The dependence of planetary tectonics on mantle thermal state: Applications to early Earth evolution

Bradford J. Foley^{1,*}

¹Department of Geosciences, Pennsylvania State University, University Park, PA, 16802 *Corresponding author. E-mail: bjf5382@psu.edu. Phone: (814)-863-3591

 $_{1}$ Abstract

10

11

12

For plate tectonics to operate on a planet, mantle convective forces must be capable of forming weak, localized shear zones in the lithosphere that act as plate boundaries. Otherwise, a planet's mantle will convect in a stagnant lid regime, where subduction and plate motions are absent. Thus, when and how plate tectonics initiated on Earth is intrinsically tied to the ability of mantle convection to form plate boundaries; however, the physics behind this process are still uncertain. Most mantle convection models have employed a simple pseudoplastic model of the lithosphere, where the lithosphere "fails" and develops a mobile lid when stresses in the lithosphere reach the prescribed yield stress. With pseudoplasticity high mantle temperatures and high rates of internal heating, conditions relevant for the early Earth, impede plate boundary

formation by decreasing lithospheric stresses, and hence favor a stagnant lid for the early Earth. However, when a model for shear zone formation based on grain size reduction is used, early Earth thermal conditions do not favor a stagnant lid. While lithosphere stress drops with increasing mantle temperature or heat production rate, the deformational work, which drives grain size reduction, increases. Thus the ability of convection to form weak plate boundaries is not impeded by early Earth thermal conditions. However, mantle thermal state does change the style of subduction and lithosphere mobility; high mantle temperatures lead to a more sluggish, drip-like style of subduction. This "sluggish lid" convection may be able to explain many of the key observations of early Earth crust formation processes preserved in the geologic record. Moreover, this work highlights the importance of understanding the microphysics of plate boundary formation for assessing early Earth tectonics, as different plate boundary formation mechanisms are influenced by mantle thermal state in fundamentally different ways.

1 Introduction

Plate tectonics has fundamentally shaped the tectonic, thermal, and chemical evolution of the Earth, leaving our planet in sharp contrast to its neighbors in the solar
system. However, despite the importance of plate tectonics for Earth's history, when
and how plate tectonics started on Earth is poorly constrained [e.g. *Condie and Kröner*, 2008; *van Hunen and Moyen*, 2012; *Cawood et al.*, 2013; *Korenaga*, 2013].
Few rocks from the Archean survive today, and those that exist are difficult to inter-

pret. For even earlier times, greater than 4 billion years ago, zircon grains are all that is available to constrain the dynamics of the very early Earth [Valley et al., 2002; Harrison et al., 2005; Kemp et al., 2010]. Moreover, exactly what evidence would constitute clear proof for plate tectonics is still debated, as rocks formed by plate tectonic processes on the modern Earth can potentially be formed by non-plate-tectonic processes on the early Earth [Bédard, 2006; Johnson et al., 2014; Sizova et al., 2015], among other ambiguities. As a result, estimates for when plate tectonics began based on the geologic record span from > 4.0 Ga [Harrison et al., 2005; Hopkins et al., 2008] to < 1.0 Ga [Stern, 2005].

Determining how and when plate tectonics began on Earth is not only an important question for understanding the history of our own planet, but also for the

44 more general question of what factors allow for the development of plate tectonics 46 on any rocky planet. Earth is the only rocky planet or moon known to operate in 47 a plate-tectonic regime; the other rocky bodies in the solar system are thought to operate in some form of stagnant lid regime [e.g. Breuer and Moore, 2007]. Interestingly, the icy satellite Europa potentially exhibits subduction, and possibly even full fledged plate tectonics, in its outer icy shell [Kattenhorn and Prockter, 2014]. 51 However, more work is needed to determine whether potential subduction zones are 52 spatially limited, akin to Venus as discussed below, or more widespread. In the 53 stagnant lid regime, the surface exists as a single plate with mantle convection taking place beneath this plate, and there is no global network of subduction zones and mid-ocean ridges, or large-scale differential movement between different regions of the lithosphere [e.g. Ogawa et al., 1991; Solomatov, 1995]. Stagnant lid planets or satellites can still display volcanism and active tectonics, as seen on Mars [e.g. Neukum et al., 2004; Robbins et al., 2011], Mercury [e.g. Byrne et al., 2014], or Io [e.g. O'Reilly and Davies, 1981; Moore, 2003]. In fact, Venus even shows evidence for limited subduction in some regions, possibly due to burial of the lithosphere by volcanism, and subsequent "peeling" away and sinking of this buried lithosphere [e.g. Sandwell and Schubert, 1992; Davaille et al., 2017], a process called "plume-induced" subduction [Gerya et al., 2015]. However, all of these planets and satellites clearly lack the global system of mobile plates and plate boundaries that characterizes plate tectonics on Earth.

Plate tectonics is also thought to play an important role in Earth's ability to 67 maintain a surface environment suitable for life [e.g. Kasting and Catling, 2003; Foley and Driscoll, 2016. Plate tectonics helps power the geodynamo through efficient 69 cooling of the mantle and core [Nimmo, 2002; Driscoll and Bercovici, 2014], and 70 the resulting magnetic field helps to shield the planet from harmful radiation [e.g. 71 Grießmeier et al., 2005. Moreover, plate tectonics facilitates carbon cycling between the surface and interior, which helps to maintain temperate surface temperatures on Earth thanks to a feedback between climate, silicate weathering, orogeny, and volcanism [Walker et al., 1981; Tajika and Matsui, 1992; Franck et al., 1999; Sleep and Zahnle, 2001; Berner, 2004; Abbot et al., 2012; Foley, 2015]. Stagnant lid planets may also be capable of establishing a carbon cycle that regulates climate [e.g. Lenardic et al., 2016; Tosi et al., 2017; Noack et al., 2017; Foley and Smye, 2018, though current estimates still find that plate tectonics is the more favorable tectonic state for long-term climate stability [Foley and Smye, 2018]. With the ongoing boom

in exoplanet discoveries now revealing that rocky planets are common in the galaxy [Batalha, 2014], understanding the dynamical causes of plate tectonics has become an increasingly important goal in astrobiology, in addition to earth science [e.g. Valencia et al., 2007; O'Neill and Lenardic, 2007; Kite et al., 2009; Valencia and O'Connell, 2009; Korenaga, 2010b; Stamenkovic et al., 2011; van Heck and Tackley, 2011; Foley et al., 2012; Lenardic and Crowley, 2012; Stein et al., 2013].

While continued work in unraveling the Earth's early geologic record is essential 87 for answering the question of when plate tectonics began, theoretical studies on early Earth mantle dynamics provide a key additional constraint, by demonstrating what styles of mantle convection are geodynamically plausible. Theoretical studies can also help in interpreting geologic observations by, for example, testing the feasibility of different processes for generating Archean crust. Moreover, theoretical models can also be readily extended to Venus, Mars, or Mercury, providing additional tests 93 on theories behind the origin of plate tectonics on Earth. That is, any theory must be able to explain the presence of plate tectonics on Earth and its absence on the other rocky planets in our solar system. In this paper I focus on the rheological mechanisms necessary for generating plate like mantle convection, and the constraints we can place on early Earth (specifically the Hadean and Archean) tectonics from our understanding of these mechanisms. In particular, I highlight that attempting to model the microphysics of plate boundary formation, in this case by modeling grain 100 size evolution, leads to new predictions about early Earth tectonics in comparison 101 to previous geodynamic models that treat the lithosphere as a plastic material. The 102 differences in the model results stem from fundamental differences in the physics 103

underlying the two plate generation mechanisms. As a result, in order to truly understand how and when plate tectonics began on Earth, and what factors are necessary for plate tectonics to begin on any rocky planet, we must understand the microphysics of shear localization and plate boundary formation.

⁰⁸ 1.1 Generating plate tectonics from mantle convection

The geodynamics behind the stagnant lid regime seen on planets such as Mars and 109 Mercury has been well studied, and can be simply understood as a result of the 110 strong temperature dependence of mantle rheology. Temperature dependent viscos-111 ity creates a strong, rigid lithosphere and thus confines convection to the warmer 112 mantle interior where viscosity is lower [e.g. Oqawa et al., 1991; Solomatov, 1995]. 113 Plate tectonics then requires that some additional mechanism, that allows mantle 114 convective forces to form narrow weak zones within the high viscosity lithosphere, 115 such that plates can slide past each other and subduct beneath one another, be 116 present. A strongly non-linear rheology, where regions of high stress or deforma-117 tion become weaker than areas of low stress or deformation, has proven successful 118 in forming plate boundaries and generating a "mobile lid" form of convection [e.g. 119 Weinstein and Olson, 1992; Moresi and Solomatov, 1998; Tackley, 2000]. In this study I define the mobile lid regime as one where subduction of surface material into 121 the mantle occurs and drives lithospheric mobility. Mobility of the lithosphere may 122 be slow compared to typical fluid velocities in the mantle interior (a "sluggish lid" 123 regime), exhibit varying degrees of episodicity, or fail to produce truly rigid plates. 124 But as long as subduction of surface material that drives surface motion takes place, convection is in the mobile lid regime. In fact, forming genuinely plate-like behavior is still a challenge today, as models typically fail to form strike-slip faults, truly rigid plates, or single-sided subduction [Bercovici et al., 2015], though some of these features can be created in select cases [e.g. Gerya, 2010; Crameri et al., 2012]. As a result, I will focus on the "mobile lid" regime (rather than the "plate-tectonic" regime) in contrast to the stagnant lid regime in this paper.

Although non-linear rheologies can generate mobile lid convection, the mechanism 132 (or mechanisms) behind such rheological behavior are still not well understood [e.g. 133 Bercovici et al., 2015. One commonly used mechanism is the pseudoplastic yield 134 stress rheology [e.g. Fowler, 1993; Moresi and Solomatov, 1998; Tackley, 2000; Stein 135 et al., 2004; van Heck and Tackley, 2008; Lowman, 2011]. Here the lithosphere 136 is assumed to have a finite strength, the yield stress, and fails when this stress is 137 reached; failure of the lithosphere results in the formation of weak shear zones and 138 mobility of the lithosphere. With the pseudoplastic rheology, the stress state in 139 the lithosphere is critical for whether convection sits in a mobile lid or stagnant 140 lid regime, as stresses in the lithosphere must reach the yield stress for weak plate 141 boundaries to form. 142

While the pseudoplastic rheology is capable of producing plate-like mantle convection, yield stress values far below that which are inferred from laboratory experiments [e.g. *Mei et al.*, 2010] or observations of lithospheric flexure [e.g. *Zhong and Watts*, 2013], are typically needed to produce mobile lid convection [e.g. *Moresi and Solomatov*, 1998; *Tackley*, 2000; *van Heck and Tackley*, 2008; *Solomatov*, 2004; *Korenaga*, 2010a]. It is thus unclear whether pseudoplasticity is capable of explaining the pres-

ence of plate tectonics on Earth; that is, additional weakening mechanisms may be needed. One possible explanation is that hydration of old lithosphere could weaken 150 it, and make the effective strength low enough for yielding at subduction zones [Ko-151 renaga, 2007. It has also been proposed that channelized flow in the asthenosphere 152 enhances stresses, and may allow lithospheric yielding even without any weakening 153 via hydration [Höink et al., 2012]. However, more work is needed to confirm whether 154 these hypotheses can fully reconcile the pseudoplastic yielding mechanism for gen-155 erating plate tectonics with experimental and observational constraints of Earth's 156 lithospheric strength. 157

Nevertheless the pseudoplastic rheology has been used in previous studies on 158 early Earth tectonics. A key feature of the Hadean and Archean Earth is that the 159 thermal state of the mantle was likely significantly different than at the present. 160 Rates of radiogenic heat production were higher [e.g. Turcotte and Schubert, 2002; 161 Korenaga, 2006 and the mantle interior was likely hotter as well. Mantle potential 162 temperatures could have been as high as $\sim 2000 \text{ K}$ just after planetary accretion 163 ended, and the putative magma ocean solidified [e.g. Abe, 1997; Solomatov, 2000], 164 though there is little physical evidence of the mantle thermal state at this early 165 stage of Earth's history. In the Archean, petrological estimates indicate the mantle 166 was $\sim 100-200$ K hotter than the present day potential temperature of $\approx 1350^{\circ}$ 167 C, and has gradually cooled since the Archean [e.g. Herzberg et al., 2010; Keller 168 and Schoene, 2018. However, high temperatures, similar to those inferred for the 169 Archean, may still prevail in some parts of the lower mantle, as evidenced by rocks, 170 thought to be sourced from a deep seated mantle plume, recording temperatures as 171

high as $\sim 1700^{\circ}$ C [Trela et al., 2017].

These generally warmer thermal conditions expected in the Hadean and Archean 173 mantle can change the lithospheric stress state, and thus influence the early Earth's 174 propensity for plate tectonics, at least as it would be generated with pseudoplastic 175 yielding. In particular, many studies have found that higher mantle temperatures 176 decrease the magnitude of stresses in the lithosphere, thus requiring lower yield stress values for mobile lid convection; that is, stagnant lid convection becomes more likely 178 with increasing mantle temperature [e.g. Stein et al., 2004; O'Neill et al., 2007]. 179 Moreover, the relative amounts of internal versus basal heating plays an important 180 role as well, as basal heating has been found to feature higher lithospheric stresses 181 than internally heated convection [e.g. O'Neill et al., 2016; Weller and Lenardic, 182 2016; Korenaga, 2017]. 183

However, different mechanisms for generating plate tectonics from mantle convec-184 tion have been proposed, and such mechanisms may respond differently to changes 185 in mantle thermal state. In particular, I focus here on grain size reduction as it is 186 commonly seen in exhumed lithospheric shear zones [White et al., 1980; Drury et al., 187 1991; Jin et al., 1998; Warren and Hirth, 2006; Skemer et al., 2010, and viscosity 188 decreases with decreasing grain size when deformation is accommodated via diffusion 189 creep or grain boundary sliding [e.g. Hirth and Kohlstedt, 2003]. Whether grain size 190 reduction is a viable plate generation mechanism has been questioned, however, be-191 cause grain size reduction by dynamic recrystallization takes place in the dislocation 192 creep regime, while grain size sensitive flow only occurs in the diffusion creep or grain 193 boundary sliding regimes [e.g. Etheridge and Wilkie, 1979; De Bresser et al., 1998; 194

Karato and Wu, 1993. If grain size reduction cannot continue once deformation has entered a grain size sensitive flow regime, only modest weakening can occur [e.g. 196 De Bresser et al., 2001; Montési, 2013. However, grain size reduction can continue 197 within the diffusion creep regime when a secondary phase (e.g. pyroxene) is dispersed 198 throughout the primary phase (e.g. olivine), because of the combined effects of dam-199 age to the interface between phases and Zener pinning (where the secondary phase 200 blocks grain growth of the primary phase). Warping of the interface between phases 201 (or interface damage) itself drives grain size reduction, and such warping can occur 202 via any solid state creep mechanism [Bercovici and Ricard, 2012]. Recent experi-203 mental studies confirm that the presence of secondary phases significantly enhances 204 grain size reduction, especially as phases begin to mix at high strain [Bercovici and 205 Skemer, 2017; Cross and Skemer, 2017; Tasaka et al., 2017a, b]. 206

Grain size reduction has been shown to be an effective mechanism for generating 207 mobile lid convection on Earth, and explaining its absence on the other terrestrial 208 planets of our solar system [Landuyt and Bercovici, 2009; Foley et al., 2012]. However 209 it should be noted that plate tectonics on Earth can only be explained with grain size 210 reduction for certain ranges of the key model parameters (specifically the damage 211 partitioning fraction and grain growth activation energy, defined below in $\S 2.1$), and 212 that these parameters are not well constrained experimentally. As a result, further 213 work constraining these parameters, as well as the theoretical formulation for grain 214 size evolution used in this and similar studies, is needed to test the viability of grain 215 size reduction as a mechanism for explaining the operation of plate tectonics on 216 Earth. 217

In this paper I show that a grain size reduction mechanism for generating plate 218 boundaries responds to changes in mantle temperature in a fundamentally different 219 way than pseudoplastic yielding. Specifically, new mantle convection calculations 220 are presented that demonstrate that deformational work, which drives grain size re-221 duction in the lithosphere, increases with increasing internal heating rate, and con-222 sequently increasing mantle temperature. Thus the situation is opposite that of the 223 pseudoplastic rheology, where higher internal heating rates or mantle temperatures 224 lead to lower stresses, thereby favoring a stagnant lid. As a result, a transition to the 225 stagnant lid regime at high mantle temperatures or high internal heating rates is not 226 seen when grain size reduction is considered. However, subduction and lithospheric 227 mobility does become more sluggish, and subduction becomes more episodic and 228 drip-like. These changes in subduction style have potentially important implications 229 for interpreting early Earth geological and geochemical observations, as discussed in 230 §4.2. The paper is structured as follows: the numerical model setup and governing 231 equations used in this study are described in §2; numerical results and scaling anal-232 yses are presented in $\S3$; the implications of the results are described in $\S4$; and the 233 main conclusions and future directions needed to making progress on answering the 234 question of when plate tectonics started are summarized in §5 & §6, respectively.

