. They are defined completey by their mean
nd covariance structure. They also provide further opportunities for
fficiencies in the computation of VoI, as discussed in previous work
14] . For alternative forms of PGM, approximate inference techniques
ncluding Markov Chain Monte Carlo methods or particle filters may
e used, incurring a higher computational cost and/or risking lack of
onvergence of the numerical procedure [29,35] . 

Gaussian random field models represent a generalization of the mul-
ivariate Gaussian distribution to a continuous domain, and have been
sed to represent a wide variety of spatio-temporal phenomena [36] .
 similar model is used by Malings and Pozzi [10] to describe purely
patial systems, and is extended to spatio-temporal systems here as: 

 ( 𝐱, 𝑡 ) ∼  

[
𝜇( 𝐱, 𝑡 ) , k 

(
𝐱, 𝑡, 𝐱 ′, 𝑡 ′

)]
(23)

here mean function 𝜇( x , t ) describes the mean of the random field at
patial location x and time t , and covariance function k( x , t , x ′ , t ′ ) defines
he covariance between random variables at x ; t and x ′ ; t ′ . Over any finite
iscretized spatio-temporal domain, this model defines a multivariate
aussian distribution for the random variables affecting the system over

his domain: 

 ∼  

(
𝛍𝑭 , 𝚺𝑭 

)
(24)

here mean vector μF and covariance matrix 𝚺F are derived by evaluat-
ng the mean and covariance functions at all spatio-temporal coordinates
nd combinations of coordinates in the domain. 

By observing these random variables, or linear combinations of these
ariables, a Gaussian observation vector is defined as follows: 

𝐲 = 𝐑 𝑌 𝐟 + 𝛜 𝛜 ∼  

(
𝛍𝜖 , 𝚺𝜖

)
(25)

here observation matrix R Y encodes relationships between measure-
ents within scheme Y and the random variables (or linear combina-

ions of variables) which are observed. For example, if this matrix is
sed to encode two measurements, the first of which is a measurement
f the third element of f and the second of which is a measurement
f the average of the first three elements of f , the observation matrix
ould have two rows of the same length as f , with the first row having
n entry of 1 in the third position and the second row having entries
f 1/3 in the first, second, and third positions. In general, the observa-
ion matrix should be defined appropriately to encode the relationships
etween various physical sensors deployed in the system and the quanti-
ies which they are measuring in any given application, where each row
f R Y corresponds to a measurement in scheme Y and each column cor-
esponds to a variable in random field vector f . Furthermore, temporal
onstraints must be obeyed, i.e. measurements associated with a spe-
ific time should not be dependent on random variables associated with
uture times. Measurement noise is encoded in the noise vector 𝜖, which
s assumed to have a multivariate Gaussian distribution with mean 𝛍
𝜖

52 
nd covariance 𝚺𝜖 . This noise may in general have a bias via a non-zero
ean vector or may be correlated between measurements at different

ocations or times via appropriate definition of the covariance. Based on
he definition of Eq. (25) , the vector y of measurements itself has a mul-
ivariate Gaussian distribution, with mean vector 𝛍𝑌 = 𝐑 𝑌 𝛍𝐹 + 𝛍𝜖 and
ovariance matrix 𝚺𝑌 = 𝐑 𝑌 𝚺𝐹 𝐑 

T 
𝑌 
+ 𝚺𝜖 . Given a vector of measures y ,

he prior Gaussian model of the random variables affecting the system
an be updated to a posterior model: 

|𝐲 ∼  

(
𝛍𝑭 |𝐲 , 𝚺𝑭 |𝒀 ) (26)

here 𝛍𝐹 |𝐲 = 𝛍𝐹 + 𝐑 𝑌 𝚺𝐹 𝚺−1 
𝑌 
( 𝐲 − 𝛍𝑌 ) and 𝚺𝐹 |𝑌 = 𝚺𝐹 − 𝐑 𝑌 𝚺𝐹 Σ−1 

𝑌 
𝚺𝐹 𝐑 

T 
𝑌 

.

