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Abstract—Performance ticket handling is an expensive oper-
ation in data centers, where physical boxes host multiple
virtual machines (VMs). A large body of tickets arise from
resource usage warnings, e.g., CPU and RAM usages that exceed
predefined thresholds. The transient nature of CPU and RAM
usage as well as their strong correlation across time among co-
located VMs within boxes drastically increase the complexity of
ticket management. Based on large resource usage data collected
from production data centers, with 6K physical boxes and more
than 80K VMs, we first discover patterns of spatial and tem-
poral dependencies among/within the usage series of co-located
resources. Leveraging our key findings, we develop an active
ticket managing (ATM) system that aims to drastically reduce
usage tickets. ATM consists of: 1) a spatial-temporal dependency-
based time series prediction methodology and 2) a proactive
capacity planning policy for CPU and RAM resources for VMs
co-located within a box and boxes within a single data center
client, that aims to drastically reduce usage tickets. ATM exploits
the spatial-temporal dependency across/within multiple resources
of co-located VMs and single-client boxes for usage prediction,
and then actuates proactive capacity planning. Evaluation results
on traces of 6K physical boxes from operating data centers show
that ATM is able to provide accurate prediction of usage series
in cloud data centers with low computational overhead. At the
same time ATM achieves significant ticket reduction up to 60%
for both VM and box usage series.

Index Terms—Cloud data center, reliability analysis, spatial-
temporal prediction, capacity planning.

[. INTRODUCTION

ERFORMANCE ticketing provides the means to data
Pcenters to interactively improve user experience by main-
taining performance at tails. Typically, tickets can be issued
by users or by system monitoring tools when performance
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Fig. 1. An illustration of spatial dependency across usage time series for 4

VMs co-located on a box.

violations are encountered, e.g., unresponsive service, high
resource usage due to transient load dynamics, or persistent
insufficient provisioning. Ticket resolution is unfortunately
very expensive [2], [3] as a significant amount of manual labor
is required for root-cause analysis and to remedy the detected
problem [4]. Prior work has shown that there is strong corre-
lation of ticket issuing with resource usage exceeding certain
predefined thresholds [5]. In today’s data centers, with phys-
ical resources being aggressively multiplexed across multiple
virtual machines (VMs), the likelihood of issuing performance
tickets due to physical or virtual machines crossing predefined
usage thresholds dramatically increases.

Past work has established that resource usage at data cen-
ters exhibits strong temporal patterns [6], [7]. Beyond temporal
dependencies that are established by usage time series [8], it
is common for co-located VMs to simultaneously compete for
limited physical resources. We illustrate a motivating example
in Figure 1 depicting the CPU usage time series! of 4 VMs
co-located within the same physical box, where performance
tickets are issued automatically when a VM utilization exceeds
a threshold of 60%. One can easily see the spatial depen-
dency of VM1 and VM3, i.e., usage series move up and down
synchronously, similarly for VM2 and VM3. The above time
series are obtained by an IBM data center production system
and are representative of typical patterns encountered in such
systems.

The focus of this paper is to develop a methodology that
harnesses spatial and temporal dependencies of usage time

Twe interchangeably use the terms “time series” and “series”.

1932-4537 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



40 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

series and increases the data center dependability by using a
proactive approach: reduce the number of tickets by predicting
when they will occur in the future and by using this prediction
to employ dynamic capacity planning to adjust resource usage
to avoid triggering of future tickets. To this end, we first con-
duct a detailed, post-hoc workload characterization study of
usage time series in IBM production data centers correspond-
ing to 80K VMs hosted on 6K physical servers. We develop
an Active Ticket Managing (ATM) system that predicts future
VM and box resource usage, and then proactively adjusts
capacity on the co-located VMs and single-client boxes. The
research challenges are numerous and outlined as follows.

Effective usage prediction is a prerequisite to the develop-
ment of any management policy. Indeed, in our past work we
have shown that neural networks can be effectively employed
for prediction [8], but their effective usage remains pro-
hibitively expensive in practical situations as it suffers by high
training costs. In practice, in a large-scaled data center, with
more than tens of thousands of physical boxes and hundreds of
thousands of VMs, it is infeasible to rely on neural networks
to predict future resource usage. We solve this first problem
by developing a prediction methodology that discovers spatial
dependencies across usage series and exploits them to develop
an agile methodology for prediction. To this end, we intro-
duce the concept of signature series, a subset of usage series
that are representative of all other usage series. We are able
to predict the usage series not in the signature set and the
respective usage violation tickets of co-located VMs, via a lin-
ear combination of signature VM series, which provides a time
series prediction model that uses only 15% of the original time
series. More significant series reduction (i.e., as low as 10%) is
observed when predicting box usage series within each single
client. Second, based on predicted resource usage, we define
a multi-choice knapsack problem and develop a greedy algo-
rithm to dynamically adjust (resize) virtual resources across
co-located VMs, or to perform efficient capacity planning of
physical resources across boxes within the same client. ATM
is evaluated on production traces of 6K boxes and 80K VMs.
Our extensive evaluation results show that ATM has remark-
ably high accuracy in prediction, i.e., its relative prediction
errors are as low as 20% for VM usage series and only 7%
for box usage series while using only 20% of the original time
series. Usage prediction results in significant ticket reduction,
i.e., up to 60% — 70% fewer tickets. The contributions of this
paper are as follows:

1) We do post-hoc characterization of usage ticket issuing
in a commercial data center setting. We focus on discovering
the distribution of usage tickets and spatial-temporal patterns
of resource usages across/within co-located VMs and single-
client boxes. We find that usage tickets are mostly due to a
small set of VMs or boxes and that both co-located VMs and
single-client boxes show significant auto- and cross-correlation
among their CPU and RAM usage series.

2) Motivated by the strong spatial patterns across resource
usage series of co-located VMs and of single-client boxes,
we argue that a small number of signature usage time series
can be used as predictors to represent well the entire set
of resource usage time series. Moreover, we also provide

a customized interface for users to determine the trade-
off between prediction accuracy and prediction cost. This
prediction methodology is the basis of ATM.

3) We develop a capacity planning policy to reduce usage
tickets by setting the upper limits of CPU and RAM alloca-
tions for co-located VMs or single client boxes, a problem
which is shown to be NP-hard. We rigorously formulate the
ticket minimization problem subject to the physical capacity
constraints. We propose a greedy algorithm to solve it and
compare its performance to the max-min fairness algorithm.

The outline of this work is as follows. Section II provides a
characterization study on the usage tickets as well as the spatial
patterns among usage series of co-located VMs and single-
client boxes. We propose spatial-temporal prediction methods
for resource usage series in Section III. In Section IV, we
formulate the ticket minimization problem and demonstrate a
greedy resizing algorithm to reduce usage tickets. An exten-
sive evaluation of ATM on both production traces is discussed
in Section V. Section VI presents related work, followed by
summary and conclusions in Section VIIL.

