
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018 39

Spatial–Temporal Prediction Models for Active

Ticket Managing in Data Centers
Ji Xue , Robert Birke , Member, IEEE, Lydia Y. Chen , Member, IEEE,

and Evgenia Smirni, Senior Member, IEEE

Abstract—Performance ticket handling is an expensive oper-
ation in data centers, where physical boxes host multiple
virtual machines (VMs). A large body of tickets arise from
resource usage warnings, e.g., CPU and RAM usages that exceed
predefined thresholds. The transient nature of CPU and RAM
usage as well as their strong correlation across time among co-
located VMs within boxes drastically increase the complexity of
ticket management. Based on large resource usage data collected
from production data centers, with 6K physical boxes and more
than 80K VMs, we first discover patterns of spatial and tem-
poral dependencies among/within the usage series of co-located
resources. Leveraging our key findings, we develop an active
ticket managing (ATM) system that aims to drastically reduce
usage tickets. ATM consists of: 1) a spatial–temporal dependency-
based time series prediction methodology and 2) a proactive
capacity planning policy for CPU and RAM resources for VMs
co-located within a box and boxes within a single data center
client, that aims to drastically reduce usage tickets. ATM exploits
the spatial–temporal dependency across/within multiple resources
of co-located VMs and single-client boxes for usage prediction,
and then actuates proactive capacity planning. Evaluation results
on traces of 6K physical boxes from operating data centers show
that ATM is able to provide accurate prediction of usage series
in cloud data centers with low computational overhead. At the
same time ATM achieves significant ticket reduction up to 60%
for both VM and box usage series.

Index Terms—Cloud data center, reliability analysis, spatial-
temporal prediction, capacity planning.

I. INTRODUCTION

P
ERFORMANCE ticketing provides the means to data

centers to interactively improve user experience by main-

taining performance at tails. Typically, tickets can be issued

by users or by system monitoring tools when performance

Manuscript received May 2, 2017; revised September 16, 2017 and
November 18, 2017; accepted December 10, 2017. Date of publica-
tion January 17, 2018; date of current version March 9, 2018. The
research presented in this paper has been supported by NSF grants
CCF-1218758 and CCF-1649087, EU commission FP7 GENiC project (Grant
Agreement No.608826), and the Swiss National Science Foundation (projects
200021_141002 and 407540_167266). A preliminary revision of this paper
appeared at IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN) 2016 [1]. The associate editor coordinating the review
of this paper and approving it for publication was N. Zincir-Heywood.
(Corresponding author: Ji Xue.)

J. Xue was with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23185 USA. He is now with Google, Menlo Park,
CA 94025 USA (e-mail: xueji0202@gmail.com).

R. Birke and L. Y. Chen are with IBM Research Zurich, 8803 Rüschlikon,
Switzerland.

E. Smirni is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23185 USA.

Digital Object Identifier 10.1109/TNSM.2018.2794409

Fig. 1. An illustration of spatial dependency across usage time series for 4
VMs co-located on a box.

violations are encountered, e.g., unresponsive service, high

resource usage due to transient load dynamics, or persistent

insufficient provisioning. Ticket resolution is unfortunately

very expensive [2], [3] as a significant amount of manual labor

is required for root-cause analysis and to remedy the detected

problem [4]. Prior work has shown that there is strong corre-

lation of ticket issuing with resource usage exceeding certain

predefined thresholds [5]. In today’s data centers, with phys-

ical resources being aggressively multiplexed across multiple

virtual machines (VMs), the likelihood of issuing performance

tickets due to physical or virtual machines crossing predefined

usage thresholds dramatically increases.

Past work has established that resource usage at data cen-

ters exhibits strong temporal patterns [6], [7]. Beyond temporal

dependencies that are established by usage time series [8], it

is common for co-located VMs to simultaneously compete for

limited physical resources. We illustrate a motivating example

in Figure 1 depicting the CPU usage time series1 of 4 VMs

co-located within the same physical box, where performance

tickets are issued automatically when a VM utilization exceeds

a threshold of 60%. One can easily see the spatial depen-

dency of VM1 and VM3, i.e., usage series move up and down

synchronously, similarly for VM2 and VM3. The above time

series are obtained by an IBM data center production system

and are representative of typical patterns encountered in such

systems.

