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Tunable surface-acoustic-wave-(SAW)-based bandpass filters (BPFs)
with flat in-band group delay (τg) and variable passband bandwidth
(BW) are reported. They are based on N hybrid acoustic-wave-
lumped-element-resonator (AWLR) modules shaped by one lumped-
element resonator and K RF-switched SAW resonators that are
arranged in a Gaussian-type source-to-load impedance-inverter
network. Fractional bandwidth (FBW) tuning is achieved by reconfi-
guring the number of SAW resonators within the AWLR modules.
Major advantages of the proposed filter concept when compared to
conventional SAW BPFs are as follows: (i) they do not depend on
the electromechanical coupling coefficient (kt

2) of the SAW resonators
– FBW>kt

2 can be realised –, (ii) they do not require lossy elements or
SAW resonators with different frequencies, and (iii) they can be tuned.
For experimental-validation purposes, a 433.9 MHz two-pole/four-
transmission-zero prototype was built and measured. It exhibited flat-
in-band-τg passbands with discretely-tunable BW between 0.18 and
0.45 MHz (i.e. 2.5:1 tuning ratio).
Introduction: Modern wireless-communication systems and, in particu-
lar, the ones addressing 5G applications are increasingly calling for min-
iaturised RF transceivers with multi-standard operability. In order to
facilitate their deployment, RF bandpass filters (BPFs) with advanced
RF processing capabilities need to be developed. These include flat
in-band group delay (τg) and tunable transfer function to carry out
adaptive RF-signal selection processes without significant phase distor-
tion. However, these requirements remain a great challenge for the
currently-employed surface-acoustic-wave (SAW) or bulk-acoustic-
wave (BAW) RF filtering architectures, since their performance charac-
teristics depend on the electromechanical coupling coefficient (kt

2) of
their substrates. Important shortcomings of existing SAW/BAW filters
include: (i) fractional bandwidth (FBW) less than kt

2 (∼0.6 kt
2) [1],

(ii) limited variety of realisable transfer functions (i.e. only
bandpass-type), (iii) large τg variation, (i.e. 60% within the passband
of commercially-available SAW filters [2]), and (iv) static RF response
[3]. Despite significant research efforts to enhance the FBW using new
types of substrates that sacrifice RF performance by lowering the quality
factor (Q) of their constituent resonators, there exist a very few tunable
SAW BPF topologies. In addition, to the best of the authors’ knowledge,
none of them exhibits flat in-band τg. In [4, 5], static SAW-based BPFs
with almost constant-in-band-τg characteristics were designed using
modified transducers (slanted type in [4] and resonant type in [5]) or
by introducing lossy elements [6] but at the expense of increased
levels of insertion loss (IL) in the range 5–25 dB. In an alternative con-
figuration, acoustic-wave-lumped-element resonators (AWLRs) were
employed for the realisation of low-IL transmission bands. However,
none of these architectures allows for transfer-function tunability.
Considering the aforementioned drawbacks, this Letter presents a

SAW-based BPF concept which, unlike conventional ladder/
lattice-SAW-based BPF approaches, exhibits the following RF perform-
ance merits: (i) quasi-elliptic-type transfer function whose FBW can be
designed to be higher than kt

2, (ii) flat in-band τg, (iii) discretely-tunable
bandwidth (BW), and (iv) RF operational characteristics that neither
depend on kt

2 nor require the integration of lossy elements. The
content of this Letter is summarised as follows. First, the theoretical
foundations and basic RF design guidelines of the flat τg SAW-based
BPF principle are described. Afterwards, its experimental viability is
verified. Finally, a summary of the most relevant contributions of this
work is provided.

Theoretical foundations: The generalised circuit details and
theoretically-synthesised transfer function of the proposed SAW-based
BPF with flat in-band τg and tunable BW characteristics are shown in
Figs. 1 and 2, respectively. It is based on N multi-resonant AWLRs
(for an Nth-order transfer function) that are in-parallel connected
through N impedance inverters (ZT) to the source-to-load path –
composed of N + 1 Z0,1-to-ZN,N+1 impedance inverters – as shown in
Fig. 1a. Each multi-resonant AWLR is shaped by K identical (for K
selectable BW states) one-port-type acoustic-wave resonators (AWRs)
– motional capacitance CM, motional inductance LM, motional
resistance RM, parallel capacitance CP, series resonant frequency ωS,
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and anti-resonant frequency ωa – and one lumped-element (LE)
resonator – shaped by CR and LR. By appropriately selecting CR so
that together with K·CP and LR it resonates at ωS, each multi-resonant
AWLR contributes to the overall transfer function with one high-Q
pole (at ωS: centre frequency of the passband) and two transmission
zeros (TZs at ωz1, ωz2) that can be further exploited for the realisation
of high-Q quasi-elliptic-type filtering profiles. This is shown in
Fig. 1b. Moreover, in order to synthesise flat τg, the impedance-inverter
values of the source-to-load network need to be selected as detailed in
(1) and (2), where Z0 is the reference impedance and g0-to-gN are the
element values of the normalised Gaussian-type prototype
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Fig. 1 SAW-based BPF with flat in-band τg and RF-switched BW