. Case study applications 

This section presents two case studies illustrating how the VoI metric
an be applied to determine optimal sensor placement and scheduling
chemes for infrastructure systems. In Section 5.1 , a simulated system
f columns subjected to differential settlement is investigated, and of-
ine and online optimal sensing schemes for the system are evaluated
nd compared. In Section 5.2 , optimal sensor placement and scheduling
chemes are determined making use of data collected for the Sherman
nd Joyce Bowie Scott Hall building, a recently constructed building at
arnegie Mellon University whose main structural elements have been

nstrumented with strain sensors. 

.1. Application to differential settlement 

An example problem is presented here to illustrate the application of
he VoI evaluation and optimal sensor placement and scheduling meth-
ds outlined above. This example is motivated by the monitoring of and
esponse to settlement under columns of a structure over time [37] . The
ettlements under 𝑛 = 9 columns of a structure over an 𝑚 = 10 year pe-
iod are modelled by a random field using a Gaussian random field. The
hysical arrangement of the columns is identified in Fig. 7 a, while the
ime duration considered is discretized as 𝑇 = { 1 , 2 , … , 10 } years. The
ean function of the Gaussian random field is: 

( 𝐱, 𝑡 ) = 𝜇0 

[ 
1 − exp 

( 

− 

𝑡 − 𝑡 0 
𝛼𝑡 

) ] 
(27) 

here, 𝜇0 = 0 . 5 m , 𝑡 0 = 1 year, and 𝛼𝑡 = 5 years. This mean function
odels the settlement of the columns over time, with the average

mount of settlement of the columns increasing to a long-term average
f 𝜇0 . The covariance function is defined to be decomposable between
pace and time, as follows: 

 

(
𝐱, 𝑡, 𝐱 ′, 𝑡 ′

)
= σ( 𝑡 ) σ

(
𝑡 ′
)
ρ𝑋 

(
𝐱 , 𝐱 ′

)
ρ𝑇 

(
𝑡, 𝑡 ′

)
(28) 

The spatial component is: 

𝑋 

(
𝐱 , 𝐱 ′

)
= exp 

( 

− 

||𝐱 − 𝐱 ′||2 
2 𝜆2 

𝑋 

) 

(29) 

This model represents a square exponential correlation function,
here the settlements of nearby columns are more heavily correlated.
he range of the correlation is parameterized by the correlation length

𝑋 = 20 m . This spatial correlation structure imposes certain relation-
hips on the relative settlements of the columns in the structure at a
pecific time. The temporal component is: 

𝑇 

(
𝑡, 𝑡 ′

)
= exp 

( 

− 

||𝑡 − 𝑡 ′||2 
2 𝜆𝑇 2 

) 

(30) 

This temporal component again models a square exponential correla-
ion between settlements at different times, with a correlation timescale
f 𝜆 = 5 years. This governs the differentiability or smoothness of the
𝑇 
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Fig. 6. Prior 95% confidence region for settlement of a column over time (grey area) with 

a potential settlement profile indicated (black line). 
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Fig. 7. (a) Spatial arrangement of the structural columns; (b) Measurement times and 

locations for the scheme optimized offline based on VoI (x). Numbers indicate the order 

in which measures are selected by the greedy algorithm. 
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olumn settlement profiles in time, ensuring infinite differentiability.
inally, the standard deviation function for the settlement is: 

( 𝑡 ) = 𝜎0 

[ 
1 − exp 

( 

− 

𝑡 − 𝑡 0 
𝛼𝑡 

) ] 
(31) 

here 𝜎0 = 0 . 1 m . This models an increase in the variance of the settle-
ent over time where, comparing Eqs. (27) and (31) , the coefficient of

ariation of the settlement at any time is a constant, i.e., 𝜇0 ∕ 𝜎0 = 5 . 
It is important to note that the forms and relevant parameters of Eqs.

