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Abstract
Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a metric
space. Graphs are ubiquitous, and clustering and classi-
fication over graphs arise in diverse areas, including, e.g.,
image processing and social networks. Unfortunately,
popular distance scores used in these applications, that
scale over large graphs, are not metrics and thus come
with no guarantees. Classic graph distances such as,
e.g., the chemical and the CKS distance are arguably
natural and intuitive, and are indeed also metrics, but
they are intractable: as such, their computation does
not scale to large graphs. We define a broad family of
graph distances, that includes both the chemical and the
CKS distance, and prove that these are all metrics. Cru-
cially, we show that our family includes metrics that are
tractable. Moreover, we extend these distances by incor-
porating auxiliary node attributes, which is important
in practice, while maintaining both the metric property
and tractability.

1 Introduction
Graph similarity and the related problem of graph
isomorphism have a long history in data mining, machine
learning, and pattern recognition [21, 43, 38]. Graph
distances naturally arise in this literature: intuitively,
given two (unlabeled) graphs, their distance is a score
quanitifying their structural differences. A highly
desirable property for such a score is that it is a
metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [20, 19, 11], clustering [3], outlier
detection [7], and diameter computation [31] admit
fast algorithms precisely when performed over objects
embedded in a metric space. To this end, proposing
tractable graph metrics is of paramount importance in
applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example is
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the chemical distance [40]. Formally, given graphs
GA and GB, represented by their adjacency matrices
A,B ∈ {0, 1}n×n, the chemical distance is dPn(A,B) is
defined in terms of a mapping between the two graphs
that minimizes their edge discrepancies, i.e.:

dPn(A,B) = minP∈Pn ∥AP − PB∥F ,(1.1)

where Pn is the set of permutation matrices of size n and
∥ · ∥F , is the Frobenius norm (see Sec. 2 for definitions).
The Chartrand-Kubiki-Shultz (CKS) [18] distance is an
alternative: CKS is again given by (1.1) but, instead of
edges, matrices A and B contain the pairwise shortest
path distances between any two nodes.

The chemical and CKS distances have important
properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intuition
and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. However,
finding an optimal permutation P is notoriously hard;
graph isomorphism, which is equivalent to deciding if
there exists a permutation P s.t. AP = PB (for both
adjacency and path matrices), is famously a problem
that is neither known to be in P nor shown to be NP-
hard [8]. There is a large and expanding literature on
scalable heuristics to estimate the optimal permutation P
[34, 9, 42, 23]. Despite their computational advantages,
unfortunately, using them to approximate dPn(A,B)
breaks the metric property.

This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and non-
metric spaces [3]. We also demonstrate this empirically
in Section 5 (c.f. Fig. 1): attempting to cluster graphs
sampled from well-known families based on non-metric
distances significantly increases the misclassification rate,
compared to clustering using metrics.

An additonal issue that arises in practice is that
nodes often have attributes not associated with adja-
cency. For example, in social networks, nodes may con-
tain profiles with a user’s age or gender; similarly, nodes
in molecules may be labeled by atomic numbers. Such
attributes are not captured by the chemical or CKS
distances. However, in such cases, only label-preserving
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permutations P may make sense (e.g., mapping females
to females, oxygens to oxygens, etc.). Incorporating
attributes while preserving the metric property is thus
important from a practical perspective.
Contributions. We seek generalization of the chemical
and CKS distances that (a) satisfy the metric property
and (b) are tractable: by this, we mean that they can
be computed either by solving a convex optimization
problem, or by a polynomial time algorithm. Specifically,
we study generalizations of (1.1) of the form:

dS(A,B) = minP∈S ∥AP − PB∥(1.2)

where S ⊂ Rn×n is closed and bounded, ∥ · ∥ is a matrix
norm, and A,B ∈ Rn×n are arbitrary real matrices
(representing adjacency, path distances, weights, etc.).
We make the following contributions:
• We prove sufficient conditions on S and norm ∥ · ∥ for

which (1.2) is a metric. In particular, we show that
dS is a so-called pseudo-metric (see Sec. 2) when:

(i) S = Pn and ∥·∥ is any entry-wise or operator norm;
(ii) S = Wn, the set of doubly stochastic matrices,

∥ · ∥ is an arbitrary entry-wise norm, and A,B are
symmetric; a modification on dS extends this result
to both operator norms as well as arbitrary matrices
(capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and ∥ · ∥
is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, computing
(1.2) with S = Wn is tractable, as it is a convex
optimization. For S = On, (1.2) is non-convex but is
still tractable, as it reduces to a spectral decomposition.
This was known for the Frobenius norm [56]; we prove
this is the case for the operator 2-norm also.

• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (1.2). Crucially,
we do this without affecting the metric property and
tractability. This allows us to explore label or feature
preserving permutations, that incorporate both (a)
exogenous node attributes, such as, e.g., user age or
gender in a social network, as well as (b) endogenous,
structural features of each node, such as its degree
or the number of triangles that pass through it. We
numerically show that adding these constraints can
speed up the computation of dS .

From an experimental standpoint, we extensively
compare our tractable metrics to several existing heuris-
tic approximations. We also demonstrate the tractability
of our metrics by parallelizing their execution using the
alternating method of multipliers [15], which we imple-
ment over a compute cluster using Apache Spark [62].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [21], chemistry [6, 40], and social network
analysis [43, 38]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[46, 38, 55]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [28, 51] and the maximum common
subgraph distance [17, 16], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [48, 26] are
not metrics. The reaction distance [36] is also a metric
directly related to the chemical distance [40] when edits
are restricted to edge additions and deletions. Jain [32]
also considers an extension of the chemical distance,
limited to the Frobenius norm, that incorporates edge
attributes. However, it is not immediately clear how to
relax the above metrics [32, 36] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [50, 27, 49]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined by
their spectral decomposition [63, 60, 24]. In general,
in contrast to our metrics, such approaches are not
as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomorphism,
both convex and non-convex [42, 4, 56], have found
applications in a variety of contexts, including social
networks [37], computer vision [52], shape detection
[53, 30], and neuroscience [57]. None of the above works
focus on metric properties of resulting relaxations, which
several fail to satisfy [57, 37, 53, 30].

Metrics naturally arise in data mining tasks, includ-
ing clustering [61, 29], NN search [20, 19, 11], and outlier
detection [7]. Some of these tasks become tractable or
admit formal guarantees precisely when performed over
a metric space. For example, finding the nearest neigh-
bor [20, 19, 11] or the diameter of a dataset [31] become
polylogarithimic under metric assumptions; similarly,
approximation algorithms for clustering (which is NP-
hard) rely on metric assumptions, whose absence leads
to a deterioration on known bounds [3]. Our search for
metrics is motivated by these considerations.

2 Notation and Preliminaries
Graphs. We represent an undirected graph G(V,E)
with node set V = [n] ≡ {1, . . . , n} and edge set
E ⊆ [n] × [n] by its adjacency matrix, i.e. A =
[ai,j ]i,j∈[n] ∈ {0, 1}n×n s.t. aij = aji = 1 if and only if
(i, j) ∈ E. In particular, A is symmetric, i.e. A = A⊤.
We denote the set of all real, symmetric matrices by
Sn. Directed graphs are represented by (possibly non-
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symmetric) binary matrices A ∈ {0, 1}n×n, and weighted
graphs by real matrices A ∈ Rn×n.
Matrix Norms. Given a matrix A = [aij ]i,j∈[n] ∈
Rn×n and a p ∈ N+ ∪ {∞}, its induced or operator p-
norm is defined in terms of the vector p-norm through
∥A∥p = supx∈Rn:∥x∥p=1 ∥Ax∥p, while its entry-wise p-
norm is given by ∥A∥p = (

∑n
i=1

∑n
j=1 |aij |p)1/p, for

p ∈ N+, and ∥A∥∞ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as ∥ · ∥F .
Permutation, Doubly Stochastic, and Orthogo-
nal Matrices. We denote the set of permutation matri-
ces as Pn = {P ∈ {0, 1}n×n : P1 = 1, P⊤1 = 1}, the set
of doubly-stochastic matrices (i.e., the Birkhoff polytope)
as Wn = {W ∈ [0, 1]n×n : W1 = 1,W⊤1 = 1}, and
the set of orthogonal matrices (i.e., the Stiefel manifold)
as On = {U ∈ Rn×n : UU⊤ = U⊤U = I}. Note that
Pn = Wn∩On. Moreover, the Birkoff-von Neumann The-
orem [12] states that Wn = conv(Pn), i.e., the Birkoff
polytope is the convex hull of Pn.
Metrics. Given a set Ω, a function d : Ω × Ω → R is
called a metric, and the pair (Ω, d) is called a metric
space, if for all x, y, z ∈ Ω:

d(x, y) ≥ 0 (non-negativity)(2.3a)
d(x, y)=0 iff x=y (pos. definiteness)(2.3b)
d(x, y) = d(y, x) (symmetry)(2.3c)
d(x, y)≤d(x, z)+d(z, y) (triangle inequality)(2.3d)

