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Hidden-Model Processes for Adaptive Management
under Uncertain Climate Change

Matteo Pozzi, A.M.ASCE"; Milad Memarzadeh?; and Kelly Klima®

Abstract: Predictions of climate change can significantly affect the optimization of measures reducing the long-term risk for assets exposed
to extreme events. Although a single climate model can be represented by a Markov stochastic process and directly integrated into the
sequential decision-making procedure, optimization under epistemic uncertainty about the model is computationally more challenging.
Decision makers have to define not only a set of models with corresponding probabilities, but also whether and how they will learn more
about the likelihood of these models during the asset-management process. Different assumed learning rates about the climate can suggest
opposite behaviors. For example, an agent believing, optimistically, that the correct model will soon be identified may prefer to wait for this
information before making relevant decisions; on the other hand, an agent predicting, pessimistically, that no further information will ever be
available may prefer to immediately take actions with long-term consequences. This paper proposes a set of optimization procedures based on
the Markov decision process (MDP) framework to support decision making depending on the assumed learning rate, thus trading off the need
for a prompt response with that for reducing uncertainty before deciding. Specifically, it outlines how approaches based on the MDP and
hidden-mode MDPs, dynamic programming, and point-based value iteration can be used, depending on the assumptions on future learning.
The paper describes the complexity of these procedures, discusses their performance in different settings, and applies them to flood risk

mitigation. DOI: 10.1061/(ASCE)IS.1943-555X.0000376. © 2017 American Society of Civil Engineers.

Introduction

Climate change poses specific challenges to long-term asset and
infrastructure management. Much of today’s planning should con-
sider future climate conditions, even decades in advance, which are
currently unknown and will progressively reveal themselves. On
the one hand, this may suggest postponing critical and expensive
decisions until epistemic uncertainty about climate change evapo-
rates. On the other hand, procrastination may expose decision mak-
ers to high risk in the short term and prevent them from acting
promptly.

This paper proposes and discusses optimization models for trad-
ing off quantitatively the need for a prompt response and the need
for collecting information to reduce uncertainty before making de-
cisions. The motivating application is protection of infrastructure
assets against flooding and sea-level rise. Research indicates that
climate change may cause a worldwide sea level rise of one meter
or more by 2100 (IPCC 2014; Melillo et al. 2014), resulting in more
coastal flooding events worldwide (Field et al. 2012). This predic-
tion is affected by significant uncertainty; Hallegatte et al. (2012)
summarized methods that might be appropriate for decision making
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under deep uncertainty, including cost-benefit analysis under un-
certainty, cost-benefit analysis with real options, robust decision
making, and climate informed decision analysis. The National
Climate Assessment report (Melillo et al. 2014) also discussed ap-
proaches and stressed the importance of understanding the decision
makers’ preferences and application. Dittrich et al. (2016)
built on this, comparing real option analysis, portfolio analysis,
robust decision making, and no-regret/low-regret options and dis-
cussing when each of these may be an appropriate decision-making
tool.

Although those approaches are suitable for identifying robust
policies for decision processes of one or a few stages, this paper
considers an agent aiming at optimal long-term planning, sequen-
tially adapting their policy depending on the available information.
This is a risk-neutral agent ready to assign a distribution to an ex-
haustive set of climate evolutions, including model and scenario
uncertainty as defined by Hawkins and Sutton (2009); models
and distribution in turn depend on assumed emissions scenarios
that the agent cannot control. The problem setting belongs to clas-
sic decision theory as defined by von Neumann and Morgenstern
(1944), and excludes deep uncertainty that cannot be explicitly
modeled by any distribution.

Long-term asset management under climate change can be for-
mulated as a sequential decision-making problem with nonstation-
ary stochastic models governing the system evolution. The Markov
decision processes (MDPs) framework (Bertsekas 1995; Sutton and
Barto 1998) can model the planning process under a single climate
model when the state of the system is completely observable. How-
ever, it is often the case that the decision maker, possibly following
the expert evaluation of the scientific community, cannot identify
one model that completely represents the uncertainty of the climate
evolution. When the model is itself unknown, the appropriate plan-
ning approach should depend on the assumption of information
availability. In the two limit cases in which either perfect informa-
tion about the model will be available soon or no information will
ever be available, simple solutions can be found. When only noisy
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or incomplete observations of the model are progressively available
in time, a decision maker should use the hidden-mode MDP
(HM-MDP) framework, as introduced by Chades et al. (2012).
Hidden-mode MDPs are a special case of the partially observable
Markov decision processes (POMDPs) (Smallwood and Sondik
1973; Sondik 1978); POMDPs have been extensively used
for infrastructure management under state uncertainty (Madanat
1993; Papakonstantinou and Shinozuka 2014; Memarzadeh and
Pozzi 2016a, b) and also under state and model uncertainty
(Memarzadeh et al. 2015, 2016), mostly with stationary models.
Shani et al. (2013) reviewed efficient numerical methods for solv-
ing POMDPs, including Perseus (Spaan and Vlassis 2005) and
SARSOP (Kurniawati et al. 2008).

A HM-MDP assumes that the state of the system is fully observ-
able, that the persistent hidden dynamic model is only partially
observable, and that the model and the available information are
not affected by the agent’s actions. Chades et al. (2012) applied
their approach to the management of a population of the threatened
bird species endemic to Northern Australia. §paék0vé and Straub
(2017), leveraging their previous work on flexibility in planning
(Spackovd and Straub 2015), investigated a similar setting with
nonstationary models of climate change and proposed a solution
method based on Monte Carlo methods, quantifying the benefit
of flexibility, with example applications to a wastewater treatment
plant and to flood protection.

This paper specifically focuses on the role of the assumed avail-
ability of future information in current planning, illustrating how,
depending on the learning rate (i.e., the assumed information avail-
ability), HM-MDP can be formulated and solved. It considers exact
methods under limit-case assumptions and approximate methods
for intermediate cases.

Planning under Known Model: MDP

Consider an asset to be managed under climate change. Time is
discretized into set {#,, 1,13, ..., t7}, and S; defines the asset’s
state at time #; on domain {1,2, ..., |S|}. At time #;, the manager
takes action A, on domain {1,2, ..., |A i
C, that depends on the current action and state by time-dependent
function Cy(Sy,Ay). Thus the expected discounted cost V, (the
value) for managing the system from time 7, to the time horizon
tr is

T
Vk — Z ,ytfk[E[C[] + ,YT+17kVT+] (])
t=k

where 7y = one-step discount factor; E[X] indicates the expectation of
random variable X; and V7, = residual cost one step after the time
horizon. Although the state may be only partial observable in some
applications, in the MDP framework it is completely observable. The
state stochastically evolves from value i to j following the Markov
property, according to time-varying transition function 7 (i, a, j) =
P[Siy1 = jISk = i, Ay = a], where P[E|F] indicates the probability
of event E conditional to event F. Because the state evolution and
consequently the future costs depend on the action taken, the expect-
ation in Eq. (1) can be computed only when a specific policy is as-
signed. In an MDP, current state S represents a sufficient statistic,
and the decision maker can adopt a policy A, = m(S;) depending
on that state only. Following time-varying policy IT = {m, ..., 77}
starting from state S; = i, the agent obtains value

IS

+'YZTI¢[’ mi(i

Vi (i) = Cili. m (i) ) JViEG) (2)
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The optimal value is obtained by minimizing Eq. (2)

S|
Vi) =min,{Cul0.0) 49 Y Tia Vi) @)

J=1

Optimal policy (i), at time 7, is defined by using argmin in-
stead of min in Eq. (3), and time-varying policy set I1* is defined by
listing policies for all times. An agent adopting IT* obtains the mini-
mum possible value (it is worth stressing that this expresses an
expected quantity). Egs. (2) and (3) are forms of the Bellman equa-
tion, and they can be solved iteratively, from k = T back to k = 1,
each iteration being an application of the so-called Bellman
operator.

