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ABSTRACT 
Modern design problems present both opportunities and 

challenges, including multifunctionality, high dimensionality, 
highly nonlinear multimodal responses, and multiple levels or 
scales. These factors are particularly important in materials 
design problems and make it difficult for traditional optimization 
algorithms to search the space effectively, and designer intuition 
is often insufficient in problems of this complexity. Efficient 
machine learning algorithms can map complex design spaces to 
help designers quickly identify promising regions of the design 
space. In particular, Bayesian network classifiers (BNCs) have 
been demonstrated as effective tools for top-down design of 
complex multilevel problems. The most common instantiations 
of BNCs assume that all design variables are independent. This 
assumption reduces computational cost, but can limit accuracy 
especially in engineering problems with interacting factors. The 
ability to learn representative network structures from data could 
provide accurate maps of the design space with limited 
computational expense. Population-based stochastic 
optimization techniques such as genetic algorithms (GAs) are 
ideal for optimizing networks because they accommodate 
discrete, combinatorial, and multimodal problems. Our approach 
utilizes GAs to identify optimal networks based on limited 
training sets so that future test points can be classified as 
accurately and efficiently as possible. This method is first tested 
on a common machine learning data set, and then demonstrated 
on a sample design problem of a composite material subjected to 
a planar sound wave.  

INTRODUCTION 
Advances in manufacturing processes and simulation 

capabilities have made it possible to design more complex 
materials and structures. These complex engineering system 
design problems are commonly broken down into subproblems, 
at which point the high-level challenge becomes managing the 
dependencies between the subproblems and identifying high-
performance system-wide solutions. This is often a cumbersome 
process of iteratively adjusting candidate designs in pursuit of 
optimal performance.  The expense of this optimization process 
grows with the problem’s dimensionality, the degree of coupling 
between variables and subsystems, the nonlinearity of the 
underlying relationships, and the computational expense of the 
underlying simulation models.  

As a means of addressing these complex systems design 
problems, design exploration techniques aim to explore the 
design space to identify sets of promising designs. Set-based 
design exploration methods, in particular, focus on identifying 
sets of satisfactory performance for each subproblem in a 
complex systems design problem instead of identifying unique 
optimal point-wise solutions. These sets of solutions can be 
intersected across subproblems to identify system-wide solutions 
with fewer total iterations compared to traditional point-wise 
optimization [1]. Figure 1 presents a simplified illustration of the 
set-based design paradigm. 

A key challenge in the set-based approach is mapping the 
sets of promising solutions, especially for problems with 
complex, highly nonlinear design spaces. Interval-based 
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techniques, which assign lower and upper bounds for each 
design variable [2], are simple to implement but limited to hyper-
rectangular representations that can perform poorly for highly 
nonlinear problems. This challenge motivates the use of more 
flexible techniques that can map more complex design spaces 
and identify arbitrary sets of solutions. Kernel-based Bayesian 
network classifiers (BNCs) have been demonstrated to map 
regions of satisfactory performance more accurately [3,4], and 
they have been used to aid the search for solutions for complex 
multilevel materials design problems such as multilevel design 
of negative stiffness metamaterials and process-aware design of 
additively manufactured parts [5,6].  

BNCs offer several advantages for design exploration. 
Bayesian statistics make it straightforward to incorporate new 
data along with prior knowledge for more efficient exploration. 
Additionally, Bayesian techniques are easily adapted to 
accommodate both continuous and discrete design variables, 
whereas many other machine learning techniques require 
homogeneous design spaces. Classifiers themselves are 
appropriate for non-unique mappings, which are common when 
mapping the inverse relationship between performance targets 
and design variables, whereas most surrogate models are more 
appropriate for unique forward mappings. Also, unlike 

discriminative classifiers, such as support vector machines, 
which have also been utilized in materials design applications [7] 
and output simply the “best” class, Bayesian classifiers are 
generative and utilize probabilistic algorithms to output the 
probability of class membership.  Accordingly, they can provide 
confidence values associated with a classification and they can 
be straightforwardly integrated with optimization and adaptive 
search techniques to explore design spaces efficiently [8].  

Identifying an appropriate network structure is a challenge 
for implementing BNCs, however. Typically, BNCs are based on 
naïve networks that encode no dependencies between design 
variables. This assumption is surprisingly robust, as naïve 
networks can often perform as well as, or even better than, more 
complex networks even in problems where there are variable 
dependencies. However, it has been shown that including 
appropriate dependence relationships between variables can 
increase classification accuracy (in our case accuracy of the 
design space maps) substantially in many cases [9,10]. Modeling 
too many dependencies, however, can needlessly increase 
computational expense because more complex network 
structures require more training points to provide accurate 
classification. It is therefore worthwhile to pursue methods to 
identify intermediate network structures that improve 

Figure 1. Mapping sets of mutually satisfactory designs for coupled subproblems. 
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Table 1. Time complexity of classification where N is the 
number of training points, D is the number of design 
variables, and L is the length of the longest chain of parent 
variables in the network. 

Time Complexity 
Naïve  Intermediate Fully-Dependent 
O(N) O(NL), 1<L<D O(ND) 

  
The easiest way to reduce computational cost is to reduce 

the number of parent variables, which is why naïve Bayes 
networks (networks with no parent variables) are very popular in 
many practices. However, removing parent variables that 
represent dependencies that are actually present in the system 
can increase the asymptotic error of the resulting classification 
[9,10]. It is clear from Equation 2 that the parent variables of 
each design variable could have a significant effect on the class 
conditional probability. The extent to which the elimination of 
relevant variable relationships affects accuracy depends on the 
system being evaluated. However, we hypothesize that 
engineering design problems may be particularly susceptible to 
this issue for two reasons. First, engineering design variables are 
commonly coupled in terms of their effect on performance, 
which yields more opportunities for variable dependencies to 
affect classification. Second, complex engineering systems often 
have forward models that are expensive to evaluate, with 
simulations taking anywhere from hours to days or even weeks 
to execute. In this context it is important to build a classifier that 
is as accurate as possible with limited training data. The goal is 
then to be able to identify and maintain important dependencies 
between variables while removing unnecessary variable 
connections to save time and resources and speed convergence. 