II. STATISTICS AND OBSERVATIONS

The motivation for the design of ATM is the need to reduce
usage tickets that are typically issued when resource utiliza-
tions exceed certain thresholds. The trace that we consider
here comes from IBM production data centers serving various
industries, including banking, pharmaceutical, IT, consulting,
and retail. The majority of VMs in the trace are VMware
VMs. The trace contains CPU and RAM capacity but also
utilization data taken at a time granularity of 15 minutes for
6K physical boxes within 300 clients, hosting more than 80K
VMs, during a 7-day period from April 3, 2015 to April
9, 2015. In a private cloud data center, which is a “single
client environment”, the hardware, storage and network are
dedicated to a single company. A client is assigned a unique
cluster of boxes, which allows customized placement of VMs
and assignment of resources. Within this environment, there
is no sharing of boxes across different clients. On average,
10 VMs are consolidated within a single physical box, and
15 physical boxes are assigned to each client [6]. Both VMs
and boxes are very heterogeneous in terms of their resource
configuration.

In the following, we first show the distribution of usage
tickets under different ticket thresholds for VMs and physi-
cal boxes, followed by a more detailed analysis on the spatial
and temporal patterns of usage series of both co-located VMs
and single-client boxes. We aim to uncover how usage tick-
ets are distributed across resources and most importantly how
usage patterns trigger usage tickets. We anticipate that the
design principles of the proposed ATM system leverage this
characterization analysis.

A. Usage Tickets

Usage tickets are generated when utilization values exceed
target thresholds. Naturally, lower thresholds trigger a higher
number of usage tickets and increase the cost of resolution,
whereas higher thresholds result into fewer tickets but at a
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higher risk of performance degradation. To quantify the effect
of different thresholds, we consider three threshold levels,
namely 60%, 70%, and 80%. Such values are commonly
adopted in production systems [9]. Figures 2-3 illustrate quan-
titative information on the issued tickets for the CPU and RAM
usage series of April 3, 2015, in terms of VMs and boxes,
respectively. We illustrate how many boxes have VM tickets
and how these tickets are distributed across co-located VMs
and their resources. The similar characterization on box usage
tickets is also presented.

1) VMs: First, we provide an overview on the VM
usage tickets within each physical box for CPU and RAM.
Figure 2(a) plots the percentage of boxes that have at least one
VM usage ticket under the selected different thresholds. Even
with the highest ticket threshold of 80%, almost 40% of boxes
obtain at least one ticket due to CPU violation and 10% due to
RAM violation, these percentages increase to 57% and 38%,
respectively, when the threshold is 60%. Figure 2(b) illustrates
the average number of VM tickets for CPU and RAM. The
average number of CPU usage tickets per VM are 4, 3, 2.5,
for the three thresholds of 60%, 70%, and 80%, respectively,
showing a relatively minor decreasing trend. A similar trend is
observed for RAM usage tickets in VMs. Overall, RAM tickets
are less likely to occur and in lower amount compared to CPU
tickets in VMs, independently of the threshold. This can be
explained by the fact that RAM tends to be over-provisioned
for performance reasons. The next natural question is whether
tickets are evenly distributed across all co-located VMs. To
this end, we compute the number of VMs that accounts for
the majority of tickets, where the majority is defined to 80%

(b) Average number of tickets per box

(c) Average number of culprit boxes

Characterization of usage tickets for CPU and RAM of boxes per client. Notice that in (b), the y-axis is in log-scale.

of usage tickets per box (this is an ad-hoc value). Figure 2(c)
shows that on average one to two VMs per box cause the
majority of tickets, irrespective of the three threshold values. A
further interesting observation is that since the culprit VMs are
few, if we increase the capacity allocation of the culprit VMs
by removing resources from other co-located VMs, then tickets
may reduce. On the contrary, if tickets are evenly distributed,
such resizing does not help.

2) Boxes: We provide statistics on the box usage tickets
across all clients for CPU and RAM, see Figure 3. Figure 3(a)
exhibits similar trends as VM usage tickets, compared with
Figure 2(a). The trend here on the severity of RAM vs CPU
tickets is reversed, i.e., a significant percentage of clients
experience RAM tickets. Figure 3(b) measures the average
number of box usage tickets for CPU and RAM. The aver-
age number of CPU(RAM) usage tickets per box are 5(40),
3(30), 2(18) for the three thresholds, and this again suggests
that RAM is more over-utilized than CPU in physical boxes.
The above observations suggest the need to reduce/avoid the
box usage tickets, especially for RAM. Finally, we aim to
quantify the culprit boxes, which result in the majority (i.e.,
more than 80%) of box usage tickets within each client,
see Figure 3(c). Across CPU and RAM, we observe that no
more than 5 physical boxes in each client cause more than
80% of box usage tickets, recall that on average each client
is assigned 15 boxes. This is similar as what we observe
for VM usage tickets, and again suggests the opportunity
to reduce/avoid the box usage tickets by efficient capac-
ity planning of physical resources among the single-client
boxes.
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B. Do Spatial Dependencies Exist?

To better understand the spatial patterns of usage tickets,
we estimate the magnitude of spatial dependency by comput-
ing the Pearson’s correlation coefficient [10] over each pair of
CPU and RAM usage series of co-located VMs within each
box as well as for boxes within each client. For co-located
VMs, we compute the mean and 90%ile of the above mea-
sures and present the cumulative distribution functions (CDFs)
across all the boxes in Figure 4(a). A similar analysis of spa-
tial dependency is also done for box usage series across all
clients, see Figure 4(b).

Comparing Figures 4(a) and 4(b), one can immediately see
from the shapes of the CDFs that co-located VMs have slightly
stronger correlations (spatial dependency) than physical boxes
within the same client. Indeed, the mean values for correlation
measures (mean and 90%ile) of resource usage series of co-
located VMs are 0.35 and 0.66, while the mean values for
single-client boxes are 0.25 and 0.55. Still, the figures give a
clear message: across both co-located VMs and single-client
boxes, resource usage series exhibit strong spatial dependency.
This is a fact that we take advantage of when we attempt to
use clustering to reduce the cost of prediction.

C. Do Temporal Dependencies Exist?

Besides spatial dependencies, another interesting aspect to
explore is whether temporal dependencies exist within each
usage series. Other work [11] combines fast fourier transforms
and autocorrelation to capture temporal patterns. Similarly
to [11], we leverage autocorrelation to capture temporal depen-
dencies within usage series. To motivate our discovery of
temporal dependency, we first present two representative CPU
usage series across 2 months for a specific VM and box
in Figures 5(a) and 5(b), respectively. We observe that the
workloads within the IBM private cloud exhibit clear periodic
patterns over time. To capture the temporal dependency within
each usage series, we show the autocorrelation of each usage
series for the selected VM and box, see Figures 5(c) and 5(d).
Autocorrelation is a mathematical representation of the degree
of similarity in a time series and a lagged version of itself. As
such, it is ideal for discovering repeating patterns by quantify-
ing the relationship between different points of a time series as
a function of the time lag [12]. The autocorrelation metric is
in the range of [—1, 1]. Higher positive values indicate that the
two points between the computed lag distance are “similar”,

i.e., have stronger temporal dependency. Zero values suggest
no temporal dependency. Negative values show that the two
points are diametrically different. In Figures 5(c) and 5(d), it
is clear that the autocorrelation becomes high at certain lag
values and that these lag values can be different for differ-
ent usage series. Again, this observation verifies the strong
temporal dependency within the selected usage series. Notice
that similar periodic patterns are also observed across most of
usage series in the IBM private cloud data centers [8].