36 2 Background Theory and Model Setup

2.1 Grain damage theory

I use a formulation for grain size evolution referred to as grain damage; it is based on energetics, as reducing grain size in a volume of rock is equivalent to increas-230 ing the surface energy in that volume [e.g. Bercovici et al., 2001a, b; Bercovici and 240 Karato, 2003; Austin and Evans, 2007; Landuyt et al., 2008; Bercovici and Ricard, 241 2012, 2013, 2014; Foley and Bercovici, 2014; Foley et al., 2014]. The grain damage 242 formulation used in this study is a simplified version of the theory for polyminerallic 243 rocks from *Bercovici* and *Ricard* [2012], which provides equations for the evolution 244 of grain size in the different mineral phases and for the curvature of the interface 245 between phases. Bercovici and Ricard [2012] shows that during deformation of a 246 polyminerallic aggregate, a "pinned state" develops, where secondary phases dis-247 persed through the primary phase "pin" grain boundaries, thereby slowing grain growth. Furthermore, in the pinned state the curvature of the interface between phases, or the interface roughness, controls the average grain size of the mineral phases; i.e. grain size becomes proportional to interface roughness in the pinned 251 state. Assuming the pinned state prevails throughout the mantle thus simplifies the 252 model, as the average grain size of a rock volume can now be tracked by one equation, 253 rather than solving for both mineral phases and the interface roughness separately. 254 That is, one can use the equation governing the interface roughness (equation 4d of 255 Bercovici and Ricard [2012]) to solve for the grain size directly. I therefore assume 256 the pinned state prevails throughout the mantle in this study.

An additional simplifying assumption I employ is that diffusion creep is the dom-258 inant deformation mechanism throughout the entire mantle, and dislocation creep, 259 or any other deformation mechanism, can be neglected. Neglecting dislocation creep 260 can potentially impact the results, as in reality the rheology will be controlled by 261 whichever mechanism, diffusion creep or dislocation creep, can accommodate defor-262 mation the easiest [e.g. Rozel et al., 2011]. In particular, the typical grain size in the mantle interior could grow large enough at high mantle temperatures for dislocation 264 creep to become the preferred deformation mechanism in this region. However, the 265 results are unlikely to be significantly impacted by neglecting dislocation creep, as 266 lid mobility is controlled by the effective rhoology of shear zones in the lithosphere, 267 where grains are small and diffusion creep dominates [Foley and Bercovici, 2014]. 268 Moreover, in the numerical models grain sizes in the mantle interior remain rela-269 tively small, typically lower than a few millimeters, even with high internal heating 270 rates and thus high interior mantle temperatures (see §3.3). Dislocation creep would 271 also cause viscous weakening in high stress regions, such as around downgoing slabs 272 or beneath surface plates [e.g. Jadamec and Billen, 2010]. However, damage also 273 leads to weakening in such locations (e.g. see §3.1), so this effect of neglecting dis-274 location creep is also unlikely to significantly influence the results. I also note that 275 in the shallow lithosphere, additional creep mechanisms, such as low temperature 276 plasticity, can become important [Karato, 2008; Kohlstedt and Mackwell, 2010; Mei 277 et al., 2010; Thielmann, 2017. However, as explained above, diffusion creep is the 278 dominant deformation mechanism in shear zones that have undergone significant 279 grain size reduction. It is thus unclear if including low temperature plasticity would 280

281 significantly affect plate generation with grain damage.

294

Assuming the pinned state prevails also means that mineral phases are assumed 282 to always be well mixed, when in reality mixing occurs only after extensive defor-283 mation [e.g. Bercovici and Skemer, 2017; Cross and Skemer, 2017; Tasaka et al., 284 2017a, b]. Phase mixing is more efficient at small grain sizes, and thus damage also becomes more effective at small grain sizes due to pinning and interface damage. As 286 a result, grain size itself influences the rate of grain size reduction, an effect that 287 is not captured in the models presented here. Including the effect of phase mixing 288 on grain size evolution is an important goal for future work, as it may improve the 289 plate-like nature of mobile lid convection produced via grain damage, by enhancing 290 shear localization [Bercovici and Ricard, 2016]. 291 The above assumptions result in the following theoretical formulation of grain 292 damage used in this study. The mantle viscosity, μ , is a function of grain size and 293

$$\mu = \mu_n \exp\left(\frac{E_v}{RT}\right) \left(\frac{A}{A_0}\right)^{-m},\tag{1}$$

where μ_n is a constant, E_v is the activation energy for diffusion creep ($E_v = 300 \text{ kJ}$ mol⁻¹ [Karato and Wu, 1993]), R is the universal gas constant, T is temperature, A is fineness or inverse grain size, A_0 is a reference fineness, and m is a constant. A grain size sensitivity exponent of m = 2 is used, the expected value for Nabarro-Herring creep, or diffusion through the grain [e.g. Hirth and Kohlstedt, 2003].

temperature as expected for diffusion creep [e.g. Hirth and Kohlstedt, 2003]:

The evolution of fineness follows

300

$$\frac{\mathrm{D}A}{\mathrm{D}t} = \frac{f}{\gamma}\Psi - hA^p,\tag{2}$$

where t is time, f is the damage partitioning fraction, which can vary from zero to one, γ is the surface free energy, Ψ is the rate of deformational work, h is the 302 healing rate, and p is a constant (I use p = 4, as estimated for polyminerallic rocks 303 by Bercovici and Ricard [2012]). Deformational work rate is defined as $\Psi = \nabla \underline{v} : \underline{\underline{\tau}}$, 304 where \underline{v} is velocity and $\underline{\underline{\tau}}$ is the stress tensor. The first term on the right-hand 305 side of (2) states that some fraction, f, of the deformational work partitions into 306 surface energy, thereby reducing the grain size (or increasing fineness). The second 307 term on the right-hand side of (2) represents normal grain growth, which acts to 308 increase grain size (or reduce fineness). The healing rate constant, h, is a function 309 of temperature with an Arrhenius form:

$$h = h_n \exp\left(-\frac{E_h}{RT}\right) \tag{3}$$

where h_n is a constant and E_h is the activation energy for grain growth. The value of E_h for polyminerallic rocks is not well known, because most grain growth experiments have been conducted on monominerallic samples. However, *Mulyukova and* Bercovici [2017] found that dynamic recrystallization experiments and observations from natural shear zones, where smaller grain sizes are found at lower temperatures, can be well fit with a grain growth activation energy of $E_h \approx 400 \text{ kJ/mol}$. Moreover, the damage partitioning fraction, f, could also be temperature-dependent, with larger values of f found at lower temperatures [Rozel et al., 2011; Mulyukova and Bercovici, 2017]. However, with $E_h \approx 400 \text{ kJ/mol}$, f is found to be nearly independent of temperature when grain damage theory is used to fit laboratory deformation experiments [Mulyukova and Bercovici, 2017; Foley, 2018]; as a result a constant f is used in this study.

The Arrhenius temperature-dependent laws for viscosity and healing, (1) & (3), are simplified in this study by using a Frank-Kamenetskii approximation, which gives the following modified equations for μ and h:

326

$$\mu = \mu_n \exp\left(\gamma_v T\right) \left(\frac{A}{A_0}\right)^{-m} \tag{4}$$

$$h = h_n \exp\left(-\gamma_h T\right). \tag{5}$$

(4) & (5) are then used, after non-dimensionalization (see $\S 2.2$), in the numerical 327 models shown in this study. Here γ_v and γ_h describe the temperature-dependence 328 of viscosity and healing, respectively. When non-dimensionalized these become the 329 Frank-Kamenetskii parameters for viscosity and healing, and can be related to E_v and 330 E_h as described in §2.2. The Frank-Kamenetskii approximation reduces the number 331 of free parameters involved in the viscosity law after non-dimensionalization [see Ko-332 renaga, 2009, thus simplifying the modeling and analysis. The Frank-Kamenetskii 333 approximation also results in lower viscosities at cold temperatures, i.e. in the litho-334 sphere, than would be reached using the Arrhenius relation given by (1). However, 335 the very large viscosity contrasts produced by the Arrhenius viscosity law with lab-336 oratory constrained activation energies are numerically challenging, and therefore lower activation energies are typically used in modeling studies [e.g. *Tackley*, 2000; *Foley et al.*, 2012; *O'Neill et al.*, 2016]. The value of the Frank-Kamenetskii parameter chosen in this study results in viscosity variation that is consistent with other plate generation studies (see §3.1). A larger viscosity variation across the lithosphere would shift the boundary between stagnant lid and mobile lid convection, shown in Figure 1 below, to higher Frank-Kamenteskii parameters for healing, but is otherwise not expected to change the overall conclusions of this study.

5 2.2 Governing equations

The grain damage formulation is incorporated into a model of infinite Prandtl number, Boussinesq thermal convection. The damage formulation, (2), is non-dimensionalized using the following scales, where primes denote non-dimensional variables: $\underline{x} = \underline{x}'d$, where d is the depth of the mantle; $t = t'd^2/\kappa$, where κ is the thermal diffusivity; $\underline{v} = \underline{v}'\kappa/d$; $T = T'\Delta T + T_s$, where ΔT is the temperature difference across the mantle and T_s is the surface temperature; $A = A'A_0$; $\underline{\tau} = \underline{\tau}'\mu_m\kappa/d^2$, where μ_m is the reference viscosity defined at $T_m = \Delta T + T_s$ in the absence of damage (i.e. at $A = A_0$); and $\gamma_v = \theta_v/\Delta T$ and $\gamma_h = \theta_h/\Delta T$. θ_v and θ_h are the Frank-Kamenetskii parameters for viscosity and healing, respectively. The Frank-Kamenteskii parameter is related to the activation energy from the Arrhenius law as

$$\theta = \frac{E\Delta T}{R(T_s + \Delta T)^2},\tag{6}$$

which gives θ_v for $E = E_v$ and θ_h for $E = E_h$.

Dropping the primes and continuing with non-dimensional variables, the resulting non-dimensional equation governing fineness evolution is:

$$\frac{\mathrm{D}A}{\mathrm{D}t} = D\psi \exp\left(\theta_v(1-T)\right)A^{-m} - H\exp\left(-\theta_h(1-T)\right)A^p \tag{7}$$

where $\psi = \nabla \underline{v} : (\nabla \underline{v} + (\nabla \underline{v})^T)$, D is the non-dimensional damage number, and H is the non-dimensional healing number. These quantities are defined as $D = f \mu_m \kappa / (\gamma A_0 d^2)$ and $H = h_m A_0^{(p-1)} d^2 / \kappa$ where $h_m = h(T_m)$.

The equations for conservation of mass, momentum, and energy, expressed in terms of non-dimensional variables using the same scales as above, are:

$$\nabla \cdot \underline{v} = 0 \tag{8}$$

364

$$0 = -\nabla P + \nabla \cdot (2\mu \dot{\varepsilon}) + Ra_0 T \hat{z} \tag{9}$$

365

$$\frac{\partial T}{\partial t} + \underline{v} \cdot \nabla T = \nabla^2 T + Q \tag{10}$$

where P is the non-hydrostatic pressure, $\varepsilon_{ij} = (\partial v_i/\partial x_j + \partial v_j/\partial x_i)/2$ is the strain rate, \hat{z} is the unit vector in the vertical direction, and Ra_0 is the reference Rayleigh number defined at the reference interior mantle viscosity and temperature; $Ra_0 =$ $(\rho g \alpha \Delta T d^3)/(\kappa \mu_m)$ where ρ is density, α is thermal expansivity, and g is acceleration due to gravity. The non-dimensional internal heating rate, Q, is defined as Q = $Hd^2/(\Delta T \kappa)$, where $H = H_v/(\rho C_p)$, H_v is the volumetric heating rate (with units of Wm⁻³), and C_p is the specific heat. The non-dimensional viscosity, μ , is defined as

$$\mu = \exp\left(\theta_v(1-T)\right)A^{-m}.\tag{11}$$

It is also helpful to define parameters to describe the variation of viscosity and healing across the mantle due to temperature dependence; μ_l/μ_m , the viscosity ratio in the absence of damage, and h_l/h_m , the healing ratio, where the subscript l denotes the value in the lithosphere (i.e. at T=0 for all numerical models). The viscosity and healing ratios are therefore equivalent to the non-dimensional viscosity and healing, respectively, at the non-dimensional surface temperature of T=0.

