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Abstract: The value of information (Vol) provides a rational metric to assess the
impact of data in decision processes, including maintenance of engineering sys-
tems. According to the principle that “information never hurts”, Vol is guaranteed
to be non-negative when a single agent aims at minimizing an expected cost.
However, in other contexts such as non-cooperative games, where agents compete
against each other, revealing a piece of information to all agents may have a nega-
tive impact to some of them, as the negative effect of the competitors being in-
formed and adjusting their policies surpasses the direct Vol. Being aware of this,
some agents prefer to avoid having certain information collected, when it must be
shared with others, as the overall Vol is negative for them. A similar result may
occur for managers of infrastructure assets following the prescriptions of codes
and regulations. Modern codes require the probability of some failure events be
below a threshold, so managers are forced to retrofit assets if that probability is too
high. If the economic incentive of those agents disagrees with the code require-
ments, the Vol associated with tests or inspections may be negative. In this paper,
we investigate under what circumstance this happens, and how severe the effects
of this issue can be.

1 Introduction

Design, operation and maintenance of structures and infrastructure components can be formu-
lated as a decision making process, under uncertainty on hazard, demands, capacity and long-
term evolution. Managers and stakeholders (whom we will hereafter refer to as “agents”) can
take these decisions with the aim of optimizing their own revenues, or minimizing their own
losses. As the consequences of these actions can potentially affect safety and economic pros-
perity of communities at a broader level, the society usually imposes regulations and policies
to affect or even control them. Specifically, agents may be prone to accept risks higher than
that which the society can tolerate, possibly because they do not include all costs relevant for
society in their analysis. To prevent agents making excessively risky decisions, society can
impose constraints on the available actions, depending on the circumstances. For example, a
building code can prevent a structure from being open to the public when the probability of
its failure is too high, despite the owner’s will to do so. Through these constraints, society is
able to indirectly implement the policy that it considers optimal, balancing costs for construc-
tion, maintenance and renovation with risks related to failures and malfunctioning.

However, agents also take decisions about the collection of information, e.g. using sen-
sors and inspectors, and they allocate economic resources to these activities. In this paper, we
investigate the effect that the constraints on decisions have to the information collection. We
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assume that society does not impose any direct constraint on information collection, and
agents are free to select information by evaluating its cost and benefit. However, as infor-
mation is useful as far as it guides the management process, that evaluation is influenced by
society’s constraint. Specifically, the agent may find it convenient to avoid information, even
when it 1s free, in order to escape a constraint that society imposes. In Section 2, we illustrate
why the Value of Information (Vol) assessed by agents can be negative, and in Section 3 we
describe in detail a setting in which this happens.

2 Positive and negative Value of Information

Vol analysis provides a rational metric for assessing the impact of information [1-3]. While
this analysis can be complicated in some problems [4-5], here we refer to the simple setting
of rational agents taking a one-stage decision under uncertainty. An agent has to select action
a in domain A, while the world the agent is interacting with is in state x in domain X. The
loss the agent received is quantified by function L.

2.1 Why the Vol is (usually) non-negative

In this Section, we provide a short intuitive proof of the principle that “information can’t
hurt” [6], that 1s, that Vol is non-negative. Figure 1 illustrates this proof, and follows the no-
tation of probabilistic graphical models and decision graphs. Let us start with the case of per-
fect information, as in diagram (a). Loss function L(a, x) depends on decision variable a and
random variable x, described by distribution py. Without observing x, the agent selects ac-
tion a* to get expected loss L*(@) = minyExL(a,x) = ExL(a*, x), where E;[f (z)] indicates
the expectation of function f according to distribution p; of z. Observing the world’s state x
in advance, the agent can calibrate the action depending on the observation, getting L*(X) =
EymingL(a, x). The expected value of perfect information is EVPI(X) = L*(@) — L*(X) and
defines the expected reduction of loss due to that observation. We can define the regret taking
action a* as R(x) = L(a*,x) — minyL(a,x) = 0. As the regret is always non-negative, so is
the EVPI: EVPI(X) = ExR(x) = 0.