Although autocorrelation is effective to quantify the tem-
poral dependency in most of the cases, autocorrelation alone
cannot always represent temporal dependency, if for example,
the usage series is constant over time. In this case, autocorrela-
tion cannot be computed. Yet, this kind of series still exhibits
very strong temporal dependency, thus it can be predicted eas-
ily using other measures, such as the coefficient of variation
(C.V.) of series. Figure 6(a) presents the CDFs of the C.V. of
VMs and boxes for CPU and RAM usage series. We observe
that RAM usage series of boxes have the highest line, with
mean C.V. equal to 0.05. This clearly shows that box RAM
usage series are nearly consistent over-time. For usage series of
VMs and CPU usage series of boxes, where the C.V. is much
higher, it is possible to leverage autocorrelation to measure
their temporal dependencies.

With the exception of RAM usage series of boxes, we quan-
tify temporal dependency of usage series in cloud data cen-
ters, using a metric called goodness of temporal dependency
(GTD):

GTD = B % max(ACFgpor) + (1 — B) * max(ACFjopg). (1)

Here ACFp, 1s a list of autocorrelation coefficients for lags
that correspond to time stretches of less than 1 day, while
ACFjopg consists of autocorrelation coefficients for lags that
are more than 1 day. We capture the highest autocorrela-
tions in both short- and long-term, i.e., max(ACFgor) and
max(ACFjong) respectively. The term B € [0, 1], is a weight
that represents how important is short-term behavior for time
series prediction, which is inversely related to the prediction
length. In our application scenario, the favored prediction
length is at least 1 day ahead. In our experiments, S is set as
0.2 to satisfy such long-term prediction demand. The higher
the GDT, the stronger the temporal dependency within the
series. Figure 6(b) presents CDFs of GTD of VM usage series
for CPU and RAM, as well as box usage series for CPU. In
general, the graph shows that box CPU usage series have the
lowest line, which indicates the overall highest GTD values,
followed by VM RAM and then VM CPU usage series.

To summarize Sections II-B and II-C, we discover strong
spatial and temporal dependencies of resource usage series
for both VMs and boxes. Using the above observations, in the
next section, we propose spatial-temporal prediction models to
accurately and cheaply predict the usage series in cloud data
centers.

ITI. SPATIAL-TEMPORAL PREDICTION MODELS

We first elaborate on the challenges for concurrent
prediction for a large number of time series representing
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multiple resource usages from co-located VMs and boxes at
production data centers. The immediate obstacles of prediction
given a large number of demand series are accuracy, training
overhead, and model scalability. Typically, temporal mod-
els [10], such as ARIMA are not able to capture bursty
behavior. More sophisticated temporal models such as neural
networks, capture irregular patterns but at much higher com-
putational overheads. Given such restrictions, it is important
to come up with efficient and accurate prediction models that
also scale well.

We propose a new prediction methodology that combines
both temporal and spatial models to predict the resource
demand time series? D; (Vi € [1, M x N]) where M is the num-
ber of co-located VMs(boxes) and N is the number of different
resources taken into consideration. We introduce the concept
of signature series: a minimum number of time series that are
predicted via temporal models. The rest of the demand series,
termed as dependent series, are predicted through a linear
combination of signature series via spatial models. Essentially,
we divide the demand series, D;, into two sets: the signature
set, denoted by €2, and the dependent set, 2.

The novelty of ATM is to derive novel spatial models for
dependent series while applying existing temporal models to
predict signature series. Many practical techniques exist in the
literature for reducing the overhead of temporal models by

2Demand series is the product of usage series and the allocated vir-
tual capacity. Both demand and usage series share the same correlation
characteristics.

Dy = fi(Dj). (2
As every demand series can be either a signature or a depen-
dent series, a brute force solution to find the minimum
signature set is to explore all 2V*¥ combinations of regression
models. For boxes hosting an average number of M VMs, i.e.,
M =~ 10 and expected to grow as servers become more pow-
erful, it is clear that this method is not viable. To address
this issue, we devise an efficient searching algorithm that
can quickly find signature series without exhaustive search,
by leveraging time series clustering techniques and signature
selection methods.

A. Searching for Signature Demand Series

Key to the discovery of signature series is clustering. We
propose a three-step algorithm to identify the signature set €2;.
Step 1 defines the initial clusters across all usage series. This
is achieved using time series clustering, specifically dynamic
time warping (DTW) [14] or correlation based clustering
(CBC) that we propose here. Step 2 chooses the initial set of
signature series via either spatial- or temporal-driven signa-
ture selection methods. Step 3 defines the final set of signature
series by detecting and removing multicollinearity among the
initial set of signature series using variance inflation factors
(VIF) and stepwise regression. The intent of the last step is
to fix the pitfall that although signature series appear indepen-
dent, it is possible that a combination of certain subsets of
the initial signature series can well represent the others. For
example, a group of series can be separated into three clusters
because of their dissimilarity in the distances or the correlation
patterns. If however one of the clusters can actually be well
expressed as a linear combination of the other two, then this
falls under a classical example of multicollinearity. Figure 7
illustrates the steps of signature set search.
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Step 1: Time Series Clustering: DTW, CBC
Step 2: Signature Selection: Spatial-, Temporal-Driven
Step 3: Stepwise Regression

Clusters of M*N usage series

Initial set of signature series

Final set of

k signature series

Fig. 7. Overview of searching for signature set.

1) Step I - Time Series Clustering: Dynamic time warping
is an effective solution for finding clusters of time series where
the distance across the series is short. A potential problem is
that DTW falls short in capturing series within the cluster that
are of larger distance. Correlation based clustering solves this
problem by capturing highly correlated time series that are far
enough apart and cannot be captured by DTW. Applying DTW
on the four series shown in Figure 1 illustrates how clustering
with DTW only offers a partial solution. DTW detects cluster
1 (VM1) and cluster 2 (VM2, VM3, and VM4). CBC instead
puts VM1 and VM3 in the same cluster, and VM2 with VM4
within another cluster. Indeed, the series D1 and D, of VM1
and VM2 can be well represented as linear models of the series
D3 of VM3 and D4 of VM4 respectively, e.g., D1 = ao+aD3,
and Dy = bg + bDy4, where ag, a, by, and b are scalars. In
the remaining of this section we provide details on DTW and
CBC, as well as how to select the signature series.