Planning under Model Uncertainty

Extend the previous formulation considering a set of M possible
models, each describing a persistent stochastic behavior. Model
indicator M assumes one value in domain {1,2, ..., M}, and
time-varying functions Cy ,, and T'; ,, define the cost and transition,
respectively, for model m. By solving Eq. (3) for each model, one
can identify a set of M policies {II}, ..., II},}, that might disagree
even at initial time #;. Thus the agent has to consider all models
jointly and make a decision accounting for the uncertainty among
them. Assume the agent assigns belief b to the models, so that
b(m) = P[M = m)] defines the probability that model m is the cor-
rect one. One approximate planning approach is to derive a single
expected model by averaging transition probabilities and immedi-
ate costs over the belief, and then to apply Eq. (3) to that model.
The following section introduces an alternative approach that
accounts for the persistency of the model.

Robust Planning via Open-Loop Control
(Pessimistic Policy)

The open-loop control scheme identifies an optimal time-varying
policy as that which performs best, in the expected sense, with no
belief updating during the process. Now V,‘?m indicates the value
function according to model m, at time f;, following policy
® = {¢,, ..., ¢r}, which can be identified by Eq. (2), using func-
tions Cy ,, and T, instead of C; and T';. The corresponding value
under model uncertainty, W,?oo can be defined as

Wioo(ib) = B, Vi, (i)

= [Eka.m [l» (bk(l)}
IS]

+’YZ[Em{Tk,m[iv¢k() V. @)

where E,, [f,] = S-M_, f,,b(m) indicates the expectation of m us-
ing belief b, and subscript (k, co) indicates that the value is com-
puted at time 7, and policy is prescribed up to an infinite horizon.
The minimum expected cost achievable by open-loop control,
W o is defined as W (i, b) = ming W{ (i, b) that is optimal
when information on the model will never be available or, equiv-
alently, will be available infinitely far ahead. Computationally, this
value can be identified by iteratively applying the Bellman opera-
tor, from terminal time #7, following the scheme

W’,;m(i, b) = mina{[Ekaym(i, a)
S|
0 Y BTl )V, )]} 5)
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where the optimal policy ®; = {¢} ., ..., #7 } derives from
using argmin instead of min. This open-loop approach is truly op-
timal when no information on the model is available, and the
agent’s belief is time-invariant. Actually, this is rarely the case, be-
cause perfect observation of the state trajectory or of the actual
costs inevitably contains information about the model. However,
it may serve as an effective approximation in pessimistic scenarios,
where information about the model is negligible.

Near-Clairvoyance Planning via Action-Value Function
(Optimistic Policy)

The alternative near-clairvoyance optimization scheme assumes
that the model will be revealed at next step (Memarzadeh et al.
2015). It is based on the so-called action-value function (Sutton
and Barto 1998) for model m at time ¢, that corresponds to the
content of the curly brackets in Eq. (3)

1|
Qk,m(i’ a) = Ck.m(i* a) + 0 Z Tk,m(i’ a’j)vltJrl,m (.]) (6)

j=1

*

so that Eq. (3) can be rewritten as Vi, (i) = min,Qy,,(i,a).
The action-value function defines the expected management cost
when action a is taken at the current time, followed, from time
ty,1 onward, by the residual part of optimal policy II;, =
{7 > -+ -+ T, }- Whether or not functions are available for each
model and action, one can compute a new value following policy ®
for one step, as

WR 1 (i.b) = E{ Qi ¢ ()]} = Z Qmli, dr(i)]b(m) (7)

where subscript (k, k + 1) indicates that value is computed at time
t;, and the policy will switch at time #; ;. The corresponding
optimal value is defined as

M
Wi iy1 (i b) = mingE,, { Oy, (i, @)} = ming Y Oy (i, @)b(m)
m=1

(8)
Using argmin instead of min in Eq. (8) gives the corresponding
optimal policy ® ;. = {& 41> T 1m> - - » T1.m }» Where m now

identifies the revealed model. The near-clairvoyance approach is
optimal under the assumption that perfect information on the model
will be available at the next time step, and therefore it can be con-
sidered as an optimistic policy. Under that optimistic assumption,
Wy i1 tepresents the actual value the agent obtains. It should be
noted that the time discretization plays a key role in identifying the
conditions that make the near-clairvoyance policy optimal because,
depending on that, the next time step refers to different times
(e.g., 1 day, or 5 years in the future).

Mixed Planning: d-Step-Ahead Clairvoyance Policy

By merging previous approaches, the agent can adopt policy ® up
to time f;,, ; and switch to a single-model optimal policy from
time #;, 4, counting on perfect information at that time. To assess
the corresponding value, one can apply the single-model Bellman
operators of Eq. (3) from 7T back to time #;, 4, and the open-loop
operator of Egs. (2) and (4) from time #;,, ; back to time
I, obtaining value W¢,. ,(i,b). Combining Egs. (3) and (5)
gives the optimal value W} ,,,(i,b) and corresponding policy

* _ * * * * .
(I'k,.kﬁ—d = .{¢k,k+d’ oo Dird—t krd> Tt dms ""7TT,m}’ where, again,
m identifies the revealed model.
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This d-step-ahead clairvoyance policy is optimal when perfect
information is revealed after d steps and no information is available
before that. By considering parameter d varying from 1 to oo (ac-
tually, up to T + 1 — k), these policies vary from near-clairvoyance
to open-loop.

Comparison of Near-Clairvoyance and Open-Loop
Policies

Agents should choose among the policies outlined previously by
considering whether and when perfect information on the model
will be available. Knowing that the model will be revealed at time
lj+q- they will adopt, from time #;, policy @5, , for expected dis-
counted cost Wy, ,. Because “information never hurts” (Krause
2008), having perfect information at an earlier stage is always
better (strictly speaking, it is not worse), thus if k' <k’’ then
Wi £ Wy . However, optimistic policy @ ,, may perform better
or worse than more pessimistic policy ®; .., depending on the ac-
tual availability of information. The path followed by Memarzadeh
and Pozzi (2016a) allows for discussing bounds on the performance
of alternative policies in different settings and, specifically, for
comparing the open-loop and the near-clairvoyance policies under
opposite scenarios. On the one hand, it is reasonable to assume that
an agent receiving perfect information, even before the predicted
time, will switch to the corresponding single-model optimal policy.
On the other, it is less clear how one reacts to not receiving the as-
sumed perfect information at the predicted time. Assume that if an
agent following the near-clairvoyance policy does not receive infor-
mation at the next step, she or he will predict receiving perfect infor-
mation at the following step. Doing so, the agent follows policy
Q1 = {1 Pesctsgar - - - Prro - By relying on the principle
that information never hurts, and the definition of optimal policy, the
following sequence of inequality holds:

b (Dzoo b * b (Pk,'.\l M
Wik (i,b) < Wk.kJrl(l’ b) < Wk,oo(l’ b) < Wiso (i.b) 9)

Eq. (9) means that the cost of using the near-clairvoyance policy
under perfect information (at the next step) is less than that of using
the open-loop policy under perfect information, which is less than
that of using the open-loop policy under no information, which is
less than that of using the near-clairvoyance policy under no infor-
mation. The three less-than-or-equal-to signs in Eq. (9), from right
to left, can be justified by noting that they refer to a better policy
under the same information, more future information under the
same initial policy and, again, a better policy under the same
information, respectively.