A function d is called a pseudometric if it satisfies (2.3a),
(2.3c), and (2.3d), but the positive definiteness property
(2.3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x ∈ Ω.(2.3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ∼d y over Ω. A pseudometric
is then a metric over Ω/∼d, the quotient space of ∼d.
A d that satisfies (2.3a), (2.3b), and (2.3d) but not the
symmetry property (2.3c) is called a quasimetric. If d is a
quasimetric, then its symmetric extension d̄ : Ω×Ω → R,
defined as d̄(x, y) = d(x, y) + d(y, x), is a metric over Ω.
Graph Isomorphism, Chemical, and CKS Dis-
tance. Let A,B ∈ Rn×n be the adjacency matrices of
two graphs GA and GB . Then, GA and GB are isomor-
phic if and only if there exists P ∈ Pn s.t. P⊤AP = B
or, equivalently, AP = PB. The chemical distance,
given by (1.1), extends the latter relationship to capture
distances between graphs. Let ∥ · ∥ be a matrix norm in
Rn×n. For some Ω ⊆ Rn×n, define dS : Ω × Ω → R+ as:

dS(A,B) = minP∈S ∥AP − PB∥,(2.4)

where S ⊂ Rn×n is a closed and bounded set, so that the
infimum is indeed attained. Note that dS is the chemical

distance (1.1) when Ω = Rn×n, S = Pn and ∥ ·∥ = ∥ ·∥F .
In CKS distance [18], matrices A,B contain pairwise
path distances between any two nodes; equivalently,
CKS is the chemical distance of two weighted complete
graphs with path distances as edge weights. Our main
contribution is determining general conditions on S and
∥ · ∥ under which dS is a metric over Ω, for arbitrary
weighted graphs, thereby including both the chemical
and CKS distances as special cases.

For concreteness, we focus on distances between
graphs of equal size. Extensions to graphs of unequal
size are described in [10].

3 A Family of Graph Metrics
Our first result establishes that dPn is a pseudometric
over all weighted graphs when ∥ · ∥ is an arbitrary entry-
wise or operator norm.

Theorem 3.1. If S = Pn and ∥ · ∥ is an arbitrary
entry-wise or operator norm, then dS given by (2.4) is a
pseudometric over Ω = Rn×n.

Hence, dPn is a pseudometric under any entry-wise or
operator norm over arbitrary directed, weighted graphs.
Our second result states that this property extends to
the relaxed version of the chemical distance, in which
permutations are replaced by doubly stochastic matrices.

Theorem 3.2. If S = Wn and ∥·∥ is an arbitrary entry-
wise norm, then dS given by (2.4) is a pseudometric
over Ω = Sn×n. If ∥ · ∥ is an arbitrary entry-wise or
operator norm, then its symmetric extension d̄S(A,B) =
dS(A,B) + dS(B,A) is a pseudometric over Ω = Rn×n.

Hence, if S = Wn and ∥ · ∥ is an arbitrary entry-wise
norm, then (2.4) defines a pseudometric over undirected
graphs. The symmetry property (2.3c) breaks if ∥ · ∥ is
an operator norm or graphs are directed. In either case,
dS is a quasimetric over the quotient space Ω/∼d, and
symmetry is attained via the symmetric extension d̄S .

Theorem 3.2 has significant practical implications.
In contrast to dPn and its extensions implied by Theo-
rem 3.1, computing dWn under any operator or entry-wise
norm is tractable [14]: it involves minimizing a convex
function subject to linear constraints. A more limited
result extends to the Stiefel manifold:

Theorem 3.3. If S = On and ∥·∥ is either the operator
or the entry-wise (i.e., Frobenius) 2-norm, then dS given
by (2.4) is a pseudometric over Ω = Rn×n.

