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ABSTRACT

The management of infrastructure involves accounting for factors which vary in space over the system domain and in time as the system changes. Effective system
management should be guided by models which account for uncertainty in these influencing factors as well as for information gathered to reduce this uncertainty. In
this paper, we address the problem of optimal information collection for spatially distributed dynamic infrastructure systems. Based on prior information, a monitoring
scheme can be designed, including placement and scheduling of sensors. This scheme can be adapted during the management process, as more information becomes
available. Optimality can be defined in terms of the value of information (VoI), which provides a rational metric for quantifying the benefits of data gathering efforts
to support system management decision-making. However, the computation of this metric in spatially and temporally extensive systems can present a practical
impediment to its implementation. We describe this complexity, and investigate a special case of system topology, termed as a temporally decomposable system with
uncontrolled evolution, in which the complexity of assessing VoI grows at a manageable rate with respect to the system management time duration. We demonstrate

the evaluation and optimization of the Vol in an example of such a system.

© 2017 Elsevier Ltd. All rights reserved.

1. Motivation and background

In this paper, we examine the optimization of sensor placements and
scheduling to support the management of infrastructure systems. For the
management of large systems with numerous components whose states
evolve in time, the determination of optimal policies both for maintain-
ing these systems and for inspecting these systems to determine what
management actions are needed are important questions [1-5]. As a
motivating example of sensing and decision-making in an evolving sys-
tem, consider a system whose performance is influenced by a physical
quantity which varies in both space and time, such as depicted in Fig. 1;
a square region, described by horizontal coordinates x; and x,, is rep-
resented at different time instants = 1 and ¢ = 2. The set of random
values for this physical quantity at each coordinate in space and time is
described as the random field. For instance, this field might represent the
temperature to which a population is subjected, which can cause health
difficulties, placing strain on a medical system e.g., [6,7]. An underly-
ing probabilistic model of the random field captures its characteristics,
including its expected value, variability, and interdependence relation-
ships in space and time e.g. [8]. In Fig. 1a, a map of the field at one
time is depicted, showing its variation in space. Fig. 1c depicts the ran-
dom field at a subsequent time; note the similarities in the field shape,
stemming from the modeled correlation of the field across time. The in-
frastructure system might then consist of a continuous domain, e.g. in
the case of population in a region exposed to extreme temperatures, or
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of discrete components occupying positions within this domain, e.g. in
the case of several critical assets vulnerable to high temperature.

Based on prior knowledge, where the field is predicted to exceed
a threshold, an appropriate intervention activity can be carried out to
avoid the negative consequences of this exceedance. For example, heat
advisories might be issued for specific regions and times, which can mit-
igate the consequences of the population being exposed to extreme heat.
Intervention decisions take into account the consequences of different
possible outcomes, the costs of response options, and the inherent un-
certainty in the field. Measurements of the field can also be made and
used to update the prior model. For example, in Fig. 1a, X’s indicate loca-
tions where measurements of random field values are made, and Fig. 1b
presents an example of decision-making based on these measurements.
The red area denotes where the field exceeds a set threshold (causing a
local failure in the system), while the blue area depicts where, based on
the updated knowledge of the field obtained by processing the available
measures, threshold exceedance is predicted, and therefore an appro-
priate intervention is taken. Note that there is not perfect overlapping
between these regions, since there remains residual uncertainty in the
field.

Information can be costly to acquire, and therefore should be pri-
oritized in both time and space to trade off the costs of collecting this
information against its potential benefits. In Fig. 1a, measurements at
initial time # = 1 are distributed evenly over the domain of the system, to
provide adequate spatial coverage. In Fig. 1c, at a later time, measures
are again distributed evenly, but at different locations; this reflects the
temporal correlation of the field, which makes repeated measures at the

Received 30 May 2017; Received in revised form 15 October 2017; Accepted 24 November 2017

0951-8320/© 2017 Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ress.2017.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ress
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.11.019&domain=pdf
mailto:cmalings@andrew.cmu.edu
https://doi.org/10.1016/j.ress.2017.11.019

C. Malings, M. Pozzi

Reliability Engineering and System Safety 172 (2018) 45-57

t=1 t=2
a) c) e)
measure
X
o N N
x x X
X4 X4 X4
t=1 t=2 t=2
b) d) f)
intervention
. @ . .
x x - x x x
failure
X X X

1

1 1

Fig. 1. A motivating example of the monitoring and management of a system in space and time.

same location somewhat redundant. This represents the related prob-
lems of sensor placement, i.e., determining an appropriate spatial ar-
rangement of sensors, and of scheduling, i.e., determining at what times
measures should be collected.

Decisions about sensor placement and scheduling take a variety of
factors into account. High prior uncertainty in the random field can be
reduced through sensing. However, factors relevant to decision-making,
such as the likelihood and potential consequences of making an incorrect
decision without additional data, should also be accounted for. Further-
more, the interdependence structure of the random field, in both space
and time, should inform the sensing plan. In space, collecting many mea-
sures in highly interdependent fields can be redundant, but in fields with
weak interdependence, more closely spaced measures may be necessary
to avoid missing features of interest. In time, earlier measurements can
help to identify trends and support later decision-making, but need also
be updated as information becomes out-of-date. Finally, the relative pre-
cisions and costs of different sensors, especially costs relating to sensor
placement (whether it is cheap or expensive to gather a measurement
at a new location) and scheduling (whether it is cheap or expensive to
repeatedly collect measurements at the same location) should be taken
into account when determining which measures will be cost-effective.

Finally, there is the problem of online or adaptive sensing, where
sensor placements and schedules can be changed in light of new infor-
mation. Fig. 1e depicts such a case, where, because of the high observed
random field values in the upper right, at a later time more measure-
ments are allocated for this area to better determine whether or not the
field will exceed the threshold. By comparing Fig. 1d and Fig. 1f, the
greater number and concentration of measurements in the upper-left al-
lows the intervention zone to more closely match the area of exceedance.
This illustrates the potential benefits of adaptive or online sensing, but
these benefits should be traded off against the additional costs of eval-
uating and implementing a revised sensing plan.

In this paper, we examine how to optimally place and schedule mea-
surements to best support decision-making for system management by
taking into account the various factors mentioned above. We do this
making use of the value of information (Vol) to explicitly trade off the
benefits of collected information, in terms of improved decision-making,
against the costs of information collection [9]. The Vol metric aligns well
with many of the intuitive ideas discussed above of what makes a sensor
placement in space informative to system management [10]. Here, we
extend these results from static sensor placements to sensor placements
and schedules in dynamic systems, and also to adaptive sensing, where
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sensor placements can change over time. Previous work has made use
of Vol to quantify the benefits of structural health monitoring efforts
[11-13], optimize the positioning of sensors to support the manage-
ment of structures under uncertain extreme loading [10,14], and opti-
mize inspection schemes for deteriorating components [15,16]. Other
approaches to sensor scheduling, making use of concepts such as ob-
servability and state estimation accuracy, have also been applied to this
problem e.g., [17,18].

In general, the computational cost of Vol evaluation grows exponen-
tially as the size of the system increases; this can be seen by examining
the management decision-making problem via a decision tree and not-
ing that the number of “leaves” will grow exponentially as the number of
possible management actions, observations, and system states increases
[19]. Previous work in spatial systems identified a special case of sys-
tem topology, termed as a cumulative system topology, in which this
exponential growth can be reduced to a linear growth in the number
of system components, provided management activities are conducted
locally for each component [14].

In Section 2 of this paper, the assumption that the actions taken to
manage an evolving system have temporally local effects is used to iden-
tify a corresponding special case in which the computational demand of
Vol evaluation is merely linear in the time duration for system man-
agement. In Section 3, we give a brief overview of greedy offline and
online approaches to efficient sensor placement and scheduling based
on Vol which are used in this paper; further information on these meth-
ods is available in the companion paper [20]. In Section 4, we introduce
a Gaussian random field modeling framework for spatio-temporal sys-
tems. This framework is used in Section 5 to demonstrate the application
of the Vol metric in two examples: a simulated system modeling differ-
ential settlement between structural columns over time and a problem
based on measurements taken on structural columns during the con-
struction of the Scott Hall building at Carnegie Mellon University. Fi-
nally, some general conclusions are drawn in Section 6.