The focus of this paper is to develop a methodology that

harnesses spatial and temporal dependencies of usage time

1We interchangeably use the terms “time series” and “series”.

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

40 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

series and increases the data center dependability by using a

proactive approach: reduce the number of tickets by predicting

when they will occur in the future and by using this prediction

to employ dynamic capacity planning to adjust resource usage

to avoid triggering of future tickets. To this end, we first con-

duct a detailed, post-hoc workload characterization study of

usage time series in IBM production data centers correspond-

ing to 80K VMs hosted on 6K physical servers. We develop

an Active Ticket Managing (ATM) system that predicts future

VM and box resource usage, and then proactively adjusts

capacity on the co-located VMs and single-client boxes. The

research challenges are numerous and outlined as follows.

Effective usage prediction is a prerequisite to the develop-

ment of any management policy. Indeed, in our past work we

have shown that neural networks can be effectively employed

for prediction [8], but their effective usage remains pro-

hibitively expensive in practical situations as it suffers by high

training costs. In practice, in a large-scaled data center, with

more than tens of thousands of physical boxes and hundreds of

thousands of VMs, it is infeasible to rely on neural networks

to predict future resource usage. We solve this first problem

by developing a prediction methodology that discovers spatial

dependencies across usage series and exploits them to develop

an agile methodology for prediction. To this end, we intro-

duce the concept of signature series, a subset of usage series

that are representative of all other usage series. We are able

to predict the usage series not in the signature set and the

respective usage violation tickets of co-located VMs, via a lin-

ear combination of signature VM series, which provides a time

series prediction model that uses only 15% of the original time

series. More significant series reduction (i.e., as low as 10%) is

observed when predicting box usage series within each single

client. Second, based on predicted resource usage, we define

a multi-choice knapsack problem and develop a greedy algo-

rithm to dynamically adjust (resize) virtual resources across

co-located VMs, or to perform efficient capacity planning of

physical resources across boxes within the same client. ATM

is evaluated on production traces of 6K boxes and 80K VMs.

Our extensive evaluation results show that ATM has remark-

ably high accuracy in prediction, i.e., its relative prediction

errors are as low as 20% for VM usage series and only 7%

for box usage series while using only 20% of the original time

series. Usage prediction results in significant ticket reduction,

i.e., up to 60% − 70% fewer tickets. The contributions of this

paper are as follows:

1) We do post-hoc characterization of usage ticket issuing

in a commercial data center setting. We focus on discovering

the distribution of usage tickets and spatial-temporal patterns

of resource usages across/within co-located VMs and single-

client boxes. We find that usage tickets are mostly due to a

small set of VMs or boxes and that both co-located VMs and

single-client boxes show significant auto- and cross-correlation

among their CPU and RAM usage series.

2) Motivated by the strong spatial patterns across resource

usage series of co-located VMs and of single-client boxes,

we argue that a small number of signature usage time series

can be used as predictors to represent well the entire set

of resource usage time series. Moreover, we also provide

a customized interface for users to determine the trade-

off between prediction accuracy and prediction cost. This

prediction methodology is the basis of ATM.

3) We develop a capacity planning policy to reduce usage

tickets by setting the upper limits of CPU and RAM alloca-

tions for co-located VMs or single client boxes, a problem

which is shown to be NP-hard. We rigorously formulate the

ticket minimization problem subject to the physical capacity

constraints. We propose a greedy algorithm to solve it and

compare its performance to the max-min fairness algorithm.

The outline of this work is as follows. Section II provides a

characterization study on the usage tickets as well as the spatial

patterns among usage series of co-located VMs and single-

client boxes. We propose spatial-temporal prediction methods

for resource usage series in Section III. In Section IV, we

formulate the ticket minimization problem and demonstrate a

greedy resizing algorithm to reduce usage tickets. An exten-

sive evaluation of ATM on both production traces is discussed

in Section V. Section VI presents related work, followed by

summary and conclusions in Section VII.