27 –31) are intended to represent a possible reasonable probabilistic
odel for structural settlement. The selection of this model, including

he assumption of independence between spatial and temporal covari-
nce of Eq. (28) , choice of correlation function forms, and the setting of
arameters, should all be performed using available prior knowledge.
he reader is referred elsewhere for discussions of methods and exam-
les of the creation and calibration of probabilistic spatio-temporal mod-
ls [6,8,36] . 

Based on this prior mean and variance model, the prior 95% confi-
ence region for settlement of a column over time, as well as a potential
ealization of a settlement profile, are depicted in Fig. 6 . Note the de-
rease in the average settlement and increase in uncertainty over time. 

Within this system, observations of the column settlements are possi-
le for each column annually. This would define the observation matrix
  for the set of all possible measurements to be an identity matrix of

ize 90 (corresponding to measures of each of 9 columns in each of 10
ears). Observation matrices R Y for particular measurement schemes Y
an be obtained from 𝐑  by eliminating rows of the matrix correspond-
ng to potential observations in  which are not included in scheme
 . Errors in the settlement measurements are considered for this prob-

em. Measurement errors are modeled as independent Gaussian random
ariables with a mean of zero and a standard deviation of 𝜎𝜖 = 0 . 01 m .
herefore, 𝛍𝜖 = 𝟎 and 𝚺𝜖 = 𝜎2 𝜖 𝐈 , where 0 represents a zero vector and I
epresents an identity matrix of an appropriate size. The impacts of cor-
elated errors in settlement measurements are discussed in related work
38] . The outcomes of these measures are assumed to not be available
o the managing agent until the following timestep, i.e. decisions made
n year j can be based on gathered information about the settlement of
he columns in years 1 through 𝑗 − 1 . 

To manage this system, in year j , the managing agent has an op-
ion to intervene by selecting 𝐚 𝑗,𝑖 = 1 at cost C r = $10k, to prevent dam-
ge due to excessive settlement of column i compared to the average
ettlement of all columns, which would incur a cost C f = $100k. Other-
ise, the agent would choose to do nothing, i.e. select 𝐚 𝑗,𝑖 = 0 . To allow

or the assumption of an uncontrolled system, it is important that the
odeled intervention activity not affect the settlement of the columns

hemselves. Thus, an intervention to search for and repair damage due
o settlement, e.g. patching façade cracks and re-squaring door frames,
hich mitigates damages due to differential settlement without affect-

ng the settlement itself, is considered here. This problem is encoded by
53 
he following annual loss function, which is decomposable in space as
ell as time: 

 𝑗 

(
𝐟 𝑗 , 𝐚 𝑗 

)
= 

𝑛 ∑
𝑖 =1 

L 𝑗,𝑖 
(
𝐟 𝑗,𝑖 , 𝐚 𝑗,𝑖 

)
(32) 

here: 

 𝑗,𝑖 

(
𝐟 𝑗,𝑖 , 𝐚 𝑗,𝑖 

)
= 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐶 𝑓 𝕀 

( |||||𝐟 𝑗,𝑖 − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝐟 𝑗,𝑖 
||||| > 𝛿max 

) 

if 𝐚 𝑗,𝑖 = 0 

𝐶 𝑟 if 𝐚 𝑗,𝑖 = 1 
(33) 

here 𝕀 ( ⋅) is an indicator function, taking on value 1 when its argument
s true and 0 otherwise, and 𝛿max = 0 . 1 m . The total loss is the discounted
umulative loss over the time duration as in Eq. (10) , with a discount
actor of 𝛾𝑗 = 0 . 9 ( 𝑗−1 ) . In this problem, sensing costs are assumed to be
1k per measurement, discounted to the present value using the same
iscounting method. 

