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ABSTRACT

Modern design problems present both opportunities and
challenges, including multifunctionality, high dimensionality,
highly nonlinear multimodal responses, and multiple levels or
scales. These factors are particularly important in materials
design problems and make it difficult for traditional optimization
algorithms to search the space effectively, and designer intuition
is often insufficient in problems of this complexity. Efficient
machine learning algorithms can map complex design spaces to
help designers quickly identify promising regions of the design
space. In particular, Bayesian network classifiers (BNCs) have
been demonstrated as effective tools for top-down design of
complex multilevel problems. The most common instantiations
of BNCs assume that all design variables are independent. This
assumption reduces computational cost, but can limit accuracy
especially in engineering problems with interacting factors. The
ability to learn representative network structures from data could
provide accurate maps of the design space with limited
computational expense. Population-based stochastic
optimization techniques such as genetic algorithms (GAs) are
ideal for optimizing networks because they accommodate
discrete, combinatorial, and multimodal problems. Our approach
utilizes GAs to identify optimal networks based on limited
training sets so that future test points can be classified as
accurately and efficiently as possible. This method is first tested
on a common machine learning data set, and then demonstrated
on a sample design problem of a composite material subjected to
a planar sound wave.
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INTRODUCTION

Advances in manufacturing processes and simulation
capabilities have made it possible to design more complex
materials and structures. These complex engineering system
design problems are commonly broken down into subproblems,
at which point the high-level challenge becomes managing the
dependencies between the subproblems and identifying high-
performance system-wide solutions. This is often a cumbersome
process of iteratively adjusting candidate designs in pursuit of
optimal performance. The expense of this optimization process
grows with the problem’s dimensionality, the degree of coupling
between variables and subsystems, the nonlinearity of the
underlying relationships, and the computational expense of the
underlying simulation models.

As a means of addressing these complex systems design
problems, design exploration techniques aim to explore the
design space to identify sets of promising designs. Set-based
design exploration methods, in particular, focus on identifying
sets of satisfactory performance for each subproblem in a
complex systems design problem instead of identifying unique
optimal point-wise solutions. These sets of solutions can be
intersected across subproblems to identify system-wide solutions
with fewer total iterations compared to traditional point-wise
optimization [1]. Figure 1 presents a simplified illustration of the
set-based design paradigm.

A key challenge in the set-based approach is mapping the
sets of promising solutions, especially for problems with
complex, highly nonlinear design spaces. Interval-based
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Figure 1. Mapping sets of mutually satisfactory designs for coupled subproblems.

techniques, which assign lower and upper bounds for each
design variable [2], are simple to implement but limited to hyper-
rectangular representations that can perform poorly for highly
nonlinear problems. This challenge motivates the use of more
flexible techniques that can map more complex design spaces
and identify arbitrary sets of solutions. Kernel-based Bayesian
network classifiers (BNCs) have been demonstrated to map
regions of satisfactory performance more accurately [3,4], and
they have been used to aid the search for solutions for complex
multilevel materials design problems such as multilevel design
of negative stiffness metamaterials and process-aware design of
additively manufactured parts [5,6].

BNCs offer several advantages for design exploration.
Bayesian statistics make it straightforward to incorporate new
data along with prior knowledge for more efficient exploration.
Additionally, Bayesian techniques are easily adapted to
accommodate both continuous and discrete design variables,
whereas many other machine learning techniques require
homogeneous design spaces. Classifiers themselves are
appropriate for non-unique mappings, which are common when
mapping the inverse relationship between performance targets
and design variables, whereas most surrogate models are more
appropriate for unique forward mappings. Also, unlike

discriminative classifiers, such as support vector machines,
which have also been utilized in materials design applications [7]
and output simply the “best” class, Bayesian classifiers are
generative and utilize probabilistic algorithms to output the
probability of class membership. Accordingly, they can provide
confidence values associated with a classification and they can
be straightforwardly integrated with optimization and adaptive
search techniques to explore design spaces efficiently [8].
Identifying an appropriate network structure is a challenge
for implementing BNCs, however. Typically, BNCs are based on
naive networks that encode no dependencies between design
variables. This assumption is surprisingly robust, as naive
networks can often perform as well as, or even better than, more
complex networks even in problems where there are variable
dependencies. However, it has been shown that including
appropriate dependence relationships between variables can
increase classification accuracy (in our case accuracy of the
design space maps) substantially in many cases [9,10]. Modeling
too many dependencies, however, can needlessly increase
computational expense because more complex network
structures require more training points to provide accurate
classification. It is therefore worthwhile to pursue methods to
identify intermediate network structures that improve
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Figure 2. Fully dependent (left) and fully independent (right) Bayesian networks.