2. Value of information in spatio-temporal systems

This section begins by outlining a model for the monitoring and man-
agement of a system whose behavior is affected by random variables
which vary in both time and space in Section 2.1. Within this model,
the Vol metric is defined in general in Section 2.2. The metric is also ex-
amined under several assumptions on the structure of the system and its
management which lead to increasing computational tractability for the



C. Malings, M. Pozzi

( )
General Loss Functions [

(Section 2.2)

Temporally Decomposable Loss Functions
(Section 2.3)

Temporally Decomposable Loss Functions
with Uncontrolled System Evolution
(Section 2.4)

Uncontrolled System Evolution

L J

Fig. 2. Relationships of the assumptions presented in the following sections, which
present special sub-cases of the general loss function definition.

metric. The relationships of these assumptions are depicted in Fig. 2. The
assumption that the loss function is temporally decomposable allows for
more efficient evaluation of the VoI, as described in Section 2.3. An addi-
tional assumption states that the evolution of the system is uncontrolled,
i.e., the evolution of the underlying random fields affecting the system
is not influenced by actions taken for system management. Where this
assumption overlaps with the previous, as discussed in Section 2.4, the
computational demand of evaluating the Vol is reduced to be linear in
the length of the time duration for system management. This represents
an interesting special case of system management (of which the exam-
ple discussed in Section 1 is a representative) in which VoI can be used
in a computationally tractable way to support sensor placement and
scheduling.

2.1. Probabilistic spatio-temporal system model

Let F indicate a random field which affects the performance of an
infrastructure system over management time duration T. Let T be dis-
cretized into m timesteps, denoted T = {7, ...,t,}. Let f(x;, tj) denote
the ith of n random variables which affect the system at timestep ¢,
where the coordinate x; is used as an index or reference coordinate for
the variable, e.g. if the variable is associated with a particular factor at a
particular spatial location, then its coordinate will correspond with this
spatial location. In the case of multiple co-located random field affecting
a system (e.g. a temperature and humidity field affecting corrosion), this
coordinate is augmented with an indexing term to distinguish between
co-located fields. The spatio-temporal random field which affects the
system should be described by an appropriate spatio-temporal random
field model which captures the prior knowledge of the distributions of
random variables, including their uncertainties, spatial interdependen-
cies, and temporal evolution via proper spatio-temporal joint probabil-
ity functions. The selection of such functions represents an important
problem in itself. Where possible, this selection can be performed by
conducting numerical simulations using a deterministic physics-based
model of the system, using empirical data collected in similar systems
to the one being modeled, or soliciting expert judgments on the most
appropriate model forms. The reader is referred to [8] for a compre-
hensive overview of approaches to the spatio-temporal model selection
problem, and to [6] for a recent application of these approaches to de-
fine a probabilistic model of an environmental hazard impacting an ur-
ban system. Alternatively, hierarchical modeling can be used in which
the functional forms and parameters of the random field are described
by probability distributions. This allows for additional flexibility in the
model but greatly increases the computational cost associated with its
use [21].

Let f denote the vector of random variables affecting the system at
all discrete timesteps over time duration T. This vector can be expressed
as f =[f IT, ,fmT]T, with sub-vector fj denoting the random variables
acting on the system at time t;. The prior distribution for the vector
of random variables f is denoted as pg, with Pr, indicating the prior
distribution for f;.

Let Y denote a plan to measure the variables affecting the system over
the management time duration, i.e. a sensor placement and schedul-
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ing scheme for the system. Vector y denotes a specific outcome of this
scheme, i.e. a set of possibly noisy measures collected on the system,
with y; indicating a subset of measures which are first available to the
decision-making agent at time ¢;. Thus, indexing of the measures in-
dicates not necessarily when they are taken or which time index the
measured random variables are associated with, but when the measures
first become available to support decision-making; for example, mea-
surement set y; might correspond to observations of variables f;_; if
there is a one timestep delay between when measures are collected and
when they can be processed to support decision-making.

Based on these measurements, the prior distribution of random vari-
ables can be updated to a posterior distribution. This updating can be
performed using standard techniques for Bayesian inference. This poste-
rior distribution after observation of y is denoted as Ppy- Note, however,
that inference and updating can be performed using partial information,
i.e., at time t;, the prior distribution can be updated using all information
available up to this time. We denote by Y _,; the subset of measurements
whose outcomes will be available to the managing agent at time t;, with
y_.j denoting the specific observations obtained up to and including
that time. Thus, at time ¢;, the most up-to-date posterior distribution
for the random variables affecting the system, utilizing all information
collected on the system which is available up to that point, is p Fly-;*

In managing an uncertain system, decision-makers select actions to
take to intervene in the system. Let a denote a set of selected actions
for managing the system over the entire time duration, selected from
set A of all possible action sequences (including a null or ‘do noth-
ing’ sequence). Let a; denote the subset of actions decided upon at the
jthtimestep of the management duration. Note that this timestep need
not necessarily denote when the actions are implemented, only the last
timestep in which the actions are free to be altered, i.e. the timestep at
which the choice of actions is ‘locked in’ and cannot be changed later.

Actions taken to manage the system can have an impact on the evo-
lution of the random field underlying the system. Thus, the distribution
of the random variables is in general denoted as Dpja- We denote the
prior distribution pg as a special case where a sequence of actions des-
ignated as the null sequence is taken, i.e. no interventions are taken to
affect the evolution of the system. To preserve causality, it is assumed
that actions decided upon at the jth timestep can affect the evolution
of the system from timestep j + 1 onward, i.e. it takes a minimum of
one discrete timestep for the impacts of actions to have an effect of the
random variables which describe the future performance of the system.
Also note that the effects of future actions cannot propagate backward
in time, affecting the state of the system in earlier timesteps. Formally,
we have that p Fjla,. =Pr Va2, €A, i.e. that the distribution for
random variables affecting the system up to and including time ¢; is the
same regardless of the choice of actions taken from that timestep onward
(denoted a; _, ).

The last element needed to define the system management decision-
making problem is the loss function, denoted L(f, a), which represents a
mapping from the variables affecting the system and the actions taken
to manage it to a scalar quantity representing the utility of that outcome
to the system’s managing agent. Typically, this is expressed in monetary
terms as the lifetime cost (or negative revenue) of managing the system
over the time duration T.

The loss function captures all costs which are relevant to the
decision-making problem resulting from certain combinations of vari-
able states and actions. These include the cost of taking management
actions, such as repairing a potentially damaged component or closing
down part of a system for safety reasons. They also include the cost of
potential failures or reductions in system performance, such as the cost
of lost revenues due to system down-time, costs or penalties of failing
to meet serviceability requirements, and costs of property damage and
potential loss-of-life in the case of catastrophic failure. The loss func-
tion also captures instantaneous effects of management actions on the
system; while it is assumed that actions a; cannot affect variables fj, dif-

j
ferent combinations of actions and variables at the same timestep can
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have different consequences, as captured by the loss function. We as-
sume that the loss function does not capture the costs of monitoring the
system; these are taken into account by a separate sensing cost function
C(Y), so that sensing and management costs can be examined separately
and traded off. In Sections 2.2 through 2.4, various assumptions on the
structure of the loss function and the effects of management actions on
the system are used to define the Vol of observations in various contexts.

2.2. General loss functions

First, we consider the case of a general loss function with no special
properties. The loss incurred by the system manager is, under this most
general definition, a function of all variables f affecting the system and
all actions a taken for system management.

Without access to any measurements of the system, the best an infras-
tructure manager can hope to do is select a set of management actions
which will minimize (in an expected sense) the loss function. This is
termed the prior expected loss, and is evaluated as:

EL(%) = minE pj, L(f, ) o)

where E |, denotes the statistical expectation with respect to Ppja- There
is no advantage to waiting to select management actions, as no addi-
tional information will be available to alter the decision-making process,
and so the entire set of optimal actions for managing the system through-
out the time duration can be selected at once; this set (also referred to
as the “open-loop policy”) is denoted a*(#), and is the argument which
minimizes Eq. (1).

If, on the other hand, measurements of the system are available to
the managing agent during the time duration, choices of actions can and
should be changed based on new information. The standard approach to
this type of sequential information collection and decision making prob-
lem is dynamic programming [22]. We follow this approach to define
the posterior expected loss EL(Y), or the expected loss for managing the
system with access to measurements from the set Y. We define this re-
cursively, beginning with the final timestep of system management and
working backward. In timestep m, the complete set of measurements y is
available, and the record of past (or implemented) management actions
a_,_) is known. Based on this information, the agent should select a
set of actions for managing the system at the final timestep, a’, which
minimizes the expected loss given all observations, all past actions, and
the current action:

a% (a_ oy, y) = argmin, o4 Epy L(E,2) @

where a = {a_,_yy,a,} concatenates the past and present actions.