The expected loss when indirect measure y of the world’s state, defined by conditional
probability py|y, is observed in advance is L*(Y) = EyminyEy,L(a, x) = EymingL'(a,y),
where we define L'(a,y) as EyyL(a,x). We can re-define the prior loss as L*(@) =
ExL(a®,x) = ExyL(a",x) = EyEx,L(a",x) = EyL'(a",y). So the Vol of observing y is
VoI(Y) = L*(®) — L*(Y) = EyR(y), where regret R(y) = L'(a*,y) — minsL'(a,y) =0 is
non-negative, and so is the Vol. Diagrams (b-d) show how to transform an indirect observa-
tion into a direct one, using Bayes’ rule (b-c) and eliminating intermediate variable x (c-d).
These steps are encoded in the definition of L*(Y).

We conclude that the agent should always accept free information, as it “can’t hurt”, even
when it is indirectly (and even loosely) related to the world.

Figure 1: probabilistic graphical models for the Vol: perfect information (a), imperfect information (b),
transformed to equivalent perfect information (c-d).
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2.2 and why, sometimes, it is actually negative

However, experience suggests that sometimes it is better to neglect or refuse information.
First, we can that argue that “too much information can harm”. When variable Y is independ-
ent of X (so that Ey,[-] = Ex[]), the VoI of Y is nil. Now, if the observation is free, the
agents should have nothing against collecting it. However, no information is actually free,
when considering all costs related for collecting and processing it, and so they should neglect
irrelevant information.

Second, an agent can take a decision, then revise it based on noisy measures, while in re-
ality the prior decision was actually correct and the information has misled her. However, we
point out that non-negativity of Vol is a result holding in the expected sense while, in a given
realization (say of X and Y), it may not hold true for the corresponding realized quantities.
We can also argue that if the processing model is incorrect, then the impact of information
can be detrimental. For example, consider an agent over-confident in the precision of a sen-
sor, or unaware of its systematic bias, and so assuming an incorrect conditional probability
Py|x- That agent can be misled by the information, so that she would have done better without
it. Again, previous results hold under model consistency: after all, probability models igno-
rance, and if an agent suspects that a model may be inappropriate, she should extend it until it
captures the complete perceived uncertainty in the relation between the world and measures.

Our investigation refers to a third class of problems when the Vol can be negative. Vol
analysis assesses the impact of information; now, who is the information revealed to? To the
agent herself, first of all, who adapts her policy depending on the outcome. But, in many cir-
cumstances, when the information is revealed, it is also made available to other agents. Those
agents can modify the environment where the decision-maker acts, and influence her loss.
When including this indirect effect, the overall impact of information can be negative. As an
example, suppose an entrepreneur shares a market with a competitor: a piece of information
may be irrelevant for her, but key for her competitor, who can improve his strategy and re-
duce her share of the market [7]. In that case, the impact of information is clearly negative,
when assessed by the agent.

2.3 Value of information when acting under an external constraint

In the analysis of Section 2.1 we assumed that the environment surrounding the agent, de-
fined by the available actions and by the loss function, is not affected by the measures col-
lected. To model the cases suggested at the end of previous Section, we now remove that
assumption. Our motivating case is that of a manager of an infrastructure asset following a
regulation, e.g., a building code. The code embodies a public policy limiting risk to an ac-
ceptable level. Depending on the knowledge of world state X, the code poses a constraint, and
allows only for some actions to be taken. To model this, we define A S A as the subset of
actions available, as a function of the probability distribution of X: either prior probability py
or posterior probability py,. Prior optimal loss is now L5(@) = minge4p,,1ExL(a, x), and
posterior expected loss is Lg(V) = Eyminaecﬂ[pxw] Ey|yL(a,x), so that Vol is now

Vols(Y) = Ls(@) — Ls(Y). We have no guarantee that this quantity is non-negative. In the
next Section we investigate how this value behaves in an example.