379 2.3 Numerical Model Setup

The models use free-slip top and bottom boundary conditions and periodic side 380 boundaries. With periodic side boundaries, a uniform horizontal velocity can be 381 added to the velocity solution while still satisfying the governing equations; in the 382 numerical model this uniform horizontal velocity is set to be zero at each timestep. 383 The temperature boundary conditions are T=0 imposed at the surface and an 384 insulating boundary condition at the base of the mantle; the models are therefore 385 purely internally heated. Models have an aspect ratio of 4×1 and a resolution of 386 512×128 . A finite-volume code, which was explained in *Foley and Bercovici* [2014], 387 is used to solve equations (7)-(11). As the models are purely internally heated, 388 the interior temperature that results when the system reaches steady-state can vary 389 from the assumed value of T_m used in the non-dimensionalization scheme. Thus, T

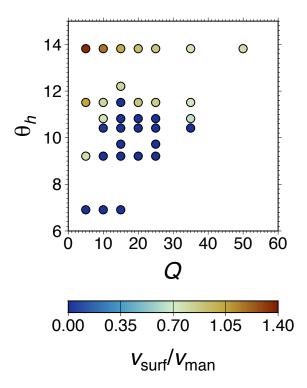
in the mantle interior (T_i) can vary from 1. As the goal of this work is constraining how mantle temperature affects plate boundary formation via grain damage, this 392 variation in T_i is the desired result of the modeling setup. 393

All numerical models are started with a mobile lid initial condition. In pseu-394 doplastic models, whether the initial condition is mobile or stagnant lid has been shown to influence the steady-state tectonic regime a model reaches [e.g. Crowley and O'Connell, 2012; Weller and Lenardic, 2012; Weller et al., 2015]. Specifically, 397 it is harder to initiate plate tectonics from a stagnant lid state than it is to maintain 398 mobile lid convection once it has commenced. Thus, the choice of initial condition 399 for this study favors mobile lid convection as the final state reached in the models. 400 However, Weller et al. [2015] shows that increasing internal heating rate expands 401 the stagnant lid regime, and shrinks the mobile lid regime, for both mobile lid and 402 stagnant lid initial conditions, except at very low heat production rates where the 403 opposite trend is seen. Thus the trend of how internal heating rate affects the mode 404 of surface tectonics appears to hold independent of chosen initial condition. More-405 over, Foley et al. [2014] found that mobile lid convection can readily develop from 406 an initially stagnant lid when grain damage is used, though a thorough study on the 407 effect of initial conditions on the final regime models with grain damage reach is still 408 needed. 409

A number of metrics and other quantities are calculated from the numerical 410 models as a post-processing step. The base of the lithosphere is determined from the horizontally averaged temperature profile in the mantle. As pure internal heating 412 results in a temperature profile that increases with height from the base of the mantle

411

to the bottom of the lithosphere [e.g. *Moore*, 2008], I define the base of the lithosphere using the maximum of the horizontally averaged temperature profile, T_{max} ; the base 415 of the lithosphere is defined as $T_{\rm bl} = 0.9 \bar{T}_{\rm max}$. The total deformational work within 416 the layer, Φ , is calculated by integrating $\tau_{ij}\dot{\varepsilon}_{ij}$ over the whole model domain, and 417 deformational work within the lithosphere (Φ_{lith}) and sub-lithospheric mantle (Φ_{man}) 418 are integrals over just the regions lying above and below the $T_{\rm bl}$ isotherm, respectively. 419 I also define the interior mantle temperature, T_i , as the average temperature within 420 the domain between the height where \bar{T}_{max} occurs and 0.1 units below this height. 421 The average mantle velocity, v_{man} , is defined as the whole mantle RMS velocity, and 422 the surface (or plate) velocity, v_{surf} , is defined as half the difference between the 423 maximum and minimum horizontal surface velocities. 424


$_{\scriptscriptstyle{125}}$ 3 Results

3.1 Regime diagram and convective planform

A large suite of models varying internal heating rate, Q, and the Frank-Kamenetskii parameter for healing, θ_h , are run to map out the boundary between the mobile lid and stagnant lid regimes. The regime boundary is mapped out in terms of the variable θ_h for the following reasons. The damage to healing ratio in the lithosphere, $Dh_m/(Hh_l)$, exerts a major control on the boundary between the stagnant and mobile lid regimes [Landuyt et al., 2008; Foley et al., 2012], and changing θ_h is a way to vary the damage to healing ratio. A lower θ_h results in more rapid grain growth in the lithosphere, i.e. increases h_l , as healing rate decreases less with decreasing

temperature than it would with a larger θ_h . Furthermore, a lower θ_h is a rough 435 approximation of the effect of higher surface temperatures, which act to increase 436 the temperature in the mid-lithosphere and thus increase grain growth rates in this 437 region as well [Landuyt and Bercovici, 2009; Foley et al., 2012; Bercovici and Ricard, 438 2014]. All models use $Ra_0 = 10^7$, $D = 10^{-2}$, $H = 1.5 \times 10^5$, and $\theta_v = 13.82$ (see 439 Tables 1 & 2 for a compilation of all model parameters and results). The values of 440 Ra_0 , D, and H are reasonable estimates for the modern day Earth [Foley and Rizo, 441 2017, which these reference parameters are meant to represent, though it should 442 be noted that uncertainty in these parameters, in particular for f, h_n , and γ_h , is 443 high [see, e.g. Mulyukova and Bercovici, 2017]. The chosen θ_v results in 6 orders of 444 magnitude viscosity variation across the lithosphere due to temperature dependence 445 when $T_i = 1$, which is well within the stagnant lid regime in the absence of damage. 446 As discussed in §2.1, θ_h is likely larger than θ_v for peridotite; however, here lower 447 values of θ_h are used to find the boundary between mobile lid and stagnant lid 448 regimes. 449 The regime diagram (Figure 1) shows two clear trends: at low Q, increasing Q450 requires larger θ_h for mobile lid convection; at higher Q (greater than $Q \approx 15$), the 451

The regime diagram (Figure 1) shows two clear trends: at low Q, increasing Q requires larger θ_h for mobile lid convection; at higher Q (greater than $Q \approx 15$), the boundary between regimes is found to be largely insensitive to Q, and actually shows a gradual decrease in the θ_h value required for mobile lid convection as Q increases. The shape of the regime boundary at low Q implies that increasing internal heating rate impedes mobile lid convection, as a larger damage to healing ratio is required in order to produce lid mobility as Q increases. However, this effect is a result of low rates of internal heating leading to low viscosity ratios across the mantle; at low Q,

Figure 1: Regime diagram in θ_h -Q parameter space. Model results are colored by the ratio of surface velocity to whole mantle RMS velocity. Thus those colored dark blue, indicating surface velocities are negligibly small, are in the stagnant lid regime.

the viscosity variation between lithosphere and mantle interior is so low that only 458 very modest levels of damage are needed to produce lithosphere mobility. Such a 459 situation is not applicable to the early Earth, where mantle temperatures were high. 460 Moreover, θ_v for mantle rock is higher than used in the convection models, as the 461 very large viscosity variations that result from more realistic values of θ_v result in 462 numerical convergence problems. The more relevant trend is that at higher Q, where the boundary between mobile and stagnant lid is approximately insensitive to Q. 464 Thus, in contrast to the results from models with pseudoplastic yielding, increasing 465 the internal heating rate or the interior mantle temperature (which increases with 466 increasing Q in the models) does not lead to a transition to stagnant lid convection. 467 However, there are clear changes in the style of lithosphere mobility and subduc-468 tion that accompany higher rates of internal heating. Examining the planform of 469 convection for mobile lid results with increasing Q (Figure 2) shows a trend towards 470 increasing wavelength (e.g. plates are longer) and a more drip-like style of subduc-471 tion (example stagnant lid results are also shown in Figure 3). At high Q, the slab 472 undergoes frequent necking, such that subduction takes place via a series of drips 473 rather than with a continuous downgoing slab. An increased frequency of slab neck-474 ing events at higher mantle temperatures was also seen in regional scale subduction 475 models [van Hunen and van den Berg, 2008; Sizova et al., 2010], and occurs for the 476 same physical reasons as in the models shown here. At higher mantle temperatures 477 the viscous resistance to slab sinking in the mantle interior is lower, so slabs sink 478 faster. At the same time, the strength of the convergent boundary in the lithosphere 479 is resisting slab sinking, and the combination of rapid sinking in the mantle interior

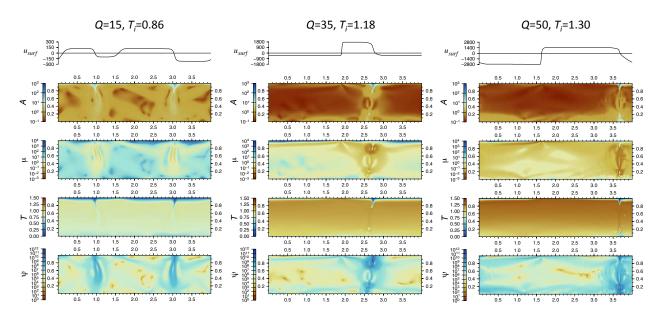
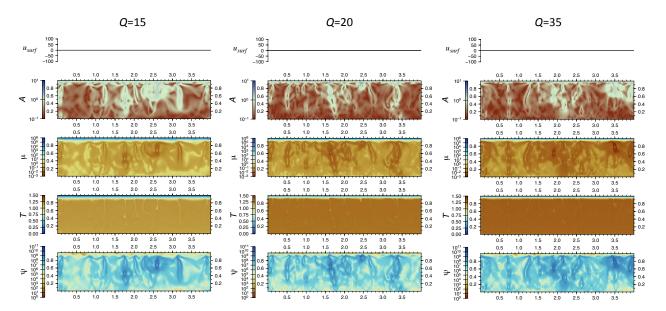
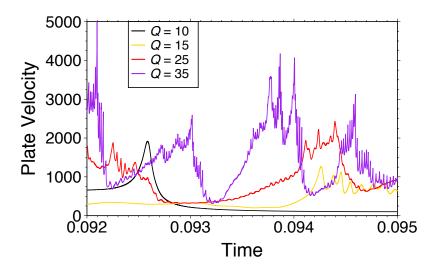




Figure 2: Planform of convection showing the horizontal surface velocity (u_{surf}) , fineness field (A), viscosity field (μ) , temperature field (T), and the deformational work rate (Ψ) . Models with $\theta_h = 13.82$ and Q = 15, Q = 35, and Q = 50 are shown, which result in interior mantle temperatures of $T_i = 0.86$, $T_i = 1.18$, and $T_i = 1.30$, respectively. The perceptually-uniform color map "roma" is used in this study to prevent visual distortion of the data [Crameri, 2018a, b].

Figure 3: Planform of convection showing the horizontal surface velocity (u_{surf}) , fineness field (A), viscosity field (μ) , temperature field (T), and the deformational work rate (Ψ) for stagnant lid results. Models with $\theta_h = 10.414$ and Q = 15, Q = 20, and Q = 35 are shown.

485

486

487

488

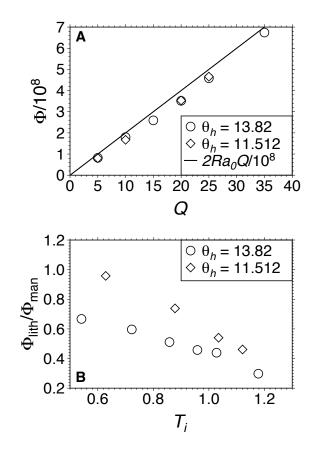
489

490

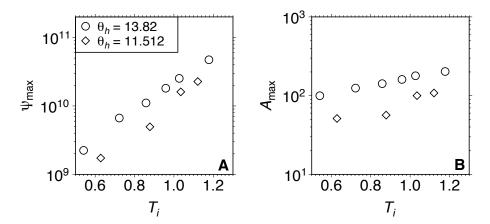
491

Figure 4: Surface (or plate) velocity as a function of time for models with $\theta_h = 13.82$ and Q = 10 (black line), Q = 15 (yellow line), Q = 25 (red line), and Q = 35 (purple line).

and resistance to sinking from the lithosphere leads to slab stretching and eventual tear-off. However, unlike what was commonly seen in subduction models, slab tearoff does not shutdown lithosphere mobility. Convergence in the lithosphere continues until a new slab forms, the new slab then tears off, and the cycle repeats.


The slab necking events lead to a distinct episodicity in surface velocity, which peaks as the slab forms and then decays when the slab breaks away, only to climb again as convergence continues and a new slab forms (Figure 4). Specifically, slab necking leads to a high frequency mode of surface velocity episodicity, which becomes prominent with increasing internal heating rate (e.g. it appears at $Q \gg 25$ in the models shown here). As a result, the average time spacing between peaks in the surface velocity time series plot decreases from $\approx 3.3 \times 10^{-4}$ at Q = 15, to $\approx 6.1 \times 10^{-5}$ at Q = 25 and $\approx 2.2 \times 10^{-5}$ at Q = 35; in terms of dimensional

values these correspond to ≈ 89 , ≈ 16 , and ≈ 6 Myrs, respectively. I also note that there is clearly a range of frequencies of episodicity, in addition to the high frequency slab necking oscillations. Specifically, there is also a longer wavelength episodicity in surface velocity, likely reflecting reorganizations of the larger scale convection pattern in the mantle. Longer wavelength episodicity is present in the models at all values of Q, but the wavelength decreases with increasing Q as a result of a hotter mantle and more vigorous convection.


500 3.2 Scaling of deformational work rate during mantle con-501 vection

The numerical model results show that the boundary between mobile lid and stagnant 502 lid convection has a different dependency on internal heating rate when grain damage 503 is used than when pseudoplasticity is used. The reason for this difference stems from 504 fundamental physical differences in the plate generation mechanisms. With pseudoplasticity, the stress in the lithosphere is the only factor that determines whether 506 mobile lid convection can be produced, as stresses must be high enough to cause 507 vielding deep into the lithosphere for lid mobility [e.g. Wong and Solomatov, 2015]. 508 However, grain size reduction is driven by the deformational work done by mantle 509 convection in the lithosphere, so it is the rate of deformational work, $\tau_{ij}\dot{\varepsilon}_{ij}$, that is 510 responsible for plate boundary formation with grain damage, rather than the stress 511 state. 512

In steady-state (or statistical steady-state for time-dependent convection), the total deformational work in the convecting fluid must balance with surface heat loss

Figure 5: (A) Total deformational work within the convecting layer, Φ , as a function of internal heating rate, Q, and (B) ratio of total deformational work in the lithosphere (Φ_{lith}) to total deformational work in the sub-lithospheric mantle (Φ_{man}). Mobile lid models with $\theta_h = 13.82$ and $\theta_h = 11.512$ are shown. In Figure 5A the scaling law for total deformational work (13) is also plotted, with L = 4.

Figure 6: Maximum rate of deformational work in the lithosphere, Ψ_{max} , as a function of interior mantle temperature, T_i for mobile lid models with $\theta_h = 13.82$ and $\theta_h = 11.512$ (A), and maximum lithospheric fineness, A_{max} as a function of T_i for the same models (B).

15 [e.g. Hewitt et al., 1975; Solomatov, 1995; Crowley and O'Connell, 2012], giving

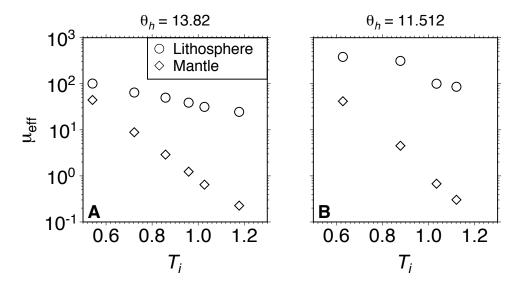
$$\Phi = \int_{V} \tau_{ij} \dot{\varepsilon}_{ij} dV = Ra_0 \left(Nu - \frac{Q}{2} \right) L \tag{12}$$

in the limit of large Nusselt number, Nu; L in (12) is the aspect ratio of the convecting domain, so L=4 for the models presented in this study. For two-dimensional Cartesian convection in thermal steady-state, $Nu \approx Q$, so

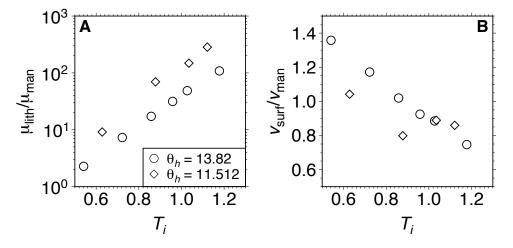
$$\Phi \approx Ra_0 QL/2. \tag{13}$$

The numerical models follow (13) (see Figure 5A), confirming that with increasing Q, the total deformational work increases. Thus the energy source for forming plate boundaries with grain damage actually increases with larger internal heating rates, in contrast to pseudoplastic yielding.