We now introduce a value function which defines the expected cost
to manage the system given all implemented actions and collected ob-
servations before that timestep. For timestep m, the value function is:

(3)

EL; (3 (no1)Yor(mo1)) = BY 18ty Yty a“éiﬂ EpjayL(f, a)
m m

That is, it is the expectation (over the final set of measures) of the
minimum (over the final set of actions) of the expected loss for managing
the system. Expectations are conditioned on all available information
and all previous action choices.

The value function can be defined recursively by noting that, at each
timestep, a set of actions are selected to minimize the expected loss,
and a new set of observations are taken (which are influenced by all
past information and actions). Therefore, the recursive definition of the
value function is:

n EL

mi
—(-1)Y-3G-1 a,ed;

EL} (a1 Y=g-1) =Eyjja Gen (as¥2) Q)

while in the final timestep the value function has a special, explicit def-
inition:

|Eszm+1) (A Yom) = [EFIaqm,y_m.L(f’ a_,)

(&)
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The posterior expected loss under measurement scheme Y is the
value function at the first timestep:

EL(Y) = EL}(a_0.¥-0) 6)

where a_,; and y _, o are by definition empty. Using the recursive defi-
nition of Eq. (4), Eq. (6) can be expanded as:
EL(Y) = [EYI minaleAI IEY2|aleI IninazeA2 - E

Ymlas m-1):Y=m-1)

)

min, 4 EppayL(f,a)

Here it is clear that the posterior expected loss involves repeated
nesting of expectations (with respect to observations) and minimiza-
tions (with respect to actions) down the decision tree. This parallels the
sequential collection of information and determination of actions which
is necessary for system management.

In general, in timestep j, actions should be selected so as to minimize
the value function for the next timestep, a function of all information
collected and all actions taken up to that point:

®)

For a measurement outcome y, beginning from the first timestep and
moving to the last, a sequence of optimal actions a*(y) is defined via
iterative solution of Eq. (8).

The VoI of measurement scheme Y is defined as the difference be-
tween the prior and posterior expected losses under this scheme, i.e. as
the expected reduction in loss due to the taking of more appropriate
actions based on the gathered information [9]:

a;f(a%(j,l),y%j) = argmin, ¢ 4, [ELZ‘I.H)(aHj,y%j)

Vol(Y) = EL(#) — EL(Y) ®

Evaluation of the VoI for a given observation scheme can be a com-
putationally daunting task in spatio-temporal systems. It involves, for
all possible measurement outcomes y, determining an optimal action
sequence a*(y) and evaluating the expected loss under this action se-
quence. We quantify the problem dimensionality in a reference case
where random variables are discrete, having 0r possible outcomes, there
are 6, possible choices for each management action in A, and each ob-
servation in Y has 6, possible results. The computational bottleneck is
the evaluation of Eq. (5) for every sequence of observations and ac-
tions. Therefore, using order notation, the search space of general Vol

evaluation is (9(€|yY|0J1A|0’f””), representing the fact that, for each of 0|yy‘

possible observation sequences and HLA‘ possible management action
sequences, the loss must be averaged across 0”" possible random field
variable states to determine the value function. If we further assume that
variables, actions, and observations are binary, i.e. that 6, = 9, = 0, =2,
and that at each timestep n, observations are made and n, actions are
taken, i.e. the number of observations and actions is linear with respect
to the management time duration, then |Y| = mn, and |A| = mn,, and
the dimensionality can be expressed as (2" ("y*"a*),

The computational complexity of Vol assessment under a general loss
function via the methods outlined above is intractable for large systems
[23,24]. Although the above example of complexity growth focused on
discrete states, observations, and actions, the complexity growth rate is
analogous in problems with continuous states, observations, and actions.
Note also that for systems with continuous action variables, while effi-
cient solution to the minimization problem over actions might be possi-
ble where the problem structure is convex, there is in general no guaran-
tee that this will be the case, and computationally intensive non-convex
optimization techniques would need to be employed. Many approximate
solution approaches have been developed to address this problem of
complexity growth. Sampling-based approaches, including Monte Carlo
and Markov Chain Monte Carlo techniques, have been used for perform-
ing Bayesian inference and approximating Vol. However, appropriate
selection of sample size is important to avoid biased estimates of the
VoI, and many samples may be required to produce a suitably accurate
result in large systems [25]. Surrogate or emulator models have also
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Fig. 3. Probabilistic graphical model for a system with a general loss function. Potential
interdependencies between measurements have been removed to improve clarity.

been used, approximating Vol in large problems using more easily eval-
uated functions [26,27]. Hierarchical dynamic Bayesian models with as-
sociated approximate inference methods have also been used [28-31].
In this paper, we develop an approach to tractable and exact evalua-
tion of Vol in large evolving systems by exploiting particular structures
which the loss function might have. These loss function structures, their
impacts on Vol evaluation complexity, and the consequences of these
structures in terms of assumptions about the type of system being mod-
eled, are introduced and discussed in Sections 2.3 and 2.4.

Fig. 3 represents a probabilistic graphical model (PGM) of a sys-
tem with a general loss function. This follows a common convention
for PGMs, with circles representing random variables, shaded circles
(or ovals) representing observed variables, squares (or rectangles) rep-
resenting inputs or decisions, rhombi representing deterministic out-
comes, and lines and arrows indicating probabilistic or deterministic
relationships among variables [19]. Random variables f, observations
y, and actions a are split into three categories: those before timestep j
(i.e. the past), those at this timestep (i.e. the present), and those after
this timestep (i.e. the future). Note that past actions and variable states
affect present and future variable states, and that present variable states
and actions affect future variable states. Also note that present actions
are made with knowledge of past and (depending on the problem con-
text) present observations, as indicated by the shaded arrows. The loss,
in general, is a function of past, present, and future actions and variable
states.

2.3. Temporally decomposable loss functions

We now assume that the loss function is decomposable across time
as follows:

L(t,a) = ) 7L, (f.a;)

=l

(10)

That is, the total loss is expressed as the discounted sum of losses
associated with each timestep, where loss Lj(fj, aj) is associated with
the jth timestep and y; is the positive discounting factor associated with
this timestep. Such loss functions are commonly encountered in engi-
neering applications where the costs of system failures and of executing
actions are associated with specific timesteps and are discounted back
to their present value to evaluate the lifetime loss for the system. This
decomposable form for the loss function is also commonly used for par-
tially observable Markov decision processes, or POMDPs, e.g. [16]. Note,
however, that in this case the Markovian assumption of POMDPs is not
applied, and that a more general discounting scheme is used. Fig. 4 de-
picts a PGM for a system with a decomposable loss function.

The assumption of a decomposable loss function, together with the
linearity of the expectation, allows for the evaluation of expected loss
to be performed in a different and more efficient way. For example,
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Fig. 4. Probabilistic graphical model for a system with a decomposable loss function. Po-
tential interdependencies between measurements have been removed to improve clarity.

Eq. (5) can now be expressed as:

m
ELG, 1) (asm Yom) = Z VBl (£2)) an

j=1

Note that the linearity of the expectation allows it to be passed
through the summation, and that, since the losses associated with each
timestep are functions of the random variables associated with that
timestep only, the expectation need only be taken over these variables.
Thus, while the number of expectations is increased, the dimensionality
of each expectation is decreased significantly.

The general value function is also expressed differently. It is now
interpreted as a ‘cost-to-go’ function, i.e. the total expected cost to man-
age the system from a given timestep forward, with the slight notational
change from EL; to EL7_ to reflect that it is now the ‘cost-to-go’ rather
than the total expected cost. The recursive definition from Eq. (4) now
becomes:

EL7_ (8- o1 Y= -1) = Evjja_ o y-gon ayggl EL;. (a_;y-;) 12)
where:
ELj- (8- ¥-)) =Epja_ 5., Li(f2;) + E[ELZH)A(?‘—»;’Y#/)
7j
(13)

That is, the cost to optimally manage the system from timestep j
onward is the expectation (over the new measures which first become
available at timestep j) of the minimum (over the actions selected at
timestep j) of the expected loss at timestep j plus the discounted loss of
managing the system from timestep j + 1 onward. Note that Z*! repre-

J
sents the factor for discounting the loss at timestep j + 1 back to timestep
j.
The posterior expected loss, similar to Eq. (6), is:

EL(Y) = 7 EL], (aa()’yao) = Ey, a{gi}{ll

[[EFl‘ylylLl(fl,al)+72[EL;_)(aal,y%1)] 14)

The prior expected loss is evaluated similarly by dropping any con-
ditioning on observations from Egs. (12-14), and Vol is again evaluated
as in Eq. (9).