classification performance and provide more accurate sets of
promising solutions to designers even when the availability of
training points is limited. In this paper, genetic algorithms are
utilized to identify suitable network structures for BNCs, and the
impact on classification accuracy is demonstrated for a sample
machine learning problem and a materials design problem. The
next section provides a more in-depth description of BNCs,
followed by a description of the network optimization approach
and then an application of the combined approach to test
problems.

BAYESIAN NETWORK CLASSIFIERS

Bayesian networks are probabilistic directed acyclic
graphical models (DAGs) used to represent a set of conditional
dependence relationships that combine to form a joint
probability distribution. The nodes of the graph represent
random variables, and the directed arcs that connect the nodes in
the graph represent dependencies between variables. The head of
the arrow points to the child variable, while the tail of the arrow
connects to the parent variable. In Bayesian analysis, a variable
is assumed to be conditionally independent of all of its non-
descendant variables given its parent variables. These graphs
provide a convenient way of encoding the relationships between
design variables for statistical analysis. BNCs utilize a class
variable as a root node which serves as a parent variable to every
analysis variable. Examples of fully-dependent and fully-
independent (naive) classifier networks can be seen in Figure 2.

BNCs utilize Bayes theorem to estimate the probability that
a given data point of interest will fall in a particular class. In this
context this probability is referred to as the posterior class
probability, and is denoted as p(c;|x). In order to make this
calculation one must first know the class-conditional probability
of that data point p(X|c;) as well as the prior probability of that
class p(c;). These quantities are multiplied to form the joint
probability that both the design point and the class will
occur p(c;, x). The joint probability is then normalized by the

probability of the data point of interest occurring at all, which is
calculated as the sum of the joint probability distribution across
all classes. This calculation can be seen in Equation 1.

p&leop(e) _  p&ledple) 1)
p(x) 2_1pXlep(er)

In most settings it is impossible to know the necessary
probability distributions a priori. In design problems the
distributions are estimated by evaluating the performance of a set
of candidate designs with known properties using forward
models such as simulations or physical experiments. These
training points are classified as high or low performance based
on a performance threshold specified by the designer. These
training points can then be used to estimate the posterior
probability that any point of interest in the design space will fall
into a given class without evaluating that point using the forward
model. The prior probabilities of each class can be easily
estimated by simply assigning probabilities according to the
proportion of training points that fall into each class as a ratio of
the total number of training points. The crux of this method lies
in estimating the class-conditional probability of the relevant
design point. In discrete design spaces the multinomial
distribution can be estimated through use of a histogram.
However, most design problems involve continuous variables. In
these design spaces it is necessary to create distribution models
that can extend the influence of discrete training points into the
surrounding continuous space, which always incurs
computational cost. One common method to construct these
distributions is a technique known as kernel density estimation
(KDE). In this method, a Gaussian kernel with tunable
bandwidth is centered on each training point such that the
influence of that point on the surrounding space is higher the
closer you come to that point. The influence of all training points
is then summed to create the overall map of the space.

palx) =
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Figure 3. A set of points (designated as the blue and red triangles in the figure) are evaluated using a simulation model and
classified using a performance threshold. The sets of high and low performance points are used as training points to construct
separate kernel density estimates according to Equation 2 and scaled by the prior probabilities of the respective classes (left).
The joint probability distributions are transformed using Equation 1 to obtain the posterior probabilities of class membership,
which are compared according to Equation 5 to form a classification decision surface (right). The boundary of the satisfactory

design region is encircled by the black dotted line.