Based on the probabilistic model and decision-making problem out-
ined above, an agent managing the system should plan on implementing
ntervention actions for columns later on during the management time
uration. This is because, as time increases, the variances of the column
ettlements increase, as in Eq. (31) , and therefore the likelihood that a
olumn’s settlement will differ from the average by more than the ac-
eptable threshold 𝛿max increases. Furthermore, the agent should plan
n intervening earlier for the corner columns (1, 3, 7, and 9 in Fig. 7 a)
han for the side columns (2, 4, 6, and 8), and should intervene for the
enter column (5) last. This is because the spatial correlation structure
f Eq. (29) means that the settlements of columns farthest from the spa-
ial center of the domain are most likely to differ from the mean by
ore than the acceptable threshold. This intuition is reflected in the
rior optimal management scheme depicted in Fig. 8 a. 

In terms of optimizing inspections based on the VoI, there are sev-
ral factors which are considered and traded off. In time, earlier mea-
urements of settlement will be available for use in supporting decision-
aking throughout the management time duration, but the absolute set-

lements of the columns are low early on, leading to low probabilities of
ettlements differing from the mean by more than the acceptable thresh-
ld. Later on, the absolute settlements of the columns are greater, lead-
ng to higher probabilities of failure and a higher chance that additional
nformation will lead to better decision-making outcomes. However,
hile earlier measures can be used to support later decision-making,

ater measures cannot support earlier decisions, and so the value of these
easures in supporting decisions at other timesteps is also diminished.

n both space and time, the correlation structures mean that measure-
ents which are close in space and/or time will tend to be redundant,

nd therefore appropriate spacing in space and time should be deter-
ined. Intuitively, an optimal sensing scheme would focus more mea-

ures toward the middle of the management time duration, trading off
he factors discussed above. In space, this scheme would tend to stag-
er measurements between different columns, taking advantage of both
patial and temporal correlations to infer the behavior of unmeasured
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Fig. 8. (a) Prior optimal actions for managing the system and the state of the system for a specific realization of the system evolution; (b) Posterior optimal actions for system management 

based on the offline optimized sensing scheme (x) for the same realization; (c) Measurements selected via online optimization (o) and associated optimal actions. 

Table 1 

Comparison of the performance of various sensor placement and scheduling 

schemes. 

| Y | 𝔼 L(∅) 𝔼 L( 𝑌 ) VoI( Y ) C( Y ) net VoI 

No sensors 0 $170k $170k $0 $0 $0 

Offline scheme 31 $170k $32k $138k $19k $119k 

Intuitive scheme 45 $170k $32k $138k $30k $108k 

All measures 90 $170k $23k $147k $58k $89k 
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Table 2 

Comparison of the performance of online and offline sensor placement 

and scheduling schemes for a specific realization of the system’s evolu- 

tion, as depicted in Fig. 8 . 

| Y | L( f, a ∗ ) L( 𝐟 , 𝐚 ∗ ) + C( 𝑌 ) net benefit 

No sensors 0 $120k $120k $0k 

Offline scheme 31 $27k $46 $74k 

Online scheme 30 18k $37k $83k 
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olumns from earlier measurements on that column as well as from mea-
ures on nearby columns. 

An offline optimal sensor placement and scheduling scheme to sup-
ort system management using the VoI metric is identified in Fig. 7 b
ollowing the greedy approach of Algorithm 1 , and conforms well to the
arious intuitive factors discussed above. This scheme distributes mea-
urements fairly evenly across all columns spatially, and concentrates
easurements between years 4 and 8. Note that in years 4 and 5, mea-

urements are prescribed for every column (except the center column
n year 5). This provides two ‘baseline ’ measurements of the settlement
or most columns, allowing their true settlements to be accurately de-
ermined from this time. In years 6 through 8, columns are observed
lternately, with the corner and center columns observed in years 6 and
 and the side columns observed in year 7. Because of the smoothness
mposed by the spatial and temporal covariance, these intermittent ob-
ervations are enough to generate reasonably accurate posterior predic-
ions for the column settlements in these years. 