Though (2.4) is not a convex problem when S = On,
it is also tractable. Umeyama [56] shows that the
optimization can be solved exactly when ∥ · ∥ = ∥ · ∥F
and Ω = Sn (i.e., for undirected graphs) by performing
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a spectral decomposition on A and B. We extend this
result, showing that the same procedure also applies
when ∥ ·∥ is the operator 2-norm (see Thm. 7 in [10]). In
the general case of directed graphs, (2.4) is a classic
example of a problem that can be solved through
optimization on manifolds [2].
Equivalence Classes. The equivalence of matrix
norms implies that all pseudometrics dS defined through
(2.4) for a given S have the same quotient space Ω/∼dS

:
if dS(A,B) = 0 for one matrix norm ∥ · ∥ in (2.4), it will
be so for all. When S = Pn, Ω/∼dPn is the quotient
space defined by graph isomorphism: any two adjacency
matrices A,B ∈ Rn×n satisfy dPn(A,B) = 0 if and
only if their (possibly weighted) graphs are isomorphic.
When S = Wn, the quotient space Ω/ ∼dWn has a
connection to the Weisfeiler-Lehman (WL) algorithm
[59] described in [10]: Ramana et al. [47] show that
dWn(A,B) = 0 if and only if GA and GB receive identical
colors by the WL algorithm. If S = On and Ω = Sn, i.e.,
graphs are undirected, then Ω/∼dOn is determined by
co-spectrality: dOn(A,B) = 0 if and only if A,B have the
same spectrum. When Ω = Rn×n, dOn(A,B) = 0 implies
that A,B are co-spectral, but co-spectral matrices A,B
do not necessarily satisfy dOn(A,B) = 0.

3.1 Proof of Theorems 3.1–3.3. We define several
properties that play a crucial role in our proofs. We say
that a set S ⊆ Rn×n is closed under multiplication if
P, P ′ ∈ S implies that P ·P ′ ∈ S. We say that S is closed
under transposition if P ∈ S implies that P⊤ ∈ S, and
closed under inversion if P ∈ S implies that P−1 ∈ S.
Finally, given a matrix norm ∥ · ∥, we say that set S is
contractive w.r.t. ∥·∥ if ∥AP∥ ≤ ∥A∥ and ∥PA∥ ≤ ∥A∥,
for all P ∈ S and A ∈ Rn×n. Put differently, S is
contractive if and only if every P ∈ S is a contraction
w.r.t. ∥ · ∥. We rely on several lemmas, whose proofs can
be found in [10]. The first three establish conditions
under which (2.4) satisfies the triangle inequality (2.3d),
symmetry (2.3c), and weak property (2.3e), respectively:

Lemma 3.1. Given a matrix norm ∥ · ∥, suppose that
set S is (a) contractive w.r.t. ∥ · ∥, and (b) closed under
multiplication. Then, for any A,B,C ∈ Rn×n, dS given
by (2.4) satisfies dS(A,C) ≤ dS(A,B) + dS(B,C).

Lemma 3.2. Given a matrix norm ∥ · ∥, suppose that
S ⊂ Rn×n is (a) contractive w.r.t. ∥ · ∥, and (b)
closed under inversion. Then, for all A,B ∈ Rn×n,
dS(A,B) = dS(B,A).

Lemma 3.3. If I ∈ S, then dS(A,A) = 0 for all
A ∈ Rn×n.

Both the set of permutation matrices Pn and the

Stiefel manifold On are groups w.r.t. matrix multiplica-
tion: they are closed under multiplication, contain the
identity I, and are closed under inversion. Hence, if they
are also contractive w.r.t. a matrix norm ∥ · ∥, dPn and
dOn defined in terms of this norm satisfy all assumptions
of Lemmas 3.1–3.3. We therefore turn our attention to
this property.

Lemma 3.4. Let ∥·∥ be any operator or entry-wise norm.
Then, S = Pn is contractive w.r.t. ∥ · ∥.

Hence, Theorem 3.1 follows as a direct corollary of
Lemmas 3.1–3.4. Indeed, dPn is non-negative, symmetric
by Lemmas 3.2 and 3.4, satifies the triangle inequality
by Lemmas 3.1 and 3.4, as well as property (2.3e) by
Lemma 3.3; hence dPn is a pseudometric over Rn×n.
Our next lemma shows that the Stiefel manifold On is
contractive for 2-norms:

Lemma 3.5. Let ∥ · ∥ be the operator 2-norm or the
Frobenius norm. Then, S = On is contractive w.r.t. ∥ · ∥.

Theorem 3.3 follows from Lemmas 3.1–3.3 and
Lemma 3.5, along with the the fact that On is a group.
Note that On is not contractive w.r.t. other norms, e.g.,
∥ · ∥1 or ∥ · ∥∞. Lemma 3.4 along with the Birkoff-von
Neumann theorem imply that Wn is also contractive:

Lemma 3.6. Let ∥·∥ be any operator or entry-wise norm.
Then, Wn is contractive w.r.t. ∥ · ∥.