II. STATISTICS AND OBSERVATIONS

The motivation for the design of ATM is the need to reduce

usage tickets that are typically issued when resource utiliza-

tions exceed certain thresholds. The trace that we consider

here comes from IBM production data centers serving various

industries, including banking, pharmaceutical, IT, consulting,

and retail. The majority of VMs in the trace are VMware

VMs. The trace contains CPU and RAM capacity but also

utilization data taken at a time granularity of 15 minutes for

6K physical boxes within 300 clients, hosting more than 80K

VMs, during a 7-day period from April 3, 2015 to April

9, 2015. In a private cloud data center, which is a “single

client environment”, the hardware, storage and network are

dedicated to a single company. A client is assigned a unique

cluster of boxes, which allows customized placement of VMs

and assignment of resources. Within this environment, there

is no sharing of boxes across different clients. On average,

10 VMs are consolidated within a single physical box, and

15 physical boxes are assigned to each client [6]. Both VMs

and boxes are very heterogeneous in terms of their resource

configuration.

In the following, we first show the distribution of usage

tickets under different ticket thresholds for VMs and physi-

cal boxes, followed by a more detailed analysis on the spatial

and temporal patterns of usage series of both co-located VMs

and single-client boxes. We aim to uncover how usage tick-

ets are distributed across resources and most importantly how

usage patterns trigger usage tickets. We anticipate that the

design principles of the proposed ATM system leverage this

characterization analysis.

A. Usage Tickets

Usage tickets are generated when utilization values exceed

target thresholds. Naturally, lower thresholds trigger a higher

number of usage tickets and increase the cost of resolution,

whereas higher thresholds result into fewer tickets but at a

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 41

Fig. 2. Characterization of usage tickets for CPU and RAM of VMs per box.

Fig. 3. Characterization of usage tickets for CPU and RAM of boxes per client. Notice that in (b), the y-axis is in log-scale.

higher risk of performance degradation. To quantify the effect

of different thresholds, we consider three threshold levels,

namely 60%, 70%, and 80%. Such values are commonly

adopted in production systems [9]. Figures 2–3 illustrate quan-

titative information on the issued tickets for the CPU and RAM

usage series of April 3, 2015, in terms of VMs and boxes,

respectively. We illustrate how many boxes have VM tickets

and how these tickets are distributed across co-located VMs

and their resources. The similar characterization on box usage

tickets is also presented.

1) VMs: First, we provide an overview on the VM

usage tickets within each physical box for CPU and RAM.

Figure 2(a) plots the percentage of boxes that have at least one

VM usage ticket under the selected different thresholds. Even

with the highest ticket threshold of 80%, almost 40% of boxes

obtain at least one ticket due to CPU violation and 10% due to

RAM violation, these percentages increase to 57% and 38%,

respectively, when the threshold is 60%. Figure 2(b) illustrates

the average number of VM tickets for CPU and RAM. The

average number of CPU usage tickets per VM are 4, 3, 2.5,

for the three thresholds of 60%, 70%, and 80%, respectively,

showing a relatively minor decreasing trend. A similar trend is

observed for RAM usage tickets in VMs. Overall, RAM tickets

are less likely to occur and in lower amount compared to CPU

tickets in VMs, independently of the threshold. This can be

explained by the fact that RAM tends to be over-provisioned

for performance reasons. The next natural question is whether

tickets are evenly distributed across all co-located VMs. To

this end, we compute the number of VMs that accounts for

the majority of tickets, where the majority is defined to 80%

of usage tickets per box (this is an ad-hoc value). Figure 2(c)

shows that on average one to two VMs per box cause the

majority of tickets, irrespective of the three threshold values. A

further interesting observation is that since the culprit VMs are

few, if we increase the capacity allocation of the culprit VMs

by removing resources from other co-located VMs, then tickets

may reduce. On the contrary, if tickets are evenly distributed,

such resizing does not help.

2) Boxes: We provide statistics on the box usage tickets

across all clients for CPU and RAM, see Figure 3. Figure 3(a)

exhibits similar trends as VM usage tickets, compared with

Figure 2(a). The trend here on the severity of RAM vs CPU

tickets is reversed, i.e., a significant percentage of clients

experience RAM tickets. Figure 3(b) measures the average

number of box usage tickets for CPU and RAM. The aver-

age number of CPU(RAM) usage tickets per box are 5(40),

3(30), 2(18) for the three thresholds, and this again suggests

that RAM is more over-utilized than CPU in physical boxes.