From time t;, the increment of cost using the near-clairvoyance
policy without actual information (with respect to using the appro-
priate open-loop policy), AV}, and that of using the open-loop
policy when perfect information is available at the next step (with
respect to using the appropriate clairvoyance policy), AV, are
obtained as

AVL(i.b) = Wyl (i) — Wi (i.b)
. L . .
AV(i,b) = Wi (i.b) = Wiy (i.b) (10)

where functions Wif;‘ and ij;jl can be evaluated as illustrated in
Appendix 1.

Computation of these cost increments (or so-called regrets) may
shed light on the sensitivity to the available information depending
on the adopted policy. Because of Eq. (9), regret AVI can be
bounded from above by Wy — Wy, which is easily computed
and represents the so-called value of information for having perfect
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model observation at the next step, with respect to not having any
information. Regret AV', on the other hand, cannot be easily
bounded from above, as shown in Eq. (9); this is related to the dis-
cussion in Memarzadeh and Pozzi (2016a) about the potential high
loss occurring when anticipated information does not become
available.

HM-MDP: Model Observation and Updating

Previous sections assumed perfect information on the model at one
time during the process. In most cases, however, information flows
more smoothly, and the general HM-MDP setting assumes that
indirect observations of the model can be available at each time.
Observation Y, at time 7, on domain {1,2, ...,|Y|} is defined
by observation probability O(m,h) = P[Y, = h|M = m]. The
set of |Y| possible observations is not necessarily mapped to a
time-invariant set of physical measurements; for example, the state-
ment Y, = 1 may refer to different measurement values depending
on k. As for Chades et al. (2012), actions do not affect the model,
nor the flow of information.

Beliefs about the model can be updated sequentially following
Bayes’ formula. If Y, assumes value 4, the update at time 7, is

biy1(m) o< O(m, h)bi(m) (11)

where now b; = initial belief; and posterior belief b, at time 7, is
described for k > 1 as by(m) = P[M = m|Y,, ..., Y;]. In princi-
ple, belief should also be a function of the previous trajectory
of actions and states, which contain information about the
climate model. However, this contribution is considered to be
negligible.

Fig. 1 shows a decision graph of the management process, fol-
lowing the corresponding HM-MDP framework, in which time
flows from left to right. As in the traditional notation of probabi-
listic graphical models, circles represent random variables, squares
represent decision variables, diamonds represent costs, continuous
links define the conditional dependence structure, and dotted ar-
rows indicate what information is available before a decision is
made. Shaded variables are observable. No observation is consid-
ered at time f; because all relevant information collected at that
time can be embedded in initial belief b,. Although the immediate
costs are also a function of the model, for readability of the graph
the corresponding links are not included in Fig. 1.

model: M

observations:

States.: Sz Sk

costs: C, ". Cy
Y

actions: Ay s A,

Closed-Loop Control for HM-MDPs

In the process outlined in the previous section, the agent should
iteratively process observations and take actions depending on
the updated belief. By forecasting future model updating steps, de-
pending on the assumed available information, and behaving con-
sequently, the agent adopts a closed-loop policy. All information
for making decision A at time f; are summarized by the augmented
state (i, b), where ordinal i = S indicates the observable physical
state and vector b = b, indicates current model belief. Time-
varying policy ¥ = {¢y, ..., 97} is defined on this augmented
state (i,b). Adapting the notation of Memarzadeh and Pozzi
(2016b), the value V, following policy WV, is

Y|

VP (i, b) = cili. b9 (i. D) + 7> ex(z.b)
h=1
3|
XY Hi[i, ¢y (i,b), j,bIVE, [ u g (R D)) (12)
j=1

where immediate cost ¢, observation operator ey, and entry m in
updated belief u;, |, and expected transition H, are defined as

ci(i,b,a) = E[Cy|by =Db, S, =i, Ay = d]

M

= Crwlisa)b(m)
m=1

ei(h,b) = P[Y; = h|b, = b]
M

= Ox(m.h)b(m)
m=1

Upp1m(hb) = PIM =mlb = bV, = Al
_ Ox(m, h)b(m)
 ei(h,b)
H(i,a,j,b) =P[Si = jISy = i,Ay = a,b; = b]

= ZTk,m(ivavj)b(m) (13)

In Eq. (13), the updating follows Bayes’ formula of Eq. (12).
Bellman’s equation for optimal value is

D0

Sk S S$944
Cr+1 | Cr Vriq
""""""" AN A>3 Ar

Fig. 1. Decision graph of the HM-MDP management process
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Vi(i,b) = mina{ck(i, b, a)

Y] S|
£93 0l b) > Halisa BV e ()}

=1 =
(14)

The optimal closed-loop policy W* = {«3, ..., 4%} derives
from the previous equation by using argmin instead of min. When
belief is represented by standard basis vector v,,, made of all zeros
except for a 1 at position m, the agent is certain that model m is
correct, and corresponding value V (i, v,,) is equal to single-model
value V; , (i), because the agent cannot learn anything more and
policy IT;, is indeed optimal.

In summary, via observation probability O, (m, h) the closed-
loop formulation allows for representing assumptions about
information availability that are more general than those for the
d-step-ahead clairvoyance setting can handle. The values related
to the open-loop and near-clairvoyance policies in those settings
provide bounds for that of the closed-loop value

Wi (ib) S Vi(ib) < Wi (i.b) (15)
Appendix 1 details the computational approach to solve Eq. (14)
and identify the optimal closed-loop policy. Although any POMDP
solver (Shani et al. 2013) can be applied to this task, for the HM-
MDP setting, where the belief evolution does not depend on the
adopted policy, simpler approaches, such as that illustrated in
Appendix 1, are effective. The complexity of those approaches
scales well with the number of models and actions available.