Without additional information, the prior expected loss for manag-
ng the system, 𝔼 L(∅) , is $170k. With the offline optimal sensing scheme
f Fig. 7 b, the posterior expected loss, 𝔼 L( 𝑌 ) , is $32k, and therefore
oI( Y ) = $138k. Taking into account the cost of making these measure-
ents, the net VoI, VoI ( 𝑌 ) − C( 𝑌 ) , is $119k. Thus, by making these mea-

urements to support decision-making, the overall management cost for
he system is reduced by 70%, in an expected sense. Furthermore, the
alue of complete information, i.e. the VoI which would be obtained if
ll 90 potential measurements were implemented, is $147k. The optimal
ensor set therefore achieves 94% of the value of complete information
hile including less than a third of the possible measurements. Finally,
e can compare the VoI of the proposed scheme with that of an intu-

tive scheme, where measurements are taken for all columns every other
ear, starting in year 1. This is an example of the type of measurement
cheme which might be prescribed for the system, with regularly sched-
led inspections for all components on a fixed schedule. This scheme
ould provide roughly the same VoI as the optimized scheme, but does

o at a higher sensing cost, leading to a lower net VoI for this scheme.
he expected loss, cost, and VoI of these schemes are listed in Table 1
or easy comparison. 

We also investigate the benefits of online optimal sensing for this
ystem. Note that each online sensing scheme will be different based
n the sequence of measurements collected during year 4; based on this
54 
nformation, measurement locations and schedules for subsequent years
ill be updated. To illustrate this, Fig. 8 a depicts a specific realization of

he system, where damage occurs on column 9 from year 7 onward. This
gure also depicts the optimal prior management plan for the system, as
iscussed previously. The cost which is actually incurred by managing
he system according to this prior plan for the given realization of the
ystem’s evolution is $120k. 

If the offline optimized sensing scheme is used to support system
anagement, more appropriate management actions can be taken, as
epicted in Fig. 8 b. Here, the prescribed interventions for column 9
orrespond to the times where the column would have been damaged
ithout these interventions, and therefore any failure costs are avoided.
owever, there is still an intervention prescribed for the neighboring
olumn 6 in years 9 and 10 which does not correspond to an actual dam-
ge condition, but rather to a high risk of damage based on the collected
nformation. The online sensor placement scheme, depicted in Fig. 8 c,
llows this unnecessary intervention to be avoided. This is done through
ore appropriately allocating measures to more accurately predict the

tate of column 6. As can be seen, many of the measures originally pre-
cribed for year 6 are forgone, and instead more measurements are con-
ucted during years 7 and 8, including for column 6. This allows for the
robability of damage in this column to be reassessed, and as a result
or the unnecessary intervention action to be avoided. Overall, adopting
n online optimization approach reduced total cost (including system
anagement and sensing costs) by 20% compared to the offline sensing

cheme for this particular realization of the system. A summary of the
osts for managing the system under various measurement schemes is
rovided in Table 2 . 

Comparing across different cases of online sensor placement, based
n 100 random simulations of the settlement of columns and their mea-
urement following different online schemes, in all cases the online
ptimal scheme consisted of fewer measures than the offline optimal
cheme, and in 84 cases the losses incurred by the managing agent were
educed as well. The cost reduction of online sensing compared to of-
ine sensing ranged from 50% to − 49% in these cases, with an average
f 15.4%. The empirical cumulative distribution for the cost reduction,
̂
 ( Δ𝐶 ) , is shown in Fig. 9 . Note that the cases of negative cost reductions
i.e. cost increases) result from the fact that, occasionally, the new on-
ine scheme fails to capture certain relevant information which would
ave been captured by the offline scheme. Intuitively, while a measure
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Fig. 9. Empirical cumulative distribution function ( ̂F ) for the cost reduction ( 𝚫C ) from 

online sensing, with the average value indicated. 
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Fig. 10. Plot of empirical temporal correlations between column strain rates (boxplots 

represent ranges in empirical correlations across columns) versus the fitted temporal cor- 

relation model (black line). 
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ay be neglected in an online scheme because previously collected in-
ormation indicates that the column in question is likely ‘safe ’, there
s still a small but non-negligible chance that the column will become
nsafe, and the denser set of offline measurements may have detected
his. The relative benefit of online sensor placement compared to offline
lacement can thus vary greatly depending on the specific sequence of
easurements obtained. 