The equation for determining the class conditional
probability of a particular candidate design from the KDE is
shown in Equation 2,

D
p(xlc) = Hp(xilpa.-,q)
i=1
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where X is the candidate design of interest, £/ are the training
points, h;; is the bandwidth of the Gaussian distribution for the
i dimension, pa; is the set of parent variables for the i
dimension, N; is the number of training points for class [, and D
is the number of design variables. The bandwidth of the Gaussian
kernels can have a significant impact on the classification
accuracy [3,4,9]. Shahan et. al. established heuristics for setting
bandwidth [3,11] in 2D spaces in the following form with g;; as
the standard deviation of the normalized data for the i
dimension and « as a tunable parameter.
h.o = g ,-,la
il \/ﬁl (3)
This heuristic yielded sharp kernels which improved
effectiveness in low-dimensional design spaces. However,
increasing the dimensionality of the design space causes a much
sparser covering of the space with the same number of training
points. Smoother kernels with wider bandwidths spread the
influence of each training point farther to accommodate for this
effect. With this in mind the bandwidth heuristic is adapted to

higher-dimensional spaces in the following form.
_ g i‘la

h:) =
"R, “)
This heuristic increases the smoothing for each additional
dimension, which combats the sparsity of larger design spaces.

In this work the tuning parameter is set to @ = 1.6 by manual
tuning of classification accuracies. However, methods for
adaptively setting kernel bandwidth in higher-dimensional
problems would be a valuable avenue for further research.

In design space classification tasks the KDE class-
conditional likelihood calculation is completed for two different
sets of training data, which have previously been classified as
either satisfactory or unsatisfactory, depending on whether their
predicted performance exceeds a threshold set by the designer.
The posterior class probability can then be calculated for each
class independently and compared for classification purposes
according to Equation 5. The class with the higher probability is
assigned to that test point, with points for which Equation 5
equals zero determining the decision boundary. A visual
representation of a 2D design space map and classification
decision surface can be seen in Figure 3.

Decide c, if:
p(x|cy)p(cq) (%)

Y2 _ p(xlc)p(cy)

_ p(X|cy)p(cy)
Yio p&lep(er)

The central challenge of Bayesian classification,
particularly in continuous design spaces, is to reduce
computational cost. The KDE calculation is the main cost of
Bayesian classification in continuous spaces. The cost of this
process scales linearly with the number of parent variables
involved in the analysis as can be seen in Equation 2 and clarified
in Table 1.
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Table 1. Time complexity of classification where N is the
number of training points, D is the number of design
variables, and L is the length of the longest chain of parent
variables in the network.

Time Complexity
Naive Intermediate
ON) O(NL), 1<L<D

Fully-Dependent
O(ND)

The easiest way to reduce computational cost is to reduce
the number of parent variables, which is why naive Bayes
networks (networks with no parent variables) are very popular in
many practices. However, removing parent variables that
represent dependencies that are actually present in the system
can increase the asymptotic error of the resulting classification
[9,10]. It is clear from Equation 2 that the parent variables of
each design variable could have a significant effect on the class
conditional probability. The extent to which the elimination of
relevant variable relationships affects accuracy depends on the
system being evaluated. However, we hypothesize that
engineering design problems may be particularly susceptible to
this issue for two reasons. First, engineering design variables are
commonly coupled in terms of their effect on performance,
which yields more opportunities for variable dependencies to
affect classification. Second, complex engineering systems often
have forward models that are expensive to evaluate, with
simulations taking anywhere from hours to days or even weeks
to execute. In this context it is important to build a classifier that
is as accurate as possible with limited training data. The goal is
then to be able to identify and maintain important dependencies
between variables while removing unnecessary variable
connections to save time and resources and speed convergence.

Learning design variable network structures from data has
the potential to provide even more value to the design process
beyond increasing accuracy of design space mappings and time
savings. These structures could reveal relationships between
variables of which designers were previously unaware, causing
them to reexamine the problem from a new perspective and
enhancing innovation. The revelation of unintuitive variable
dependencies through the network itself as well as surprising
areas of high performance from the design space maps could
combine to form a powerful tool for seeding new design ideas.
In order for the designer to realize all of these advantages, an
appropriate optimization method must be utilized which can
learn appropriate network structures and yield improved
mappings of the design space.