Simple Example of Impact of Assumed Available
Information

To investigate the role played by assumed available information,
consider an agent who must decide about the protection of an asset
against extreme events over an infinite time horizon. Two stationary
models are possible: Model 1 assumes extreme events occurring
with probability P, per time step, whereas Model 2 assumes prob-
ability P, > P per time step. Failure cost Cr is incurred when an
extreme event occurs to an unprotected asset, independently of
model or time. Investment cost C; can protect the asset indefinitely,

1 -------------- :.-:.';' e
Y_95% ........... ot g
‘.._- - - "f
08 K P ’/
/ y=85:4q,’
N  —
06} § /, ’,z y=60%
e iod /,’ —
< I’ s Y_O
0.4 ) I,
Do ’
1 4
i/
02! /
e/
/!
0 v . . . .
0 0.2 0.4 0.6 0.8

(a) r

and the discount factor is ~. Belief b is of the form [1 —6 @],
where 6 = P[m = 2] defines the probability of the riskier model.
Clearly, optimal policies related to each single model in isola-
tion are stationary. If doing nothing is optimal at time #; under
model m, it will always be so; the corresponding annual risk is
R, = P, Cp, and the cumulative risk doing nothing is D,, =
R,,/(1 —~). Now assume C; between D and D,, so that a rational
agent with perfect knowledge should take the risk and do nothing
under Model 1, but invest to remove the risk under Model 2. Under
model uncertainty, the open-loop approach prescribes doing noth-
ing if belief parameter ¢ is less than the normalized investment
costr = (C; — Dy)/(D, — D), whereas the near-clairvoyance ap-
proach allows for doing nothing up to level 6,., defined as

r

o = ————
©ol=A(1=r)

(16)

Fig. 2(a) llustrates how 6, varies depending on the normalized
investment cost and discount factor. For every setting (summarized
by r), the open-loop policy is more conservative than the near-
clairvoyance policy—with the exception of the extreme values
of r=0 or r=1 (for which the decision is trivial) or for
v = 0, the near-clairvoyance policy always tolerates higher values
of 6 before removing the risk by investing. This gap monotonically
increases with the discount factor: for + approaching 1, the
near-clairvoyance policy prescribes waiting for the next time step,
without investing, except when # = 1 (i.e., when Model 2 is cer-
tain). When perfect knowledge is assumed d time steps ahead, the
corresponding threshold can be read in Eq. (16) using ¢ instead of
~; consequently, the d-step-ahead clairvoyance threshold becomes
closer to the open-loop threshold if knowledge is postponed.
Fig. 2(b) fixes r at 50% and ~ at 95%, and plots with a dashed-
dotted line the upper threshold (6y,,) as a function of d. To inves-
tigate how the closed-loop optimal policy looks like when
imperfect information on the model is available, assume that ob-
servations are binary variables, and that observation probability O
is stationary, with Y}, supposedly indicating model variable m. Inac-
curacy e = P[Y, # m] defines the probability of a wrong measure at
each step; € = 0 indicates a perfect observation, whereas € = 50%
indicates irrelevant measures. Fig. 2(b) shows the upper threshold of
the belief as a function of ¢. It starts at 50% (equal to r) and mono-
tonically increases up to 6, = 95.2% when € = 0 and observation is

£
D
0.4
0.2
107 10 10°
(b) d

Fig. 2. (a) Optimal policy’s threshold for the near-clairvoyance approach, as a function of normalized investment cost and discount factor; (b) thresh-
old for the closed-loop policy, as a function of the delay for getting perfect information or of observation inaccuracy, for 50% normalized investment

cost and 95% discount factor

© ASCE

04017022-5

J. Infrastruct. Syst.

J. Infrastruct. Syst., 2017, 23(4): 04017022



Downloaded from ascelibrary.org by Carnegie Mellon University on 06/27/17. Copyright ASCE. For personal use only; all rights reserved.

perfect. This is consistent with the behavior of the threshold as a
function of delay d.

Overall, this simple example shows how the optimal policy de-
pends on the assumed learning rate and how a faster learning rate
suggests a less conservative policy. Consider, for example, an agent
assigning 85% probability to Model 2, while normalized cost is
r = 50%. Although it seems that in these circumstances one should
immediately invest and remove the risk, no suggestion about the
optimal decision can be made without an assumption about the fu-
ture information. In fact, if sufficiently accurate observations are
available (in detail, with € <30%), it is optimal to wait, as can
be seen in Fig. 2(b). Similarly, it is optimal to wait if perfect in-
formation is available within d equals three or fewer steps.

Application to Flood-Risk Reduction

Consider the protection of assets near the coast, in a location near
Battery Park, New York, where current and future flood risks have
been estimated (e.g., Lin et al. 2012). Although decision making
can range from an individual scale to a national scale, this example
specifically focuses on a single asset, such as a single-family house.
The asset has slightly less than a 1% per year chance of flooding,
and thus even if the owner has a mortgage, she or he is not currently
forced to buy flood insurance through the National Flood Insurance
Program (FEMA 480). The decision maker can select when to el-
evate the asset and by how much. As in the example of the previous
section, on the one hand, under model uncertainty, it may be con-
venient to wait until further evidence about the model is available;
on the other, to wait may be risky, because of a high chance of a
flood under some models. The analysis investigates how the deci-
sion should depend on the learning assumptions.

As in Spackové and Straub (2017), the agent considers three
climate models and defines the occurrence of extreme events by
an extreme value distribution with time-varying parameters. First,
recognizing that many people in the United States do not believe in
climate change (Leiserowitz et al. 2012), Model 1 assumes that no
change occurs. Next, Model 2 predicts low climate change, and

Table 1. Parameters of Weibull Distributions for Flood Annual Maxima

Parameters m=1 m=72 m=73

Aps (m) 43.45% 44.55 + 0.55%k 4633 + 1.44%k
B 1 100.1 + 0.06%k 101.2 + 0.62%k

Model 3 predicts a relatively high climate change. Model 3 derives
from Lin et al. (2012) (Fig. 4), who used advanced hydrological
estimates under an ensemble of climate models for a high-
emissions scenario resulting in approximately 1 m of sea level
rise by 2100. The second model is exactly between these two
predictions. The analysis is extended to more models subsequently,
but here it is restricted to these three models for the sake of
illustration.

Time is discretized in years, and variable z indicates the annual
maximum flood height. Annual maximums are assumed to be in-
dependent, and p(z|m, k) refers to the probability density for year
k, according to model m, which is a Weibull distribution with scale
parameter A, and shape parameter (3,,,. Parameters for each
model are time-varying and are reported in Table 1.

Fig. 3 plots the probability density of z for different years and
models. As mentioned, Model 1 is stationary, whereas the other two
models assume a distribution at Year 1 close to that of Model 1 but
an increment for the following years.

Under model m, the probability of a flood above level z, occur-
ring in year k is Xj, =1 — Fweibun(Zes Amis Bmi)s Where
Fweipun (23 A, ) indicates the cumulative Weibull distribution with
scale parameter A and shape parameter (3, computed at z. Fig. 4(a)
shows this probability as a function of time #;: for level z, =2 m,
that probability is a constant 1% under Model 1, and over 100 years
it increases to 12% under Model 2 and to 33% under Model 3.
The initial probability is decreased by one and two orders of mag-
nitude for level z, = 3 and 4 m, respectively. After 100 years, the
same levels of elevation reduce the probability to 12 and 3.5%
under Model 2 and to 4 and 1.25% under Model 3.

It should be noted from Table 1 and Fig. 4(a) that the models do
not exactly agree on the flood probability at Year 1. The models
agreed some time ago (specifically, 3 years ago), but their current
assessment is already slightly different, and the agent cannot iden-
tify which model is correct. Results are similar if the specific setting
of the flood probability at Year 1 is the same for all models.