Evaluation of Vol in systems with decomposable loss functions in-
volves a lower problem dimensionality with respect to the evaluation of
VoI under general loss functions. Under the assumption of decompos-
ability, the bottleneck is the need to evaluate EL; _ (a_,(,_1), Yo (u—1)) fOT
each possible sequence of past actions and measurements. Returning to
the reference case of discrete variables and actions, this dimensional-
ity is quantified as O(melyylé)[‘f'e;), i.e., for each of the 0‘yy'0LA‘ possible
sequences of measurements and actions, an expectation must be taken
over the 9} possible states of random variables in the final timestep.
Linear dependence on m results from the need to repeat a similar eval-
uation for each timestep, working backwards from j=m to j=1. Assum-
ing that variables are binary and that |Y| and |.A| grow linearly with
time, the overall dimensionality for the computation can be expressed
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as O(m2""*"a*m) Note that this dimensionality, while still growing ex-
ponentially in the management time duration, will do so at a slower rate
than in the case of a general loss function, especially considering that
typically the number of action choices and measurements are smaller
than the number of random variables governing system performance in
each timestep, i.e. n, «<n and n, <n.

Finally, it should be noted that POMDPs represent a special case
of systems with decomposable loss functions discussed here. First, in
a POMDP, it is assumed that the loss function associated with each
timestep is of the same form, and therefore that the same sets of possible
actions and random variables are present for each timestep. Second, the
key assumption of a Markov process is that the current joint state of the
random variables affecting the system is independent of all past states
given the joint state of the previous timestep and any actions taken and
observations made between these steps. For this reason, POMDP solu-
tion methods typically make use of a belief state which is the posterior
probability distribution over the state variables at the current timestep,
PFla;y-;" This belief state represents a sufficient statistic describing the
current and future state of the system, since the belief state at timestep
Jj +1 can be obtained from that at timestep j given actions a; and obser-
vations y; made between these timesteps. This contrasts with the gen-
eral case, where p Fiaglas a1y must be obtained from prior distribu-
tion p F. , together with all actions a_;,; and all observations y_, ;. In
POMDPs the value function is defined as a function of the belief state
rather than of all past observations and actions to take advantage of
the Markovian property. For a POMDP, if #; denotes the belief state at
timestep # s then Egs. (12) and (13) are expressed together as:

[EL:H])a(ﬁ(jH))

15)

where &, is a function of ¥}, a;, and y;. This is an example of the
classical Bellman Equation used for the solution of POMDP problems
[22]. In the case of discrete variables, # ; would be a vector encoding
the probabilities of all joint states of the variables at timestep j. Also
note that in some Bellman Equation formulations, the expectation over
observations at timestep j, which is the outermost operation performed
here, can be moved within, forming the innermost expression, i.e., as
an expectation over observations at timestep j + 1 of [EL(*I. +1)_}(ﬁ( J+1))s
where under this formulation #,;, would be a function of y
rather than y;.

EL;_ (#;) = Ey g, ming cu, |Er,j5,y,L;(f.3;) +

2.4. Uncontrolled system evolution

We now consider that, in addition to the system having a decom-
posable loss as in Eq. (10), that the actions taken to manage the system
have no effect on the evolution of the random variables which affect
the system. That is, pr|, = prV a € A. Thus, the influence of actions
on the system is felt only through the decomposable loss function. In
other words, while the agent cannot control the evolution of the sys-
tem directly, he or she can control the impact which the system state
will have on the system management cost for each timestep by choos-
ing an appropriate response action. Recall that the example problem of
Section 1 had such a form, where decisions made in response to the ran-
dom field state reduced the penalties incurred without changing the field
itself. In general, any system where the effects of management actions
are confined to a single timestep only, or are relatively limited in scope
compared to the management lifetime, might be effectively modeled as
an uncontrolled system. Preparation for extreme events is a natural ap-
plication, since emergency precautions taken to protect the system will
not alter the underlying mechanisms by which the extreme event pro-
cess occurs. Although this assumption is quite restrictive in terms of the
types of system management activities which can be modeled, it is also,
as demonstrated below, quite powerful in terms of reducing the over-
all computational complexity of Vol evaluation. Therefore, in situations
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As(-1

Fig. 5. Probabilistic graphical model for an uncontrolled system with a decomposable
loss function. Potential interdependencies between measurements have been removed to
improve clarity.

where the system of interest can be appropriately modeled as an uncon-
trolled system, it is computationally of great advantage to make use this
assumption.

Fig. 5 depicts a PGM for such an uncontrolled system. Note that ac-
tions now only influence the loss associated with each timestep, rather
than the evolution of the underlying random variables as in previous
cases.

In an uncontrolled system, losses can be again evaluated via the dy-
namic programming approach discussed in Section 2.3. However, condi-
tioning of current and future measurements and random field variable
states on past actions can be ignored following the assumption of un-
controllability. This allows Eqs. (12) and (13) to be expressed together
as:

EL* (y_.._;) =E i [[E L.f.,.]
j—>(y ) 1)) Y/\y—»(/-l)airéljrtlj Fjly-; ](J aj)
}/_/+1
+ By Ela- (9-)) (16)
j

This provides a recursive definition for [EL;A (Yo(-1)s the value func-
tion in the case of an uncontrolled system. Note that this is only a func-
tion of past measurements; within Eq. (16), the choice of actions for
timestep j is optimized, and since expectations over current measure-
ments and random field variable states are not a function of past actions,
dependence of the function on these actions is removed.

The posterior expected loss under measurement scheme Y is evalu-
ated as in Eq. (14):

rEL (¥=0)

Note that if we substitute in for the value functions using Eq. (16),
distributing the discounting factors and measurement expectations
across the summands and using the chain rule to collect these expec-
tations, we obtain the following closed-form expression for the poste-
rior expected loss for an uncontrolled system with a decomposable loss
function:

EL(Y) = a7

mm (18)

ELON = Y rEr, min [Er Ly (5.a,)]

Jj=1

Similarly, the prior expected loss can be evaluated in closed form as:

m
EL(#) =Z{y, iy [[EFIL,(fj,aj)] (19)

Vol is again evaluated as in Eq. (9).

Vol computation in uncontrolled systems involves evaluating each
term of Egs. (18) and (19) separately and summing the results. For the
entire evaluation, the problem dimensionality referring to the discrete
reference problem is O(me‘yYIHLA'”le}”). Assuming a linear growth of bi-
nary measurement and action set sizes with the time duration, this di-
mensionality is expressed as O(m2™"»*"a*"), Again, while the growth in
dimensionality remains exponential in the management time duration,
the rate of growth is significantly reduced compared to the previous
cases, especially considering that the number of observations taken in
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each timestep is typically small compared to the number of random vari-
ables or management actions, i.e. n,<n and n, <n,. Furthermore, if the
number of measurements is independent of the management time dura-
tion, e.g., if problem constraints dictate a fixed upper limit to the number
of measures obtained, any exponential dependence between problem di-
mensionality and the management time duration is removed. Thus, un-
der the uncontrolled system assumption, holding all other parameters
(i.e. the number of possible states and actions per timestep and the total
number of observations of the system) fixed, the growth of computa-
tional complexity for evaluation of the Vol is linear in the time duration
length. Also note that if the loss function is decomposable in space as
well as in time, as in Eq. (32), then the complexity will be linear in the
number of system components [10,14].

Finally, mention should be made of the special case of loss quanti-
fied via the L-2 norm of the prediction error, where the actions are in-
terpreted as “guesses” on the states of the random variables and the loss
is proportional to the sum of the squared error between these guesses
and the true field values. Note that this is a case of an uncontrolled
system, as the guesses have no impact on the behavior of the random
field. As discussed by Malings and Pozzi [10] for spatial systems, the
Vol under this loss function is a function of the prior and posterior co-
variance of the random field. In Gaussian random fields, this covariance
is not a function of the measurement values, but only of their locations.
Similarly, for spatio-temporal systems described by Gaussian random
fields, the Vol under this loss function is only a function of the sensor
placement and scheduling scheme, and not of the specific outcomes of
measurements. Therefore, sensor placement and scheduling can be per-
formed using the Vol metric without the need to take the expectation
over potential measurement outcomes.