Dynamic Time Warping Clustering: The high level idea of
DTW is to group series that show low distance dissimilar-
ity. To obtain the distance dissimilarity between two series
P={pi,p2,-.,pi-.,pnyand Q =1{q1, 92, .- -, Gjs - - -, Gm}:
we first build a matrix that consists of the pair-wise squared
distances, i.e., d(p;, ;) = (pi — qj)2, between each pair of ele-
ments p; and g; in the two series. The distance dissimilarity
A(n, m) of the two series is given by the wrapping path through
the matrix that minimizes the total cumulative distance [14]
and can be recursively computed as follows:

(i, J) = d(pi, qj)
4+ minfA(i—1,j— 1D, 2@ —1,)),A0G,j— 1D} (3

Next, we apply hierarchical clustering [15] for any given num-
ber of clusters, ranging from 2 to (M x N)/2 since we aim
to reduce the original set to at least its half. We determine
the optimal number of clusters, based on the average silhou-
ette value [16] of all time series within each cluster. For each
series i, its silhouette value s(i) is defined as

s(i) = DD 4)

max{b(i), a(i)}

where a(i) is the average distance dissimilarity between series
i to all the other series within the same cluster using DTW,

while b(i) is the lowest average distance dissimilarity between
series i to all the series in a different cluster. The higher the
silhouette value, the better the series lies within its cluster. For
each number of clusters, we average the silhouette values of
all series as the representative silhouette value. The optimal
number of clusters is the one with the maximal silhouette
value.

Correlation-based Clustering: CBC focuses on grouping
series showing high correlation. For each box, we first com-
pute the pairwise correlation coefficients, denoted as p, for all
pairs of the M x N series. For a demand series D;, there are
(M x N — 1) pairs p;j, VI # i. To form the clusters, we rank
each series D;, i € [1, M x N] first by the total number of p;;
above a threshold o7y, and second by the mean value of the p; ;
above the threshold. Compared with DTW based clustering,
our proposed CBC provides customized clustering via setting
different values of pr;,. Lower pry, results in more aggressive
clustering. After the series have been ranked, we select the
topmost one and remove it together with all the series that
are correlated with it with a correlation coefficient higher than
the threshold. These series are now considered within a new
cluster with the top ranked series being the signature series.
This procedure continues by selecting the next topmost series
still in the ranked list and ends when the ranked list becomes
empty.

2) Step 2 - Signature Selection Methods: After cluster-
ing, the next step is to select one signature series from each
cluster to represent all the other usage series in the same clus-
ter. We propose two different methods of signature selection:
either spatial-driven or temporal-driven. The intuition behind
the spatial-driven method is to find the signature series that
can best represent all the other series in the same cluster,
while the temporal-driven method aims to choose the sig-
nature series that can be best predicted within each cluster.
Specifically, the spatial-driven method selects the signature
series with the strongest spatial dependency (i.e., the smallest
distance dissimilarities or the highest correlation values) with
all the other series in the same cluster, while the temporal-
driven one selects the signature series with the highest value
of goodness of temporal dependency within each cluster. After
applying either signature selection method, each cluster will
be represented by one signature series.

3) Step 3 - Stepwise Regression: To further reduce the
number of signature series, we calculate the variance infla-
tion factor (VIF), a metric that can detect multicollinearity in
regression. For each series in the signature set, we regress it
on the rest of signature series and obtain its VIF value [17].
A rule of thumb is that a VIF greater than 4 indicates a
dependency with the other series in the initial set [17]. After
detecting the risk of multicollinearity, i.e., at least one series
has a VIF greater than 4, we perform standard stepwise regres-
sion to remove the series that can be represented as linear
combinations of the other signature series.

B. Prediction Models

To predict all M x N demand series, we first predict the
signature series Dj (i € €2;), using neural network models and
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Fig. 8. Usage series reduction and prediction errors are compared between
two steps (before and after stepwise regression) for (a) VM and (b) box usage
series. Notice that the left y-axis represents the ratio of the signature set to
the original series, and the right y-axis represents the prediction error.

their historical data [8]. To predict all dependent series, we
regress each dependent series on the set of signature series,
obtaining coefficients using ordinary least square estimates.
We stress that the signature series predictions are not tied to
the any specific model. Rather, any suitable prediction model
can be easily plugged into our ATM framework.

In summary, we first leverage historical data to develop spa-
tial models to define dependent series, and then select their
respective signatures. Later, we use temporal models to predict
the signature series and inexpensive linear transformation
models to predict the dependent series.

C. Results on Spatial Models

Prior to moving to the proposed capacity planning policy,
we present evaluation results of the proposed spatial models
across the demand series of the trace data (6K boxes and 80K
VMs) presented in Section II. The evaluation consists of two
parts. The first part focuses on the comparison between differ-
ent clustering methods, while in the rest of the evaluation we
turn the focus on the analysis of the two signature selection
methods. Note that in the first part, we use the spatial-driven
signature selection method. Since the purpose of spatial mod-
els is to use a minimum subset of original series to accurately
represent the data center, the metrics of interest are: (I) the
percentage of signature series out of the total demand series
and (II) the prediction error.?

In this section we only focus on the effectiveness of the spa-
tial models, i.e., how close the dependent series are from the
actual time series counterparts. The overall prediction accu-
racy of combining spatial models with temporal models is
presented in Section V.

1) Results on DTW: In Figure 8, we present the boxplots
of the series reduction and prediction errors on VM and box
usage series of RAM and CPU, applying DTW. The box-
plots in this figure show the 25, 50" and 75" percentiles,
the whiskers correspond to the extremes of the distribution,
and the dot represents the average. Figure 8(a) compares the
results on two steps (before and after stepwise regression) for
VM usage series. We observe that DTW is quite aggressive in
reducing the number of time series, such that there is almost
no further reduction after applying stepwise regression. Both
steps reduce the entire set to 31%, with around 30% prediction
errors. Turning to prediction results on box usage series in

3The Prediction error in this paper refers to the absolute percentage error

- ) __ |Prediction—Actual|
(APE), defined as: APE = e v

Figure 8(b), we clearly observe that stepwise regression indeed
helps further reduce the signature set (from 32% to 26%), with
similar prediction error (from 10% to 11%). This result verifies
the efficiency of stepwise regression in reducing the signature
set without degrading prediction accuracy.

2) Results on CBC: Different from DTW where the number
of clusters is determined by the silhouette value (see Eq. 4),
CBC provides a customized interface that allows users to
determine how aggressively they want to reduce the number
of usage series (i.e., save the computational cost), via setting
prn, within [0, 1]. In this section, we focus on understanding
the behavior of the proposed CBC, i.e., the trade-off between
series reduction and prediction accuracy.

We use different values of p7; in CBC, to measure the trade-
off between series reduction and prediction accuracy. Figure 9
presents (a) the average percentage of signature series com-
paring to all series and (b) the mean APEs using CBC, with
different levels of correlation thresholds for VM usage series.
As expected, the higher the correlation threshold p7y,, the more
accurate the prediction as series reduction is less aggressive.
Interestingly, when focused on the case of the lowest cor-
relation threshold p7; = 0.1 with more than 80% of series
reduction, we observe that CBC still achieves satisfactory
prediction accuracy, with the mean APE around 27%. Notice
that the average coefficient of variation of VM usage series is
approximate 53%. In other words, simply using the mean to
predict VM usage series will result in 53% prediction error.
Compared to the mean-value prediction method, the proposed
CBC still provides superb prediction accuracy even for an
aggressive reduction of the usage series, The same conclu-
sion is also applied to prediction results on box usage series,
shown in Figures 9(c) and 9(d).