The above observations suggest the need to reduce/avoid the

box usage tickets, especially for RAM. Finally, we aim to

quantify the culprit boxes, which result in the majority (i.e.,

more than 80%) of box usage tickets within each client,

see Figure 3(c). Across CPU and RAM, we observe that no

more than 5 physical boxes in each client cause more than

80% of box usage tickets, recall that on average each client

is assigned 15 boxes. This is similar as what we observe

for VM usage tickets, and again suggests the opportunity

to reduce/avoid the box usage tickets by efficient capac-

ity planning of physical resources among the single-client

boxes.

42 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 4. Cumulative distribution of correlation within co-located (a) VMs and
(b) single-client boxes.

B. Do Spatial Dependencies Exist?

To better understand the spatial patterns of usage tickets,

we estimate the magnitude of spatial dependency by comput-

ing the Pearson’s correlation coefficient [10] over each pair of

CPU and RAM usage series of co-located VMs within each

box as well as for boxes within each client. For co-located

VMs, we compute the mean and 90%ile of the above mea-

sures and present the cumulative distribution functions (CDFs)

across all the boxes in Figure 4(a). A similar analysis of spa-

tial dependency is also done for box usage series across all

clients, see Figure 4(b).

Comparing Figures 4(a) and 4(b), one can immediately see

from the shapes of the CDFs that co-located VMs have slightly

stronger correlations (spatial dependency) than physical boxes

within the same client. Indeed, the mean values for correlation

measures (mean and 90%ile) of resource usage series of co-

located VMs are 0.35 and 0.66, while the mean values for

single-client boxes are 0.25 and 0.55. Still, the figures give a

clear message: across both co-located VMs and single-client

boxes, resource usage series exhibit strong spatial dependency.

This is a fact that we take advantage of when we attempt to

use clustering to reduce the cost of prediction.

C. Do Temporal Dependencies Exist?

Besides spatial dependencies, another interesting aspect to

explore is whether temporal dependencies exist within each

usage series. Other work [11] combines fast fourier transforms

and autocorrelation to capture temporal patterns. Similarly

to [11], we leverage autocorrelation to capture temporal depen-

dencies within usage series. To motivate our discovery of

temporal dependency, we first present two representative CPU

usage series across 2 months for a specific VM and box

in Figures 5(a) and 5(b), respectively. We observe that the

workloads within the IBM private cloud exhibit clear periodic

patterns over time. To capture the temporal dependency within

each usage series, we show the autocorrelation of each usage

series for the selected VM and box, see Figures 5(c) and 5(d).

Autocorrelation is a mathematical representation of the degree

of similarity in a time series and a lagged version of itself. As

such, it is ideal for discovering repeating patterns by quantify-

ing the relationship between different points of a time series as

a function of the time lag [12]. The autocorrelation metric is

in the range of [−1, 1]. Higher positive values indicate that the

two points between the computed lag distance are “similar”,

i.e., have stronger temporal dependency. Zero values suggest

no temporal dependency. Negative values show that the two

points are diametrically different. In Figures 5(c) and 5(d), it

is clear that the autocorrelation becomes high at certain lag

values and that these lag values can be different for differ-

ent usage series. Again, this observation verifies the strong

temporal dependency within the selected usage series. Notice

that similar periodic patterns are also observed across most of

usage series in the IBM private cloud data centers [8].

Although autocorrelation is effective to quantify the tem-

poral dependency in most of the cases, autocorrelation alone

cannot always represent temporal dependency, if for example,

the usage series is constant over time. In this case, autocorrela-

tion cannot be computed. Yet, this kind of series still exhibits

very strong temporal dependency, thus it can be predicted eas-

ily using other measures, such as the coefficient of variation

(C.V.) of series. Figure 6(a) presents the CDFs of the C.V. of

VMs and boxes for CPU and RAM usage series. We observe

that RAM usage series of boxes have the highest line, with

mean C.V. equal to 0.05. This clearly shows that box RAM

usage series are nearly consistent over-time. For usage series of

VMs and CPU usage series of boxes, where the C.V. is much

higher, it is possible to leverage autocorrelation to measure

their temporal dependencies.