3341



3 Vol in systems’ maintenance under an external constraint

3.1 How external constraints can make the value of information negative

We consider an agent managing an asset under uncertainty about its state. The world’s state X
is binary, 0 indicating a healthy asset and 1 a damaged one. py can be completely defined by
the probability P, of the damaged condition. Action set A is also binary, with 0 indicating
doing nothing and 1 retrofitting. Cost for retrofitting is summarized in loss value Lp, while
the cost for failure, occurring when a damaged asset is not retrofitted, is given by loss value
Lg. The loss function can be expressed as L(x,a) = a Lg + x(1 — a)Lg. Such a function
indicates that failure can be avoided by retrofitting.

In this setting, an agent not constrained by the code would retrofit if and only if Pp sur-
passes P, = Lp/Lr. However, let the agent be constrained by regulation prescribing to retro-
fit if Py exceeds threshold value P as, above that value, society considers the asset too risky
to be in operation: hence while set A usually includes both actions, it is restricted to A = {1}
if Pp = Pr. So the constraint is inactive if P, < Py as, in that case, the agent’s policy is more
conservative than the code. If, on the other hand, P, > Py, the regulation can force the agent
to retrofit when, if left free, she would have preferred to accept the risk of doing nothing.

We consider an available “inspection” of the asset, modeled by noisy binary observation
Y, where 0 indicates “silence” and 1 “alarm”, whose value may differ from X with probability
€. Hence, for inaccuracy € equal to zero the agent can observe X directly, while for € equal to
50% the observation is independent of the actual asset state. The relationship between P, and
the Vol (normalized by L) is plotted in Figure 2(a) for Ly equal to a thousand times Ly, and
6 values of €: 0, 10, 20, 30, 40 and 50%. Without constraints, Vol is a piecewise linear func-
tion, made by increasing linear function @ = (AL { + Lre)Pp — Lgre and decreasing linear
function B = —(AL € + Lg{)Pp + Li{, where measure accuracy ¢ is (1 — €) and AL = Ly —
Lg. The lines meet at P;. For Pp ranging from O to 1, the Vol is nil up to when @ becomes
positive, it follows a up to P;, then it follows f down to zero, and then it stays at zero.
Piecewise linearity is masked, in graphs (a-b), by the log-scale for the horizontal axis.

Under the constraint imposed by the code, the Vol looks as in Figure 2(b), where we se-
lect a specific value for the inspection’s inaccuracy among those plotted in (a), 1.e., € = 30%,
and threshold Py = 0.03%. Vol jumps to function « at a value approximately equal to Pye/,
then to function f at Py and to zero approximately at Pr{/e. Hence, the constraint highly
influences the Vol and it can be negative, for P, smaller than Py .
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Figure 2: Construction lines for the Vol as a function of the probability of damage, for different values of
inaccuracy (a), specific Vol for a set of parameter values (b).
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3.2 Agent behaviour and societal expected cost depending on the constraint

In the prior condition, the agent will do nothing only if Pj is below both P; and P, ; otherwise
she has to retrofit, either because the perceived risk is too high (when Pp is above P;) or be-
cause the code imposes it (when Pp, is above Pr). Py, Ps, Pp 4 and Pps indicates the marginal
probability of the alarm observation, of the silence one, and the conditional probability of
damage given these outcomes, respectively.

The agent assesses the Vol, as shown in previous Section, and compares it with observa-
tion cost L;, so the binary decision variable I is I[L; < Vol(Y)], where I[-] is the indicator
function: I is 1 when the agent decides to inspect and 0 otherwise.

We assume that society models the process using the same framework the agent uses, on-
ly with different values. Societal costs for failure, retrofit and inspection are Cp, Cy and C;
respectively. In the prior condition, clearly the optimal value for threshold Pr is Cr/Cr, as
that forces agent’s action to be consistent with societal utility. Including the possibility of
inspection, the expected societal cost is E[C|P;] = C(@)(1 — 1) + [C(Y) + C;]I, where C(D)
and C(Y) are defined as L(@) and L(Y), but using societal costs. We also assume that the
agent and society agree on all probabilities and costs except that modeling the effect of fail-
ure, so Cg and C; are identical to Ly and L; respectively.