Learning design variable network structures from data has 
the potential to provide even more value to the design process 
beyond increasing accuracy of design space mappings and time 
savings. These structures could reveal relationships between 
variables of which designers were previously unaware, causing 
them to reexamine the problem from a new perspective and 
enhancing innovation. The revelation of unintuitive variable 
dependencies through the network itself as well as surprising 
areas of high performance from the design space maps could 
combine to form a powerful tool for seeding new design ideas. 
In order for the designer to realize all of these advantages, an 
appropriate optimization method must be utilized which can 
learn appropriate network structures and yield improved 
mappings of the design space.  

 

NETWORK STRUCTURE OPTIMIZATION 
The optimization of Bayesian networks for classification 

accuracy is a difficult problem. The dependencies between 
variables that form the network structure must first be learned 
from the data itself, and then this structure must be used to map 
the space of interest and make predictions about future data. The 
learning of Bayesian network structure is a combinatorial 
problem, with binary entries used to represent the conditional 
dependence or independence between variables. The discrete 
nature of the problem presents a challenge for many optimization 
algorithms that depend on gradient information. Additionally, 
network performance can be highly multimodal, with small 
changes in network structure often creating large deviations in 
classification accuracy. Perhaps the greatest challenge is that the 
search space grows rapidly with the dimensionality of the 
network according to Equation 6. 

 𝒇(𝑫) =  ∑(−𝟏)𝒊+𝟏 (𝑫𝒊 )𝑫
𝒊=𝟏 𝟐𝒊(𝑫−𝒊)𝒇(𝑫 − 𝒊)  

(6) 

In light of these challenges for global optimization of 
network structures, local search methods or heuristic 
optimization techniques are commonly employed. Greedy hill 
climbing has been used to evaluate network structures, but this 
works best for sparse networks (networks with few parents) [12]. 
Evolutionary algorithms are well-suited to learn intermediate-
density network structure from data [12,13]. There are many 
different styles of evolutionary algorithms, but they all share the 
same basic principles inspired by biological evolution. This work 
utilizes the well-established genetic algorithm (GA). The 
efficacy of GAs is attributed to the building block hypothesis, 
which states that strings of traits that lead to high performance 
are implicitly modelled and proliferated by the GA’s 
probabilistic operators of selection, crossover and mutation [14].  

Heuristic evolutionary techniques such as GAs have been 
used in the statistical community to optimize Bayesian network 
structure [12-13,15-16]. This work aims to bring these 
techniques into the design community for the first time by 
applying GAs to improve the accuracy of BNCs for design space 
mapping and exploration. The heuristic techniques fall under 
what is known as a score plus search method in which the GA is 
the search mechanism [13] and the score provides the fitness 
function for the GA. There are a number of established scoring 
metrics from statistics such as penalized maximum likelihood 
and minimum descriptive length, which both seek to find the 
maximum likelihood of the data with penalties for more complex 
models to avoid overfitting [10,13]. However, our approach is 
focused in particular on Bayesian network classifiers with the 
end goal of providing more accurate mappings of promising 
design spaces. In light of this goal, the fitness function is the 
classification accuracy yielded by each candidate network 
structure when tested on a large set of data reserved for 
validation.  
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Overall, the GA consistently resulted in a classification 
accuracy superior to that of both the naïve and the fully-
dependent networks in both problem paradigms. This method 
appears to be a promising avenue for improving the accuracy of 
design space mappings when limited training data is available. 

 
FUTURE WORK 

There are a number of promising avenues for future research 
in this area. For example, estimation of distribution algorithms 
(EDAs) are another branch of evolutionary algorithms that have 
been demonstrated to identify network structures more robustly 
than GAs in some cases. EDAs form explicit probabilistic 
models over the chosen representation of traits held by good 
solutions and sample this model for each subsequent generation 
[19]. This formal modelling of traits can capture interactions 
directly and lead to improved performance in some cases, but 
comes at a cost of increased computational expense [13,19]. It 
would be enlightening to explore these tradeoffs and compare the 
efficacy of EDAs to traditional GAs for design exploration and 
design space mapping applications.  

A potential limitation of this work is that an ordering of the 
variables was assumed. In future work adapting the method to 
search various variable orderings in addition to variable 
dependencies could provide performance improvements. 
Furthermore, the nature of Bayesian networks allows prior 
information to be easily encoded before the optimization process 
begins. Utilizing expert knowledge to initialize the optimization 
with expected significant dependencies instead of random 
network structures could speed convergence and improve the 
likelihood that the GA finds optimal network structures.  

 Another challenge is to apply this approach to engineering 
systems design problems with much larger numbers of variables. 
As the number of variables increases, the computational 
complexity of the KDE method to estimate class-conditional 
probabilities can become prohibitive. One option to mitigate this 
difficulty could be to utilize Gaussian mixture models, which 
operate in a very similar manner to KDEs but use a much smaller 
set of Gaussian kernels, thus improving computational time. A 
second option would be to utilize proper orthogonal 
decomposition techniques to reduce the dimensionality of these 
problems by eliminating less significant design variables where 
appropriate. These approaches must be explored to scale this 
method to even more complex materials and systems design 
problems. 
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