a Block diagram for a transfer function shaped by N poles and 2N TZs. BW
tuning is realised by varying the number of AWRs in each multi-resonant module
through RF switches
b Circuit equivalent and transfer function of the AWR and an AWLR that
comprises one AWR and one LE resonator
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Fig. 2 Ideally-synthesised responses for a two-pole Gaussian-type BPF
(ideal) and a two-pole/four-TZ SAW-based BPF that consists of multi-
resonant branches with 1, 2, and 4 AWRs with fS = 450 MHz and
kt
2 = 0.08%. The normalised impedance-inverter values are identical for
all demonstrated states: Z0,1 = 1, Z1,2 = 0.36, Z2,3 = 0.43, and ZT = 1
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b τg
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Fig. 3 Manufactured prototype. C1 =ML03V11R7BAT2A, C2 =
251R14S3R3BV4T, C3 = 251R14S3R9BV4T, C4 = 251R14S5R1CV4T,
C5 = 251R14S5R6CV4T, C6 = 251R14S3R0BV4T, L01 = 1206CS330,
L12 = 1206CS470, L23 = 0806SQ19, LR = 1206CS100, LT = 1206CS390

In order to better illustrate the aforementioned principles, various
transfer functions examples are shown in Fig. 3 along with an ideally-
synthesised response of a conventional Gaussian-type BPF. In particu-
lar, Figs. 2a and b, respectively, represent the power transmission
response and τg of a second-order SAW-based BPF whose multi-
resonant AWLR branches consist of one, two, and four AWRs. It can
be seen that by only altering the number of AWRs in each AWLR
module and keeping its impedance-inverter values constant, the filter’s
FBW can be altered while maintaining the flat τg for all reconfigured
states. This characteristic can be further exploited in a practical
implementation by readily switching on/off the number of resonators
in each multi-resonant AWLR module and adjusting the LE capacitance
CR. As can be also seen in Fig. 2a, the passbands can exhibit FBWs>kt

2

as opposed to conventional SAW-based BPF designs whose FBW is 0.4
kt
2–0.8kt2 [1]. Furthermore, although FBWs up to 2.6kt

2 are demon-
strated, wider FBWs can be obtained by appropriately selecting
Z0,1-to-ZN,N+1.
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Fig. 4 RF-measured and EM-simulated response

a Power transmission response
b Power reflection response
c τg

Experimental validation: To verify the practical viability of the pro-
posed flat-in-band-τg and tunable-BW SAW-based BPF concept, a
433.9 MHz two-pole/four-TZ prototype was developed. It was designed
ELECTRONICS LETTER
to feature two tunable BW states – i.e. the AWLRs comprise two
RF-switched AWRs and one LE resonator – by using the aforemen-
tioned design methodology. Commercially-available SAW resonators
from EPCOS (R900) with the following characteristics were employed:
CM = 1.62 fF, LM = 82.984 μH, RM = 19 Ω, and CP = 1.97 pF. A Rogers
4003C substrate with dielectric permittivity ɛr = 3.55, dielectric thick-
ness H = 1.52 mm, dielectric loss tangent tan(δD) = 0.0027, and
35 µm-thick Cu-cladding was utilised. All impedance inverters were
implemented with their first-order low-pass π-type prototype.
Mechanically-tunable capacitors from Johanson Tech. were used as
variable CRs and RF-switching was performed through ideal 0 Ω resis-
tors. The manufactured prototype is shown in Fig. 3. Fig. 4 depicts its
RF-measured response for the two tunable BW states that were obtained
by switching the number of AWRs in each AWLR module. It can be
seen that a BW tuning ratio of 2.5:1 is obtained while keeping the
in-band τg constant along the passband for all tuning states. The RF per-
formance characteristics of the BW-switched states are as follows.
Narrow-BW state: IL = 2.73 dB (Qeff>10,000), 3 dB BW= 0.18 MHz
(i.e. 3 dB FBW= 0.5kt

2), and τg = 1.98 μs. Broad-BW state:
IL = 1.45 dB (Qeff>10,000), 3 dB BW= 0.18 MHz (i.e. 3 dB FBW=
1.3kt

2), and τg = 0.98 μs. A comparison between the measured response
and the EM-simulated ones by using both the single-mode and multi-
mode Butterworth Van-Dyke AWR model is also shown at the same
figure. Their close agreement successfully validates the proposed
flat-in-band τg and switched-BW SAW-based BPF concept.

Conclusion: SAW-based BPFs with flat in-band τg and reconfigurable-
BW passbands are reported. They are based on RF-switched multi-
resonant AWLRs that are appropriately combined with a Gaussian-type
source-to-load impedance inverter network. Unlike conventional
ladder-/lattice-/self-cascaded SAW-BPF architectures, they exhibit the
following merits: (i) realisation of passbands with discretely-selectable
BW and flat in-band τg, (ii) FBWs>kt

2, and (iii) avoidance of lossy
elements or AWRs with different resonant characteristics as for
example in [6]. The engineered flat-in-band-τg and BW-switchable
SAW-based BPF concept has been experimentally validated through
a 433.9 MHz two-pole/four-TZ prototype that makes use of
commercially-available SAW resonators.
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