NETWORK STRUCTURE OPTIMIZATION

The optimization of Bayesian networks for classification
accuracy is a difficult problem. The dependencies between
variables that form the network structure must first be learned
from the data itself, and then this structure must be used to map
the space of interest and make predictions about future data. The
learning of Bayesian network structure is a combinatorial
problem, with binary entries used to represent the conditional
dependence or independence between variables. The discrete
nature of the problem presents a challenge for many optimization
algorithms that depend on gradient information. Additionally,
network performance can be highly multimodal, with small
changes in network structure often creating large deviations in
classification accuracy. Perhaps the greatest challenge is that the
search space grows rapidly with the dimensionality of the
network according to Equation 6.

D

f) = > 0 ()20 - 1) (6)

i=1

In light of these challenges for global optimization of
network structures, local search methods or heuristic
optimization techniques are commonly employed. Greedy hill
climbing has been used to evaluate network structures, but this
works best for sparse networks (networks with few parents) [12].
Evolutionary algorithms are well-suited to learn intermediate-
density network structure from data [12,13]. There are many
different styles of evolutionary algorithms, but they all share the
same basic principles inspired by biological evolution. This work
utilizes the well-established genetic algorithm (GA). The
efficacy of GAs is attributed to the building block hypothesis,
which states that strings of traits that lead to high performance
are implicitly modelled and proliferated by the GA’s
probabilistic operators of selection, crossover and mutation [14].

Heuristic evolutionary techniques such as GAs have been
used in the statistical community to optimize Bayesian network
structure [12-13,15-16]. This work aims to bring these
techniques into the design community for the first time by
applying GAs to improve the accuracy of BNCs for design space
mapping and exploration. The heuristic techniques fall under
what is known as a score plus search method in which the GA is
the search mechanism [13] and the score provides the fitness
function for the GA. There are a number of established scoring
metrics from statistics such as penalized maximum likelihood
and minimum descriptive length, which both seek to find the
maximum likelihood of the data with penalties for more complex
models to avoid overfitting [10,13]. However, our approach is
focused in particular on Bayesian network classifiers with the
end goal of providing more accurate mappings of promising
design spaces. In light of this goal, the fitness function is the
classification accuracy yielded by each candidate network
structure when tested on a large set of data reserved for
validation.

Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 07/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The logical flow of the implementation of this method is
illustrated in Figure 5. A critical component is forming suitable
representations of the network structures for the operations
required throughout the method. An example of how a candidate
network structure is encoded in various forms can be seen in
Figure 4. The parent matrix allows for convenient indexing in the
process of structure generation to ensure variables remain in the
appropriate ordering. The training structures hold the
dimensional indices of the parent variables in the overall data set
so that they can be accessed easily during the classification
calculations. The GA population entries are reshaped into strings
to allow for convenient crossover of selected network structures.
Based on these representations, BNC calculations and GA
operations can be performed efficiently. The crossover
probability is set to 0.95 and the mutation probability is set to
0.05. These values encourage aggressive changes in the
population for increased diversity in the search. The termination
criteria is set as a maximum number of GA iterations based on
time constraints and convergence rates which change with
complexity of the network.

A topological ordering of the variables is enforced in this
analysis to achieve some significant advantages. The design
variables are ordered from one to nine, and parent variables are
required to precede them in the order, e.g. variable 3 could be a
parent of variable 4 but not vice versa. Topological ordering
ensures there will be no cyclic networks that violate Bayesian
criteria, and renders a much more tractable search space of
possible networks. This assumption usually does not create vast
differences in classification accuracy except in special cases
[12], which may be explored in later work. The random
mutations involved in GAs can often create cyclic networks that
violate topological ordering. It is therefore necessary to
implement a repair mechanism to ensure variables remain in
their topological ordering. This mechanism is implemented by
converting the population strings into the parent matrices and

0
Parent Matrix = 0
0

(=Nl
S = O

0
Training Structure = [1]
2

Population Entry = 000100010

Figure 4. Representations of network structures used for
different stages of GA calculations.
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Figure 5. GA logic for optimizing classifier

network structure.
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enforcing all entries in the lower triangle of the parent matrices
to be zeros.