Figure 9 further verifies the effectiveness of stepwise regres-
sion. When pry, is less than 0.6, stepwise regression does
not reduce further the signature set, which is an outcome
of aggressive clustering. With p7, > 0.6, the chance of
multi-collinearity within the signature set becomes much
higher, and stepwise regression furthers the reduction of the
signature set, with only a small degradation in prediction accu-
racy. To quantify the effectiveness of stepwise regression, we
define a new metric § for both series reduction and prediction
accuracy as follows:

s = Metricbejbre_stepwise - Metricafter_stepwise ( 5)

Metrichefore_stepwise .
Here Metric can be either the series reduction or
prediction error. MetriCpefore_stepwise represents the series
reduction or prediction error before stepwise regression while
Metricyfier_siepwise Tepresents those after stepwise regres-
sion applied. Intuitively, § quantifies the relative increment
of series reduction or decrement of prediction accuracy
after stepwise regression, which allows us to compare the
two different metrics quantitatively. Higher increment of
series reduction with less decrement of prediction accuracy
suggests that applying stepwise regression results in fur-
ther reduction of the signature set with ignorable errors
introduced.
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TABLE 1
COMPARISON OF PREDICTION ACCURACY AND SERIES REDUCTION
BEFORE AND AFTER STEPWISE REGRESSION APPLIED FOR
VM USAGE SERIES PREDICTION WITH CBC

prn = 0.7
Before Stepwise | After Stepwise )
Mean APE 20.3% 20.4% 4.1%
Reduction in Series 23.5% 23.7% 6.6 %
prn = 0.8
Before Stepwise | After Stepwise )
Mean APE 19.6% 19.9% 4.2%
Reduction in Series 15.3% 18.4% 20.3%
PTh = 0.9
Before Stepwise | After Stepwise )
Mean APE 17.6% 21.6% 22.3%
Reduction in Series 7.3% 19.5% 166.5%
TABLE II

COMPARISON OF PREDICTION ACCURACY AND SERIES REDUCTION
BEFORE AND AFTER STEPWISE REGRESSION APPLIED FOR
Box USAGE SERIES PREDICTION WITH CBC

PTh = 0.7
Before Stepwise | After Stepwise )
Mean APE 6.3% 6.5% 2.3%
Reduction in Series 31.4% 38.8% 23.5%
PTh = 0.8
Before Stepwise | After Stepwise 0
Mean APE 5.4% 6.3% 16.1%
Reduction in Series 22.2% 38.4% 73.1%
PTh = 0.9
Before Stepwise | After Stepwise )
Mean APE 3.5% 7.1% 99.3%
Reduction in Series 11.4% 45.1% 278.4%

Tables I-II summarize § for both series reduction and
prediction accuracy of three threshold values, i.e., prp €
{0.7,0.8,0.9}, for VM and box usage series, respectively.
We observe that stepwise regression always achieves higher
series reduction but with minimal reduction in prediction
accuracy, which quantifies the effectiveness of stepwise
regression.

3) Spatial Models - DTW v.s. CBC: Compared with DTW,
one advantage of CBC is the customized correlation thresh-
old to allow users to dynamically adjust how aggressive is
the reduction in series. A possible question is that for a simi-
lar level of series reduction, between DTW and the proposed
CBC, which one achieves better prediction accuracy.

To compare fairly the prediction accuracy between DTW
and CBC, we select p7; = 0.2 for CBC, where CBC has a
similar reduction in series as DTW. DTW achieves around
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Trade-off between series reduction and prediction accuracy for CBC for (a-b) VMs and (c-d) boxes.

70% and 75% series reduction for VM and box usage series
respectively, while CBC results in more than 75% series reduc-
tion for both VMs and boxes on average. At the same time,
the average prediction errors of DTW are 30% and 11%
for VM and box usage series, while CBC achieves 27%
and 11% prediction errors for VMs and boxes. The above
observations suggest that, compared to DTW, CBC not only
enables customized prediction efficiency but also achieves
higher prediction accuracy with similar prediction cost.

4) Signature Selection - Spatial v.s. Temporal: In
Sections III-C1-III-C3, we apply the spatial-driven signature
selection method. In this section, we compare two different
signature selection methods in terms of the prediction effi-
ciency of spatial models. In general, if the signature series
lacks strong spatial dependency with other series in the same
cluster, it may not represent the cluster well. While if the sig-
nature series has weak temporal dependency within itself, the
signature series cannot be predicted well by temporal models.
Consequently, it is important to understand how the two sig-
nature selection methods affect prediction efficiency. As a first
step, we compare the effectiveness of spatial- and temporal-
driven signature selection methods with CBC. Figure 10 shows
(a) the average reduction in the signature set and (b) the over-
all prediction accuracy across different correlation thresholds,
for spatial- and temporal-driven signature selection methods,
in terms of VM usage series. Results on box usage series are
shown in Figures 10(c) and 10(d).

Figures 10(a) and 10(c) show that both signature selec-
tion methods share the same amount of reduction in the
signature set for VM and box usage series. This is expected
because the same time series clustering method (namely CBC)
is applied. Figures 10(b) and 10(d) show that the spatial-
driven signature selection method achieves marginally better
accuracy than the temporal-driven one, for both VM and
box usage series. This is consistent with intuition since the
spatial-driven method selects the signature series with the
strongest spatial dependency from each cluster. Surprisingly,
the temporal-driven method achieves comparable prediction
accuracy. This implies that the selection of the signature
series does not play a key role in prediction accuracy of
spatial models. Moreover, given that temporal dependency
dominates prediction accuracy when models are used, it is
anticipated that temporal-driven signature selection would
yield better overall prediction accuracy. Due to space lim-
its, a comparison between two signature selection methods
for DTW is not shown here, but the same conclusion is
drawn.
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Fig. 10. Comparison between two different signature selection methods with CBC for (a-b) VMs and (c-d) boxes.

IV. CAPACITY PLANNING

Being able to accurately predict future usage enables the
very first step to actively manage usage-related tickets. Having
future usage knowledge, it is possible to develop a capac-
ity planning policy that can effectively reduce the number
of usage tickets. Monitoring systems in modern data centers
track resource usages at discrete windows, e.g., 15 minutes,
termed as the ticketing window, and compare them with ticket
thresholds to determine whether a ticket needs to be issued
or not. To avoid incurring over-reaction to transient loads, we
set the window of capacity planning to be greater than the
ticketing window. For the data centers considered here, ticket
resolution occurs within a day of the ticket being issued, so
setting the window to one day is reasonable and practical.
This implies that the prediction horizon of the demand series
needs to be also one day. Note that past work has shown
that the accuracy of prediction decreases as the prediction
horizon increases [8], so setting the prediction window to
such a high value makes ATM more conservative than it
can actually be. During each window, to reduce the usage
tickets on VMs, ATM computes and actuates the virtual
resource allocation of co-located VMs on boxes. Similarly,
to reduce the box usage tickets, ATM performs capacity plan-
ning of physical resources for single-client boxes within the
same client. The objective is to find optimal sizes for co-
located VMs or single-client boxes to achieve the lowest
number of tickets, subject to various resource constraints. The
resources considered are: CPU measured in GHz and RAM
measured in GB.