The initial level of the asset is z; = 2 m, the decision vari-
able Az indicates the elevation, so that z, + Az is the level after
the decision has been made. Every year, the agent selects a value for
Az; however, assume here that it is inconvenient to elevate the asset
more than once during the management process, so Az can be
greater than zero only once during the process. The setting would
be computationally just slightly more complicated if one allowed
for the possibility of re-elevating the asset.

The domain of Az is discretized in 13 values from O to 3 m,
equally spaced with an interval of 25 cm. The physical state

p(z \ m, k) [meter’1]

0 1 2 3 4 5
z [meter]

(@)

z [meter]

(b) ()

3 4 5
z [meter]

Fig. 3. Probability density for annual maximum at Year 1 and Year 100: (a) Model 1; (b) Model 2; (c) Model 3
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Fig. 4. (a) Probability of flood exceeding level z,, depending on time and model; (b) discounted cost as a function of model and initial elevation

of the system is the asset level, so the problem is described by
13 possible states, and state i corresponds to level z; = zo +
25 cm(i — 1). The cost of elevating Cy; includes a fixed cost for
intervention and a term proportional to the elevation value; it is zero
when Az is zero and it is Cp = $25K + $25K - Az/3 m for
positive Az. The dashed-dotted line in Fig. 4(b) shows Cg as a
function Az.

In any year when the asset is flooded, the agent incurs cost Cr of
$180K that includes damages, downtime, and repairs. The annual
discount factor is 95% (corresponding to a discount rate of 5.26%).
The management process lasts 100 years; however, to avoid the
need for identifying an appropriate residual value at the final time,
the time-horizon is 200 years (i.e., T = 200), without residual value
(i.e., Vo1 = 0). In other words, despite not trusting the climate
modeling beyond the 100-year horizon, it is assumed that it cor-
rectly models the overall value for the first years.

The overall cost includes the flood-related risk and, possibly, if
starting at State 1, the cost for elevation, although it is impossible to
change the state when it is higher than one. Action a takes the state
to value a, so the transition matrix is deterministic and independent
of the model T, (i, a, j) = 6, ;, where 6.,. is the Kronecker delta.
In this form, the asset level after action a is z,,, and the immediate
cost matrix is defined as

CFXk,m(Za) a=1
Ck.m(i’ Cl) = CFXk.m(Za) + CE(a) a>i=1 (17)
00 aFi>1

Single Model, Open-Loop, and Near-Clairvoyance
Analyses

Start by assuming that the agent acts at time ¢;, with no further
possibility of revising her or his decision. Fig. 4(b) shows the ex-
pected discounted management cost V' as a function of initial
elevation action Az and model m. The solution derives from a sim-
ple application of Eq. (2). In the same figure, circles indicate opti-
mal actions: the agents should not elevate the asset under no
change, they should elevate the asset to 1.75 m under low climate
change and they should elevate the asset to 2.25 m under high
climate change.

Once the constraint of acting at time ¢, is removed, the optimal
policy may differ from that shown in Fig. 4(b). Even under a single
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model, the agent may choose to wait and elevate at a future time,
e.g., to discount the corresponding cost. However, in this specific
case, the optimal elevation time is at the beginning of the manage-
ment process, and that figure shows the optimal policy. Fig. 5(a)
plots the optimal policy for a nonelevated asset (i.e., for S, = 1)
depending on time. As expected, the agent never elevates under
stationary Model 1. Under Models 2 or 3 if, for some reason,
the agent did not elevate the asset at the beginning, the optimal
elevation value Az* increases during the process, up to the maxi-
mum allowable value of 3 m. Fig. 5(b) shows the open-policy for
two examples of belief. The near-clairvoyance policy always pre-
scribes not elevating, counting on perfect information at next step.

The open-loop, near-clairvoyance, and d-step-ahead clairvoy-
ance policies derive from Egs. (5) and (8). Fig. 6 reports some
of those outcomes for §; = 1, time 7;, and for each possible belief

1 10 20 30 40 50 60 70 80 90 100

5 ]

[

E -

*N 1 m=

N L e m=2
.......... m=3

AZ* [meter]

----- P(m=1) = 70% , P(m=2) = 30%
---------- P(m=1) = 60% , P(m=2) = 40%

1 10 20 30 40 50 60 70 8 90 100
t [y

(b)
Fig. 5. (a) Optimal action 7} , (1) for a nonelevated asset under perfect

model information, depending on time and model; (b) corresponding
action in the open-loop policy ¢; . (1. b), for two specific belief values
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Fig. 6. Policies as a function of the belief: (a) open-loop initial policy; (b) policy if perfect information will be available at Year 10; (c) policy if perfect

information will be available at Year 5; (d) near-clairvoyance policy

b. The belief is a three-component vector normalized to 1, so it can
be represented in a two-dimensional (2D) region, in which each
point in the triangle represents a possible belief and the vertexes
refer to perfect model knowledge. Fig. 6(a) represents the initial
open-loop policy ¢7 , via colors: the nonshaded area refers to
do nothing (i.e., Az* = 0), and each color is related to one specific
elevation value. Generally, the higher the belief in climate change,
the higher the elevation. However, the specific policy is quite
complicated, and should be compared with the d-step-ahead clair-
voyance policy when the model is revealed at Year 10 and at Year 5
and with the near-clairvoyance policy (when it is revealed next
year). The smaller the value of d, the more optimistic is the learning
scenario. For small values of d the agent will prefer to wait,
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postponing the decision about elevation unless she or he is almost
certain about the model. In this latter case (i.e., in the vertexes of the
belief domain), all policies are consistent among themselves and
with the initial optimal actions under single models, as shown
in Fig. 5.

The values at initial time corresponding to open-loop (W7 ) and
near-clairvoyance (W7 ,) policies are reported in Figs. 7(a and b),
respectively. Although, again, the values in the vertexes are the
same, W1  is always higher (strictly speaking, it is non-less) than
Wi 5, as predicted by Eq. (9).

i:ig. 8(a) reports the incremental cost AV!, as defined in
Eq. (10). As expected, the incremental cost is always positive
(strictly speaking, it is non-negative) and it is zero at the vertexes,
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Fig. 7. Optimal discounted expected cost: (a) with no information at next step; (b) with perfect information at next step
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Fig. 8. (a) Incremental cost of adopting the near-clairvoyance instead of open-loop policy in the no-learning scenario; (b) incremental cost of using
open-loop instead of near-clairvoyance policy when perfect information is available at next step

where policies are consistent. For example, for an initial belief as-
suming m = 1 or 2 with 50%/50% probability, the incremental cost
is approximately $20K. Fig. 8(b) reports incremental cost AV,
that is approximately $1.25K for that belief. As noted previously,
AV! tends to be higher than AV! because the penalty for not
having anticipated information is more severe than the benefit
of having additional information beyond that anticipated.

In Fig. 6(a), the strips of nonshaded area may look counterin-
tuitive. To better understand that policy, examine Fig. 5(a): when
the probabilities of m =1 or 2 are 70 and 30%, respectively, the
open-loop policy prescribes elevating the asset to 1.25 m, whereas
it prescribes doing nothing when those probabilities are 60 and
40% respectively, even if the latter belief assigns a higher proba-
bility of climate change than does the former. Actually, in this latter
belief the policy postpones the elevation by one year, but it adopts a
higher elevation value (Az* = 1.5 m), and it is never below the
policy of the former belief after the first year.
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Closed-Loop Analysis

Now consider scenarios of possible evolutions of the belief
about climate models by introducing an appropriate observation
probability. Instead of directly defining possible advancement in
climate analysis, this model uses indirect measures of the current
floods in regions close to the asset. A noise-level parameter (y de-
fines the uncertainty in those annual observations according to the
formula reported in Appendix 1.