The rate of deformational work, Ψ , varies significantly in space throughout the 523 convecting layer, but a substantial fraction occurs in the high viscosity lithosphere, 524 concentrated in shear zones where the lithosphere converges and downwells (Figure 525 2). The percentage of total deformational work in the lithosphere generally decreases 526 with increasing mantle temperature, ranging from up to $\approx 50 \%$ at low T_i to ≈ 15 527 % at high T_i (Figure 5B). The total lithospheric deformational work is dominated 528 by work done in shear zones, such that the maximum value of Ψ in the lithosphere 529 is always within convergent shear zones when convection is in a mobile lid regime. 530 $\Psi_{\rm max}$, the maximum deformational work rate in the lithosphere, thus directly mea-531 sures the energy source available for grain size reduction in lithospheric shear zones. 532 The numerical models show that $\Psi_{\rm max}$ increases with increasing mantle interior tem-533 perature, further demonstrating that the energy source for plate boundary formation 534 with grain damage is enhanced at the mantle thermal conditions expected for the 535 early Earth (Figure 6A). As a result, the maximum fineness in lithospheric shear 536 zones, A_{max} , also increases with increasing T_i (Figure 6B). Thus, when grain dam-537 age is used, high rates of internal heating do not cause a transition to stagnant lid 538 convection, because the lithospheric deformational work rate increases with Q, and 539 thus lithospheric shear zone fineness also increases. 540


Why stress and deformational work rate can scale in opposite ways with increasing mantle temperature or internal heating rate is a result of tradeoffs between how
strain rate and viscosity change. Increasing mantle temperature generally decreases
mantle viscosity, and in turn increases the typical mantle flow speeds, and thus the
characteristic strain rate of mantle flow, as a result of higher thermal buoyancy forces

and a lower viscous resistance to flow. As the characteristic stress, $\tau = 2\mu\dot{\varepsilon}$, where $\dot{\varepsilon}$ is the characteristic strain rate, increasing mantle temperature has competing effects 547 on how stresses in the mantle and lithosphere will scale. Previous studies have found 548 that the decrease in viscosity generally wins out over the increase in strain rate, cauing stress to drop as mantle temperature climbs [e.g. O'Neill et al., 2007]. However, 550 as shown here, the energetics of convection require that the total deformational work increase with Nusselt number and internal heating rate. As a result, the rate of 552 deformational work in lithospheric shear zones is positively correlated with mantle 553 temperature (Figure 6A). As with the characteristic stress, the way the characteristic 554 deformational work rate, $\Psi_c = 2\mu \dot{\varepsilon}^2$, scales with mantle temperature is determined 555 by the competing effects of mantle temperature on viscosity and strain rate. How-556 ever, in this case the strain rate squared term must win out over the decrease in 557 viscosity to produce the observed trends in deformational work rate.


3.3 Changes in subduction and lithosphere mobility style

Although a transition to stagnant lid convection at high internal heating rates or high mantle temperatures is not seen, a hotter mantle does significantly change the style of subduction and lithosphere mobility. Lithospheric shear zones are weaker due to smaller grain sizes resulting from more effective damage, but the mantle interior also gets weaker with increasing temperature, and at a faster rate than lithospheric shear zones (Figure 7). As a result, the ratio of lithospheric shear zone viscosity to sub-lithospheric mantle viscosity increases with T_i (Figure 8A). Higher mantle temperatures also cause higher grain growth rates, and thus larger grain sizes in the

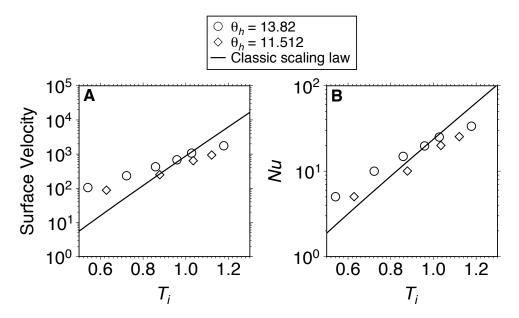

mantle interior. However, the effect of grain size in the ambient mantle interior, 568 away from downwellings where damage causes localized zones of grain size reduction 569 that significantly influence the rheology around downwellings, is small compared to 570 viscosity temperature-dependence; average fineness in the mantle interior decreases by only a factor of ≈ 6 when going from $T_i \approx 0.5$ to $T_i \approx 1.2$ with $\theta_h = 13.82$, result-572 ing in a factor of 36 increase in viscosity. Meanwhile temperature-dependence acts 573 to decrease viscosity by over four orders of magnitude over the same temperature 574 interval. The way mantle and lithosphere viscosities change with increasing mantle 575 temperature also causes the ratio of surface velocity to average mantle velocity to 576 decrease (Figure 8B). Convection therefore enters a "sluggish lid" regime at higher 577 mantle temperatures, as defined by Crowley and O'Connell [2012], where the litho-578 sphere remains mobile and subduction active, but lithosphere velocities are much 579 slower than interior mantle velocities. Lithosphere velocities can still be as large as 580 modern Earth plate speeds, or larger, but as long as interior mantle velocities exceed 581 surface plate velocities, then convection is considered to be in a sluggish lid regime. 582 The ratio of shear zone viscosity to mantle interior viscosity measures the strength 583 of plate boundaries relative to the mantle, and the model results indicate this relative 584 strength increases with T_i . In addition to causing the ratio of surface to mantle 585 velocity to decrease with T_i , the increasing relative strength of plate boundaries also 586 causes the change in subduction style from continuous, long-lived subduction, to drip-587 like subduction with frequent slab necking, as discussed in §3.1, and likely plays a role 588 in the generally longer wavelength convection patterns seen at high heat production 589 rates as well. As the relative strength of plate boundaries increases, thicker plates

Figure 7: Effective viscosity of lithospheric shear zones (circles) and the mantle interior (diamonds) as a function of T_i , for mobile lid models with $\theta_h = 13.82$ (A) and $\theta_h = 11.512$ (B).

Figure 8: Ratio of the effective viscosity of lithospheric shear zones to the interior mantle viscosity as a function of T_i (A), and ratio of surface velocity to whole mantle RMS velocity (B), for mobile lid models with $\theta_h = 13.82$ and $\theta_h = 11.512$.

Figure 9: Surface velocity (A) and Nusselt number (B) as a function of T_i for mobile lid models with $\theta_h = 13.82$ and $\theta_h = 11.512$. Also plotted are the constant viscosity scaling laws for v_{surf} (16) and Nu (15). Scaling law constants b and a, from (16) and (15), representively, are picked to fit the models with $\theta_h = 13.82$ at $T_i = 1$.

are required before subduction can occur, therefore resulting in longer wavelength convection [e.g. *McNamara and Zhong*, 2005]. Increasing internal heating rate also increases the sub-adiabatic temperature gradient in the mantle, where temperatures beneath the lithosphere are warmer than one would expect along an adiabat, and the deeper mantle is cooler; this temperature profile also favors long-wavelength convection patterns as a result of the depth-dependent viscosity profile that ensues [e.g. *Bunge et al.*, 1996; *Tackley*, 1996; *Lenardic et al.*, 2006].

Another important effect of how increasing mantle temperature influences mobile lid convection produced via grain damage, is that surface velocity and heat flux scale differently than classic scaling laws for mantle convection predict. These clas-

598

599

600

sic scaling laws are often used in thermal evolution models to estimate how plate tectonics would change at different mantle thermal conditions [e.g. *Davies*, 2007]. The typical scaling law for surface heat flux from constant viscosity convection, or convection that can be approximated with a constant viscosity in the mantle interior, is $Nu = aRa_i^{1/3}$ [e.g. *Turcotte and Schubert*, 2002; *Solomatov*, 1995], where Ra_i is the internal Rayleigh number, defined as

$$Ra_i = \frac{\rho g \alpha (T_i - T_s) d^3}{\kappa \mu(T_i)}.$$
 (14)

607 Thus, Nusselt number scales as

$$Nu = a \left(\frac{Ra_0 T_i}{\exp\left(\theta_v (1 - T_i)\right)} \right)^{1/3}, \tag{15}$$

when the Frank-Kamenetskii viscosity law is used. Likewise, the scaling law for surface velocity for constant viscosity convection is

$$v_{\text{surf}} = b \left(\frac{Ra_0 T_i}{\exp\left(\theta_v (1 - T_i)\right)} \right)^{2/3}.$$
 (16)

While the above scaling laws for Nu and $v_{\rm surf}$ strictly only apply to high Rayleigh number, constant viscosity convection, mobile lid convection with pseudoplasticity has been found to follow $Nu \sim Ra_i^{1/3}$ and $v_{\rm surf} \sim Ra_i^{2/3}$ scaling relationships in previous studies [Moresi and Solomatov, 1998; Korenaga, 2010a], at least when additional complications, such as viscosity layering, are not present [Crowley and O'Connell, 2012]. Thus, these classic mantle convection scaling laws have been used to estimate

that the early Earth would experience rapid plate speeds and have a high convective heat flux, if plate tectonics were operating at this time [e.g. *Davies*, 2007].

However, mobile lid convection produced with grain damage does not follow these 618 classic scaling laws, because: 1) the relative strength of lithospheric shear zones com-619 pared to the underlying mantle increases with interior mantle temperature (Figure 620 8A); and, 2) the wavelength of convection shows clear changes with increasing tem-621 perature, and hence Ra_i , an effect which is known to cause deviations from the 622 classic convection scaling laws [Zhonq, 2005]. As a result, surface velocities at high 623 temperatures (e.g. above $T_i = 1$) are slower than would be expected if convection 624 followed the classic convection scaling law. Thus mobile lid convection, if it were 625 active on the early Earth, need not result in rapid plate speeds and high surface heat 626 fluxes, and instead may lie a sluggish lid regime as in the convection models shown 627 in this paper. The style of lithospheric mobility is important for interpreting a range 628 of geological and geochemical observations of early Earth evolution, as discussed in 629 more detail in §4.2. In fact, early Earth plate velocities could even be lower than 630 present day plate speeds, while still in a mobile lid regime. Higher mantle temper-631 atures also enhance the effective grain growth rate in the lithosphere, an effect not 632 captured in the convection models presented here, which would cause plate speeds 633 to actually decrease with increasing mantle temperature as a result of strengthening 634 lithospheric shear zones [Foley et al., 2014]. A similar result has also been proposed 635 on the basis of dehydration stiffening of the mantle lithosphere during ridge melting 636 [Korenaga, 2006]. 637

4 Discussion

A major implication of the results of this study is that mantle thermal state is overall 639 less important for whether a planet shows mobile lid or stagnant lid tectonics than 640 many previous studies have indicated. Instead, surface temperature and planet size 641 may have a much stronger control over a planet's style of tectonics. Specifically, low 642 surface temperatures and larger planet sizes have been found to favor a mobile lid for 643 convection with grain damage, a result that is also consistent with the planets in our 644 solar system [Foley et al., 2012]. Low surface temperatures suppress healing in the 645 lithosphere, thereby enhancing damage and making mobile lid convection more likely 646 [Landuyt and Bercovici, 2009; Foley et al., 2012; Bercovici and Ricard, 2014], while 647 deformational work rate increases with increasing planet size [Foley et al., 2012]. 648 That different mechanisms for generating plate boundaries produce different results 649 for early Earth tectonics is not surprising, but does highlight the importance of the 650 microphysics behind shear localization, as discussed more in the next section.

Furthermore, as early Earth thermal conditions do not impede the formation of 652 weak plate boundaries with grain damage, no significant external factors or effects, 653 beyond normal mantle convective forces, are needed to initiate and sustain a mobile 654 lid. Foley et al. [2014] found that mobile lid convection can rapidly commence from 655 an initial stagnant lid, solely as a result of Hadean mantle convection. Many au-656 thors have argued for additional mechanisms, beyond the forces from simple thermal 657 convection, as the key for initiating plate tectonics; proposals include subduction 658 induced by plumes [Gerya et al., 2015], formation of early continents [Rey et al., 659 2014], or meteorite impacts [O'Neill et al., 2017]. Such extra mechanisms would

be necessary if, as results from using a pseudoplastic rheology, high temperatures or high heat production rates impede shear zone formation. However, the results presented here and in *Foley et al.* [2014] indicate that such external subduction initiation mechanisms are not needed to start mobile lid tectonics on Earth, as weak plate boundaries can readily form from mantle convection at early Earth conditions.

Rheology and geodynamic predictions of planetary surface tectonics

As illustrated in §3.2, the primary reason why models with pseudoplasticity and those 668 with grain damage produce different predictions for early Earth tectonics stems from 669 fundamental physical differences in how these mechanisms are formulated. This 670 discrepancy highlights the importance of understanding the microphysics of shear localization and plate boundary formation for studying early Earth evolution; ultimately a thorough understanding of lithosphere rheology, and incorporation of this understanding into geodynamic models, is needed to determine how and why plate 674 tectonics developed on Earth. For example, it has been argued that the pseudoplastic 675 rheology can be thought of as an approximation of the more complicated microscale 676 processes leading to lithospheric failure, such as grain size evolution and fabric de-677 velopment. In the case of grain size reduction, it is true that grain damage produces 678 an effectively non-Newtonian stress-strain rate relationship, similar to pseudoplastic-679 ity, when grain size is given by (2) at steady-state [e.g. Foley et al., 2012; Foley and 680 *Driscoll*, 2016]. However, this effective constitutive relationship is itself a function 681 of mantle thermal state, among other factors, and these dependences are not captured by a simple pseudoplastic formulation. Thus, pseudoplasticity is not a good approximation of processes such as grain size reduction, when trying to constrain the physical factors that allow mobile lid convection to develop on a planet.