3. Sensor placement and scheduling

The Vol metric can be used to identify an optimal sensing scheme
Y*, i.e. a set of measurement locations and times for the system, from a
set Y of potential measurement locations and times as follows:

Y* = argmaxycy Vol(Y)— C(Y) subject to C(Y) < b (20)

where C(Y) represents the cost of implementing measurement scheme Y
and b represents a fixed measurement budget. Appropriate definitions
of the cost function can be used to impose constraints relevant to sen-
sor placement and/or scheduling. For example, in a sensor placement
problem, subsequent measures taken at a location which has been mea-
sured previously may not incur any additional cost, or may only incur a
negligible cost. In this way, the low additional costs of interrogating a
sensor which has already been installed at a certain location can be cap-
tured. Furthermore, in a problem where inspections of the system are
carried out via an onsite agent such as a human or robotic inspector,
the cost of additional measurements collected at the same time may be
rather small, while the cost of additional measurements at a time when
no other measures are scheduled is large. This captures the high cost
of deploying the inspector to the site, but the low subsequent costs of
collecting additional information once an inspector is already present.
Eq. (20) represents a problem in combinatorial optimization. In gen-
eral, the only approach to combinatorial optimization which guarantees
an optimal solution is exhaustive enumeration, i.e. computing the Vol
of each possible subset of Y. This is generally not a feasible solution ap-
proach, since the number of potential subsets grows exponentially with
the size of Y. To avoid this computational difficulty in this paper, we
make use of an approximate greedy optimization approach, as described
in Algorithm 1. This approach, based on previous work in greedy opti-
mization e.g. [32], iteratively builds the optimal sensing set by adding
single measurements to the set which most improve the objective func-
tion. Unfortunately, this algorithm does not guarantee optimal solutions
to the objective in all cases. However, even when complete enumeration
is infeasible, greedy optimization often leads to near-optimal results in
many practical applications e.g. [14,10]. Further details on the greedy
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Algorithm 1 : Pseudo-code for the forward greedy algorithm.

Input candidate set Y, objective function Vol(-), cost function C(-), budget b
k=0,Y, =0
while | Y| >0
k=k+1
select y; = argmax,y Vol(Y,_; U' y}) — C(Y,_; U{y})
if C(Y_ Uy D <b
Y, =Y Uiy}

end

Y =I\{y;}
end
k. k

end —

Output Y* = argmaxyey, y, ...y, ‘)VOI(Y) -C(Y)

algorithm, its performance, and alternative approaches are discussed in
the companion paper [20].

Algorithm 1 represents an approach to solving the offline optimal
sensor placement and scheduling problem. In this offline problem, the
optimal sensing scheme is decided upon before it is implemented, and
is implemented according to the pre-selected scheme. However, as mea-
surements are collected under a given offline scheme, additional infor-
mation about the system may be used to revise this scheme for future
timesteps. This is referred to as the online optimal sensing problem,
in which the sensing scheme is re-evaluated and re-optimized at each
timestep to reflect the latest knowledge of the system. Online sensing
allows for a greater flexibility, as the information collection plan is up-
dated to conform to the current state of knowledge of the system. For
this reason, in an expected sense, the online sensing approach will out-
perform (i.e., perform at least as well as) the offline approach in terms
of the losses incurred for system management. Again, while guarantees
on greedy optimization performance are available for sensing metrics,
these do not hold in general for the Vol [33,34].

To perform online sensor placement optimization based on the Vol
metric, at each timestep, a revised optimal sensing plan should be deter-
mined which selects the best plan for future observations based on data
collected by past measurements as well as past actions implemented
to manage the system based on these observations. Solutions to these
sensing problems may be obtained using suitable approaches to combi-
natorial optimization, e.g. the forward greedy optimization approach of
Algorithm 1. In the online case, the optimal set of future observations
is based on maximization of the net marginal Vol. The marginal VoI,
i.e. the additional benefit of obtaining future measurements Y;_, given
that past measures y_,;_;, have already been collected and that actions

a¥ G-1) have already been implemented, is evaluated as:

VOI<Yj4> |a*_,(j_])7 ya(j—l))
= IEL(gla:U_l),yA(j—l)) - [EL<YH|310_WYA(]>1))
where the marginal loss is evaluated in general, following Eq. (6), as:

[EL(Y|ai(;71)’y—>(/—l)) =EL] (aig—l)’y*0—1)>

Note that in systems with decomposable loss functions, the efficient
computational approaches of Sections 2.3 (for controlled systems) and
2.4 (for uncontrolled systems) can also be applied to evaluate marginal
Vol. Also note that online optimization is computationally more chal-
lenging than offline optimization due to the need to re-optimize the se-
lection of the sensing scheme for future measurements at each timestep.
Thus, the computational complexity of online optimization is greater
than that of offline optimization by a factor of m. Furthermore, on-
line optimization will be impossible when the computational time re-
quired for the optimization is longer than the timestep duration. Also
note that the marginal Vol should be traded off against the total cost
of all measurements C(Y* (-1 YY;j-). However, the budget constraint of
Eq. (20) might either be applied to the total cost of all measurements or
to the cost for measurements in the next timestep only, i.e., C(Yj) < bj.

@n

(22)
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In the latter case, the constraint in Algorithm 1 should be appropri-
ately modified. Finally, note that for the special case of the L-2 norm
of the prediction error in Gaussian random fields, there is no benefit to
online sensor placement, as the Vol based on this loss is merely a func-
tion of the prior and posterior covariance of the random field, which
are not affected by the specific outcomes of measurements. For general
loss functions, however, different measurement outcomes will lead dif-
ferent future measurement schemes to be optimal, e.g. as symptoms of
impending future events are detected (as in Fig. 1e—f).

4. Gaussian random field models

In the examples which follow, Gaussian random field models are
used to define the distributions of the random variables affecting sys-
tems. It should be noted that the approaches for Vol evaluation pre-
sented in the preceding sections do not require the use of such a model;
any appropriately structured PGM, such as a dynamic Bayesian network,
might be used. However, Gaussian random field models are one of the
few model types which allow for efficient closed-form Bayesian updat-
ing, as in Eq. (26) below. They are defined completey by their mean
and covariance structure. They also provide further opportunities for
efficiencies in the computation of Vol, as discussed in previous work
[14]. For alternative forms of PGM, approximate inference techniques
including Markov Chain Monte Carlo methods or particle filters may
be used, incurring a higher computational cost and/or risking lack of
convergence of the numerical procedure [29,35].

Gaussian random field models represent a generalization of the mul-
tivariate Gaussian distribution to a continuous domain, and have been
used to represent a wide variety of spatio-temporal phenomena [36].
A similar model is used by Malings and Pozzi [10] to describe purely
spatial systems, and is extended to spatio-temporal systems here as:

fx,1) ~ GP[ux,0.k(x,1,x',7')] (23)

where mean function u(x, t) describes the mean of the random field at
spatial location x and time ¢, and covariance function k(x, t, x’, t’) defines
the covariance between random variables at x; t and x’; t’. Over any finite
discretized spatio-temporal domain, this model defines a multivariate
Gaussian distribution for the random variables affecting the system over
this domain:

f ~ N(pp.ZF) (24)

where mean vector u; and covariance matrix X are derived by evaluat-
ing the mean and covariance functions at all spatio-temporal coordinates
and combinations of coordinates in the domain.