We normalized the cost for society to that of retrofitting, defining r; /g = Cr/Cg = 100,
11/r = C;/Cr = 50%, 1,)c = Lp/Cr = 10%, and a probability of damage as P, = 2%. We
start considering inaccuracy € = 5%, so that the updated probability given alarm and silence
are Ppjy =27.94% and Pps = 0.107% respectively, while the marginal probability of
alarm is P, = 6.8%. For the agent, the maximum risk before retrofitting is P, =

(rL /CrC/R)_l = 10% so, after an alarm, she will find retrofitting convenient. As shown in
Figure 3(a), when P; is above Pp, the constraint is inactive: the agent does nothing in the
prior condition, and the Vol 1s rather low, as shown in graph (b). When Pr is below Pps the
agent 1s forced to retrofit no matter what, and the Vol is nil. For P; between Pp|s and Pp, the
agent is forced to retrofit, but she can hope to receive silence and avoid retrofitting, and the
Vol is much higher than that without the constraint. As the cost C; is half of Cg, the agent will
inspect only in that range of thresholds, as shown in graph (c). In this problem, the Vol as-
sessed by society is also above C;. Graph (d) reports the expected societal cost as a function
of Pr. By assigning a threshold Pr between Pp|s and Pp, agent’s behavior corresponds to the
optimal one for society: to inspect, and then to retrofit only following an alarm.

Results are different if we consider a less accurate inspector, with € = 20%, as we show
in graphs (e-h). Now Pp4 and Pp|s are 7.55% and 0.51% respectively, while P, is 21.2%.
As Pp|s 1s less than Pp, without constraint the agent would never retrofit, and Vol would be
nil. For Pr between P, and Pp|4 the agent can avoid to retrofit in the prior setting, but an
alarm would force her to retrofit, while she would prefer not to, hence the Vol is negative. As
in the previous case, the Vol is relatively high for P between Pp|s and Pp, but in this case
the Vol assessed by society is actually lower than C;. In this case, the optimal constraint
would be below P, as the best action for society is to retrofit without inspecting.

This analysis shows that no value of Pr can guarantee the optimal cost for society: as so-
ciety cannot control the decision of inspection directly, the agent’s behavior, which i1s optimal
for minimizing agent’s loss L, is not optimal for minimizing societal cost C.
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Figure 3: Decisions on retrofit (a), Vol analysis (b), decisions on inspection (c)
and expected societal cost (d) vs threshold on acceptable probability of damage when inaccuracy is 5%
and corresponding graphs when inaccuracy is 20% (e-h).

3.3 Bounds for suboptimal behaviour in information collection

In this Section, we investigate bounds to the inefficiency in information collection in a man-
agement process. We start considering the case when Pj, is above Pr: society finds retrofit-
ting convenient and imposes this prior decision to the agent. Of course, information has a
value according to society: if this is above its cost, society would like to recommend that it be
collected. In this case, the agent will always agree with society when the latter suggests col-
lecting information, as the Vol assessed by an agent is greater than that assessed by society,
for Pr/P; less than one. However, exactly for this reason, the agent may be willing to acquire
a piece of information that is too expensive from the societal standpoint.

We focus on limit cases. Let us consider an agent for whom Ly is identical to Cg, so that
the agent finds retrofitting convenient only when damage is certain (i.e., 1,,c = Pr). We as-
sume Pj, is slightly above Pr, so the agent is forced to retrofit. However, an observation is
available, with inaccuracy ¢ slightly below 50%. Clearly, this information is almost irrelevant
for society, and the corresponding Vol is almost zero. However, the agent sees the collection
of that information as a 50% chance of escaping the constraint, hoping in the silence outcome
that would take the posterior probability of damage below Pr. The Vol, assessed by the
agent, is almost Cx(1 — P;)/2 = Cgr/2 and she is willing to pay up to such a high cost, if
needed. Hence, the availability of information makes the overall cost grow by up to 50% in
this setting. Figure 4(a) reports the costs for these limit cases, depending on Pp, for Pr =
0.1%. When Pp, is higher than Pr, the extreme case occurs when Pps is equal to (actually,
slightly less than) Py, so that the agent can intended a silence outcome as a way for escaping
the constraint. As shown in graph (c), the corresponding limit case inaccuracy, €, decays
from 50% down to zero. The corresponding probability of silence, Pg, grows, and so do value
Vol* and the corresponding expected cost E[C*] in the limit case. However, Vol ™ has to ap-
proach zero when P goes to one, and so the function (as well as Ps) decreases along the way.
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Figure 4: Expected societal cost when agent decides about the inspection and when society does (a),
Vol analysis (b) and observation inaccuracy in the limit cases (c).