Sluggish lid convection and Archean tectonics

Sluggish lid convection in the Hadean and Archean can potentially explain geological 687 and geochemical observations of early Earth crust formation and tectonics. A number 688 of lines of evidence indicate that the style of tectonics was different from modern day 689 plate tectonics, or at least different from what simple models of plate tectonics on 690 a hotter Earth would predict. Many craton cores from the Eoarchean and Archean 691 are thought to have formed in ocean plateau settings rather than subduction zone 692 settings. Detailed studies of crustal geochemistry of the ≈ 4.0 Ga Acasta Gneiss 693 complex in Canada indicate this early section of felsic crust formed in a setting similar 694 to modern day Iceland [Reimink et al., 2014; Reimink et al., 2016]. The "dome and 695 keel" structures of Archean felsic rocks in the Pilbara terrane in Australia, as well 696 as the geochemistry of this crust, also point towards formation in an ocean plateau-697 like setting [e.g. Pease et al., 2008; Smithies et al., 2009; Van Kranendonk, 2010; 698 Van Kranendonk et al., 2015; Johnson et al., 2017]; in particular it's not clear how 699 subduction could form the large spatial scale felsic "domes" seen in the Pilbara [e.g. 700 Collins et al., 1998; Thébaud and Rey, 2013; François et al., 2014]. There is also 701 geochemical evidence for episodes of subduction "failure" (i.e. slab breakoff), rather 702 than sustained subduction, seen in Archean greenstone belts [Smithies et al., 2018]. 703 On a global scale, some studies argue for transitions in crust formation processes 704

in the Archean, around ~ 3.0 Ga, possibly indicating a change in Earth's tectonic mode. Dhuime et al. [2012] argues that the rate of continental crust growth changed 706 at ≈ 3.0 Ga, possibly as a result of a changing style of mantle dynamics. How-707 ever, the history of continental crust growth is debated, and alternative scenarios 708 with no change in crust growth rates in the Archean are also possible [Korenaga, 2018; Rosas and Korenaga, 2018. Studies from global geochemistry datasets indi-710 cate that the composition of the continental crust appears to have changed, from a 711 more mafic composition prior to ~ 3.0 Ga to a more felsic composition after this 712 time [e.g. Keller and Schoene, 2012; Dhuime et al., 2015; Tang et al., 2016]. This 713 trend in crust composition has often been interpreted as representing the onset of 714 plate tectonics, though not all studies agree; Keller and Schoene [2018] argue that 715 the evolution of continental basaltic geochemistry over time actually represents plate 716 tectonic processes throughout Earth history. Moreover, there are significant uncer-717 tainties in reconstructing the history of continental crust composition, and felsic early 718 continents, potentially formed via plate tectonics, are still a viable possibility [e.g. 719 Greber et al., 2017]. 720

Paired metamorphic belts (assemblages of low temperature, high pressure metamorphic rocks and low pressure, high temperature rocks) are thought to be indicative
of subduction, as they are formed in arc and back arc settings; these are notably absent before ~ 3.0 Ga [Brown, 2014]. Similarly Shirey and Richardson [2011] argue
that the appearance of eclogite inclusions in diamonds at ~ 3.0 Ga records the
start of not only plate tectonics, but the full Wilson cycle. Finally, mantle chemical heterogeneity formed during the first few hundred million years of Earth history

persists in the mantle for $\sim 1-2$ Gyrs [e.g. Rizo et al., 2013; Debaille et al., 2013]. 728 Such long mixing times are difficult to explain with simple models of early Earth 729 plate tectonics, where a hot mantle is expected to result in vigorous convection and 730 rapid mantle mixing [Debaille et al., 2013; O'Neill and Debaille, 2014]. In fact early 731 formed heterogeneity is even seen in modern rocks thought to be sourced from the 732 large low shear velocity provinces (LLSVPs) in the lower mantle [Rizo et al., 2016; 733 Mundl et al., 2017; Horan et al., 2018; Peters et al., 2018]. As the LLSVPs are 734 typically hypothesized to be chemically dense, and thus resistant to mixing with the 735 rest of the mantle [e.g. Garnero and McNamara, 2008], heterogeneity sourced from 736 these regions probably does not constrain the efficiency of mantle mixing. However, 737 the Archean rocks showing resolvable signatures of early formed heterogeneity do 738 not show evidence of being sourced from LLSVPs, so they likely do constrain the 739 efficiency of ancient mantle mixing. 740

On the other hand, there is also evidence for subduction in the Archean and 741 Eoarchean, and possibly even the Hadean. Hadean zircons from the Jack Hills region 742 of Australia have been used to argue for subduction on the Hadean Earth, based 743 on the chemistry of their inclusions and pressure-temperature conditions where they 744 formed [Harrison et al., 2005; Hopkins et al., 2008], though non-subduction formation 745 scenarios for these zircons are also possible [Kemp et al., 2010; Nebel et al., 2014]. 746 Furthermore, evidence for subduction is seen in the 3.8 Ga Isua greenstone belt in 747 Greenland [Jenner et al., 2009; Polat et al., 2011], the variably dated 4.4 - 3.8 Ga 748 Nuvvuagittuq supracrustal belt in Canada [e.g. Turner et al., 2014], the ≈ 3.6 Ga 749 Acasta Gneiss Complex in Canada [Koshida et al., 2016], and in Australia at ≈ 3.2 Ga [e.g. $Van\ Kranendonk$, 2010] and South Africa at ≈ 3.5 Ga [e.g. $Moyen\ et\ al.$, 752 2007]; see also $Moyen\ and\ Martin\ [2012]$. Thus early Earth tectonics likely featured at least spatially limited, transient episodes of subduction.

A stagnant lid with short-lived episodic bursts of subduction has often been in-754 voked to explain the above observations from the Hadean and Archean geologic record [e.g. Moore and Webb, 2013; Griffin et al., 2014; O'Neill et al., 2015; Bédard, 2018; Condie, 2018. However, a sluggish lid, where subduction occurs more frequently 757 and on a locally confined scale as compared to the short-lived, global subduction 758 and resurfacing events seen during episodic overturns, may also be able to explain 759 early Earth geology. A sluggish lid, featuring subduction and lithospheric mobility, 760 can explain long-term preservation of early-formed mantle chemical heterogeneity, as 761 a sluggish lid also results in slow mixing [Foley and Rizo, 2017]. In fact, even plate-762 tectonic style convection throughout the Hadean and Archean can allow early formed 763 heterogeneity to survive when variations in lower mantle mineralogy are taken into 764 account, as high viscosity, silica rich regions that are resistant to mixing tend to form 765 in the cores of convection cells [Ballmer et al., 2017]. Paleomagnetic reconstructions 766 of super-continent cycles show a trend of gradually increasing plate speeds over time, 767 rather than the decreasing trend one would expect from models based on the classic 768 mantle convection scaling laws discussed in §3.3 [Condie et al., 2015]. Such a trend 769 is also consistent with predictions from grain damage models that explicitly include 770 the effect of higher mantle temperatures on lithospheric grain growth rates [Foley 771 et al., 2014, an effect which is not included in the convection models shown in this study (see $\S 3.3$).

Moreover, a sluggish lid regime would result in less efficient convective heat trans-774 port than modern style plate tectonics (see §3.3). Earth's heat budget, where less 775 than 50 % of Earth's present day heat flow is thought to be derived from radiogenic 776 heat production [e.g. Jaupart et al., 2007], is difficult to reconcile with rapid plate speeds and a high heat flux on the early Earth; extrapolating back in time from mod-778 ern day conditions results in a "thermal catastrophe," where Earth is predicted to be in a molten state only ~ 1 Gyrs ago [Korenaga, 2003]. One possible solution to the 780 "thermal catastrophe" problem is if heat flux does not increase strongly with mantle 781 temperature, as this allows the modern Earth's heat loss to be dominated by secular 782 cooling without requiring mantle temperatures to increase sharply when extrapo-783 lated back in time [Korenaga, 2006]. Models of early Earth sluggish lid convection 784 with grain damage indicate that heat flux is a weak function of mantle temperature, 785 especially if the effect of mantle temperature on lithospheric grain growth rate is 786 included [Foley et al., 2014]. Thus sluggish lid convection may also work to reconcile 787 Earth's thermal history, though more detailed thermal evolution models are needed 788 to demonstrate this robustly. 789

Inefficient heat transport on the early Earth may even explain the dominant crust formation processes thought to be operating at that time. Based on the estimates in *Foley et al.* [2014], sluggish lid convection at a mantle temperature of 2000-2100 K, representative of the Earth just after magma ocean solidification, would only result in ≈ 60 TW of convective heat flow, while radiogenic heat production would yield $\approx 75 - 100$ TW. Thus significant heat loss via mantle melting and volcanism is required to balance the heat budget, similar to, though less extreme, than the

heat-pipe volcanism proposed by *Moore and Webb* [2013] for the Hadean. As a result, there would be extensive volcanism capable of creating thick ocean plateaus 798 that could internally re-melt to form felsic crust, all while subduction is still active. 799 If this extensive volcanism, which would occur largely as a result of passive mantle 800 upwelling, produces significantly more felsic crust than any arc volcanism present 801 at this time, then felsic crust production predominantly forming outside of subduc-802 tion zones can be explained without needing a stagnant lid. Stagnant lid convection 803 would of course also result in felsic crust formation in non-subduction settings, since 804 subduction is absent in this regime, but a sluggish lid allows for subduction without 805 requiring sudden, global overturn events. In the sluggish lid conceptual model, man-806 tle upwelling volcanism will wane as the mantle cools and volcanic heat loss becomes 807 less significant, leading to subduction zones then becoming the primary setting for 808 continental crust production, an idea also proposed by Van Kranendonk [2010]. The 809 above hypothesis is admittedly speculative at the present, and thus requires more 810 detailed models of crust formation in a sluggish lid regime to be fully tested. How-811 ever, given the potential for reconciling a wide range of geological observations of the 812 early Earth with a sluggish lid, this hypothesis is worth pursuing further. 813

5 Conclusions

Convection models with grain damage, a theoretical formulation for grain size evolution that allows weak lithospheric shear zones to form via grain size reduction, show that the boundary between stagnant lid and mobile lid convection is only weakly sen-

sitive to mantle interior temperature or heat production rate. The near insensitivity of the mode of surface tectonics to mantle thermal state is in contrast to previous 819 modeling studies performed with a pseudoplastic rheology; these studies found that 820 increasing internal heating rate or mantle temperature decreases stresses in the litho-821 sphere, therefore favoring a stagnant lid regime. The discrepancy in results stems 822 from fundamental physical differences in the two mechanisms for generating weak 823 plate boundaries. With grain damage, the work done by deformation in the lithosphere drives grain size reduction and subsequent plate boundary formation, while 825 with pseudoplasticity the lithospheric stress state determines whether weak shear 826 zones can form. The deformational work increases with increasing internal heating 827 rate or mantle interior temperature, therefore allowing weak plate boundaries to 828 form by grain size reduction at early Earth thermal conditions. Thus the question of 829 early Earth geodynamics is intimately tied to lithosphere rheology. The microphys-830 ical processes that lead to shear localization in the lithosphere must be thoroughly 831 understood, in order to constrain the geodynamics of the early Earth. 832

Although increasing mantle temperature towards early Earth conditions does not have a significant impact on the overall regime of mantle convection (stagnant or mobile lid) when grain damage is used, it does change the style of subduction and lithospheric mobility. Surface, or plate, motions become increasingly sluggish compared to flow velocities in the mantle interior as internal temperature increases. As a result, subduction becomes drip-like, and no longer features a coherent slab extending deep into the mantle. Drip-like subduction is a result of slabs constantly tearing-off as they form and sink into the mantle, which also leads to a distinct,

high frequency oscillation in plate speeds at the surface. This style of sluggish lid convection can potentially explain key observations of the early Earth geologic record, 842 such as long-term preservation of early formed mantle heterogeneity, or changes in the 843 rate of continental crust formation and average composition of the continental crust in the Archean. Sluggish lid convection leads to slow mantle mixing and hence long-845 term preservation of mantle chemical heterogeneity. Significant volcanism outside of normal ridge or arc settings would also be expected for a sluggish lid at early Earth 847 thermal conditions, potentially allowing for crust formation in ocean plateau-like 848 settings to be the dominant crust forming process. However, more detailed models 849 combining geodynamics and petrology are needed to better test the hypothesis of 850 early Earth sluggish lid convection, as outlined in the next section.

552 6 Future Directions

More work on lithospheric rheology, in particular the microphysics of plate bound-853 ary formation, is clearly needed to make significant progress on the question of early 854 Earth evolution. However, another vital area of future work is integrating geodynam-855 ics, geochemistry, and petrology to better test models of early Earth tectonics. In 856 particular, geodynamic models of early Earth tectonics need to track the conditions 857 under which melting and crust formation would take place, so they can be compared 858 with the geologic record. Such an approach is only recently being attempted [e.g. 859 Walzer and Hendel, 2008; Gerya, 2011; Johnson et al., 2014; Sizova et al., 2015; Rozel 860 et al., 2017; Walzer and Hendel, 2017, and is a promising direction for progress in 861

the coming years. In addition to testing whether the tectonic modes produced in 862 theoretical models are consistent with geological observations, systematic testing of 863 different hypotheses for early Earth tectonics is also needed. In particular, working 864 through the various key observations of early Earth crust formation to determine which styles of global tectonics are, or are not, consistent with these observations 866 would be a major advance in our understanding of early Earth evolution. Presently it is still not clear which features of the Archean geologic record provide strong 868 constraints on the style of tectonics, versus those that can be created by multiple 869 different mechanisms and thus are compatible with multiple different modes of sur-870 face tectonics. With better integration of geodynamics, geochemistry, and petrology, 871 and in particular systematic testing of different geodynamic scenarios against the 872 ancient geologic record, progress on these critical questions can be achieved in the 873 future. 874

7 Data Availability

The code used to produce the results shown in this paper can be accessed here:
https://github.com/bradfordjfoley/foley-convection-code. Tables of the numerical
model results, showing relevant parameters and key output are given in Tables 1 &
2.

Acknowledgments

882

This work was supported by NSF award number 1723057. I thank Jesse Reimink for 881 comments on an earlier version of the manuscript, and two anonymous reviewers for

their comments which greatly helped improve the manuscript. 883

50

Table 1: Table of mobile lid model results

Ra_0	$ heta_v$	$ heta_h$	D	H	Q	Resolution	Φ	$v_{ m surf}$	$v_{\rm man}$	$\Psi_{ m max}$	A_{\max}
10^{7}	13.82	13.82	10^{-2}	1.5×10^5	5	512×128	8.21×10^{7}	142.2	104.7	2.24×10^{9}	99.67
10^{7}	13.82	13.82	10^{-2}	1.5×10^5	10	512×128	1.80×10^{8}	272.4	232.5	6.66×10^{9}	124.7
10^{7}	13.82	13.82	10^{-2}	1.5×10^5	15	512×128	2.59×10^{8}	433.4	425.1	1.11×10^{10}	141.9
10^{7}	13.82	13.82	10^{-2}	1.5×10^5	20	512×128	3.52×10^{8}	630.1	681.7	1.81×10^{10}	160.6
10^{7}	13.82	13.82	10^{-2}	1.5×10^{5}	25	512×128	4.58×10^{8}	945.5	1068	2.52×10^{10}	178.8
10^{7}	13.82	13.82	10^{-2}	1.5×10^{5}	35	512×128	6.74×10^{8}	1308	1752	4.73×10^{10}	202.4
10^{7}	13.82	13.82	10^{-2}	$1.5 imes 10^5$	50	512×128	6.82×10^{8}	2214	2849	6.36×10^{10}	212.6
10^{7}	13.82	12.206	10^{-2}	$1.5 imes 10^5$	15	512×128	2.61×10^{8}	391.4	481.8	1.04×10^{10}	93.29
10^{7}	13.82	11.513	10^{-2}	$1.5 imes 10^5$	5	512×128	8.07×10^{7}	91.53	87.85	1.73×10^{9}	51.26
10^{7}	13.82	11.513	10^{-2}	1.5×10^5	10	512×128	1.67×10^{8}	198.6	248.8	4.95×10^{9}	56.56
10^{7}	13.82	11.513	10^{-2}	1.5×10^5	20	512×128	3.53×10^{8}	570.1	641.2	1.60×10^{10}	100.0
10^{7}	13.82	11.513	10^{-2}	1.5×10^5	25	512×128	4.66×10^{8}	807.7	939.8	2.27×10^{10}	108.0
10^{7}	13.82	11.513	10^{-2}	1.5×10^5	35	512×128	5.98×10^{8}	1292	1797	2.61×10^{10}	109.6
10^{7}	13.82	10.82	10^{-2}	1.5×10^5	5	512×128	1.64×10^{8}	195.0	259.8	5.28×10^9	56.57
10^{7}	13.82	10.82	10^{-2}	1.5×10^5	35	512×128	5.59×10^{8}	1236	1906	2.36×10^{10}	91.61
-10^{7}	13.82	9.21	10^{-2}	1.5×10^5	5	512×128	7.72×10^7	65.65	85.44	1.21×10^{9}	27.84