PROBLEMS AND RESULTS

A simple instantiation of the genetic algorithm outlined in
Figure 5 was used in this work. The method was first tested on a
discrete data set in order to establish the efficacy of the method
in this instance. The Monk’s data set from the UC Irvine machine
learning data repository [17] was chosen. The data set was six-
dimensional and partitioned into 124 training points and 432 test
points. A histogram was used to estimate the class-conditional
likelihood of the data points. The initial network structures were
generated randomly, with each possible parent variable having a
50% chance of being included in the network. No limitations on
the maximum number of parent variables were set. A total of 20
candidate networks were included in the initial population, and
the GA was terminated after 20 iterations. The GA was run five
times to assess the consistency of classification accuracy
improvement. Table 2 shows that the GA yielded significant
improvements in accuracy. An example intermediate-density

chosen was the design of a 3-layer composite material
submerged in water subjected to a planar sound wave. The goal
of this materials design problem was to minimize the sound
reflected back to the source. These types of acoustic damping
materials could find use in sonar applications.

As shown in Figure 7 and Table 3, each layer of the
composite material was defined by a distinct density, p, sound
speed, ¢, and thickness, 7. These design variables determined the
performance of the composite. The performance objective was
to obtain a reflection coefficient, R, of at least -6 dB. The
reflection coefficient is defined as the ratio of the amplitude of
the reflected wave to the amplitude of the source wave, which is
equivalent to the difference between these amplitudes in the log
space of decibels. The source of the planar sound wave was set
to a driving frequency, f, of 1000 Hz. The water on either side of
the composite was defined by its density, po = 1000 kg/m?, and
sound speed, ¢p = 1500 m/s.

Table 3. Problem formulation for design of acoustic damping
composite material.

network identified by one of the runs is shown in Figure 6. Constants po= 1000 kg/m’
Table 2. Classification results for Monk’s data set. The €0 = 1500 m/s
. . . . . f=1000 Hz
standard deviation across GA runs is displayed in Desion Variabl
parentheses. esign Variables P15C1 L
p2,¢C2,0
Network Structure Classification Accuracy % (o) p3 ,C3 .13
Naive 71.3 Variable Bounds 800 kg/m’ < p < 2000 kg/m?
Fully-Dependent 77.3 100 m/s < ¢ < 2000 m/s
Average GA Network 97.9 (0.49) 0.0lm<¢< 0.lm
Performance Threshold R=Pp/Ps<-6dB

Figure 6. A sample network structure identified by the GA
for the Monk’s problem.

This problem established that a GA search of network
structure with classification accuracy as the fitness function
could drastically increase accuracy in some problem domains.
The next step was to test this in a continuous design problem
domain using the kernel-based BNC technique discussed
previously in detail. An example problem of intermediate
dimensionality was needed such that the search space of possible
networks would be large enough to make traditional search
impractical but modest enough to enable fine-tuning of the GA
search algorithm as needed. In light of this goal, the problem

As with the previous example, the GA method outlined in
Figure 5 was used to identify the best network for the BNC. The
difference in this instantiation, apart from using KDEs rather
than histograms to estimate class-conditional probabilities, was
in the initialization of the population. Due to the larger search
space of possible networks, the population was initialized in a
different way. Truly random initial structures in a problem of this
dimensionality would have made it very difficult to find
relatively sparse network structures. Therefore, varying levels of
network complexity were included in the initial population. The
initial population was generated by iteratively adding parent
variables to a particular variable. The number of iterations was
set equal to the maximum number of available parents. A new
parent variable was added each iteration with a probability of
50%; if a new parent variable was added, that parent was chosen
randomly from the available parents (any variable before the
current variable in the ordering). This process was completed for
3 sets of 8 candidate network structures with the maximum
number of parent variables limited to 2, 4, and 6 variables for
each set, respectively. In addition, 14 instances of truly random
structures were constructed through the same process as the
discrete case. Finally, a naive and a fully dependent network
structure were included in the initial population to ensure that
these networks, which could have been implemented a priori,
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Figure 7. Problem schematic for design of acoustic damping composite material.

were not excluded from the search. A total of 40 candidate
networks were included in the initial population.