The Birkhoff polytope Wn is not a group, as it is not
closed under inversion. Nevertheless, it is closed under
transposition; in establishing (partial) symmetry of dWn ,
we leverage the following lemma:

Lemma 3.7. Suppose that ∥ · ∥ is transpose invariant,
and S is closed under transposition. Then, dS(A,B) =
dS(B,A) for all A,B ∈ Sn.

The first part of Theorem 3.2 therefore follows from
Lemmas 3.1, 3.3, and 3.6, as Wn is closed under
transposition, contains the identity I, and is closed under
multiplication, while all entry-wise norms are transpose
invariant. Operator norms are not transpose invariant.
However, if ∥ · ∥ is an operator norm, or Ω = Rn×n,
then Lemma 3.6 and Lemma 3.1 imply that dWn satisfies
non-negativity (2.3a) and the triangle inequality (2.3d),
while Lemma 3.3 implies that it satisfies (2.3e). These
properties are inherited by extension d̄S , which also
satisfies symmetry (2.3c), and Theorem 3.2 follows. □

4 Incorporating Metric Embeddings
We have seen that the chemical distance dPn can be
relaxed to dWn or dOn , gaining tractability while still
maintaining the metric property. In practice, nodes in a
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graph often contain additional atributes that one might
wish to leverage when computing distances. In this
section, we show that such attributes can be seamlessly
incorporated in dS either as soft or hard constraints,
without violating the metric property.
Metric Embeddings. Given a graph GA of size n, a
metric embedding of GA is a mapping ψA : [n] → Ω̃ from
the nodes of the graph to a metric space (Ω̃, d̃). That is,
ψA maps nodes of the graph to Ω̃, where Ω̃ is endowed
with a metric d̃. We refer to a graph endowed with an
embedding ψA as an embedded graph, and denote this
by (A,ψA), where A ∈ Rn×n is the adjacency matrix of
GA. We list two examples:
Example 1: Node Attributes. Consider an embedding of a
graph to (Rk, ∥·∥2) in which every node v ∈ V is mapped
to a k-dimensional vector describing “local” attributes.
These can be exogenous: e.g., features extracted from
a user’s profile (age, binarized gender, etc.) in a social
network. Alternatively, attributes may be endogenous or
structural, extracted from the adjacency matrix A, e.g.,
the node’s degree, the size of its k-hop neigborhood, its
page-rank, etc.
Example 2: Node Colors. Let Ω̃ be an arbitrary finite
set endowed with the Kronecker delta as a metric, that
is, for s, s′ ∈ Ω̃, d̃(s, s′) = 0 if s = s′, while d̃(s, s′) = ∞
if s ̸= s′. Given a graph GA, a mapping ψA : [n] → Ω̃ is
then a metric embedding. The values of Ω̃ are invariably
called colors or labels, and a graph embedded in Ω̃
is a colored or labeled graph. Colors can again be
exogenous or structural: e.g., if the graph represents
an organic molecule, colors can correspond to atoms,
while structural colors can be, e.g., the output of the
WL algorithm [59] after k iterations.

As discussed below, node attributes translate to
soft constraints in metric (2.4), while node colors
correspond to hard constraints. The unified view through
embeddings allows us to establish metric properties for
both simultaneously (c.f. Thm. 4.1 and 4.2) .
Embedding Distance. Consider two embedded
graphs (A,ψA), (B,ψB) of size n that are embedded
in the same metric space (Ω̃, d̃). For u ∈ [n] a node
in the first graph, and v ∈ [n] a node in the sec-
ond graph, the embedded distance between the two
nodes is given by d̃(ψA(u), ψB(v)). Let DψA,ψB

=
[d̃(ψA(u), ψB(v))]u∈V,v∈V ∈ Rn×n

+ be the correspond-
ing matrix of embedded distances. After mapping nodes
to the same metric space, it is natural to seek P ∈ Pn

that preserve the embedding distance. This amounts to
finding a P ∈ Pn that minimizes:

tr
(
P⊤DψA,ψB

)
=

∑
u,v∈[n] Pu,vd̃(ψA(u), ψB(v)).(4.5)

Note that, in the case of colored graphs and the
Kronecker delta distance, minimizing (4.5) finds a P ∈