Table 2: Table of stagnant lid model results

Ra_0	θ_v	θ_h	D	Н	Q	Resolution	$v_{ m surf}$	$v_{\rm man}$
10^{7}	13.82	6.908	10^{-2}	1.5×10^{5}	5	512×128	0.074	272.9
10^{7}	13.82	6.908	10^{-2}	1.5×10^5	10	512×128	0.027	612.2
10^{7}	13.82	6.908	10^{-2}	1.5×10^5	15	512×128	0.033	614.4
10^{7}	13.82	9.21	10^{-2}	$1.5 imes 10^5$	10	512×128	0.25	774.0
10^{7}	13.82	9.21	10^{-2}	$1.5 imes 10^5$	15	512×128	0.20	1035
10^{7}	13.82	9.21	10^{-2}	$1.5 imes 10^5$	20	512×128	0.070	1404
10^{7}	13.82	9.21	10^{-2}	$1.5 imes 10^5$	25	512×128	0.055	1851
10^{7}	13.82	9.721	10^{-2}	1.5×10^{5}	15	512×128	0.67	600.6
10^{7}	13.82	9.721	10^{-2}	1.5×10^{5}	25	512×128	0.20	865.4
10^{7}	13.82	10.414	10^{-2}	1.5×10^{5}	10	512×128	3.07	416.1
10^{7}	13.82	10.414	10^{-2}	1.5×10^{5}	15	512×128	0.79	847.4
10^{7}	13.82	10.414	10^{-2}	$1.5 imes 10^5$	20	512×128	0.20	1905
10^{7}	13.82	10.414	10^{-2}	$1.5 imes 10^5$	25	512×128	0.27	1742
10^{7}	13.82	10.414	10^{-2}	$1.5 imes 10^5$	35	512×128	0.17	2057
10^{7}	13.82	10.82	10^{-2}	1.5×10^{5}	15	512×128	1.84	583.0
10^{7}	13.82	10.82	10^{-2}	1.5×10^5	20	512×128	1.94	695.8
10^{7}	13.82	10.82	10^{-2}	1.5×10^5	25	512×128	0.36	1550
10^{7}	13.82	11.513	10^{-2}	1.5×10^5	15	512×128	4.52	1611

Notes: Stagnant lid models are not run all the way to statistical steadystate, and instead were stopped when it was clear that convection had entered a stagnant lid regime and would not return to a mobile lid. Velocities are averages over the model period when stagnant lid behavior began, but do not represent statistical steady-state velocities reached if the models were run longer.

References

- Abbot, D. S., N. B. Cowan, and F. J. Ciesla, Indication of Insensitivity of Planetary
- Weathering Behavior and Habitable Zone to Surface Land Fraction, Astrophys. J.,
- 756, 178, doi:10.1088/0004-637X/756/2/178, 2012.
- Abe, Y., Thermal and chemical evolution of the terrestrial magma ocean, *Phys.*
- Earth Planet. Inter., 100, 27–39, doi:10.1016/S0031-9201(96)03229-3, 1997.
- 890 Austin, N., and B. Evans, Paleowattmeters: A scaling relation for dynamically re-
- crystallized grain size, *Geology*, 35, 343–346, doi:10.1130/G23244A.1, 2007.
- Ballmer, M. D., C. Houser, J. W. Hernlund, R. M. Wentzcovitch, and K. Hirose,
- Persistence of strong silica-enriched domains in the Earth's lower mantle, *Nature*
- *Geoscience*, 10, 236–240, doi:10.1038/ngeo2898, 2017.
- Batalha, N. M., Exploring exoplanet populations with NASA's Kepler Mission, *Proc.*
- 896 Natl. Acad. Sci., 111, 12,647–12,654, doi:10.1073/pnas.1304196111, 2014.
- 897 Bédard, J. H., A catalytic delamination-driven model for coupled genesis of Archaean
- crust and sub-continental lithospheric mantle, Geochim. Cosmochim. Acta, 70,
- 899 1188–1214, doi:10.1016/j.gca.2005.11.008, 2006.
- 900 Bédard, J. H., Stagnant lids and mantle overturns: implications for Archaean tec-
- tonics, magmagenesis, crustal growth, mantle evolution, and the start of plate
- tectonics, Geoscience Frontiers, 9(1), 19-49, doi:10.1016/j.gsf.2017.01.005, 2018.

- Bercovici, D., and S. Karato, Theoretical analysis of shear localization in the litho-
- sphere, in Reviews in Mineralogy and Geochemistry: Plastic Deformation of Min-
- erals and Rocks, vol. 51, edited by S. Karato and H. Wenk, chap. 13, pp. 387–420,
- Min. Soc. Am., Washington, DC, 2003.
- Bercovici, D., and Y. Ricard, Mechanisms for the generation of plate tectonics by
- two-phase grain-damage and pinning, Phys. Earth Planet. Inter., 202, 27–55, doi:
- 909 10.1016/j.pepi.2012.05.003, 2012.
- Bercovici, D., and Y. Ricard, Generation of plate tectonics with two-phase grain-
- damage and pinning: Source-sink model and toroidal flow, Earth Planet. Sci.
- 912 Lett., 365, 275–288, doi:10.1016/j.epsl.2013.02.002, 2013.
- Bercovici, D., and Y. Ricard, Plate tectonics, damage, and inheritance, *Nature*,
- 508(7497), 513–516, doi:10.1038/nature13072, 2014.
- ⁹¹⁵ Bercovici, D., and Y. Ricard, Grain-damage hysteresis and plate tectonic states,
- Phys. Earth Planet. Inter., 253, 31–47, doi:10.1016/j.pepi.2016.01.005, 2016.
- Bercovici, D., and P. Skemer, Grain damage, phase mixing and plate-boundary for-
- mation, Journal of Geodynamics, 108, 40–55, doi:10.1016/j.jog.2017.05.002, 2017.
- Bercovici, D., Y. Ricard, and G. Schubert, A two-phase model of compaction and
- damage, 1. general theory, J. Geophys. Res., 106(B5), 8887–8906, doi:10.1029/
- 921 2000JB900430, 2001a.
- Bercovici, D., Y. Ricard, and G. Schubert, A two-phase model of compaction and

- damage, 3. applications to shear localization and plate boundary formation, J.
- 924 Geophys. Res., 106 (B5), 8925–8940, 2001b.
- Bercovici, D., P. Tackley, and Y. Ricard, The generation of plate tectonics from
- mantle dynamics, in *Treatise on Geophysics*, vol. 7, Mantle Dynamics, edited by
- D. Bercovici and G. Schubert (chief editor), pp. 271–318, Elsevier, New York, 2015.
- Berner, R., The Phanerozoic carbon cycle, Oxford University Press, 2004.
- Breuer, D., and W. Moore, Dynamics and thermal history of the terrestrial planets,
- the Moon, and Io, in *Treatise on Geophysics*, vol. 10, Planets and Moons, edited
- by T. Spohn; G. Schubert (chief editor), pp. 299–348, Elsevier, New York, 2007.
- Brown, M., The contribution of metamorphic petrology to understanding lithosphere
- evolution and geodynamics, Geoscience Frontiers, 5(4), 553–569, doi:10.1016/j.gsf.
- 934 2014.02.005, 2014.
- Bunge, H., M. Richards, and J. Baumgardner, Effect of depth-dependent viscosity
- on the planform of mantle-convection, *Nature*, 379, 436–438, 1996.
- 937 Byrne, P. K., C. Klimczak, A. M. Celâl Şengör, S. C. Solomon, T. R. Watters, and
- 938 S. A. Hauck, II, Mercury's global contraction much greater than earlier estimates,
- 939 Nature Geoscience, 7, 301–307, doi:10.1038/ngeo2097, 2014.
- Gawood, P. A., C. J. Hawkesworth, and B. Dhuime, The continental record and the
- generation of continental crust, Geological Society of America Bulletin, 125, 14–32,
- doi:10.1130/B30722.1, 2013.

- ⁹⁴³ Collins, W. J., M. J. Van Kranendonk, and C. Teyssier, Partial convective overturn of
- Archaean crust in the east Pilbara Craton, Western Australia: driving mechanisms
- and tectonic implications, Journal of Structural Geology, 20, 1405–1424, doi:10.
- 946 1016/S0191-8141(98)00073-X, 1998.
- ⁹⁴⁷ Condie, K., and A. Kröner, When did plate tectonics begin? Evidence from the
- geologic record, in When Did Plate Tectonics Begin?, edited by K. Condie and
- V. Pease, pp. 249–263, Geological Society of America, special Paper 440, 2008.
- 950 Condie, K., S. A. Pisarevsky, J. Korenaga, and S. Gardoll, Is the rate of super-
- continent assembly changing with time?, Precambrian Res., 259, 278–289, doi:
- 952 10.1016/j.precamres.2014.07.015, 2015.
- ⁹⁵³ Condie, K. C., A planet in transition: The onset of plate tectonics on Earth between
- g_{54} 3 and 2 Ga?, Geoscience Frontiers, g(1), $g_{51} g_{60}$, $g_{60} = 10.1016/j_{10}$, $g_$
- 955 2018.
- 956 Crameri, F., Scientific colour maps (Version 3.0.0), Zenodo, doi:0.5281/zenodo.
- 957 1243863, 2018a.
- 958 Crameri, F., Geodynamic diagnostics, scientific visualisation and StagLab 3.0,
- 959 Geosci. Model Dev. Discuss., doi:10.5194/gmd-2017-328, 2018b.
- 960 Crameri, F., P. J. Tackley, I. Meilick, T. V. Gerya, and B. J. P. Kaus, A free plate
- surface and weak oceanic crust produce single-sided subduction on Earth, Geophys.
- 962 Res. Lett., 39, L03306, doi:10.1029/2011GL050046, 2012.

- 963 Cross, A. J., and P. Skemer, Ultramylonite generation via phase mixing in high-
- strain experiments, J. Geophys. Res. Solid Earth, 122, 1744–1759, doi:10.1002/
- ⁹⁶⁵ 2016JB013801, 2017.
- 966 Crowley, J. W., and R. J. O'Connell, An analytic model of convection in a
- system with layered viscosity and plates, Geophys. J. Int., 188, 61–78, doi:
- 968 10.1111/j.1365-246X.2011.05254.x, 2012.
- Davaille, A., S. E. Smrekar, and S. Tomlinson, Experimental and observational ev-
- idence for plume-induced subduction on Venus, Nature Geoscience, 10, 349–355,
- doi:10.1038/ngeo2928, 2017.
- Davies, G. F., Thermal evolution of the mantle, in *Treatise on Geophysics*, vol. 9,
- Evolution of the Earth, edited by D. Stevenson and G. Schubert (chief editor), pp.
- 974 197–216, Elsevier, New York, 2007.
- De Bresser, J., C. Peach, J. Reijs, and C. Spiers, On dynamic recrystallization during
- solid state flow: effects of stress and temperature, Geophys. Res. Lett., 25, 3457-
- 977 3460, 1998.
- De Bresser, J., J. ter Heege, and C. Spiers, Grain size reduction by dynamic recrys-
- tallization: can it result in major rheological weakening?, Intl. J. Earth Sci., 90,
- 980 28-45, 2001.
- Debaille, V., C. O'Neill, A. D. Brandon, P. Haenecour, Q.-Z. Yin, N. Mattielli, and
- A. H. Treiman, Stagnant-lid tectonics in early Earth revealed by ¹⁴²Nd variations

- 983 in late Archean rocks, Earth Planet. Sci. Lett., 373, 83–92, doi:10.1016/j.epsl.2013.
- 984 04.016, 2013.
- Dhuime, B., C. J. Hawkesworth, P. A. Cawood, and C. D. Storey, A Change in the
- Geodynamics of Continental Growth 3 Billion Years Ago, Science, 335, 1334–1336,
- doi:10.1126/science.1216066, 2012.
- Dhuime, B., A. Wuestefeld, and C. J. Hawkesworth, Emergence of modern con-
- tinental crust about 3 billion years ago, Nature Geoscience, 8, 552–555, doi:
- 990 10.1038/ngeo2466, 2015.
- Driscoll, P., and D. Bercovici, On the thermal and magnetic histories of Earth and
- Venus: Influences of melting, radioactivity, and conductivity, *Phys. Earth Planet*.
- 993 Inter., 236, 36–51, doi:10.1016/j.pepi.2014.08.004, 2014.
- 994 Drury, M. R., R. L. M. Vissers, D. van der Wal, and E. H. Hoogerduijn Strating,
- Shear localisation in upper mantle peridotites, Pure Appl. Geophys., 137, 439–460,
- doi:10.1007/BF00879044, 1991.
- 997 Etheridge, M. A., and J. C. Wilkie, Grainsize reduction, grain boundary sliding
- and the flow strength of mylonites, Tectonophysics, 58, 159–178, doi:10.1016/
- 0040-1951(79)90327-5, 1979.
- Foley, B. J., The role of plate tectonic-climate coupling and exposed land area in
- the development of habitable climates on rocky planets, Astrophys. J., 812, 36,
- doi:10.1088/0004-637X/812/1/36, 2015.

- Foley, B. J., On the dynamics of coupled grain size evolution and shear heating in
- lithospheric shear zones, *Phys. Earth Planet Int.*, in press, doi:10.1016/j.pepi.2018.
- 1005 07.008, 2018.
- Foley, B. J., and D. Bercovici, Scaling laws for convection with temperature-
- dependent viscosity and grain-damage, Geophys. J. Int., 199(1), 580–603, doi:
- 10.1093/gji/ggu275, 2014.
- Foley, B. J., and P. E. Driscoll, Whole planet coupling between climate, mantle, and
- core: Implications for rocky planet evolution, Geochem., Geophys., Geosyst., 17,
- doi:10.1002/2015GC006210, 2016.
- Foley, B. J., and H. Rizo, Long-term preservation of early formed mantle hetero-
- geneity by mobile lid convection: Importance of grainsize evolution, Earth Planet.
- Sci. Lett., 475, 94–105, doi:10.1016/j.epsl.2017.07.031, 2017.
- Foley, B. J., and A. J. Smye, Carbon cycling and habitability of Earth-size stagnant
- lid planets, Astrobiology, 18(7), 873–896, doi:10.1089/ast.2017.1695, 2018.
- Foley, B. J., D. Bercovici, and W. Landuyt, The conditions for plate tectonics on
- super-earths: Inferences from convection models with damage, Earth Planet. Sci.
- Lett., 331332(0), 281 290, doi:10.1016/j.epsl.2012.03.028, 2012.
- Foley, B. J., D. Bercovici, and L. T. Elkins-Tanton, Initiation of plate tectonics from
- post-magma ocean thermochemical convection, J. Geophys. Res. Solid Earth, 119,
- 8538-8561, doi:10.1002/2014JB011121, 2014.