By observing these random variables, or linear combinations of these
variables, a Gaussian observation vector is defined as follows:

e~ N(p.Z)

where observation matrix Ry encodes relationships between measure-
ments within scheme Y and the random variables (or linear combina-
tions of variables) which are observed. For example, if this matrix is
used to encode two measurements, the first of which is a measurement
of the third element of f and the second of which is a measurement
of the average of the first three elements of f, the observation matrix
would have two rows of the same length as f, with the first row having
an entry of 1 in the third position and the second row having entries
of 1/3 in the first, second, and third positions. In general, the observa-
tion matrix should be defined appropriately to encode the relationships
between various physical sensors deployed in the system and the quanti-
ties which they are measuring in any given application, where each row
of Ry corresponds to a measurement in scheme Y and each column cor-
responds to a variable in random field vector f. Furthermore, temporal
constraints must be obeyed, i.e. measurements associated with a spe-
cific time should not be dependent on random variables associated with
future times. Measurement noise is encoded in the noise vector e, which
is assumed to have a multivariate Gaussian distribution with mean p,

y=Ryf+e (25)
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and covariance X,. This noise may in general have a bias via a non-zero
mean vector or may be correlated between measurements at different
locations or times via appropriate definition of the covariance. Based on
the definition of Eq. (25), the vector y of measurements itself has a mul-
tivariate Gaussian distribution, with mean vector py = Rypy + p. and
covariance matrix Xy = RyX FRI, + X.. Given a vector of measures y,
the prior Gaussian model of the random variables affecting the system
can be updated to a posterior model:

fly ~ N (g Zry )

where ppy = pp + RyZpZ7 (y —py) and Zpy = Zp —RyZpZ ' ZART.

(26)

5. Case study applications

This section presents two case studies illustrating how the VoI metric
can be applied to determine optimal sensor placement and scheduling
schemes for infrastructure systems. In Section 5.1, a simulated system
of columns subjected to differential settlement is investigated, and of-
fline and online optimal sensing schemes for the system are evaluated
and compared. In Section 5.2, optimal sensor placement and scheduling
schemes are determined making use of data collected for the Sherman
and Joyce Bowie Scott Hall building, a recently constructed building at
Carnegie Mellon University whose main structural elements have been
instrumented with strain sensors.

5.1. Application to differential settlement

An example problem is presented here to illustrate the application of
the Vol evaluation and optimal sensor placement and scheduling meth-
ods outlined above. This example is motivated by the monitoring of and
response to settlement under columns of a structure over time [37]. The
settlements under n = 9 columns of a structure over an m = 10 year pe-
riod are modelled by a random field using a Gaussian random field. The
physical arrangement of the columns is identified in Fig. 7a, while the
time duration considered is discretized as T' = {1,2, ..., 10} years. The
mean function of the Gaussian random field is:

t—1ty
R(X, 1) =y [1 —exp <— p >]

where, yy=0.5m, f, =1 year, and @, =5 years. This mean function
models the settlement of the columns over time, with the average
amount of settlement of the columns increasing to a long-term average
of yy. The covariance function is defined to be decomposable between
space and time, as follows:

(e2))

k(x, t, x',t') = G(t)c(t')px (x x')p—r (t, t’) (28)

The spatial component is:

2
xx') = exp X =XIT
px (x.x') p< ¥

This model represents a square exponential correlation function,
where the settlements of nearby columns are more heavily correlated.
The range of the correlation is parameterized by the correlation length
Ax =20 m. This spatial correlation structure imposes certain relation-
ships on the relative settlements of the columns in the structure at a
specific time. The temporal component is:

=P
2472
This temporal component again models a square exponential correla-

tion between settlements at different times, with a correlation timescale
of Ay =5 years. This governs the differentiability or smoothness of the

(29)

(30)

pr(t.t') =exp (—
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Fig. 6. Prior 95% confidence region for settlement of a column over time (grey area) with
a potential settlement profile indicated (black line).
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column settlement profiles in time, ensuring infinite differentiability.
Finally, the standard deviation function for the settlement is:

[ t—tgy
o(t) = oy 1—exp<— p >]

where 6, = 0.1 m. This models an increase in the variance of the settle-
ment over time where, comparing Egs. (27) and (31), the coefficient of
variation of the settlement at any time is a constant, i.e., y,/0y = 5.

It is important to note that the forms and relevant parameters of Egs.
(27-31) are intended to represent a possible reasonable probabilistic
model for structural settlement. The selection of this model, including
the assumption of independence between spatial and temporal covari-
ance of Eq. (28), choice of correlation function forms, and the setting of
parameters, should all be performed using available prior knowledge.
The reader is referred elsewhere for discussions of methods and exam-
ples of the creation and calibration of probabilistic spatio-temporal mod-
els [6,8,36].

Based on this prior mean and variance model, the prior 95% confi-
dence region for settlement of a column over time, as well as a potential
realization of a settlement profile, are depicted in Fig. 6. Note the de-
crease in the average settlement and increase in uncertainty over time.

Within this system, observations of the column settlements are possi-
ble for each column annually. This would define the observation matrix
R, for the set of all possible measurements to be an identity matrix of
size 90 (corresponding to measures of each of 9 columns in each of 10
years). Observation matrices Ry for particular measurement schemes Y
can be obtained from R, by eliminating rows of the matrix correspond-
ing to potential observations in J which are not included in scheme
Y. Errors in the settlement measurements are considered for this prob-
lem. Measurement errors are modeled as independent Gaussian random
variables with a mean of zero and a standard deviation of ¢, = 0.01 m.
Therefore, p. = 0 and X, = 621, where O represents a zero vector and I
represents an identity matrix of an appropriate size. The impacts of cor-
related errors in settlement measurements are discussed in related work
[38]. The outcomes of these measures are assumed to not be available
to the managing agent until the following timestep, i.e. decisions made
in year j can be based on gathered information about the settlement of
the columns in years 1 through j — 1.

To manage this system, in year j, the managing agent has an op-
tion to intervene by selecting a;; = 1 at cost C,=$10k, to prevent dam-
age due to excessive settlement of column i compared to the average
settlement of all columns, which would incur a cost Cf=$100k. Other-
wise, the agent would choose to do nothing, i.e. select a;; = 0. To allow
for the assumption of an uncontrolled system, it is important that the
modeled intervention activity not affect the settlement of the columns
themselves. Thus, an intervention to search for and repair damage due
to settlement, e.g. patching facade cracks and re-squaring door frames,
which mitigates damages due to differential settlement without affect-
ing the settlement itself, is considered here. This problem is encoded by

€1V
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Fig. 7. (a) Spatial arrangement of the structural columns; (b) Measurement times and
locations for the scheme optimized offline based on VoI (x). Numbers indicate the order
in which measures are selected by the greedy algorithm.

the following annual loss function, which is decomposable in space as
well as time:

n
L(f2;) = D L(f55.a,)
i=1

where:

C,l
allia) = f<

L . >5max> if a;; =0
C

, ifa;, =1

(32)

f..

Jol

(33)

where I(-) is an indicator function, taking on value 1 when its argument
is true and O otherwise, and 6,,,, = 0.1 m. The total loss is the discounted
cumulative loss over the time duration as in Eq. (10), with a discount
factor of y; = 0.9Y=V. In this problem, sensing costs are assumed to be
$1k per measurement, discounted to the present value using the same
discounting method.

Based on the probabilistic model and decision-making problem out-
lined above, an agent managing the system should plan on implementing
intervention actions for columns later on during the management time
duration. This is because, as time increases, the variances of the column
settlements increase, as in Eq. (31), and therefore the likelihood that a
column’s settlement will differ from the average by more than the ac-
ceptable threshold 6., increases. Furthermore, the agent should plan
on intervening earlier for the corner columns (1, 3, 7, and 9 in Fig. 7a)
than for the side columns (2, 4, 6, and 8), and should intervene for the
center column (5) last. This is because the spatial correlation structure
of Eq. (29) means that the settlements of columns farthest from the spa-
tial center of the domain are most likely to differ from the mean by
more than the acceptable threshold. This intuition is reflected in the
prior optimal management scheme depicted in Fig. 8a.

In terms of optimizing inspections based on the Vol, there are sev-
eral factors which are considered and traded off. In time, earlier mea-
surements of settlement will be available for use in supporting decision-
making throughout the management time duration, but the absolute set-
tlements of the columns are low early on, leading to low probabilities of
settlements differing from the mean by more than the acceptable thresh-
old. Later on, the absolute settlements of the columns are greater, lead-
ing to higher probabilities of failure and a higher chance that additional
information will lead to better decision-making outcomes. However,
while earlier measures can be used to support later decision-making,
later measures cannot support earlier decisions, and so the value of these
measures in supporting decisions at other timesteps is also diminished.
In both space and time, the correlation structures mean that measure-
ments which are close in space and/or time will tend to be redundant,
and therefore appropriate spacing in space and time should be deter-
mined. Intuitively, an optimal sensing scheme would focus more mea-
sures toward the middle of the management time duration, trading off
the factors discussed above. In space, this scheme would tend to stag-
ger measurements between different columns, taking advantage of both
spatial and temporal correlations to infer the behavior of unmeasured
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Fig. 8. (a) Prior optimal actions for managing the system and the state of the system for a specific realization of the system evolution; (b) Posterior optimal actions for system management
based on the offline optimized sensing scheme (x) for the same realization; (c) Measurements selected via online optimization (o) and associated optimal actions.