.2. Example application for structural health monitoring 

This section gives an example of the application of the above VoI
valuation framework to a problem of optimal sensor placement and
cheduling for structural health monitoring using data obtained from
n existing structure. The Sherman and Joyce Bowie Scott Hall is a
ewly constructed building on the campus of Carnegie Mellon Univer-
ity, housing a variety of academic and research spaces. A portion of
he structure is suspended over a slope on eleven tubular steel columns.
uring construction, these columns were instrumented with 23 fiber op-

ic strain gauges, as shown in Fig. 11 a, with three sensors installed on
olumn one and two sensors installed on all other columns. The phys-
cal arrangement of the columns is indicated in Fig. 11 b. Columns are
ivided into three groups (indicated by colors in the diagram) which
hare common foundations. 

In this problem, random field vector f represents the hourly strain
ates in each of 𝑛 = 11 columns over an 𝑚 = 24 ℎ period, representing a
ypical day during the construction process. These rates are described by
 multivariate Gaussian distribution model. The mean hourly strain rate
or each column was determined empirically from data collected during
 seven-day model calibration period, which defined the function μ( x ),
he time-independent average column strain rate as a function of the
osition x occupied by the column within the structure. Similarly, the
mpirical spatial correlation between column strain rate data during this
eriod was evaluated, and the spatial correlation function ρX ( x, x ′ ) was
efined to be equal to this empirical correlation for any pair of columns
t locations x and x ′ . In the absence of empirical data, a finite element
odel of the structure might be used to generate simulated datasets

or performing the calibration. Further details on the development and
pplication of this spatial model can be found in previous work [39] . 

Additionally, the column strain rates were found to be temporally
orrelated. Analysis of data collected during the model calibration pe-
iod in terms of the correlation of hourly column strain rates for individ-
al columns as a function of the time difference of the data collection
eriods is presented in Fig. 10 . To this empirical data, an exponential
emporal correlation function of the following form was fitted: 

𝑇 

(
𝑡, 𝑡 ′

)
= exp 

( 

− 

||𝑡 − 𝑡 ′||
𝜆𝑇 

) 

(34) 

The correlation timescale parameter 𝜆T of this model was selected
ia maximization of the log-likelihood of the data set evaluated via a
55 
aussian random field model using this correlation function; a param-
ter value of 𝜆𝑇 = 1 . 6 hours was found to maximize the log-likelihood,
nd was therefore selected. A plot of the correlation function is provided
s the black curve in Fig. 10 . 

The spatial and temporal correlation models were combined to de-
ne the full spatio-temporal model, following the assumption of decom-
osability as in Eq. (28) . It should be noted that several assumptions,
ncluding that the mean column strain rate does not vary in time, the
arametric form of the temporal correlation, that the spatial and tem-
oral covariance of the column strain rates are decomposable, and that
he column strain rates are well modeled as Gaussian random variables,
ave been incorporated into this model. This model for the behavior of
cott Hall appears to be reasonable based on the data collected, and is
herefore used here for illustrative purposes. In the absence of this em-
irical data, data simulated from finite element models of the structure
ould have been used to develop this model. 

Observations of the strain in the columns, as obtained via the strain
ensors during a one-hour period, can be used to update this prior model
f the strain rate, with an appropriate definition for R Y used to define
he relationship between the measured strain and the underlying ran-
om variables (the strain rate). For simplicity, a set of measurements
btained by a strain sensor associated with a particular column over an
our is pre-processed to determine the average measured strain rate in
hat column during that hour. This processed data is then considered to
e a “measurement ” of the column’s average strain rate over that hour.
hus, rows in R Y consist of zeros, except for a 1 in the position cor-
esponding to the strain rate in vector f of the column in question at
he hour when the sensor is active according to scheme Y . Observations
re assumed to be independent with a nominal measurement error of
% of the standard deviation of the measured quantity. This is based
n the finding that the uncertainty in hourly strain rate conditional to
train gauge measurements was found to be several orders of magnitude
maller than the variability of the strain rates themselves. 