- Fowler, A. C., Boundary layer theory and subduction, *J. Geophys. Res.*, 98, 21,997–22,005, doi:10.1029/93JB02040, 1993.
- François, C., P. Philippot, P. Rey, and D. Rubatto, Burial and exhumation during
- Archean sagduction in the East Pilbara Granite-Greenstone Terrane, Earth Planet.
- 1027 Sci. Lett., 396, 235–251, doi:10.1016/j.epsl.2014.04.025, 2014.
- Franck, S., K. Kossacki, and C. Bounama, Modelling the global carbon cycle for
- the past and future evolution of the earth system, Chem. Geol., 159(1), 305–317,
- 1030 1999.
- Garnero, E. J., and A. K. McNamara, Structure and Dynamics of Earth's Lower
- Mantle, Science, 320, 626, doi:10.1126/science.1148028, 2008.
- 1033 Gerya, T., Dynamical Instability Produces Transform Faults at Mid-Ocean Ridges,
- 1034 Science, 329, 1047, doi:10.1126/science.1191349, 2010.
- Gerya, T., Future directions in subduction modeling, Journal of Geodynamics, 52,
- 344-378, doi:10.1016/j.jog.2011.06.005, 2011.
- Gerya, T., R. Stern, M. Baes, S. Sobolev, and S. Whattam, Plate tectonics on the
- Earth triggered by plume-induced subduction initiation, Nature, 527(7577), 221–
- 1039 225, 2015.
- 1040 Greber, N. D., N. Dauphas, A. Bekker, M. P. Ptáček, I. N. Bindeman, and A. Hof-
- mann, Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion
- years ago, *Science*, 357, 1271–1274, doi:10.1126/science.aan8086, 2017.

- Grießmeier, J.-M., A. Stadelmann, U. Motschmann, N. K. Belisheva, H. Lammer,
- and H. K. Biernat, Cosmic Ray Impact on Extrasolar Earth-Like Planets in Close-
- in Habitable Zones, Astrobiology, 5, 587–603, doi:10.1089/ast.2005.5.587, 2005.
- Griffin, W. L., E. A. Belousova, C. O'Neill, S. Y. O'Reilly, V. Malkovets, N. J.
- Pearson, S. Spetsius, and S. A. Wilde, The world turns over: Hadean-Archean
- crust-mantle evolution, *Lithos*, 189, 2–15, doi:10.1016/j.lithos.2013.08.018, 2014.
- Harrison, T. M., J. Blichert-Toft, W. Müller, F. Albarede, P. Holden, and S. J.
- Mojzsis, Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to
- 4.5 Ga, Science, 310, 1947–1950, doi:10.1126/science.1117926, 2005.
- Herzberg, C., K. Condie, and J. Korenaga, Thermal history of the Earth and its
- petrological expression, Earth and Planetary Science Letters, 292, 79–88, doi:10.
- 1016/j.epsl.2010.01.022, 2010.
- Hewitt, J. M., D. P. McKenzie, and N. O. Weiss, Dissipative heating in convective
- flows, J. Fluid Mech., 68, 721–738, doi:10.1017/S002211207500119X, 1975.
- Hirth, G., and D. Kohlstedt, Rheology of the upper mantle and the mantle wedge: a
- view from the experimentalists, in Subduction Factory Mongraph, vol. 138, edited
- by J. Eiler, pp. 83–105, Am. Geophys. Union, Washington, DC, 2003.
- 1060 Höink, T., A. Lenardic, and M. Richards, Depth-dependent viscosity and mantle
- stress amplification: implications for the role of the asthenosphere in maintaining
- plate tectonics, Geophys. J. Int., 191, 30–41, doi:10.1111/j.1365-246X.2012.05621.
- 1063 x, 2012.

- Hopkins, M., T. M. Harrison, and C. E. Manning, Low heat flow inferred from >
- 4Gyr zircons suggests Hadean plate boundary interactions, Nature, 456, 493–496,
- doi:10.1038/nature07465, 2008.
- Horan, M. F., R. W. Carlson, R. J. Walker, M. Jackson, M. Garçon, and M. Norman,
- 1068 Tracking Hadean processes in modern basalts with 142-Neodymium, Earth Planet.
- 1069 Sci. Lett., 484, 184–191, doi:10.1016/j.epsl.2017.12.017, 2018.
- Jadamec, M. A., and M. I. Billen, Reconciling surface plate motions with rapid three-
- dimensional mantle flow around a slab edge, Nature, 465, 338–341, doi:10.1038/
- nature09053, 2010.
- Jaupart, C., S. Labrosse, and J. C. Mareschal, Temperatures, heat and energy in the
- mantle of the earth, in *Treatise on Geophysics*, vol. 7 Mantle Dynamics, edited by
- D. Bercovici, chap. 6, pp. 253–305, Elsevier, 2007.
- Jenner, F., V. Bennett, A. Nutman, C. R. Friend, M. Norman, and G. Yaxley,
- Evidence for subduction at 3.8 Ga: geochemistry of arc-like metabasalts from the
- southern edge of the Isua Supracrustal Belt, Chem. Geol., 261(1), 83–98, 2009.
- Jin, D., S. Karato, and M. Obata, Mechanisms of shear localization in the continental
- lithosphere: Inference from the deformation microstructures of peridotites from the
- Ivrea zone, northwestern Italy, J. Struct. Geol., 20, 195–209, 1998.
- Johnson, T. E., M. Brown, B. J. P. Kaus, and J. A. Vantongeren, Delamination
- and recycling of Archaean crust caused by gravitational instabilities, Nature Geo-
- science, 7, 47–52, doi:10.1038/ngeo2019, 2014.

- Johnson, T. E., M. Brown, N. J. Gardiner, C. L. Kirkland, and R. H. Smithies,
- Earth's first stable continents did not form by subduction, *Nature*, 543, 239–242,
- doi:10.1038/nature21383, 2017.
- Karato, S., Deformation of Earth Materials: An Introduction to the Rheology of the
- Solid Earth, Cambridge University Press, New York, 2008.
- ¹⁰⁹⁰ Karato, S., and P. Wu, Rheology of the Upper Mantle: A Synthesis, *Science*, ¹⁰⁹¹ 260 (5109), 771–778, doi:10.1126/science.260.5109.771, 1993.
- Kasting, J. F., and D. Catling, Evolution of a Habitable Planet, Annu. Rev. Astron.
- 1093 Astrophys., 41, 429–463, doi:10.1146/annurev.astro.41.071601.170049, 2003.
- Kattenhorn, S. A., and L. M. Prockter, Evidence for subduction in the ice shell of
- Europa, Nature Geoscience, 7, 762–767, doi:10.1038/ngeo2245, 2014.
- 1096 Keller, B., and B. Schoene, Plate tectonics and continental basaltic geochemistry
- throughout Earth history, Earth Planet. Sci. Lett., 481, 290–304, doi:10.1016/j.
- epsl.2017.10.031, 2018.
- Keller, C. B., and B. Schoene, Statistical geochemistry reveals disruption in secu-
- lar lithospheric evolution about 2.5 Gyr ago, Nature, 485, 490–493, doi:10.1038/
- nature11024, 2012.
- Kemp, A. I. S., S. A. Wilde, C. J. Hawkesworth, C. D. Coath, A. Nemchin, R. T.
- Pidgeon, J. D. Vervoort, and S. A. DuFrane, Hadean crustal evolution revisited:
- New constraints from Pb-Hf isotope systematics of the Jack Hills zircons, Earth
- Planet. Sci. Lett., 296, 45–56, doi:10.1016/j.epsl.2010.04.043, 2010.

- Kite, E. S., M. Manga, and E. Gaidos, Geodynamics and Rate of Volcanism on Mas-
- sive Earth-like Planets, Astrophys. J., 700, 1732–1749, doi:10.1088/0004-637X/
- 1108 700/2/1732, 2009.
- Kohlstedt, D., and S. Mackwell, Strength and deformation of planetary lithospheres,
- in *Planetary Tectonics*, edited by T. Waters and R. Schultz, pp. 397–456, Cam-
- bridge Univ. Press, Cambridge, UK, 2010.
- Korenaga, J., Energetics of mantle convection and the fate of fossil heat, Geophys.
- 1113 Res. Lett, 30(8), 1437, 2003.
- Korenaga, J., Archean geodynamics and the thermal evolution of earth, in Archean
- 1115 Geodynamics and Environments, vol. 164, edited by K. Benn, J.-C. Mareschal,
- and K. Condie, pp. 7–32, AGU Geophysical Monograph Series, 2006.
- 1117 Korenaga, J., Thermal cracking and the deep hydration of oceanic litho-
- sphere: A key to the generation of plate tectonics?, J. Geophys. Res., 112,
- doi:10.1029/2006JB004502, 2007.
- Korenaga, J., Scaling of stagnant-lid convection with Arrhenius rheology and the
- effects of mantle melting, Geophys. J. Int., 179, 154–170, doi:10.1111/j.1365-246X.
- 2009.04272.x, 2009.
- Korenaga, J., Scaling of plate tectonic convection with pseudoplastic rheology, J.
- 1124 Geophys. Res., 115, B11,405, doi:doi:10.1029/2010JB007670, 2010a.
- Korenaga, J., On the likelihood of plate tectonics on super-earths: Does size matter?,
- 1126 Astrophys. J., 725(1), L43, 2010b.

- Korenaga, J., Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations, Annu. Rev. Earth Planet. Sci., 41, 117–151, doi:10.1146/
- Korenaga, J., Pitfalls in modeling mantle convection with internal heat production,

 J. Geophys. Res. Solid Earth, 122, 4064–4085, doi:10.1002/2016JB013850, 2017.
- Korenaga, J., Estimating the formation age distribution of continental crust by unmixing zircon ages, Earth Planet. Sci. Lett., 482, 388–395, doi:10.1016/j.epsl.2017.

 11.039, 2018.
- Koshida, K., A. Ishikawa, H. Iwamori, and T. Komiya, Petrology and geochemistry of mafic rocks in the Acasta Gneiss Complex: Implications for the oldest mafic rocks and their origin, *Precambrian Res.*, 283, 190–207, 2016.
- Landuyt, W., and D. Bercovici, Variations in planetary convection via the effect of climate on damage, *Earth and Planetary Science Letters*, 277(1-2), 29–37, 2009.
- Landuyt, W., D. Bercovici, and Y. Ricard, Plate generation and two-phase damage theory in a model of mantle convection, *Geophys. J. Int.*, 174, 1065–1080, doi: 10.1111/j.1365-246X.2008.03844.x, 2008.
- Lenardic, A., and J. W. Crowley, On the Notion of Well-defined Tectonic Regimes for Terrestrial Planets in this Solar System and Others, *Astrophys. J. Lett.*, 755, 132, doi:10.1088/0004-637X/755/2/132, 2012.
- Lenardic, A., M. A. Richards, and F. H. Busse, Depth-dependent rheology and the

- horizontal length scale of mantle convection, *J. Geophys. Res.*, 111, B07404, doi:
- 10.1029/2005JB003639, 2006.
- Lenardic, A., A. Jellinek, B. Foley, C. O'Neill, and W. Moore, Climate-tectonic
- coupling: Variations in the mean, variations about the mean, and variations in
- mode, J. Geophys. Res. Planets, 121(10), 1831–1864, 2016.
- Lowman, J. P., Mantle convection models featuring plate tectonic behavior: An
- overview of methods and progress, *Tectonophysics*, 510, 1–16, doi:10.1016/j.tecto.
- 2011.04.015, 2011.
- McNamara, A. K., and S. Zhong, Degree-one mantle convection: Dependence on
- internal heating and temperature-dependent rheology, Geophys. Res. Lett., 32,
- L01301, doi:10.1029/2004GL021082, 2005.
- Mei, S., A. M. Suzuki, D. L. Kohlstedt, N. A. Dixon, and W. B. Durham, Exper-
- imental constraints on the strength of the lithospheric mantle, J. Geophys. Res.
- Solid Earth, 115, B08204, doi:10.1029/2009JB006873, 2010.
- 1161 Montési, L. G. J., Fabric development as the key for forming ductile shear zones and
- enabling plate tectonics, Journal of Structural Geology, 50, 254–266, doi:10.1016/
- j.jsg.2012.12.011, 2013.
- Moore, W. B., Tidal heating and convection in Io, J. Geophys. Res. Planets, 108,
- 5096, doi:10.1029/2002JE001943, 2003.
- Moore, W. B., Heat transport in a convecting layer heated from within and below,
- 1167 J. Geophys. Res., 113(B12), B11407, doi:10.1029/2006JB004778, 2008.

- Moore, W. B., and A. A. G. Webb, Heat-pipe Earth, Nature, 501 (7468), 501–505,
 doi:10.1038/nature12473, 2013.
- Moresi, L., and V. Solomatov, Mantle convection with a brittle lithosphere: Thoughts
- on the global tectonic style of the earth and venus, Geophys. J. Int., 133, 669–682,
- doi:10.1046/j.1365-246X.1998.00521.x, 1998.
- Moyen, J.-F., and H. Martin, Forty years of TTG research, *Lithos*, 148, 312–336,
 2012.
- Moyen, J.-F., G. Stevens, A. F. Kisters, and R. W. Belcher, Chapter 5.6: TTG Plu-
- tons of the Barberton Granitoid-Greenstone Terrain, South Africa, Developments
- in Precambrian Geology, 15, 607–667, 2007.
- Mulyukova, E., and D. Bercovici, Formation of lithospheric shear zones: Ef-
- fect of temperature on two-phase grain damage, Phys. Earth Planet. Inter.,
- 270 (Supplement C), 195 212, doi:https://doi.org/10.1016/j.pepi.2017.07.011,
- 1181 2017.
- Mundl, A., M. Touboul, M. G. Jackson, J. M. D. Day, M. D. Kurz, V. Lekic, R. T.
- Helz, and R. J. Walker, Tungsten-182 heterogeneity in modern ocean island basalts,
- Science, 356, 66–69, doi:10.1126/science.aal4179, 2017.
- Nebel, O., R. P. Rapp, and G. M. Yaxley, The role of detrital zircons in Hadean crustal research, *Lithos*, 190, 313–327, doi:10.1016/j.lithos.2013.12.010, 2014.
- Neukum, G., et al., Recent and episodic volcanic and glacial activity on Mars

- revealed by the High Resolution Stereo Camera, *Nature*, 432, 971–979, doi:
- 10.1038/nature03231, 2004.
- Nimmo, F., Why does venus lack a magnetic field?, Geology, 30(11), 987–990, 2002.
- Noack, L., A. Rivoldini, and T. Van Hoolst, Volcanism and outgassing of stagnant-lid
- planets: Implications for the habitable zone, Phys. Earth Planet. Int., 269, 40–57,
- doi:10.1016/j.pepi.2017.05.010, 2017.
- Ogawa, M., G. Schubert, and A. Zebib, Numerical simulations of three-dimensional
- thermal convection in a fluid with strongly temperature-dependent viscosity, J.
- 1196 Fluid Mech., 233, 299–328, 1991.
- O'Neill, C., and V. Debaille, The evolution of Hadean-Eoarchaean geodynamics,
- Earth Planet. Sci. Lett., 406, 49–58, doi:10.1016/j.epsl.2014.08.034, 2014.
- O'Neill, C., and A. Lenardic, Geological consequences of super-sized Earths, Geophys.
- 1200 Res. Lett., 34, 19,204–19,208, doi:10.1029/2007GL030598, 2007.
- O'Neill, C., A. Lenardic, L. Moresi, T. Torsvik, and C.-T. Lee, Episodic precambrian
- subduction, Earth Planet. Sci. Lett., 262(3-4), 552 562, doi:10.1016/j.epsl.2007.
- 1203 04.056, 2007.
- O'Neill, C., A. Lenardic, and K. C. Condie, Earth's punctuated tectonic evolution:
- cause and effect, Geological Society of London Special Publications, 389, 17–40,
- doi:10.1144/SP389.4, 2015.