The forward model of this problem evaluated candidate
designs quickly, so classification accuracy in this instance was
determined by using a set number of training points to train the
KDEs and then validating the classifiers on a large set of test
points. The Halton sequence was used to generate a large pool of
design points. The training points were selected as the first 1000
points of each class in the sequence, yielding 2000 total training
points. A sample of 2000 points from later in the sequence was
used for validation.

Once the GA and BNC parameters were fully defined, the
GA was executed 5 times to assess how consistently the GA
improved classification accuracy. The average classification
accuracy of the best network identified by each GA trial is
compared against the naive and fully-dependent networks in
Table 4.

Table 4. Classification results for acoustic composite
problem. Standard deviation across GA trials is displayed in
parentheses.

Network Structure Classification Accuracy % (o)
Naive 81.9

Fully-Dependent 83.1

Average GA Network 88.3 (0.18)

Table 5 documents a representative network structure found
by the GA. This network demonstrated the best classification
accuracy identified across all 5 GA trials.

Table 5. Best performing composite material network
structure identified across all GA runs.

Variable Parent Variables
pi

¢ pi

1 Pl Cl

P2 p1

1) ci, i, p2

%) Cr, €2

ps3 pi,tr, ¢

C3 C1, C2,pP3

13 p1, P2, 12, p3, C3

There were a number of commonalities between the
networks identified by the different GA trials. Parent variables
that appeared in at least 3 of the GA identified networks are
shown in Table 6.

Table 6. Variable dependencies frequently identified in
separate GA trials. The commonality implies that these
dependency relationships are significant in the system.

Variable Parent Variables
pi

€1 pP1

1 Pl Cl

P2 I

2 C1, p2

5] Cr, €2

P3 pr, €2

C3 C1, P2, €2, P3
13 C2, €3
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The amount of training data to include is an important
variable in this method because sparse training data can limit the
effectiveness of especially complex network structures. Also, in
higher-dimensional spaces more training points are needed to
train accurate classifiers. To investigate the effect of the size of
the training set, the accuracy of the GA-optimized networks was
compared to the performance of a naive (fully disconnected) and
a fully connected network for a range of training points. The
Halton sequence was again used to generate a large pool of
design points. The training points were selected as the first X
points of each class in the sequence with X ranging from 100 to
2000 in steps of 100. The same validation set of 2000 points from
later in the sequence was used for validation. Figure 8 shows that
for all training set sizes, the GA-optimized networks provide
higher classification accuracy than either the naive Bayes or the
fully dependent network. The improvement is even more
significant for training sets of more than 1500 points.

Network Accuracy
0.24 T T T
Naive Bayes
L . — GA networks w/ Cl bounds | |
0.22 -T-.\ —-—- Fully Dependent
‘\\
02f ;
2
4]
T .18
e
i -
T 06T Saee
=} e NS
._
0.14 |
ozt e
01 A L . A L . A
0 500 1000 1500 2000 2500 3000 3500 4000

Number of Training Points

Figure 8. Convergence of classification accuracies as a
function of the number of training points. The red line
represents the average accuracy across GA networks, with
the black dotted lines showing 95% confidence interval
bounds.

Classification accuracies have largely converged for all
three types of networks by approximately 2000 training points,
with further increases in the size of the training set yielding
minimal improvements in classification accuracy. This validates
the choice of 2000 training points used in this work for network
optimization. The rate of convergence is likely to change,
however, for problems of different dimensionality or
interrelationships among variables. Including more training data
generally allows all networks, especially more complex
networks, to classify additional points more accurately; however,
computational expense and time constraints often limit the
availability of training data. In this case, Figure 8 shows that if
the simulation were more expensive and less data were available,
utilizing GAs to find intermediate networks would still be the

best strategy as the intermediate networks still outperform the a
priori (naive Bayes and fully-dependent) networks. Less training
data would likely cause convergence to less dense networks as
they converge more quickly in general.