Table 1

Comparison of the performance of various sensor placement and scheduling

schemes.

Y| EL@®  EL(Y) VoY) C(Y)  net Vol

No sensors 0 $170k  $170k  $0 $0 $0
Offline scheme 31 $170k $32k $138k $19k $119k
Intuitive scheme 45 $170k $32k $138k $30k $108k
All measures 90 $170k  $23k $147k $58k  $89k

columns from earlier measurements on that column as well as from mea-
sures on nearby columns.

An offline optimal sensor placement and scheduling scheme to sup-
port system management using the Vol metric is identified in Fig. 7b
following the greedy approach of Algorithm 1, and conforms well to the
various intuitive factors discussed above. This scheme distributes mea-
surements fairly evenly across all columns spatially, and concentrates
measurements between years 4 and 8. Note that in years 4 and 5, mea-
surements are prescribed for every column (except the center column
in year 5). This provides two ‘baseline’ measurements of the settlement
for most columns, allowing their true settlements to be accurately de-
termined from this time. In years 6 through 8, columns are observed
alternately, with the corner and center columns observed in years 6 and
8 and the side columns observed in year 7. Because of the smoothness
imposed by the spatial and temporal covariance, these intermittent ob-
servations are enough to generate reasonably accurate posterior predic-
tions for the column settlements in these years.

Without additional information, the prior expected loss for manag-
ing the system, EL(f}), is $170k. With the offline optimal sensing scheme
of Fig. 7b, the posterior expected loss, EL(Y), is $32k, and therefore
VoI(Y)=$138k. Taking into account the cost of making these measure-
ments, the net Vo, VoI(Y) — C(Y), is $119k. Thus, by making these mea-
surements to support decision-making, the overall management cost for
the system is reduced by 70%, in an expected sense. Furthermore, the
value of complete information, i.e. the VoI which would be obtained if
all 90 potential measurements were implemented, is $147k. The optimal
sensor set therefore achieves 94% of the value of complete information
while including less than a third of the possible measurements. Finally,
we can compare the Vol of the proposed scheme with that of an intu-
itive scheme, where measurements are taken for all columns every other
year, starting in year 1. This is an example of the type of measurement
scheme which might be prescribed for the system, with regularly sched-
uled inspections for all components on a fixed schedule. This scheme
would provide roughly the same Vol as the optimized scheme, but does
so at a higher sensing cost, leading to a lower net Vol for this scheme.
The expected loss, cost, and Vol of these schemes are listed in Table 1
for easy comparison.

We also investigate the benefits of online optimal sensing for this
system. Note that each online sensing scheme will be different based
on the sequence of measurements collected during year 4; based on this
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Table 2

Comparison of the performance of online and offline sensor placement
and scheduling schemes for a specific realization of the system’s evolu-
tion, as depicted in Fig. 8.

|| L(f,a*) L(f,a*)+C(Y) net benefit
No sensors 0 $120k $120k $0k
Offline scheme 31 $27k $46 $74k
Online scheme 30 18k $37k $83k

information, measurement locations and schedules for subsequent years
will be updated. To illustrate this, Fig. 8a depicts a specific realization of
the system, where damage occurs on column 9 from year 7 onward. This
figure also depicts the optimal prior management plan for the system, as
discussed previously. The cost which is actually incurred by managing
the system according to this prior plan for the given realization of the
system’s evolution is $120k.

If the offline optimized sensing scheme is used to support system
management, more appropriate management actions can be taken, as
depicted in Fig. 8b. Here, the prescribed interventions for column 9
correspond to the times where the column would have been damaged
without these interventions, and therefore any failure costs are avoided.
However, there is still an intervention prescribed for the neighboring
column 6 in years 9 and 10 which does not correspond to an actual dam-
age condition, but rather to a high risk of damage based on the collected
information. The online sensor placement scheme, depicted in Fig. 8c,
allows this unnecessary intervention to be avoided. This is done through
more appropriately allocating measures to more accurately predict the
state of column 6. As can be seen, many of the measures originally pre-
scribed for year 6 are forgone, and instead more measurements are con-
ducted during years 7 and 8, including for column 6. This allows for the
probability of damage in this column to be reassessed, and as a result
for the unnecessary intervention action to be avoided. Overall, adopting
an online optimization approach reduced total cost (including system
management and sensing costs) by 20% compared to the offline sensing
scheme for this particular realization of the system. A summary of the
costs for managing the system under various measurement schemes is
provided in Table 2.

Comparing across different cases of online sensor placement, based
on 100 random simulations of the settlement of columns and their mea-
surement following different online schemes, in all cases the online
optimal scheme consisted of fewer measures than the offline optimal
scheme, and in 84 cases the losses incurred by the managing agent were
reduced as well. The cost reduction of online sensing compared to of-
fline sensing ranged from 50% to —49% in these cases, with an average
of 15.4%. The empirical cumulative distribution for the cost reduction,
F(AC), is shown in Fig. 9. Note that the cases of negative cost reductions
(i.e. cost increases) result from the fact that, occasionally, the new on-
line scheme fails to capture certain relevant information which would
have been captured by the offline scheme. Intuitively, while a measure
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Fig. 9. Empirical cumulative distribution function (B) for the cost reduction (AC) from
online sensing, with the average value indicated.

may be neglected in an online scheme because previously collected in-
formation indicates that the column in question is likely ‘safe’, there
is still a small but non-negligible chance that the column will become
unsafe, and the denser set of offline measurements may have detected
this. The relative benefit of online sensor placement compared to offline
placement can thus vary greatly depending on the specific sequence of
measurements obtained.

5.2. Example application for structural health monitoring

This section gives an example of the application of the above Vol
evaluation framework to a problem of optimal sensor placement and
scheduling for structural health monitoring using data obtained from
an existing structure. The Sherman and Joyce Bowie Scott Hall is a
newly constructed building on the campus of Carnegie Mellon Univer-
sity, housing a variety of academic and research spaces. A portion of
the structure is suspended over a slope on eleven tubular steel columns.
During construction, these columns were instrumented with 23 fiber op-
tic strain gauges, as shown in Fig. 11a, with three sensors installed on
column one and two sensors installed on all other columns. The phys-
ical arrangement of the columns is indicated in Fig. 11b. Columns are
divided into three groups (indicated by colors in the diagram) which
share common foundations.

In this problem, random field vector f represents the hourly strain
rates in each of n = 11 columns over an m = 24 h period, representing a
typical day during the construction process. These rates are described by
a multivariate Gaussian distribution model. The mean hourly strain rate
for each column was determined empirically from data collected during
a seven-day model calibration period, which defined the function p(x),
the time-independent average column strain rate as a function of the
position x occupied by the column within the structure. Similarly, the
empirical spatial correlation between column strain rate data during this
period was evaluated, and the spatial correlation function px(x, x’) was
defined to be equal to this empirical correlation for any pair of columns
at locations x and x’. In the absence of empirical data, a finite element
model of the structure might be used to generate simulated datasets
for performing the calibration. Further details on the development and
application of this spatial model can be found in previous work [39].

Additionally, the column strain rates were found to be temporally
correlated. Analysis of data collected during the model calibration pe-
riod in terms of the correlation of hourly column strain rates for individ-
ual columns as a function of the time difference of the data collection
periods is presented in Fig. 10. To this empirical data, an exponential
temporal correlation function of the following form was fitted:

pr(1.1) = exp <— lt;Tt/I )

The correlation timescale parameter A of this model was selected
via maximization of the log-likelihood of the data set evaluated via a

(34)
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Fig. 10. Plot of empirical temporal correlations between column strain rates (boxplots
represent ranges in empirical correlations across columns) versus the fitted temporal cor-
relation model (black line).

Gaussian random field model using this correlation function; a param-
eter value of A = 1.6 hours was found to maximize the log-likelihood,
and was therefore selected. A plot of the correlation function is provided
as the black curve in Fig. 10.