- O'Neill, C., A. Lenardic, M. Weller, L. Moresi, S. Quenette, and S. Zhang, A window for plate tectonics in terrestrial planet evolution?, *Physics of the Earth and Planetary Interiors*, 255, 80–92, doi:10.1016/j.pepi.2016.04.002, 2016.
- O'Neill, C., S. Marchi, S. Zhang, and W. Bottke, Impact-driven subduction on the Hadean Earth, *Nature Geoscience*, 10, 793–797, doi:10.1038/ngeo3029, 2017.
- O'Reilly, T. C., and G. F. Davies, Magma transport of heat on Io A mechanism allowing a thick lithosphere, *Geophys. Res. Lett.*, 8, 313–316, doi:10.1029/GL008i004p00313, 1981.
- Pease, V., J. Percival, H. Smithies, G. Stevens, and M. Van Kranendonk, When did
 plate tectonics begin? evidence from the orogenic record, *Geological Society of*America Special Papers, 440, 199–228, 2008.
- Peters, B. J., R. W. Carlson, J. M. D. Day, and M. F. Horan, Hadean silicate differentiation preserved by anomalous ¹⁴²Nd/¹⁴⁴Nd ratios in the Réunion hotspot source, *Nature*, 555, 89–93, doi:10.1038/nature25754, 2018.
- Polat, A., P. W. Appel, and B. J. Fryer, An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth, *Gondwana Res.*, 20(2), 255–283, 2011.
- Reimink, J. R., T. Chacko, R. A. Stern, and L. M. Heaman, Earth's earliest evolved crust generated in an Iceland-like setting, *Nature Geoscience*, 7, 529–533, doi: 10.1038/ngeo2170, 2014.

- Reimink, J. R., T. Chacko, R. A. Stern, and L. M. Heaman, The birth of a cratonic
- nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex,
- 1230 Precambrian Res., 281, 453–472, 2016.
- Rey, P. F., N. Coltice, and N. Flament, Spreading continents kick-started plate tectonics, *Nature*, 513, 405–408, doi:10.1038/nature13728, 2014.
- Rizo, H., M. Boyet, J. Blichert-Toft, and M. T. Rosing, Early mantle dynamics
- inferred from ¹⁴²Nd variations in Archean rocks from southwest Greenland, Earth
- Planet. Sci. Lett., 377, 324–335, doi:10.1016/j.epsl.2013.07.012, 2013.
- Rizo, H., R. J. Walker, R. W. Carlson, M. F. Horan, S. Mukhopadhyay, V. Manthos,
- D. Francis, and M. G. Jackson, Preservation of earth-forming events in the tung-
- sten isotopic composition of modern flood basalts, Science, 352 (6287), 809–812,
- doi:10.1126/science.aad8563, 2016.
- Robbins, S. J., G. di Achille, and B. M. Hynek, The volcanic history of Mars: High-
- resolution crater-based studies of the calderas of 20 volcanoes, *Icarus*, 211, 1179–
- 1203, doi:10.1016/j.icarus.2010.11.012, 2011.
- Rosas, J. C., and J. Korenaga, Rapid crustal growth and efficient crustal recycling in
- the early Earth: Implications for Hadean and Archean geodynamics, Earth Planet.
- 1245 Sci. Lett., 494, 42–49, doi:10.1016/j.epsl.2018.04.051, 2018.
- Rozel, A., Y. Ricard, and D. Bercovici, A thermodynamically self-consistent damage
- equation for grain size evolution during dynamic recrystallization, Geophys. J.
- 1248 Intl., 184, 719–728, doi:10.1111/j.1365-246X.2010.04875.x, 2011.

- Rozel, A. B., G. J. Golabek, C. Jain, P. J. Tackley, and T. Gerya, Continental crust formation on early Earth controlled by intrusive magmatism, *Nature*, 545,
- 332–335, doi:10.1038/nature22042, 2017.
- Sandwell, D. T., and G. Schubert, Flexural ridges, trenches, and outer rises around coronae on Venus, *J. Geophys. Res.*, 97, 16,069, doi:10.1029/92JE01274, 1992.
- Shirey, S. B., and S. H. Richardson, Start of the Wilson Cycle at 3 Ga Shown
- by Diamonds from Subcontinental Mantle, Science, 333, 434–436, doi:10.1126/
- science.1206275, 2011.
- 1257 Sizova, E., T. Gerya, M. Brown, and L. L. Perchuk, Subduction styles in the
- Precambrian: Insight from numerical experiments, Lithos, 116, 209–229, doi:
- 10.1016/j.lithos.2009.05.028, 2010.
- 1260 Sizova, E., T. Gerya, K. Stüwe, and M. Brown, Generation of felsic crust in the
- archean: A geodynamic modeling perspective, Precambrian Res., 271, 198–224,
- 1262 2015.
- Skemer, P., J. M. Warren, and P. B. Kelemen, Microstructural and rheological evo-
- lution of a mantle shear zone, *J. Petrol.*, 51(1-2), 43-53, doi:10.1093/petrology/
- egp057, 2010.
- Sleep, N., and K. Zahnle, Carbon dioxide cycling and implications for climate on ancient earth, *Journal of Geophysical Research*, 106(E1), 1–373, 2001.
- Smithies, R. H., D. C. Champion, and M. J. Van Kranendonk, Formation of Pale-

- oarchean continental crust through infracrustal melting of enriched basalt, Earth
- Planet. Sci. Lett., 281, 298–306, doi:10.1016/j.epsl.2009.03.003, 2009.
- Smithies, R. H., T. J. Ivanic, J. R. Lowrey, P. A. Morris, S. J. Barnes, S. Wyche,
- and Y.-J. Lu, Two distinct origins for Archean greenstone belts, Earth Planet. Sci.
- 1273 Lett., 487, 106–116, doi:10.1016/j.epsl.2018.01.034, 2018.
- Solomatov, V., Scaling of temperature- and stress-dependent viscosity convection,
- 1275 Phys. Fluids, 7, 266–274, doi:10.1063/1.868624, 1995.
- Solomatov, V., Fluid dynamics of a terrestrial magma ocean, in Origin of the Earth
- and Moon, edited by R. Canup and K. Righter, p. 555, University of Arizona Press,
- 1278 Tucson, 2000.
- Solomatov, V. S., Initiation of subduction by small-scale convection, J. Geophys.
- 1280 Res., 109 (B18), B01,412, doi:10.1029/2003JB002628, 2004.
- Stamenkovic, V., D. Breuer, and T. Spohn, Thermal and transport properties of
- mantle rock at high pressure: Applications to super-earths, *Icarus*, 216(2), 572 –
- 596, doi:10.1016/j.icarus.2011.09.030, 2011.
- Stein, C., J. Schmalzl, and U. Hansen, The effect of rheological parameters on plate
- behaviour in a self-consistent model of mantle convection, *Phys. Earth Planet.*
- *Int.*, 142, 225–255, 2004.
- Stein, C., J. P. Lowman, and U. Hansen, The influence of mantle internal heating
- on lithospheric mobility: Implications for super-Earths, Earth Planet. Sci. Lett.,
- 361, 448–459, doi:10.1016/j.epsl.2012.11.011, 2013.

- Stern, R. J., Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time, *Geology*, 33, 557, doi:10.1130/G21365.1, 2005.
- Tackley, P., On the ability of phase transitions and viscosity layering to induce longwavelength heterogeneity in the mantle, *Geophys. Res. Lett.*, 23, 1985–1988, 1996.
- Tackley, P., Self-consistent generation of tectonic plates in time-dependent, threedimensional mantle convection simulations, 1. Pseudoplastic yielding, *Geochem. Geophys. Geosyst.* (G³), 1, doi:2000GC000036, 2000.
- Tajika, E., and T. Matsui, Evolution of terrestrial proto-co2 atmosphere coupled with thermal history of the earth, Earth and planetary science letters, 113(1-2), 251–266, 1992.
- Tang, M., K. Chen, and R. L. Rudnick, Archean upper crust transition from mafic to felsic marks the onset of plate tectonics, *Science*, *351*, 372–375, doi:10.1126/science.aad5513, 2016.
- Tasaka, M., M. E. Zimmerman, and D. L. Kohlstedt, Rheological weakening of olivine

 + orthopyroxene aggregates due to phase mixing: 1. Mechanical behavior, *J. Geo-*phys. Res. Solid Earth, 122(10), 7584–7596, doi:10.1002/2017JB014333, 2017a.
- Tasaka, M., M. E. Zimmerman, D. L. Kohlstedt, H. Stünitz, and R. Heilbronner,
 Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing:
 Part 2. Microstructural development, *J. Geophys. Res. Solid Earth*, 122(10), 7597–
 7612, doi:10.1002/2017JB014311, 2017b.

- Thébaud, N., and P. F. Rey, Archean gravity-driven tectonics on hot and flooded
- continents: Controls on long-lived mineralised hydrothermal systems away from
- continental margins, *Precambrian Research*, 229, 93–104, doi:10.1016/j.precamres.
- 2012.03.001, 2013.
- Thielmann, M., Grain size assisted thermal runaway as a nucleation mechanism for
- continental mantle earthquakes: Impact of complex rheologies, Tectonophysics,
- doi:10.1016/j.tecto.2017.08.038, 2017.
- Tosi, N., et al., The habitability of a stagnant-lid Earth, Astron. Astrophys., 605,
- A71, doi:10.1051/0004-6361/201730728, 2017.
- 1320 Trela, J., E. Gazel, A. V. Sobolev, L. Moore, M. Bizimis, B. Jicha, and V. G.
- Batanova, The hottest lavas of the Phanerozoic and the survival of deep Archaean
- reservoirs, *Nature Geoscience*, 10, 451–456, doi:10.1038/ngeo2954, 2017.
- ¹³²³ Turcotte, D., and G. Schubert, *Geodynamics*, 2nd ed., Cambridge Univ. Press, New
- 1324 York, 2002.
- Turner, S., T. Rushmer, M. Reagan, and J.-F. Moyen, Heading down early on? Start
- of subduction on Earth, Geology, 42, 139–142, doi:10.1130/G34886.1, 2014.
- Valencia, D., and R. J. O'Connell, Convection scaling and subduction on Earth and
- super-Earths, Earth Planet. Sci. Letts., 286, 492–502, doi:10.1016/j.epsl.2009.07.
- 1329 015, 2009.
- Valencia, D., R. J. O'Connell, and D. D. Sasselov, Inevitability of Plate Tectonics
- on Super-Earths, Astrophys. J., 670, L45–L48, doi:10.1086/524012, 2007.

- Valley, J. W., W. H. Peck, E. M. King, and S. A. Wilde, A cool early Earth, *Geology*, 30, 351, doi:10.1130/0091-7613(2002)030(0351:ACEE)2.0.CO;2, 2002.
- van Heck, H., and P. Tackley, Planforms of self-consistently generated plates in 3d spherical geometry, *Geophys. Res. Lett.*, 35, L19,312, doi:doi:10.1029/ 2008GL035190, 2008.
- van Heck, H. J., and P. J. Tackley, Plate tectonics on super-Earths: Equally or more likely than on Earth, Earth Planet. Sci. Lett., 310, 252–261, doi:10.1016/j.epsl. 2011.07.029, 2011.
- van Hunen, J., and J.-F. Moyen, Archean Subduction: Fact or Fiction?, *Annu. Rev. Earth Planet. Sci.*, 40, 195–219, doi:10.1146/annurev-earth-042711-105255, 2012.
- van Hunen, J., and A. P. van den Berg, Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere, *Lithos*, 103, 217–235, doi:10.1016/j.lithos.2007.09.016, 2008.
- Van Kranendonk, M. J., Two types of Archean continental crust: Plume and plate tectonics on early Earth, Am. J. Sci., 310(10), 1187–1209, 2010.
- Van Kranendonk, M. J., R. H. Smithies, W. L. Griffin, D. L. Huston, A. H. Hickman, D. C. Champion, C. R. Anhaeusser, and F. Pirajno, Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and
 Kaapvaal cratons, Geological Society of London Special Publications, 389, 83–111,
 doi:10.1144/SP389.12, 2015.

- Walker, J., P. Hayes, and J. Kasting, A negative feedback mechanism for the long-
- term stabilization of Earth's surface temperature, J. Geophys. Res., 86, 9776–9782,
- doi:10.1029/JC086iC10p09776, 1981.
- Walzer, U., and R. Hendel, Mantle convection and evolution with growing continents,
- 1356 J. Geophys. Res. Solid Eart), 113, B09405, doi:10.1029/2007JB005459, 2008.
- Walzer, U., and R. Hendel, Continental crust formation: Numerical modelling of
- chemical evolution and geological implications, Lithos, 278, 215–228, doi:10.1016/
- j.lithos.2016.12.014, 2017.
- Warren, J. M., and G. Hirth, Grain size sensitive deformation mechanisms in nat-
- urally deformed peridotites, Earth Planet. Sci. Letts., 248(1-2), 438 450, doi:
- 10.1016/j.epsl.2006.06.006, 2006.
- Weinstein, S., and P. Olson, Thermal convection with non-newtonian plates, Geo-
- phys. J. Int., 111, 515–530, doi:10.1111/j.1365-246X.1992.tb02109.x, 1992.
- Weller, M. B., and A. Lenardic, Hysteresis in mantle convection: Plate tectonics
- systems, Geophys. Res. Lett., 39, L10202, doi:10.1029/2012GL051232, 2012.
- Weller, M. B., and A. Lenardic, The energetics and convective vigor of mixed-mode
- heating: Velocity scalings and implications for the tectonics of exoplanets, Geo-
- phys. Res. Lett., 43(18), 9469–9474, doi:10.1002/2016GL069927, 2016.
- ¹³⁷⁰ Weller, M. B., A. Lenardic, and C. O'Neill, The effects of internal heating and large
- scale climate variations on tectonic bi-stability in terrestrial planets, Earth Planet.
- 1372 Sci. Lett., 420, 85–94, doi:10.1016/j.epsl.2015.03.021, 2015.

- White, S., S. Burrows, J. Carreras, N. Shaw, and F. Humphreys, On mylonites in ductile shear zones, *J. Struct. Geol.*, 2, 175–187, 1980.
- Wong, T., and V. S. Solomatov, Towards scaling laws for subduction initiation on terrestrial planets: constraints from two-dimensional steady-state convection simulations, *Prog. Earth Planet. Sci.*, 2, 18, doi:10.1186/s40645-015-0041-x, 2015.
- Zhong, S., Dynamics of thermal plumes in three-dimensional isoviscous thermal convection, *Geophy. J. Int.*, *162*, 289–300, doi:10.1111/j.1365-246X.2005.02633.x, 2005.
- Zhong, S., and A. B. Watts, Lithospheric deformation induced by loading of the
 Hawaiian Islands and its implications for mantle rheology, J. Geophys. Res. Solid
 Earth, 118, 6025–6048, doi:10.1002/2013JB010408, 2013.