Fig. 9 plots Oy (m, h) for all values of / from 1 to |¥|, depending
on the model, for time 7, = 5, 10, and 20 years, and (y = 50%), 1,
and 2. Observation probabilities for different models are increas-
ingly separated as time passes, consistent with Fig. 3. This is be-
cause the difference among predictions of models grows with time.
Furthermore, the inverse of noise-level parameter (y can be related
to the learning rate. When (y is close to zero, perfect information is
available at next step; in contrast, for large (y the observation
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Fig. 9. Observation probability matrix Oy (m, h), at different times and for different noise levels

probability is flat across models, and observations contain no in-
formation about the correct model.

Fig. 10(a) reports 1,000 forward simulations of the belief evo-
lution, starting from initial belief b; = [34 32  34]%, which is
represented by a point close to the middle of the triangle shown in
Fig. 8. Beliefs are simulated by sampling observations according
to their probability and processing them. Details on the forward
simulations are reported in Appendix 1. The three columns refer
to different leaning rates for (y =2, 1, and 50%, respectively.
In the first case, learning is slow: after 5 years the belief tends
to be close the initial one, and after 50 years the likelihood of being
close to that point is still high. At the second and third rates the
learning process is faster; for example, when (y is 50% it is highly
improbable that the belief is still similar to the initial belief after
50 years. The reason is that, for that noise level, observations col-
lected during 50 years are almost sufficient to reveal exactly the
model for all cases. In the long term the belief tends to converge
to the correct model, and therefore the simulations migrate to the
domain’s vertexes. It is interesting to note, however, how they reach
the vertexes. First, the simulations tend to move away from the mid-
point of the left side of the triangle. That point represents belief
b=1[50 0 50]%, i.e. it is uncertain between high climate
change and no change, but it excludes the possibility of low climate
change: practically no sequence of observations leads to that
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outcome. Moreover, simulations tend to approach the lower and
right sides, which represent uncertainty between two out the three
models—between high climate change and low climate change, or
between low climate change and no change. Lastly, note that con-
vergence to m =1 or 3 is faster than convergence to m =2
(i.e., the low climate change model). This happens because Model
2 is intermediate between other two, so both low and high obser-
vations from Model 2 may be mistaken as coming from other
models. In contrast, Models 1 and 3 are free from one side; for
example, the no change model can be quickly identified if low-
value observations are systematically collected. Fig. 10(b) reports
the corresponding closed-loop policy for the initial year. In the
slow-learning scenario (i.e., for {y = 2), that policy is similar to
the open-loop policy reported in Fig. 6(a), and it would become
identical for larger (y. However, for faster learning rates (i.e., for
Cy = 1 or 50%), the agent prefers to do nothing and wait, unless the
probability of no climate change (i.e., of Model 1) is less than
approximately 30%. Again, when noise level (y goes to zero,
the optimal policy converges to the near-clairvoyance policy re-
ported in Fig. 6(d).

Figs. 11(a and c) compare values and policies for the d-
step-ahead clairvoyance approach and the closed-loop approach,
for four initial beliefs. Value W7 ,(1,b) grows monotonically
(strictly speaking, it grows or stays constant) with time #,, and value

J. Infrastruct. Syst.

J. Infrastruct. Syst., 2017, 23(4): 04017022



Downloaded from ascelibrary.org by Carnegie Mellon University on 06/27/17. Copyright ASCE. For personal use only; all rights reserved.

&y = 200% &y = 100% &y = 50%

ty =10y

ty, =20y

D
A

S>>

¥i(1,by

Fig. 10. (a) Outcomes of 1,000 forward simulations, depending on
time and noise level of observations: (b) closed-loop policy depending
on the noise level; each triangle represents the belief domain, with the
same scale as those in Figs. 68

Vi (1, b) grows with (y. The blue crosses reported at (y = 1% and
Cy = 10 represent the values for the near-clairvoyance and open-
loop policies, respectively, that can be read in Fig. 7. The gap
between the values for two different coordinates in the horizontal
axis quantifies the value of information, that is, the benefit of iden-
tifying the model earlier or of getting better observations. Clearly,
this depends on the belief (e.g., it would be zero if the model was
already known). Figs. 11(b and d) show the corresponding initial
optimal action, represented in terms of elevation value Az*; it is
zero under a threshold that depends on the belief, and consistent with
the open-loop policy above that threshold. Consequently, the value
in Fig. 11(a) is flat above the threshold, because the policy is invari-
ant with respect to higher noise level.

Variations of Original Setting: Alternative Action Set

To illustrate how the solution depends on the available actions,
suppose that the only alternative with respect to not elevating
the asset is to elevate it to Az = 1 m. Fig. 12 plots the correspond-
ing open-loop policy [Fig. 12(a)], closed-loop policy with {y equal
to 50% [Fig. 12(b)], and near-clairvoyance policy [Fig. 12(c)],
where shaded area refers to elevating the asset. By comparison with
Figs. 6 and 10, it is clear that available actions strongly affect these
policies. Specifically, the near-clairvoyance policy is now less
prone to procrastination than that in Fig. 6(d) because the agent
no longer needs to select an appropriate (and potentially expensive)
intervention, and not much information is needed.

Variations of Original Setting: Many Climate Models

The example described previously included only three models for
the sake of illustration, because no belief’s domain can be shown
when M is greater than 3. Fig. 13(a) shows distribution of the
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Fig. 11. (a) Optimal discounted expected cost depending on the time of perfect information, for four selected initial beliefs b;; (b) corresponding
policy; (c) cost for the closed-loop approach, depending on noise level; (d) corresponding policy
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(a) (b) ()

Fig. 12. Initial action of (a) the open-loop policy; (b) the closed-loop
policy with noise level equal to 50%; and (c) the near-clairvoyance
policy, when alternatives are elevating by 1 m (shaded area) or not ele-
vating; each triangle represents the belief domain, with the same scale
as those in Figs. 6-8

annual maximum (as in Fig. 3) and Fig. 13(b) shows the probability
of floods exceeding z, [as in Fig. 4(a)] for a set of 10 models by
adding 7 models to the 3 used above, all intermediate between the
no change model and the high climate change model.
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The analysis can be performed in this high-dimension domain,
and Fig. 14 reports the outcomes of a parametric analysis (similarly
to Fig. 11) from an initial belief assigning 19% probability to
Model 1 with no change, and 9% to each of the other models.