There exist a large body of resource allocation studies aim-
ing to satisfy various performance targets, e.g., user response
time, system utilization, and fairness. For example, max-min
fairness [18], [19] is one of the most applied allocation poli-
cies that tries to guarantee the performance of small VMs,
given the assumption of known demands. Our capacity plan-
ning problem can be viewed similarly but with the objective
to minimize the occurrences of target utilization threshold
violations.

For the remaining of this exposition, we assume a fixed
resource thresholds that trigger tickets. Yet, we stress that
dynamic thresholds can be also used since resource alloca-
tion (and ticket reduction) is based on the resource prediction
per ticketing window, which depends on the spatio-temporal
models. We develop a capacity planning algorithm based on a
rigorous optimization formulation, which is later transformed
into a multi-choice knapsack problem (MCKP) with tunable

discretization parameters. The introduction of such discretiza-
tion parameters enables us to reduce the complexity and
increase the safety margin in resource allocation. In contrast
to spatial-temporal prediction models, the capacity planning
algorithm treats CPU and RAM separately due to different
constraints on each resource. For simplicity, in the following
section, we take the capacity planning problem of co-located
VMs (namely virtual resource resizing) as an example to
illustrate the proposed capacity planning algorithm.

A. Ticket Optimization Formulation

We formally introduce the problem, including notations and
constraints, for resizing all co-located VMs on a single box.
The foremost important constraint is that the summation of
allocated virtual resources should be less than or equal to
the total available virtual resource, i.e., Zi C; < C, where
C; denotes the virtual capacity allocated to VM i, and C is
the total available virtual capacity at the box. The decision
variable is C; and needs to be determined at the beginning of
the capacity planning horizon.

The prediction module provides all demand series values
for the entire capacity planning window, equal to T ticket-
ing windows, for VM i, D; = {D;,...D; r}. We introduce
an indicator variable, [;;, when I;, = 1 a usage ticket occurs
to VM i at ticketing window ¢, because the demand exceeds
a certain threshold of the capacity, say, aC; (e.g., « = 0.6);
otherwise /;; = 0. We aim to minimize the total number of
tickets occurring on all co-located VMs during the capacity
planning window. Thus, we can write the objective func-
tion as ) ;> , I, In summary, we can define the ticketing
optimization problem as:

Rymin » "I, (6)
i t
st. » G <C (7
Dli,t —aC; < Did; (8
I € {0, 1} )
Constraint (8) ensures that /;; = 1, when the demand

exceeds the ticket threshold o C;; otherwise the objective func-
tion drives /;; to zero. The problem R is a classical mixed
integer linear programming (MILP), whose complexity greatly
depends on the number of integer variables, i.e., the indicator
variables I; ; in our case. The number of indicator variables
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for each box is thus the product of the number of ticketing
windows, T, and the number of VMs, M.

1) Capacity Planning Algorithm: Instead of resorting to a
standard MILP solvers, such as CPLEX [20], we transform
the original problem into a multi-choice knapsack problem by
Lemma 1: the optimal size for each VM must be equal to one
of the demand values in D; or 0. The advantages of transform-
ing the original problem into a MCKP are twofold: (i) there
exist a large number of efficient algorithms for MCKP and
(ii) it allows for a reduction of the number of integer variables.
We elaborate on the second point after formally introduc-
ing the transformation of the original optimization problem
to MCKP.

Lemma 1: For VM i, the optimal size C;x € D; U{0}, D; =
{Di1,D;>...Dir}.

Proof: If there exists an optimal solution (C;*) for each
VM (i) for the capacity planning problem, C;x has to be
in one of the three ranges: [0, min{D;}), [min{D;}, max{D;}),
and [max{D;}, +00). If C;x is less than min{D;}, we argue
that C;x could be set to 0 and the objective function stays
unchanged while the constraints are not violated. Similarly,
it is proven that if C;* is not less than max{D;}, Cj* can be
set to max{D;}. If C;x is in [min{D;}, max{D;}), sort D; in a
descending order as D;escerd — (0, 0,, ..., Op, Opy1, ...}
Following the same reasoning, it is possible to determine that
3 g, Cix € [O4, Oyy1). In addition, setting Cj* equal to O,
the minimum objective function can be obtained without any
constraint violation. Hence the optimal size C;* is either in D;
or 0. |

Based on Lemma 1, we can transform the original formula-
tion into a multi-choice knapsack problem, whose complexity
can be further simplified by reducing the number of indica-
tor variables. We first introduce a reduced demand set with O
added, denoted as D, containing the unique values of the orig-
inal demands in decreasing order, D;’v 41 = D;,w According
to Lemma 1, one of them is the optimal capacity. We note
that D;,v is not the same as D;;. The following small exam-
ple illustrates the difference. Given a specific demand series
D; = {30, 30, 40, 40, 23, 25, 60, 60, 60, 60}, its reduced series
is le = {60, 40, 30, 25, 23, 0} containing only the unique
values plus O in descending order.

We introduce a new binary variable Y; ,, denoting that the
unique value D;’V is chosen to be the capacity for VM i. The
next step to reduce the problem into MCKP is to define the
number of tickets, denoted P; ,, seen by VM i when the value
of D;’v is chosen as capacity, i.e., ¥;, = 1. Following the
previous example of reduced demand set, we show an exam-
ple of ticket calculation. Let us assume the current capacity
is 70 and the ticketing threshold for issuing usage tickets is
60%. We thus know that demands greater than 70 x 60% = 42
at any ticketing window will result into tickets. We can then
obtain P; = {0,4,6,8,9, 10}. Due to the decreasing order
of le, P; has an increasing order, i.e., P;,+1 > P;,. The
total number of tickets for a box can thus be written as
> >, Yi P, and the resource constraint of the total capacity
as » ;> YiyD;, < C.

In summary, we reach a multi-choice knapsack problem,
where items (in the original knapsack problem) are divided

into subgroups and exactly one item needs to be selected
from each group. Putting our problem into the context of
multi-choice problem, we have M groups of VM demands
and we need to choose exactly one demand from each group
as their capacity. The decision variables are Y; , denoting that
a particular demand is chosen as the size for VM i, where
i € [1, M] and that the number of tickets, P;,, can be seen as
“weights”. The transformed ticket reduction problem is:

R)ymin Y D " YiPiy (10)
5.t XI: XV: Y;,D;, <C (11)

Xl: YZV =1 (12)

Yr,v €{0, 1} (13)

The formulation of problem R’ enables the introduction
of a tunable parameter, ¢, which decides the discretization
of demand values. We illustrate this point using the run-
ning example of original series D; and its reduced series D.
The original formulation R has 11 integer variables (includ-
ing the 0), whereas the transformed problem R’ has only 6
integer variables. One can even further decrease the number
of binary variables in P; by discretizing the demand val-
ues, such as rounding off the first digit. For example using
D; = {60, 40, 30, 0}, where 23 and 25 are rounded up to 30.
Another point worth mentioning is that we need to update the
number of corresponding tickets too, i.e., P; = {0, 4, 6, 10}.
Rounding up demands makes the capacity planning algo-
rithm more aggressive in allocating resources. Consequently,
we formally introduce a discretization factor, &, which fur-
ther reduces the complexity and provides a safety margin for
resource allocation. We note that ¢ is only applied on the pre-
dicted series. In summary, the initial step computes D; from
D; using &, and calculates their corresponding tickets, P; for
all co-located VMs i.