Pn that maps nodes in A nodes in B of equal color. It is
not hard to verify1 that minP∈Pn tr

(
P⊤DψA,ψB

)
induces

a metric between graphs embedded in (Ω̃, d̃). Despite the
combinatorial nature of Pn, (4.5) is a maximum weighted
matching problem, which can be solved through, e.g.,
the Hungarian algorithm [39] in polynomial time in n.
We note that this metric is not as expressive as (2.4):
depending on the definition of the embeddings ψA, ψB ,
attributes may only capture “local” similarities between
nodes, as opposed to the “global” view of a mapping
attained by (2.4).
A Unified, Tractable Metric. Motivated by the
above considerations, we focus on unifying the “global”
metric (2.4) with the “local” metrics induced by arbitrary
graph embeddings. Proofs for the two theorems below
are provided in the supplement. Given a metric space
(Ω̃, d̃), let Ψn

Ω̃ = {ψ : [n] → Ω̃} be the set of all
mappings from [n] to Ω̃. Then, given two embedded
graphs (A,ψA), (B,ψB) ∈ Rn×n × Ψn

Ω̃, we define:

dS ((A,ψA), (B,ψB)) = min
P∈S

[
∥AP − PB∥ + . . .

+ tr(P⊤DψA,ψB
)
](4.6)

for some compact set S ⊂ Rn×n and matrix norm ∥ · ∥.
Our next result states that incorporating this linear term
does not affect the pseudometric property of dS .

Theorem 4.1. If S = Pn and ∥ · ∥ is an arbitrary
entry-wise or operator norm, then dS given by (4.6)
is a pseudometric over the set of embedded graphs
Ω = Rn×n × Ψn

Ω̃.

We stress here that this result is non-obvious: is not true
that adding any linear term to dS leads to a quantity that
satisfies the triangle inequality. It is precisely because
DψA,ψB

contains pairwise distances that Theorem 4.1
holds. We can similarly extend Theorem 3.2:

Theorem 4.2. If S = Wn and ∥·∥ is an arbitrary entry-
wise norm, then dS given by (4.6) is a pseudometric over
Ω = Sn × Ψn

Ω̃, the set of symmetric graphs embedded in
(Ω̃, d̃). Moreover, if ∥ · ∥ is an arbitrary entry-wise or
operator norm, then the symmetric extension d̄S of (4.6)
is a pseudometric over Ω = Rn×n × Ψn

Ω̃.

Adding the linear term (4.5) in dS has significant
practical advantages. Beyond expressing exogenous
attributes, a linear term involving colors, combined with
a Kronecker distance, translates into hard constraints:
any permutation attaning a finite objective value must
map nodes in one graph to nodes of the same color.

1This follows from Thm. 4.1 for A = B = 0, i.e., for distances
between embedded graphs with no edges.
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Description

Bd Barabasi Albert of degree d [5]
Ep Erdős-Rényi with probability p [25]
P Power Law Tree [44]

Rd Regular Graph of degree d [13]
S Small World [35]

Wd Watts Strogatz of degree d [58]

(d) Synthetic Graph Classes
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0
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1 - InnerDSL2
2 - NetAlignBP
3 - IsoRank
4 - SparseIsoRank
5 - NetAlignMR
6 - Natalie
7 - DSL1
8 - DSL2
9 - InnerPerm
10 - InnerDSL1
11 - EXACT
12 - ORTHOP
13 - ORTHFR

(e) TIVs, small graphs

Figure 1: A clustering experiment using metrics and non-metrics (y-axis) for different clustering parameters (x-axis) is shown in
(a), left. We sample graphs with n = 50 nodes from the six classes, shown in the adjacent table in (d), bottom-center. We compute
distances between them using nine different algorithms from Table 1. Only the distances in our family (DSL1, DSL2, ORTHOP, and
ORTHFR) are metrics. The resulting graphs are clustered using hierarchical agglomerative clustering [29] using Average, Centroid,
Complete, Median, Single, W ard, W eighted as a means of merging clusters. Colors represent the fraction of misclassified graphs,
with the minimal misclassification rate per distance labeled explicitly. Metrics outperform other distance scores across all clustering
methods. The error rate of a random guess is ≈ 0.8. Subfigures (b) and (c), top center and right, shows that non-metric distances
produce triangle inequality violations (TIVs) which contribute to poor clustering results; the figure shows the fraction of TIVs within
different 10-node and 50 node graph families under these algorithms. Finally, subfigure (e), bottom right, shows the fraction of triangle
inequality violations for different algorithms on the small graphs dataset of all 7-node graphs.