Conclusions

The framework and the examples in this paper illustrate how
sequential decision making under climate change, with known
or unknown dynamic models, can be optimized. For small dimen-
sions (i.e., for small |S| and |A]) and under a known model, solv-
ing MDPs is computationally simple. When, as in the HM-MDP
framework, the model is within a set of M possible candidates,
exact solution is still computationally efficient (with complexity
growing linearly with M) in the special case of having perfect in-
formation available at some step. For the intermediate case of
imperfect observations, numerical schemes for identifying the
optimal closed-loop policy, adapted from those for solving

10°

Fig. 13. For a set of 10 models: (a) probability density for annual maximum at Year 100; (b) probability of flood exceeding level z,, depending on

time and model
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Fig. 14. (a) Optimal discounted expected cost depending on the time of perfect information; (b) corresponding policy; (c) cost for the closed-loop

approach, depending on the noise level; (d) corresponding policy
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POMDPs, are also available, as illustrated in Appendix 1. Those
are approximate methods, but despite their complexity being
much higher than that of the limit-case settings cited previously,
they can be implemented effectively even for a large set of can-
didate models.

Overall, the analysis showed that the assumption regarding the
availability of future information about the climate model can play
a key role in current decision making under uncertainty.

Three final issues are worth mentioning. First, when dealing
with long-term management processes, it may be hard to provide
a complete list of possible evolutions, because additional models
will be developed by climate scientists in the future, and one
may argue that those yet-to-be developed models must be included
in the current set. To address this issue, the authors can only rec-
ommend including a sufficiently rich set of models able to approx-
imately cover the entire current epistemic uncertainty.

Second, although this paper outlined methods that assume a spe-
cific future learning rate, open questions remain about making de-
cisions under an uncertain rate. Previous discussion may suggest
that a pessimistic assumption on the rate has better guarantees, be-
cause the penalty for overoptimism tends to surpass that for over-
pessimism. However, the authors posit that in order to also avoid
wasting resources due to overpessimism, one should identify and
adopt an approximate learning scenario. In the Bayesian frame-
work, the rational approach for planning under an uncertain rate
is hierarchical modeling (where the rate is a random variable to
be learnt during the process); that approach poses specific computa-
tional challenges (Memarzadeh et al. 2016).

Finally, climate change models are not naturally given, but they
are at least partially the result of a decision-making process involv-
ing energy use and emissions policy. Similarly, the learning rate is
affected by decisions related to investment in climate studies and,
locally, in risk analyses. Although this paper treats those features as
given, the analysis can be taken as a component in a more general
investigation about optimizing those decisions.

Appendix 1. Numerical Methods for HM-MDPs

Point-Based Value Iteration

This appendix illustrates how to solve numerically HM-MDPs.
Given immediate cost function, discount factor, transition function,
observation probability, and initial belief, Eqs. (13) and (14) allow
for identifying optimal policy and corresponding value. In doing
so, the hardest part is to model appropriately the value at next step,
Vi, 1»in Eq. (14). However, it is well known that (for any POMDP)
the convex value function can be approximated from above, at any
time, by the envelope of a set of affine functions, on the belief’s
domain

V;(i,b) < mingr, [o"b] (18)

where I'; ; = set of so-called alpha vectors for state i and time .
Each alpha vector is of size [M x 1] and refers to a specific condi-
tional plan (Russell and Norvig 1995). At time 7, and state S;, = i,
conditional plan 2, (i) assigns current action A, = a[z;(i)] and
an action at each future time depending on the sequence of col-
lected observations. Depending on observation Y, | = h and next
state S;,; = Jj, the plan continues into a new conditional plan
72i1(h, j). Hence conditional plan 2, (i) can be described by
the initial action a[z;(i)] and the set of conditional plans
72is1(h, ), for each possible state j and observation . Conse-

quently, from n; | conditional plans at ¢, ,{, n; = n‘,ﬁ‘ls ! |A] distinct
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possible plans can be defined at #,. However, most of them can be
neglected as dominated by other plans, at least in the set of beliefs
that are reachable from the initial plan. If I'; ; contained all possible
alpha vectors, referring to all possible plans, Eq. (18) could have
been written with an equal sign.

To build an alpha vector from the corresponding conditional
plan, it is sufficient to assess the value under each single model.
Following Eq. (12) for b = v,,, component m of the alpha vector
for conditional plan 2, (i) can be expressed as

O, (i) = Ck,m{i7 a[ﬂk(l)]}
Y| I5]

+ 7; O (m.h) Z; Tion i T (D) Y ) (19)
— -

where o, .. (n.j= component m of the alpha vector related to
conditional plan 2, (A, j).

Alpha vectors for each time can be built by initializing a set of
them at the end of the time horizon, and using Eq. (19) as a Bellman
operator. However, as noted previously, the number of vectors
grows exponentially and, after few steps backward, the complete
set becomes intractable. A point-based value iteration method, such
as those for solving POMDPs, can approximate the value function,
in the set of beliefs reachable from the initial belief, with a limited
number of relevant alpha vectors. Suppose I’y ; contains a set of
alpha vectors able to appropriately represent Vi, (j.b), as in
Eq. (18). Eq. (14) can be approximated as follows:

Vi (i.b) Smina{ck(i,b,a)

Y| 1|
+7) e b)Y Hilisa,j.b)Y[wiy (7). Tepy ]}

= =
(20)

where Y(b,T) = mingcr[a™b]. By solving Eq. (20) for a specific
pair (i, b), one obtains not only the corresponding optimal value
but also the corresponding action a and a dominating alpha vector
for each pair (%, j), corresponding to conditional plan zz, (%, j)

b — V(h,j):(xﬂk“(h’j) = argminaerkﬂ.j [(xTuk+1 (h, b)] (21)

The specific conditional plan at time ¢, is composed of action a
followed by set of alpha vectors {a, ¢} with (1 <A <Y
1 <j<|S]) so that this conditional plan is optimal from belief
b, and state S; defined by b and i, respectively. Following this
observation, one can select as relevant alpha vectors those corre-
sponding to conditional plans that are optimal for a set of relevant
points, reachable from the initial belief. Although the number of
reachable points may grow exponentially over time, the approxi-
mation can rely on a limited number (N) of independent forward
Monte Carlo simulations, from initial belief b;, as described sub-
sequently, to get N sampled beliefs at each time during the decision
process.

At time t7,, the process is over, and the only alpha vector is
defined as «,; = V. (i, m), assuming that residual value V|
may depend on model and state. Relying on this initialization
and on the set of samples, the complete procedure for identifying
the optimal initial action is as follows:

1. From k = T down to 2 and for each sampled belief, identify the
optimal conditional plan using Eqs. (20) and (21) and the cor-
responding alpha vector using Eq. (19), populating set I'; ;, for
each state j. Each alpha vector is also associated with a specific
action.

s
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Fig. 15. Tllustrative representation of the procedure for identifying optimal conditional plans and value

2. By solving Eq. (20) for k = 1, identify optimal initial action a,
and the corresponding value.

Fig. 15 provides an illustrative scheme of the method. The upper
row of triangles represents belief domains at time ¢, for different
states. The sampled beliefs are represented by red points in all do-
mains, and they are the same for all states. For illustration, the fig-
ure focuses on one specific belief, b, and state = 1. This belief is
copied in orange, for the sake of illustration, in the domains of the
second row, referring to time ¢, ;. Blue points represent reachable
beliefs, one for each possible value of observation variable %, so
that u,, defines the coordinate of the updated belief, and e, is
the probability of the belief transition. Each state at time ¢, is
related to a set of alpha vectors, so that value at each blue point
can be approximately computed by Eq. (18). Expected transition
H,(1,a,S,.1,b) also can be computed for each action a and next
state value S, ;. By combining the transitions in state and belief,
and integrating immediate cost, one can identify the optimal action
using Eq. (20), which acts as a Bellman operator. The procedure is
repeated for each state and sampled belief, but it should be noted
that many operations, e.g., the computation of the updated beliefs
and future value Y, are invariant respect to the state value S,,.