To solve the MCKP problem, we resort to the so-called
minimal algorithm [21]. We illustrate the general idea in
the context of our capacity planning problem. The algorithm
chooses capacity candidates for each VM and shuffles around
the capacity across VMs, comparing to the available capacity
and marginal ticket reductions. For all VMs, it chooses capac-
ity candidates that can incur a minimum number of tickets,
i.e., starts from the maximum values in le . When there is no
sufficient capacity to achieve such allocations for all VMs,
the priority is given to the VM having the lowest marginal
ticket reduction values (MTRV). MTRV represents the addi-
tional ticket increment when reducing one unit of capacity
provisioning. Its formal definition is:

MTRV = Pi‘”—}_)”"D’,l
i,0

i,0—1

; (14)

where o denotes the index of candidates in le. The VM with
the lowest MTRV is always chosen to reduce the capacity
provision from its current candidate value to the next one in
D;. Note that as D; is in decreasing order, the next candidate
immediately implies a capacity reduction. Once the candidate
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list is updated, the same process continues until the sum of all
candidates is less or equal to the available capacity.

For a practical implementation, in addition to the constraint
of total available capacity, it is also imperative to consider
the lower and upper bounds of capacity. In order to avoid
spillovers of unfinished demands from previous ticketing win-
dows, we impose a lower bound on the VM capacity size, such
that its peak usage before resizing is satisfied. Moreover, as
any VM is not able to use more resources than the available
resource amount of the underlying physical box, we introduce
the allocation upper bound based on the box resource capacity.
We can easily incorporate such lower and upper bounds into
our capacity planning algorithm by limiting the values in D
for each VM 1.

B. Results on Usage Ticket Reduction

Prior to moving on to the evaluation of the full-fledged
ATM, i.e., the combination of spatial-temporal prediction and
capacity planning, we first show how effective the proposed
capacity planning algorithm is against existing resource allo-
cation heuristics. For a fair comparison, the demand inputs
are based on the original dataset described in Section II,
instead of prediction. We implement the max-min fairness
algorithm [18] and a “stingy” algorithm which only allo-
cates the capacity according to the lower bound, i.e., the
maximum demand regardless of the ticket threshold, often
used in practice. In contrast, the max-min algorithm consid-
ers the fairness of resource allocation among co-located VMs
or single-client boxes. For example, the max-min algorithm
starts to allocate resources to all VMs based on the demand of
the smallest VM, considering its ticket threshold, and contin-
ues onto VMs in the increasing order of their demands until
all capacity is exhausted. Similarly, for single-client boxes,
the max-min algorithm always first determines the appropri-
ate physical capacity for the smallest box, and then continues
to other boxes in the same client.

Here, we evaluate the trace data of April 3, 2015 across all
6K boxes within around 300 clients and set the threshold to
trigger usage tickets to 60%, i.e., in every ticketing window
the monitoring system checks if the average usage of CPU or
RAM exceeds the 60% of the allocated capacity for both VMs
and boxes. Figure 11 summarizes the mean ticket reduction
and its standard deviation, when applying the proposed ATM
capacity planning, max-min fairness, and stingy algorithms. As
expected, the stingy algorithm is completely unaware of the
ticket threshold. On average it achieves a reduction of 54%
and 15% on VM usage tickets for CPU and RAM respec-
tively, see Figure 11(a). Similar observations hold for the
stingy algorithm on box usage tickets, with a reduction of
only 20% for both CPU and RAM, shown in Figure 11(b).
Max-min fairness reduces VM usage tickets by around 70%
for both CPU and RAM, and box usage tickets by around
50% and 40% for CPU and RAM, respectively. This is still
roughly 30% worse than the proposed ATM capacity plan-
ning results. Due to the nature of favoring small machines,
large machines can be severely punished under max-min fair-
ness resulting in no ticket reduction, this explains the high
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Fig. 11.  Ticket reduction of CPU and RAM for (a) VMs and (b) boxes:

comparing ATM, max-min fairness, and stingy algorithms.

standard deviation under max-min fairness for both VMs and
boxes.

The proposed capacity planning algorithm does exception-
ally well. It achieves 95% VM usage ticket reduction and 70%
box usage ticket reduction for both CPU and RAM, a remark-
able improvement for both performance and cost. This is also
attributed to the fact that the systems of the original traces are
equipped with abundant resources, i.e., typically data centers
are lowly utilized [6]. By simply shuffling resources across co-
located VMs and efficient capacity planning on single-client
boxes, we are able to achieve significant performance gain.
Moreover, we also eliminate the overhead of inspecting and
resolving a large number of usage tickets, a process that is
known to be expensive.

V. EVALUATION

We extensively evaluate ATM on a large number of data
center production traces. For the first part of evaluation, we
focus on illustrating the effectiveness and versatility of ATM in
time series prediction using spatial-temporal prediction mod-
els. In the second part of evaluation, we focus on presenting
the effectiveness of ATM in ticket reduction to improve system
dependability and to reduce the high cost associated with ticket
resolution.

A. Analysis on Spatial-Temporal Models

We engage training of the signature series for 5 days and
then predict the following day. For spatial models, we con-
sider both DTW and CBC. The temporal models used for the
signature series are feed-forward neural networks [8], trained
using back-propagation via MATLAB [22]. ATM performs the
prediction of 16000 usage series, each of which has 96 tick-
eting windows, with each window being 15 minutes long. To
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Fig. 12. CDF of prediction accuracy between DTW and CBC methods for

(a) VM and (b) box usage series.

check the generalization of our spatial-temporal models, the
tested usage series include VMs and boxes for both CPU and
RAM. We note that results presented in this section differ from
Section III, where only the proposed spatial models are evalu-
ated, excluding the temporal prediction models. Here, we have
the full effect of both prediction models.

1) Spatial Models - DTW v.s. CBC: As discussed in
Section IlI-C, temporal-driven signature selection method is
supposed to dominate the prediction accuracy. Consequently,
we leverage a temporal-driven method to select signature
series from each cluster. To fairly compare DTW and CBC,
we set prp, = 0.2 for CBC in order to have similar usage series
reduction between DTW and CBC.