With the exception of RAM usage series of boxes, we quan-

tify temporal dependency of usage series in cloud data cen-

ters, using a metric called goodness of temporal dependency

(GTD):

GTD = β ∗ max(ACFshort) + (1 − β) ∗ max(ACFlong). (1)

Here ACFshort is a list of autocorrelation coefficients for lags

that correspond to time stretches of less than 1 day, while

ACFlong consists of autocorrelation coefficients for lags that

are more than 1 day. We capture the highest autocorrela-

tions in both short- and long-term, i.e., max(ACFshort) and

max(ACFlong) respectively. The term β ∈ [0, 1], is a weight

that represents how important is short-term behavior for time

series prediction, which is inversely related to the prediction

length. In our application scenario, the favored prediction

length is at least 1 day ahead. In our experiments, β is set as

0.2 to satisfy such long-term prediction demand. The higher

the GDT, the stronger the temporal dependency within the

series. Figure 6(b) presents CDFs of GTD of VM usage series

for CPU and RAM, as well as box usage series for CPU. In

general, the graph shows that box CPU usage series have the

lowest line, which indicates the overall highest GTD values,

followed by VM RAM and then VM CPU usage series.

To summarize Sections II-B and II-C, we discover strong

spatial and temporal dependencies of resource usage series

for both VMs and boxes. Using the above observations, in the

next section, we propose spatial-temporal prediction models to

accurately and cheaply predict the usage series in cloud data

centers.

III. SPATIAL-TEMPORAL PREDICTION MODELS

We first elaborate on the challenges for concurrent

prediction for a large number of time series representing

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 43

Fig. 5. CPU utilization over time for one representative (a) VM and (b) box, with their autocorrelation functions presented in (c) and (d), respectively.

Fig. 6. Comparison of temporal characteristics between VM and box usage
series. Note that x-axis in (a) is in log-scale.

multiple resource usages from co-located VMs and boxes at

production data centers. The immediate obstacles of prediction

given a large number of demand series are accuracy, training

overhead, and model scalability. Typically, temporal mod-

els [10], such as ARIMA are not able to capture bursty

behavior. More sophisticated temporal models such as neural

networks, capture irregular patterns but at much higher com-

putational overheads. Given such restrictions, it is important

to come up with efficient and accurate prediction models that

also scale well.

We propose a new prediction methodology that combines

both temporal and spatial models to predict the resource

demand time series2 Di (∀i ∈ [1, M×N]) where M is the num-

ber of co-located VMs(boxes) and N is the number of different

resources taken into consideration. We introduce the concept

of signature series: a minimum number of time series that are

predicted via temporal models. The rest of the demand series,

termed as dependent series, are predicted through a linear

combination of signature series via spatial models. Essentially,

we divide the demand series, Di, into two sets: the signature

set, denoted by "s, and the dependent set, "d.

The novelty of ATM is to derive novel spatial models for

dependent series while applying existing temporal models to

predict signature series. Many practical techniques exist in the

literature for reducing the overhead of temporal models by

2Demand series is the product of usage series and the allocated vir-
tual capacity. Both demand and usage series share the same correlation
characteristics.

extracting and storing features of the time series [8], [13].

We stress that any temporal prediction model can be directly

plugged into the ATM framework.

To derive the spatial models, we want to express all demand

series Dk, k ∈ "d by a linear combination fk of the signature

series Dj, j ∈ "s:

Dk = fk(Dj). (2)

As every demand series can be either a signature or a depen-

dent series, a brute force solution to find the minimum

signature set is to explore all 2N×M combinations of regression

models. For boxes hosting an average number of M VMs, i.e.,

M ≈ 10 and expected to grow as servers become more pow-

erful, it is clear that this method is not viable. To address

this issue, we devise an efficient searching algorithm that

can quickly find signature series without exhaustive search,

by leveraging time series clustering techniques and signature

selection methods.

A. Searching for Signature Demand Series

Key to the discovery of signature series is clustering. We

propose a three-step algorithm to identify the signature set "s.