Fig. 10 illustrates the importance of identifying the set of reach-
able beliefs. Although a large number of alpha-vectors may be
needed to approximate the value function with high precision
in the entire domain, according to Eq. (18), a limited number
may be sufficient for approximating it in the region that can be
reached. For example, for (y = 50% and ¢, = 20 years, belief is
concentrated on two sides of the triangle. Therefore the value func-
tion should be well represented in that region, whereas the quality
of the approximation outside that region may be irrelevant. The
method outlined here searches for vectors that are relevant, because
they dominate all other vectors, for points in that reachable region.

The number of alpha vectors to be included in set I' depends on
the target quality of the approximation. The quality grows with the
number of vectors; however, vectors that are always dominated in
the set of reachable beliefs can be pruned. More specifically, by
neglecting vectors that provide small improvements to the value
approximation, the number of vectors can be kept low. For exam-
ple, when the reachable domain shrinks to a small set, the number
of relevant alpha vectors drops. Likewise, at initial time #; there
is just one relevant alpha vector, «;, related to the identified
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conditional plan. Because of Eq. (18), the policy identified by
the method is guaranteed to give a value bounded from above
by the approximate value o b;.

Point-based value iteration methods, such as that illustrated
here, specifically investigate reachable beliefs from a single initial
belief. For the sake of illustration, Fig. 10(b) makes use of a set of
possible initial conditions, in order to represent the policy in the
entire belief domain.

Forward Monte Carlo Sampling

Forward Monte Carlo simulations allow for sampling reachable be-
liefs, as is needed for the procedure in previous section. To simulate
beliefs following an initial belief, one can sample one model, sim-
ulate a sequence of observations from that model, and process this
sequence. However, beliefs can also be propagated independently.
To do so, consider belief b at time ;. One can sample observation
Y1 = h' from distribution vector e;, whose component /4 is
er(h,b), as defined in Eq. (13). Updated belief derives, again, from
Eq. (13)

h'~e(b) = u [k, b] (22)

Policy Evaluation under Limit Learning Assumptions

This section provides details on how to evaluate suboptimal poli-
cies, for computing Eq. (10). Although this may be challenging in
specific settings, it turns out to be simple under the extreme con-
ditions about available information. Start by considering that per-
fect information is available at the next step. An agent adopting the
open-loop policy will update her or his belief, obtain perfect infor-
mation at the next step, and follow the optimal single-model policy
after that (because it coincides with the open-loop policy, without
model uncertainty). Therefore one concludes that

o . .
Wi (i.b) = E,{Qrmli. ¢ o (1. D)]} (23)
For the opposite case, consider the scenario without informa-
tion. In that case, the belief is time-invariant, and one can evaluate

the near-clairvoyance policy in a similar way as in Eq. (5)
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J

Appendix 2. Details of the Application to Flood
Protection

Observation Modeling

The example of flood protection assumes that available measures
are probabilistically related to the model as follows. Measure y;, at
year k, is lognormally distributed on a continuous domain, as

ylm~InNIn Xy, (o), C%'] (25)

where In A/()\, (?)= lognormal density with position parameter A
and scale parameter (2. Therefore the median observation is the
flood probability for a nonelevated asset, X; ,,(zo), and (y approx-
imates, at least when it is small, the coefficient of variation. Condi-
tional to the model, observations are independent. The observation
domain is discretized in |Y| = 30 possible values by integrating the
density in 30 contiguous intervals of equal length in range
[X11(20)/3; Xi53(z0) - 3]. Matrix Oy (m, h) derives from the nor-
malizing of these probabilities, so that each model is related to
an observation probability vector of unit sum across all possible
observations.

Alpha Vectors for the Specific Application

In the application to flood protection, because of the assumption of
deterministic transition depending on the action, Eq. (20) is sim-
plified to

Vi(i.b) < mina{ECk(i, b.q)

Y|

+7>_ e(h.b)
h=1

and Eq. (19) is simplified to

T[um(h,b),rkﬂ,a]} (26)

Y]

m,p (i) = Ck.m{i’ a[ﬂk(l)]} + Z Ok(m7 h)amﬁﬁk‘ {halz (i)}
h=1

(27)

Moreover, for a state i higher than 1 (i.e., when the asset has
already been elevated), there is just one possible conditional plan
(because the agent cannot make other decisions), which is defined
by a single alpha vector that can be called oy ; ; without ambiguity.
For State 1 and action a higher than 1, again there is a unique condi-
tional plan and vector, called «y ; ,. Component m for these two
vectors is

i> 1:am.k.i.i = Ck,m(i’ l) + ’yam.kﬁ—l,i,i

a > 1:O‘mk,l.a = Ck,m(L a) + V% k+1,a,a (28)

Finally, from State 1 and Action 1, Eq. (19) reads

Y]

X oy = Ckm(l ’ 1) + Y Z Ok(m’ h)am,ﬁkﬂ(h) (29)
h=1
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Notation

The following symbols are used in this paper:
Cy. m(i a) = immediate cost;
¢ (i, b, a) = expected immediate cost;
ek(h b) = marginal observation probability;
H(i,a, j,b) = expected transition;
O (m, h) = observation probability; for this and following
symbols, & means for observation h;
QOr.m(i,a) = action-value function;
Ty.u(i,a, j)= transition probability, (i, j, a) indicates for state i,
next state j, and action a, respectively;
1 (h,b) = updated belief at next step;
V; (i, b) = optimal value with feedback defined by observation
probability O;
V{ (i, b) = value following policy W, with feedback defined by
observation probability O;

km(z) = single-model optimal value;
¢ (i) = single-model value following policy ®;
Wk Oo(l b) = optimal value under time-invariant belief;
Wk « (i, b) = value following policy ® up to the end of the

process; for this and following symbols, b means
“from belief b”;
Wi 1+q(i,b) = optimal value under time-invariant belief up to i,
and single-model optimal policy after that;
WP, 4(i.b) = value following policy ® up to #;, 4, and single-
model optimal policy after that;
Y (b, ') = lower envelope of affine functions defined by alpha
vectors in set I';
Qi k' = component m of the alpha vector referring to
optimal policy under model m’;

O, (i) = component m of the alpha vector referring to
conditional plan z2;
Q.1 (n.j) = component m of the alpha vector referring to

conditional plan 2 after having observed that Y.,
is equal to & and S, is equal to j;
I'y ; = set of alpha vectors;
(i) = single-model optimal policy;
®% (i, b) = open-loop policy;
®%xra(isb) = optimal policy with time-invariant belief up to
trra—1, and perfect model knowledge after that;
(i, b) = closed-loop optimal policy, with feedback defined
by observation probability O
AVE(i,b) = incremental cost for using the near-clairvoyance
policy without information; and
AVH(i,b) = incremental cost for using the open-loop policy
with perfect information at the next step.

Subscripts

k= at time t;; and
m = for model m.
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