Theorem 4.2 therefore implies that such constraints
can thus be added to the optimization problem, while
maintaining the metric property. In practice, as the
number of variables in optimization problem (2.4) is
n2, incorporating such hard constraints can significantly
reduce the problem’s computation time; we illustrate
this in the next section. Note that adding (4.5) to dOn

does not preserve the metric propery.

5 Experiments
Graphs. We use synthetic graphs from six classes
summarized in the table in Fig. 1(d). In addition, we use
a dataset of small graphs, comprising all 853 connected
graphs of 7 nodes [45]. Finally, we use a collaboration
graph with 5242 nodes and 14496 edges representing
author collaborations [41].
Algorithms. We compare our metrics to several
competitors outlined in Table 1 (see also [10] for
additional details). All receive only two unlabeled
undirected simple graphs A and B and output a
matching a matrix P̂ either in Wn or in Pn estimating
P ∗. If P̂ ∈ Pn, we compute ∥AP̂ − P̂B∥1. If P̂ ∈ Wn,
then we compute both ∥AP̂ − P̂B∥1 and ∥AP̂ − P̂B∥F ;
all norms are entry-wise. We also implement our two
relaxations dW and dOn , for two different matrix norm
combinations.
Clustering Graphs. The difference between our met-

(Non-metric) Distance Score Algorithms

NetAlignBP Network Alignment using Belief Propagation [9, 33]
IsoRank Neighborhood Topology Isomorphism using Page Rank

[54, 33]
SparseIsoRank Neighborhood Topology Sparse Isomorphism using Page

Rank [9, 33]
InnerPerm Inner Product Matching with Permutations [42]
InnerDSL1 Inner Product Matching with Matrices in Wn and entry-

wise 1-norm [42]
InnerDSL2 Inner Product Matching with Matrices in Wn and Frobe-

nius norm [42]
NetAlignMR Iterative Matching Relaxation [34, 33]

Natalie (V2.0) Improved Iterative Matching Relaxation [23, 22]

Metrics from our Family (2.4)

EXACT Chemical Distance via brute force search over GPU
DSL1 Doubly Stochastic Chemical Distance dWn with entry-

wise 1-norm
DSL2 Doubly Stochastic Chemical Distance dWn with Frobe-

nius norm
ORTHOP Orthogonal Relaxation of Chemical Distance dOn with

operator 2-norm
ORTHFR Orthogonal Relaxation of Chemical Distance dOn with

Frobenius norm

Table 1: Competitor Distance Scores & Our Metrics

rics and non-metrics is striking when clustering graphs.
This is illustrated by the clustering experiment shown
in Fig. 1(a). Graphs of size n = 50 from the 6 classes in
Fig. 1(d) are clustered together through hierarchical ag-
glomerative clustering. We compute distances between
them using nine different algorithms; only the distances
in our family (DSL1, DSL2, ORTHOP, and ORTHFR)
are metrics. The quality of clusters induced by our
metrics are far superior than clusters induced by non-
metrics; in fact, ORTHOP and ORTHFR can lead to
no misclassifications. This experiment strongly suggests
our produced metrics correctly capture the topology of
the metric space between these larger graphs.
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Figure 2: (a) Effect of introducing TIVs on the performance of different algorithms on the clustering experiment of Figure 1(a)
when using the Ward method. (b) Cosine similarity between the Laplacian of distances produced by each algorithm and the one by
EXACT. (c) Distance between nearest neighbor (NN) graphs induced by different algorithms and NN graph induced by EXACT.

k ∥P ∥0 ∥AP−P A∥0 τ
1 3,747,960 100.569 133s
2 239,048 3,004 104s
3 182,474 2,036 136s
4 182,016 2,030 169s
5 182,006 2,030 200s

(a) Coloring Constraints

0 100 200 300 400 500 600 700 800 900
t (min)

0

100

200

300

400

500

600

700

800

||A
P-

PB
||_

F

WL k = 2
WL k = 3
WL k = 4
WL k = 5

(b) Convergence of ADMM

Figure 3: (a) Effect of coloring/hard constraints on the numbers
of variables (∥P ∥0) and terms of objective (∥AP − P A∥0) using k
iterations of the WL coloring algorithm. The last column shows
the execution time of WL on a 40 CPU machine using Apache
Spark [62]. (b) Convergence of ADMM algorithm [15] computing
DSL2 on two copies of the collaboration graph as a function of
time, implemented using Apache Spark [62] on a 40 CPU machine.