We define a decision-making problem for system management based
n the column strain rates. The loss function defining the problem de-
omposes temporally as in Eq. (10) . For each timestep, the loss L j ( f j , a j )
s determined as follows: if for any pair of column groups, the average
train rates of columns within these groups differ by more than a given
hreshold, then it its assumed that a harmful differential settlement be-
ween column foundations is occurring. This occurrence induces a loss
f $ 10k per hour while it persists, modeling the effort needed to cor-
ect such a settlement. However, the managing agent has the option to
elay construction, at the cost of $ 1k per hour, to avoid these conse-
uences. No discounting is considered because of the short time period,
.e. 𝛾𝑗 = 1 ∀𝑗 ∈ 1 , … , 𝑚 . Decisions must be made an hour in advance, i.e.
nly the settlement measurements obtained via sensors up to and in-
luding the previous hour may be used to support decision-making. For
his problem, the threshold of differential settlement is set to 4 mm per
our for illustrative purposes. 
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Fig. 11. (a) Image of a column of the Scott Hall building with attached strain sensor; (b) Spatial arrangement of the 11 instrumented columns of the structure, with colors indicating the 

column groups; (c) Sensor placement results; (d) Sensor scheduling results; (e) Simultaneous placement and scheduling results. The set of prescribed measurement times and locations in 

each case are indicated by x’s in the spatio-temporal domain. 
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For the above decision-making problem, three alternative sensing
chemes are optimized offline. First, sensor placement is considered, i.e.
 subset of the full set of sensors actually installed on the structure is
elected to gather data continuously to support decision-making for the
bove problem. Second, sensor scheduling is determined, i.e. certain
imes at which to measure strain rates for all available sensors are se-
ected. Finally, simultaneous placement and scheduling are considered,
here the times and locations at which to take measures are optimized.

Fig. 11 c indicates results for optimal sensor placement. Results
hown here correspond with the optimal spatial placement indicated
n [39] , consisting of five sensors spread across the three groupings of
olumns. Fig. 11 d indicates results for optimal sensor scheduling. Here,
ome measurements are taken earlier in the cycle so that data will be
vailable to guide later decision-making. Finally, Fig. 11 e indicates re-
ults for optimal placement and scheduling. Here, prescribed measure-
ents switch between columns as time passes, adjusting for changes in

oading and strain patterns over time. 
Overall, while the VoI of the sensor scheduling scheme is $ 1.2k, and

hat of the placement scheme is $ 2.8k, that of the optimal placement
nd scheduling is highest at $ 3.4k. While all schemes prescribe roughly
he same number of sensor measurements, the optimal sensor placement
nd scheduling is the most flexible (as there are no constraints that all
easurements on a particular column or at a particular time must be

elected together), and therefore can provide greater benefits in terms
f reduced management costs (as measured by VoI) while using a com-
arable number of sensors. 

Note that, for this example, we investigate the performance of the
ethod by selecting a threshold on strain rates which allows for the
etection of periods of differential loading on the structure caused by
he pouring of concrete during the construction process. These concrete
ours are therefore used as proxies for failure events during actual build-
ng operations. Additionally, the costs associated with interventions and
xcessive strain rates are presented here for illustrative purposes. 