At its maximum, Vol* cannot be higher than Ly, because it makes no sense to invest in in-
formation more than in an action that would prevent any additional required cost. Conse-
quently, E[C*] cannot be higher than the double of Cj.

Let us now focus on the case when Pp is below Pr and, consequently, the prior action is
to do nothing. One limit case is given by free perfect information. When Ly is Cy, the agent
will assign no value to it, while society will assign Vol* = (Cr — Cg)Pp, as in graph (b).
E[C*] is CrPp when the agent is in control and doesn’t collect information, and it would be
CrPp if society could control the decision on inspection, as in graph (a). Another limit case
(that we call 1) is related to negative Vol assessed by the agent. For example, when Pj, is
slightly less than P, the agent interprets an observation with € slightly below 50% as an al-
most 50% chance of being forced to retrofit, and she will be willing to pay Cx(1 — P;)/2 =
Cr/2 to avoid the observation. Similarly, we define that limit case by imposing Pp 4 equal to
P;. The corresponding inaccuracy decays to zero when P, decreases to zero, as plotted in
graph (c). In the meanwhile, the limit-case Vol, as assessed by the agent, stays negative, but
its magnitude also decays, as Pp|4 does, as in graph (b). The corresponding Vol assessed by
society is zero. For evaluating [E[C*] in that case, we assume that such information is actually
available at a negative cost equal to the Vol assessed by the agent, so that society can decide
to take the revenues related to the information. Graph (a) also reports the cost related to that
case, which 1s always higher than that when free perfect information is available.

4 Conclusions

We have investigated the effect of society imposing a constraint to agents taking decisions on
risk management. While this constraint is effective in forcing agents to take decisions con-
sistent with society’s will, it can have unwanted second-order effects on information collec-
tion, if this activity is controlled by these agents and unconstrained. Risk-neutral agents will
assess the value of available of information and collect only that whose cost is below that
value. However, the Vol assessed by agents whose preferences are not aligned with society
will differ from that assessed by society itself. We have restricted our analysis to a simple
case, where agents have to decide to retrofit an asset or not, and their loss function differs
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from that of society only because the latter assigns a higher cost to the asset failure. In that
setting, two negative outcomes can derive. An agent forced by the constraint to retrofit can be
willing to pay too much for escaping the constraint by collecting information, leading to a
total expected cost that is bounded from above by the double of the retrofit cost. So, paradox-
ically enough, the very availability of information makes things worse for society. The eco-
nomic effect can be of the same magnitude (but much higher in relative terms) when the
constraint is currently inactive, because the asset is judged to be safe enough. In this latter
case, the agent can prefer to avoid information even when it is free, or even if she can receive
an economic reward for collecting data, despite the fact that it can reduce the expected socie-
tal management cost by several orders of magnitude.

Given the current structure of regulations, it is hard to overcome this inefficiently in col-
lecting information. On the one hand, codes can require to collect data (e.g., [8]), and they
could even prescribe to evaluate Vol according to a given formula, encoding the assessment
from the societal standpoint, and force agents to buy information when its cost is below that
threshold. The implementation of such a requirement would likely be controversial. On the
other hand, society could remove the constraint, and instead introduce incentives for aligning
agents’ preferences with societal ones. The scope of this paper, however, is not to propose
solutions, but to highlight and understand the issue, illustrating why the value of information
can be negative in some applications.
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