The spatial and temporal correlation models were combined to de-
fine the full spatio-temporal model, following the assumption of decom-
posability as in Eq. (28). It should be noted that several assumptions,
including that the mean column strain rate does not vary in time, the
parametric form of the temporal correlation, that the spatial and tem-
poral covariance of the column strain rates are decomposable, and that
the column strain rates are well modeled as Gaussian random variables,
have been incorporated into this model. This model for the behavior of
Scott Hall appears to be reasonable based on the data collected, and is
therefore used here for illustrative purposes. In the absence of this em-
pirical data, data simulated from finite element models of the structure
would have been used to develop this model.

Observations of the strain in the columns, as obtained via the strain
sensors during a one-hour period, can be used to update this prior model
of the strain rate, with an appropriate definition for Ry used to define
the relationship between the measured strain and the underlying ran-
dom variables (the strain rate). For simplicity, a set of measurements
obtained by a strain sensor associated with a particular column over an
hour is pre-processed to determine the average measured strain rate in
that column during that hour. This processed data is then considered to
be a “measurement” of the column’s average strain rate over that hour.
Thus, rows in Ry consist of zeros, except for a 1 in the position cor-
responding to the strain rate in vector f of the column in question at
the hour when the sensor is active according to scheme Y. Observations
are assumed to be independent with a nominal measurement error of
1% of the standard deviation of the measured quantity. This is based
on the finding that the uncertainty in hourly strain rate conditional to
strain gauge measurements was found to be several orders of magnitude
smaller than the variability of the strain rates themselves.

We define a decision-making problem for system management based
on the column strain rates. The loss function defining the problem de-
composes temporally as in Eq. (10). For each timestep, the loss L;(f;, a;)
is determined as follows: if for any pair of column groups, the average
strain rates of columns within these groups differ by more than a given
threshold, then it its assumed that a harmful differential settlement be-
tween column foundations is occurring. This occurrence induces a loss
of $10k per hour while it persists, modeling the effort needed to cor-
rect such a settlement. However, the managing agent has the option to
delay construction, at the cost of $ 1k per hour, to avoid these conse-
quences. No discounting is considered because of the short time period,
i.e.y; =1Vj € 1,...,m. Decisions must be made an hour in advance, i.e.
only the settlement measurements obtained via sensors up to and in-
cluding the previous hour may be used to support decision-making. For
this problem, the threshold of differential settlement is set to 4 mm per
hour for illustrative purposes.
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Fig. 11. (a) Image of a column of the Scott Hall building with attached strain sensor; (b) Spatial arrangement of the 11 instrumented columns of the structure, with colors indicating the
column groups; (c) Sensor placement results; (d) Sensor scheduling results; (e) Simultaneous placement and scheduling results. The set of prescribed measurement times and locations in

each case are indicated by x’s in the spatio-temporal domain.

For the above decision-making problem, three alternative sensing
schemes are optimized offline. First, sensor placement is considered, i.e.
a subset of the full set of sensors actually installed on the structure is
selected to gather data continuously to support decision-making for the
above problem. Second, sensor scheduling is determined, i.e. certain
times at which to measure strain rates for all available sensors are se-
lected. Finally, simultaneous placement and scheduling are considered,
where the times and locations at which to take measures are optimized.

Fig. 11c indicates results for optimal sensor placement. Results
shown here correspond with the optimal spatial placement indicated
in [39], consisting of five sensors spread across the three groupings of
columns. Fig. 11d indicates results for optimal sensor scheduling. Here,
some measurements are taken earlier in the cycle so that data will be
available to guide later decision-making. Finally, Fig. 11e indicates re-
sults for optimal placement and scheduling. Here, prescribed measure-
ments switch between columns as time passes, adjusting for changes in
loading and strain patterns over time.

Overall, while the Vol of the sensor scheduling scheme is $ 1.2k, and
that of the placement scheme is $ 2.8k, that of the optimal placement
and scheduling is highest at $ 3.4k. While all schemes prescribe roughly
the same number of sensor measurements, the optimal sensor placement
and scheduling is the most flexible (as there are no constraints that all
measurements on a particular column or at a particular time must be
selected together), and therefore can provide greater benefits in terms
of reduced management costs (as measured by VoI) while using a com-
parable number of sensors.

Note that, for this example, we investigate the performance of the
method by selecting a threshold on strain rates which allows for the
detection of periods of differential loading on the structure caused by
the pouring of concrete during the construction process. These concrete
pours are therefore used as proxies for failure events during actual build-
ing operations. Additionally, the costs associated with interventions and
excessive strain rates are presented here for illustrative purposes.

6. Conclusions
The VoI metric is well suited to supporting optimal sensor placement

and scheduling, as it directly identifies the benefits of information in
reducing system management costs. However, this metric is difficult to
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evaluate in general due to the rapid growth in possible system states and
management actions as the system management time duration increases.
This paper identifies the special case of an uncontrolled system with a
temporally decomposable loss function in which the Vol can be much
more efficiently evaluated. The key assumptions for such a system are,
first, that the loss function decomposes temporally, such that the total
loss can be expressed as a discounted sum of losses across all timesteps,
and second, that actions to manage the system do not influence the evo-
lution of the random variables affecting the system for future timesteps.
These assumptions can be relaxed somewhat through state augmenta-
tion, i.e., through extending the vector of actions and random variables
associated with each timestep to include duplicates of variables associ-
ated with other timesteps. Such an approach has been applied previously
for Markov Chain models, e.g. [40], and has allowed for the relaxation of
certain model assumptions at the cost of increased computational com-
plexity. In this way, the influences of short sequences of actions (e.g.
a set of four coupled seasonal actions applied to a system in a year,
which have no effect on the system in the next year) can be modeled,
albeit at a higher computational cost. Additionally, previous work by
Malings and Pozzi [10,41] has shown that more topologically compli-
cated systems can, under certain circumstances, be evaluated under the
cumulative system assumption (the spatial analog of the uncontrolled
system assumption). It is possible that these insights can be extended to
certain temporally evolving systems as well.

It should also be noted that, while the examples of Section 5 make use
of binary action choices, any number of discrete action choices, or even
continuous-valued actions, can also be handled. For discrete actions,
the computational complexity will grow exponentially with the num-
ber of possible actions, unless the problem structure can be exploited
to improve this (see [10] for examples). For continuous actions, prob-
lem structure might also be exploited in the case of convex problems,
or surrogate models might be used to improve the efficiency of the op-
timization, e.g. [26]. Alternatively, the assumption of a discrete, finite
time duration for the management problem is essential to the formula-
tion of the efficient computational methods discussed here. In principle,
depending on the discounting scheme, the influence of far-future actions
and observations can be ignored, and an infinite-horizon problem can
be approximated using a finite-horizon model. Furthermore, the effect
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of the time discretization has not been investigated; such a discretiza-
tion might have a significant effect on the problem if the computation
time is comparable to the length of the discretized timestep, in which
case online optimization will not be possible following the approach
presented here. New, more efficient, possibly heuristic techniques for
online optimization would need to be implemented in that case.

In comparing sensor placement and scheduling in spatio-temporal
systems based on Vol, as discussed in this paper, with problems of place-
ment only, as discussed in previous work by Malings and Pozzi [10],
several parallels can be found. Essentially, the temporal evolution of
the system can be considered simply as another dimension, e.g., sensor
placement and scheduling across a two-dimensional spatial domain can
be seen as a special case of sensor placement in a three-dimensional do-
main, where two dimensions correspond to space and one to time. The
key difference is in the evaluation of Vol in evolving systems, since infor-
mation can propagate omnidirectionally in space, but it must propagate
unidirectionally in time. In other words, while information collected at
any spatial location in the system can support decision-making for any
other spatial location, information collected at a specific time can only
support decision-making for later times. However, evaluation of Vol in
spatio-temporal systems via Eq. (18) can be seen as a special case of
its evaluation in spatial systems, where only specific subsets of the full
sensing scheme (corresponding to measurements associated with previ-
ous timesteps) are considered. Finally, online sensing in spatio-temporal
systems can be compared to online sensing in purely spatial systems us-
ing batches of measurements (corresponding to measurements associ-
ated with a single timestep).

This paper also presents some examples to demonstrate the applica-
tion of Vol evaluation in spatio-temporal systems and Vol-based sensor
placement and scheduling. While schemes are optimized based on a for-
ward greedy selection approach, both for online and offline placement
and scheduling, as has been mentioned, there is no guarantee on the
optimal outcome of this approach using the Vol metric. Further inves-
tigation of the optimization of measurement schemes based on the Vol
metric, including shortcomings of the greedy approach illustrated here
and potential approaches to overcoming these, are discussed in the com-
panion paper [20].
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