. Conclusions 

The VoI metric is well suited to supporting optimal sensor placement
nd scheduling, as it directly identifies the benefits of information in
educing system management costs. However, this metric is difficult to
56 
valuate in general due to the rapid growth in possible system states and
anagement actions as the system management time duration increases.
his paper identifies the special case of an uncontrolled system with a
emporally decomposable loss function in which the VoI can be much
ore efficiently evaluated. The key assumptions for such a system are,
rst, that the loss function decomposes temporally, such that the total

oss can be expressed as a discounted sum of losses across all timesteps,
nd second, that actions to manage the system do not influence the evo-
ution of the random variables affecting the system for future timesteps.
hese assumptions can be relaxed somewhat through state augmenta-
ion, i.e., through extending the vector of actions and random variables
ssociated with each timestep to include duplicates of variables associ-
ted with other timesteps. Such an approach has been applied previously
or Markov Chain models, e.g. [40] , and has allowed for the relaxation of
ertain model assumptions at the cost of increased computational com-
lexity. In this way, the influences of short sequences of actions (e.g.
 set of four coupled seasonal actions applied to a system in a year,
hich have no effect on the system in the next year) can be modeled,
lbeit at a higher computational cost. Additionally, previous work by
alings and Pozzi [10,41] has shown that more topologically compli-

ated systems can, under certain circumstances, be evaluated under the
umulative system assumption (the spatial analog of the uncontrolled
ystem assumption). It is possible that these insights can be extended to
ertain temporally evolving systems as well. 

It should also be noted that, while the examples of Section 5 make use
f binary action choices, any number of discrete action choices, or even
ontinuous-valued actions, can also be handled. For discrete actions,
he computational complexity will grow exponentially with the num-
er of possible actions, unless the problem structure can be exploited
o improve this (see [10] for examples). For continuous actions, prob-
em structure might also be exploited in the case of convex problems,
r surrogate models might be used to improve the efficiency of the op-
imization, e.g. [26] . Alternatively, the assumption of a discrete, finite
ime duration for the management problem is essential to the formula-
ion of the efficient computational methods discussed here. In principle,
epending on the discounting scheme, the influence of far-future actions
nd observations can be ignored, and an infinite-horizon problem can
e approximated using a finite-horizon model. Furthermore, the effect
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f the time discretization has not been investigated; such a discretiza-
ion might have a significant effect on the problem if the computation
ime is comparable to the length of the discretized timestep, in which
ase online optimization will not be possible following the approach
resented here. New, more efficient, possibly heuristic techniques for
nline optimization would need to be implemented in that case. 

In comparing sensor placement and scheduling in spatio-temporal
ystems based on VoI, as discussed in this paper, with problems of place-
ent only, as discussed in previous work by Malings and Pozzi [10] ,

everal parallels can be found. Essentially, the temporal evolution of
he system can be considered simply as another dimension, e.g., sensor
lacement and scheduling across a two-dimensional spatial domain can
e seen as a special case of sensor placement in a three-dimensional do-
ain, where two dimensions correspond to space and one to time. The

ey difference is in the evaluation of VoI in evolving systems, since infor-
ation can propagate omnidirectionally in space, but it must propagate
nidirectionally in time. In other words, while information collected at
ny spatial location in the system can support decision-making for any
ther spatial location, information collected at a specific time can only
upport decision-making for later times. However, evaluation of VoI in
patio-temporal systems via Eq. (18) can be seen as a special case of
ts evaluation in spatial systems, where only specific subsets of the full
ensing scheme (corresponding to measurements associated with previ-
us timesteps) are considered. Finally, online sensing in spatio-temporal
ystems can be compared to online sensing in purely spatial systems us-
ng batches of measurements (corresponding to measurements associ-
ted with a single timestep). 

This paper also presents some examples to demonstrate the applica-
ion of VoI evaluation in spatio-temporal systems and VoI-based sensor
lacement and scheduling. While schemes are optimized based on a for-
ard greedy selection approach, both for online and offline placement
nd scheduling, as has been mentioned, there is no guarantee on the
ptimal outcome of this approach using the VoI metric. Further inves-
igation of the optimization of measurement schemes based on the VoI
etric, including shortcomings of the greedy approach illustrated here

nd potential approaches to overcoming these, are discussed in the com-
anion paper [20] . 
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