Figures 12(a) and 12(b) present the CDFs of the prediction
accuracy of ATM in terms of APE with different spatial mod-
els, i.e., DTW and CBC, for VM and box usage series respec-
tively. The average prediction errors of VM usage are 23.8%
and 21.8%, for DTW and CBC respectively, see Figure 12(a).
Given that peak usages trigger tickets, it is also important to
check the prediction errors of peaks, i.e., usage higher than
60%, also shown in Figure 12. Average peak errors across all
VM usage series are 17.3% and 15.7% for DTW and CBC,
respectively. This shows that neural networks can capture well
the temporal dynamics of the signature series. Similar observa-
tions are seen in box usage series prediction, see Figure 12(b).
Note that our proposed CBC beats DTW with higher accuracy
in overall and peak VM usage series prediction, as well as box
usage series. We further note that compared with VM usage
series prediction, we achieve even better prediction for box
usage series, see Figures 12(a) and 12(b). This is an outcome
of the strong temporal dependency within the box usage series,
as discussed in Section II-C.

2) Signature Selection - Spatial- v.s. Temporal-Driven:
To evaluate the efficiency of two different signature selec-
tion methods, we consider their effectiveness when used with
CBC. Consistent with the focus of this section, we also report
on overall prediction errors after neural networks prediction
is sdone. In Figures 13(a) and 13(b), we compare the mean
prediction accuracy with spatial- and temporal-driven signa-
ture selection methods across different correlation thresholds,
in terms of all and peak usages, for VMs and boxes. It is
clearly shown that in all cases, the femporal-driven signa-
ture selection method outperforms the spatial-driven one. The
lower the correlation threshold, the bigger the prediction dif-
ference between them. It is clear that taking advantage of both
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Fig. 13.  Comparison of prediction errors between spatial- and temporal-
driven signature selection methods with CBC for (a) VM and (b) box usage
series.
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Fig. 14. Comparing ticket reduction of CPU and RAM for (a) VMs and (b)
boxes for ATM, max-min fairness, and stingy algorithms.

spatial and temporal dependencies achieves higher efficiency
in both prediction accuracy and computational cost.

B. ATM on Ticket Reduction

In this section, we show how different configurations of
ATM can proactively reduce the number of tickets. After
obtaining the predicted VM series, ATM triggers the capacity
planning algorithm for every box to determine the near optimal
CPU and RAM capacity for all co-located VMs. Similarly for
each client, ATM plugs in the predicted box series to perform
the capacity planning algorithm across single-client boxes for
both CPU and RAM. We stress that this analysis is post-hoc,
i.e., we can not change the size of the actual VMs or physical
boxes in the trace, we focus only on ticket reduction via ATM.
In the remaining of this section, we assume that usage tick-
ets related to CPU and RAM are automatically issued when
utilization is greater than 60%.

Figure 14 compares the results of average ticket reduc-
tion using two different versions of ATM (i.e., DTW and
CBC) against the max-min fairness, and stingy policies, see
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Section IV. Each bar illustrates the mean and standard devi-
ation of ticket reduction across tested boxes (in Figure 14(a))
and clients (in Figure 14(b)) divided into CPU and RAM tick-
ets. The key observations are the following. Both versions of
ATM are able to achieve a higher ticket reduction, around
60% and 70% for CPU and RAM, respectively, compared to
the other two heuristics. We also like to point out that the
standard deviation is high for stingy and max-min fairness
algorithms, indicating instability of these two heuristics. ATM
suffers from much lower variation of ticket reduction, which
argues for ATM’s robustness. In summary, ATM achieves effi-
cient and stable ticket reduction for both VM and box usage
series.

VI. RELATED WORK

Ticketing systems are widely used to improve on system
dependability, e.g., slow responsiveness, failure [5], software
bugs [23], [24] and system misconfigurations [25]. Prior
art in ticketing systems centers on two directions: derive
system management for software concurrency [23], database
systems [4], and distributed data-intensive systems [26] but
also to develop automatic detection systems for different types
of tickets, bugs [24] and software misconfigurations by lever-
aging the rich correlation between configuration entries [25].
Machine learning has been used for automating ticket resolu-
tion recommendation [9], [27], [28]. To the best of our knowl-
edge, there are no proactive methodologies for preventing
ticket issuing, with the exception of models for database recon-
figuration [29]. The proposed ATM policy fills this gap by not
only deriving management insights for usage ticket patterns,
but also by developing novel prediction and ticket avoidance
strategies via capacity planning.

Time series prediction and analysis have been viewed as
an excellent way to develop proactive system management
policies [30], [31]. Temporal models such as ARIMA mod-
els [10] have been widely used to predict time series with
strong seasonality. Sophisticated neural network models show
a strong promise in capturing highly irregular time series at
a cost of long training overheads [32]. Time series clustering
aims to explore spatial dependency, either through their orig-
inal series, e.g., DTW [14], or extracted features [13], e.g.,
moments. Spatio-temporal models are also used to mitigate
issues related to missing data in time-series by filling up the
data gaps [33].

Virtualization technology has become the industry standard
offering great opportunities to multiplex physical resources
over a large number of VMs. There are two ways to change
the efficiency of resource multiplex ratios: by sizing the vir-
tual resource capacities [34] and by dynamically consolidating
VMs [35]. While dynamically changing the degree of VM
consolidation is shown effective to take advantage of the time
variability of the workload [36], the overhead of migrating
VMs can greatly reduce its performance benefits. On the con-
trary, sizing resource of co-located VMs incurs less system
overhead [34]. A central question of multiplexing resources
is how to strike a good tradeoff of fairness and performance
for workloads, e.g., latency [37] and throughput [38]. Fairness

driven policies, e.g., max-min fairness, proportional fairness,
and bottleneck resource fairness [39], have been proposed for
various systems components, including storage systems [38]
and networks [40]. The capacity planning algorithm proposed
in ATM differs from related work by its objective to reduce the
number of usage tickets. While max-min fairness also reduces
the number of tickets, it cannot achieve this as effectively as
ATM since ticket reduction is a side-effect rather than a main
focus.

Compared to [1], here we apply the proposed spatial-
temporal prediction model and capacity planning algorithm to
a new data set, namely box usage series from IBM private data
centers. Evaluation results again verify the efficiency of ATM.
Moreover, we propose a new, improved signature selection
method for the spatial-temporal prediction model, by reducing
computation overhead while maintaining accurate prediction.
The improved version of ATM presented here provides a cus-
tomized interface for users to determine the trade-off between
prediction accuracy and prediction cost. In summary, this paper
not only more comprehensively evaluates ATM [1], but also
further improves its accuracy and effectiveness.

VII. CONCLUDING REMARKS

We present ATM, a methodology to achieve efficient time
series prediction and capacity planning so as to reduce VM and
box usage tickets that are issued in production data centers.
We have shown the effectiveness of ATM in predicting usage
series in production data centers by exploiting spatial-temporal
usage patterns across/within co-located VMs and single-client
boxes, and by using detailed prediction of a small subset of
the usage series, allowing the methodology to scale well. This
prediction drives the development of a capacity planning pol-
icy that is shown effective on a production trace. In future work
we intend to use ATM’s prediction abilities to drive online
dynamic workload management.
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