Triangle Inequality Violations (TIV). Given
graphs A, B and C and a distance d, a TIV occurs
when d(A,C) > d(A,B) + d(B,C). Being metrics, none
of our distances induce TIVs; this is not the case for the
remaining algorithms in Table 1. Fig. 1(b) and (c) show
the TIV fraction across the synthetic graphs of Fig. 1(d),
while Fig. 1(e) shows the fraction of TIVs found on the
853 small graphs (n = 7). NetAlignMR also produces
no TIVs on the small graphs, but it does induce TIVs
in synthetic graphs. We observe that it is easier to find
TIVs when graphs are close: in synthetic graphs, TIVs
abound for n = 10. No algorithm performs well across
all categories of graphs.
Effect of TIVs on Clustering. Next, to investigate
the effect of TIVs on clustering, we artificially introduced
triangle inequality violations into the pairs of distances
between graphs. We then re-evaluated clustering per-
formance for hierarchical agglomerative clustering using
the Ward method, which performed best in Fig. 1(a).
Fig. 2(a) shows the fraction of misclassified graphs as the
fraction of TIVs introduced increases. To incur as small
a perturmbation on distances as possible, we introduce
TIVs as follows: For every three graphs, A,B,C, with
probability p, we set d(A,C) = d(A,B) + d(B,C). Al-
though this does not introduce a TIV w.r.t. A,B, and C,
this distortion does introduce TIVs w.r.t. other triplets

involving A and C. We repeat this 20 times for each
algorithm and each value of p, and compute the average
fraction of TIVs, shown in the x-axis, and the average
fraction of misclassified graphs, shown in the y-axis. As
little as 1% TIVs significantly deteriorate clustering per-
formance. We also see that, even after introducing TIVs,
clustering based on metrics outperforms clustering based
on non-metrics.
Comparison to Chemical Distance. We compare
how different distance scores relate to the chemical
distance EXACT through two experiments on the small
graphs (computation on larger graphs is prohibitive). In
Figure 2(b), we compare the distances between small
graphs with 7 nodes produced by the different algorithms
and EXACT using the DISTATIS method of [1]. Let
D ∈ R835×835

+ be the matrix of distances between graphs
under an algorithm. DISTATIS computes the normalized
Laplacian of this matrix, given by L = −UDU/∥UDU∥2

where U = I − 11⊤

n . The DISTATIS score is the cosine
similarity of such Laplacians (vectorized). We see that
our metrics produce distances attaining high similarity
with EXACT, though NetAlignBP has the highest
similarity. We measure proximity to EXACT with
an additional test. Given D, we compute the nearest
neighbor (NN) meta-graph by connecting a graph in D
to every graph at distance less than its average distance
to other graps. This results in a (labeled) meta-graph,
which we can compare to the NN meta-graph induced
by other algorithms, measuring the fraction of distinct
edges. Fig. 2(c) shows that our algorithms perform quite
well, though Natalie yields the smallest distance to
EXACT.
Incorporating Constraints. Computation costs can
be reduced through metric embeddings, as in (4.6).
To show this, we produce a copy of the 5242 node
collaboration graph with permuted node labels. We
then run the WL algorithm [59] to produce structural
colors, which induce coloring constraints on P ∈ Wn.
The support of P (i.e., the number of variables in
the optimization (2.4)), the support of AP − PA
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(i.e., the number of non-zero summation terms in the
objective of (2.4)), as well as the execution time τ
of the WL algorithm, are summarized in Fig. 3(b).
The original unconstrained problem involves 52422 ≈
27.4M variables. However, after using WL and induced
costraints, the effective dimension of the optimization
problem (2.4) reduces considerably. This, in turn, speeds
up convergence time, shown in Fig. 3(b): including the
time to compute constraints, a solution is found 110
times faster after the introduction of the constraints.
6 Conclusion
Our work suggests that incorporating soft and hard
constraints has a great potential to further improve the
efficiency of our metrics. In future work, we intend to
investigate and characterize the resulting equivalence
classes under different soft and hard constraints and to
quantify these gains in efficiency, especially in parallel
implementations like ADMM. Determining the necessity
of the conditions used in proving that dS is a metric is
also an open problem.
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