DISCUSSION

The classifier network optimization was very successful in
the case of the discrete Monk’s data set. Improvements seen
through network optimization in the continuous design problem
were less dramatic but still significant. This may be due to the
difference in how class conditional probabilities were calculated;
the adjustment of Gaussian kernel products may not yield the
same drastic effect as adding additional histogram bins to more
accurately represent a multinomial distribution. Additionally, the
differences may be due to the problems themselves. The
dependencies in the Monk’s problem may be more dependent on
class than those of the acoustic composite problem, thus yielding
a greater improvement in classification. This is supported by the
fact that the naive network has a stronger classification accuracy
in the acoustic composite problem than the Monk’s problem. As
discussed previously, the effects of dependencies on
classification accuracy can vary widely based on the type of
dependency and the interactions between different groups of
dependencies. Network optimization for classification accuracy
does not necessarily identify the strongest dependencies, but
those that affect classification most significantly. This is an
important distinction, as certain types of dependencies have
stronger influences on classification results. Variable
dependencies that have a concentrated influence on one class of
performance affect classification accuracy more significantly
than dependencies that have a relatively consistent influence
regardless of the class of performance. Additionally, particular
network dependencies that favor one class over another can be
cancelled out by the presence of other dependencies which favor
the opposite class just as strongly [18]. Some of these mitigating
factors are likely to be present in the composite material
problem, as including the dependencies in the problem improves
accuracy by a modest amount of about 7%. However, this jump
in accuracy is still significant and would certainly improve the
utility of these design mappings in a multilevel problem.

Inspection of the network structures revealed by the various
iterations of the GA yielded significant commonality, increasing
the likelihood that these dependencies are important to
performance. The composite material appears to have strong
interaction between the densities and sound speeds, with
dependencies on thicknesses appearing far less often. This
outcome matches physical intuition in this problem because the
acoustic impedance of each layer is governed by the product of
these properties. For the reasons cited above, it does not mean
that these are the only significant dependencies in the system;
however, the dependencies identified repeatedly by the GA do
provide insight into interactions that effect design performance
and may be exploited for improved designs. In this example,
designers could utilize the interaction between densities and
sound speeds to ensure the ratio of these properties for each layer
yields a desirable sequence of impedances.
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Overall, the GA consistently resulted in a classification
accuracy superior to that of both the naive and the fully-
dependent networks in both problem paradigms. This method
appears to be a promising avenue for improving the accuracy of
design space mappings when limited training data is available.

FUTURE WORK

There are a number of promising avenues for future research
in this area. For example, estimation of distribution algorithms
(EDAs) are another branch of evolutionary algorithms that have
been demonstrated to identify network structures more robustly
than GAs in some cases. EDAs form explicit probabilistic
models over the chosen representation of traits held by good
solutions and sample this model for each subsequent generation
[19]. This formal modelling of traits can capture interactions
directly and lead to improved performance in some cases, but
comes at a cost of increased computational expense [13,19]. It
would be enlightening to explore these tradeoffs and compare the
efficacy of EDAs to traditional GAs for design exploration and
design space mapping applications.

A potential limitation of this work is that an ordering of the
variables was assumed. In future work adapting the method to
search various variable orderings in addition to variable
dependencies could provide performance improvements.
Furthermore, the nature of Bayesian networks allows prior
information to be easily encoded before the optimization process
begins. Utilizing expert knowledge to initialize the optimization
with expected significant dependencies instead of random
network structures could speed convergence and improve the
likelihood that the GA finds optimal network structures.

Another challenge is to apply this approach to engineering
systems design problems with much larger numbers of variables.
As the number of variables increases, the computational
complexity of the KDE method to estimate class-conditional
probabilities can become prohibitive. One option to mitigate this
difficulty could be to utilize Gaussian mixture models, which
operate in a very similar manner to KDEs but use a much smaller
set of Gaussian kernels, thus improving computational time. A
second option would be to utilize proper orthogonal
decomposition techniques to reduce the dimensionality of these
problems by eliminating less significant design variables where
appropriate. These approaches must be explored to scale this
method to even more complex materials and systems design
problems.

ACKNOWLEDGMENTS

The authors would like to acknowledge support from the
National Science Foundation under Grant No. CMMI -1435548.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsor. The authors would
also like to acknowledge the support of The University of Texas
at Austin Cockrell School of Engineering through the
Engineering Doctoral Fellowship.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(9]

[10]

[11]

[12]

[13]

[14]

10

Sobek, D.K., Ward, A.C., Liker, J.K., 1999, “Toyota’s
Principles of Set-Based Concurrent Engineering,”
Sloan Management Review, 40(2), pp. 67-84.

Panchal, J.H., Fernandez, M.G., Christiaan, J.J.,
Paredis, J.K., Mistree, A., Mistree, F., 2007, “An
Interval-Based Constraint Satisfaction (IBCS) Method
for Decentralized, Collaborative Multifunctional
Design,” Concurrent Engineering, 15(3), pp. 309.
Shahan, D.W., Seepersad, C.C., 2012, “Bayesian
Network Classifiers for Set-Based Collaborative
Design,” Journal of Mechanical Design, 134(7), pp.1
14.

John, G., Langley, P., 1995, “Estimating Continuous
Distributions in Bayesian Classifiers,” Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers Inc,pp.
338-345.

Matthews, J., Klatt, T., Seepersad, C.C., Haberman,
M.R., Shahan, D.W., 2013, “Hierarchical Design of
Composite Materials with Negative Stiffness Inclusions
Using a Bayesian Network Classifier,” DETC2013-
13128, ASME IDETC Design Automation Conference,
Portland, Oregon.

Rosen, D., 2015, “A Set-Based Design Method for
Material-Geometry Structures by Design Space
Mapping,” DETC 2015-4676, ASME IDETC Design
Automation Conference, Boston, MA.

Galvan, E., Malak, R.J., Gibbons, S., Arroyave, R.,
2017, “A Constraint Satisfaction Algorithm for the
Generalized Inverse Phase Stability Problem,” Journal
of Mechanical Design, 139(1), pp. 011401.

Backlund, P., Shahan D.W., Seepersad C.C., 2015,
“Classifier-guided Sampling for Discrete Variable,
Discontinuous Design Space Exploration:
Convergence and Computational Performance,”
Engineering Optimization, 47(5), pp. 579-600.

Perez, A., Larranaga, P., Inza, 1., 2009, “Bayesian
Classifiers Based on Kernel Density Estimation:
Flexible Classifiers,” International Journal of
Approximate Reasoning, 50(2), pp. 341-362.
Friedman, N., Geiger, D., Goldszmidt, M., 1997,
“Bayesian Network Classifiers,” Machine Learning,
29(2-3), pp.131-163.

Shahan, D., 2010, “Bayesian Network Classifiers for
Set-based Collaborative Design”, PhD Dissertation,
The University of Texas at Austin, Austin.

Murphy, Kevin P., 2012, Machine Learning A
Probabilistic Perspective, MIT Press, Cambridge, MA.
Larranaga, P., Karshenas, H., Bielza, C., Santana, R.,
2013, “A Review on Evolutionary Algorithms in
Bayesian Network Learning and Inference Tasks,”
Information Sciences, 233, pp.109-125.

Goldberg, D.E., 1989, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley,
Reading, MA.

Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 07/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



[15] Larranaga, P., Poza, M., Yurramendi, Y., Murga, R.H.,
Kuijpers, C.M.H., 1996, “Structure Learning of
Bayesian Networks by Genetic Algorithms,” /EEE
Transactions on Pattern Analysis and Machine
Intelligence, 18(9), pp. 912-926.

[16] Heckerman, D., Geiger, D., Chickering, D., 1995,
“Learning Bayesian Networks: the Combination of
Knowledge and Statistical Data,” Machine Learning
20(3), pp. 197-243.

[17] Lichman, M., 2013, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml], Irvine, CA: University
of California, School of Information and Computer
Science.

[18] Zhang, H., 2004, “The Optimality of Naive Bayes,”
Proceeding of the Seventeenth Internatinal Florida
Artificial Intelligence Research Society Conference,
Miami Beach, ATAA Press.

[19] Larranaga, P., Lozana, J., 2001, Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation, Kluwer Academic Publishers, Norwell,
MA.

11 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 07/23/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