Step 1 defines the initial clusters across all usage series. This

is achieved using time series clustering, specifically dynamic

time warping (DTW) [14] or correlation based clustering

(CBC) that we propose here. Step 2 chooses the initial set of

signature series via either spatial- or temporal-driven signa-

ture selection methods. Step 3 defines the final set of signature

series by detecting and removing multicollinearity among the

initial set of signature series using variance inflation factors

(VIF) and stepwise regression. The intent of the last step is

to fix the pitfall that although signature series appear indepen-

dent, it is possible that a combination of certain subsets of

the initial signature series can well represent the others. For

example, a group of series can be separated into three clusters

because of their dissimilarity in the distances or the correlation

patterns. If however one of the clusters can actually be well

expressed as a linear combination of the other two, then this

falls under a classical example of multicollinearity. Figure 7

illustrates the steps of signature set search.

44 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 7. Overview of searching for signature set.

1) Step 1 - Time Series Clustering: Dynamic time warping

is an effective solution for finding clusters of time series where

the distance across the series is short. A potential problem is

that DTW falls short in capturing series within the cluster that

are of larger distance. Correlation based clustering solves this

problem by capturing highly correlated time series that are far

enough apart and cannot be captured by DTW. Applying DTW

on the four series shown in Figure 1 illustrates how clustering

with DTW only offers a partial solution. DTW detects cluster

1 (VM1) and cluster 2 (VM2, VM3, and VM4). CBC instead

puts VM1 and VM3 in the same cluster, and VM2 with VM4

within another cluster. Indeed, the series D1 and D2 of VM1

and VM2 can be well represented as linear models of the series

D3 of VM3 and D4 of VM4 respectively, e.g., D1 = a0 +aD3,

and D2 = b0 + bD4, where a0, a, b0, and b are scalars. In

the remaining of this section we provide details on DTW and

CBC, as well as how to select the signature series.

Dynamic Time Warping Clustering: The high level idea of

DTW is to group series that show low distance dissimilar-

ity. To obtain the distance dissimilarity between two series

P = {p1, p2, . . . , pi, . . . , pn} and Q = {q1, q2, . . . , qj, . . . , qm},

we first build a matrix that consists of the pair-wise squared

distances, i.e., d(pi, qj) = (pi −qj)
2, between each pair of ele-

ments pi and qj in the two series. The distance dissimilarity

λ(n, m) of the two series is given by the wrapping path through

the matrix that minimizes the total cumulative distance [14]

and can be recursively computed as follows:

λ(i, j) = d(pi, qj)

+ min{λ(i − 1, j − 1), λ(i − 1, j), λ(i, j − 1)}. (3)

Next, we apply hierarchical clustering [15] for any given num-

ber of clusters, ranging from 2 to (M × N)/2 since we aim

to reduce the original set to at least its half. We determine

the optimal number of clusters, based on the average silhou-

ette value [16] of all time series within each cluster. For each

series i, its silhouette value s(i) is defined as

s(i) =
b(i) − a(i)

max{b(i), a(i)}
(4)

where a(i) is the average distance dissimilarity between series

i to all the other series within the same cluster using DTW,

while b(i) is the lowest average distance dissimilarity between

series i to all the series in a different cluster. The higher the

silhouette value, the better the series lies within its cluster. For

each number of clusters, we average the silhouette values of

all series as the representative silhouette value. The optimal

number of clusters is the one with the maximal silhouette

value.

Correlation-based Clustering: CBC focuses on grouping

series showing high correlation. For each box, we first com-

pute the pairwise correlation coefficients, denoted as ρ, for all

pairs of the M × N series. For a demand series Di, there are

(M × N − 1) pairs ρi,l,∀l ̸= i. To form the clusters, we rank

each series Di, i ∈ [1, M × N] first by the total number of ρi,l

above a threshold ρTh, and second by the mean value of the ρi,l

above the threshold. Compared with DTW based clustering,

our proposed CBC provides customized clustering via setting

different values of ρTh. Lower ρTh results in more aggressive

clustering. After the series have been ranked, we select the

topmost one and remove it together with all the series that

are correlated with it with a correlation coefficient higher than

the threshold. These series are now considered within a new

cluster with the top ranked series being the signature series.

This procedure continues by selecting the next topmost series

still in the ranked list and ends when the ranked list becomes

empty.

2) Step 2 - Signature Selection Methods: After cluster-

ing, the next step is to select one signature series from each

cluster to represent all the other usage series in the same clus-

ter. We propose two different methods of signature selection:

either spatial-driven or temporal-driven. The intuition behind

the spatial-driven method is to find the signature series that

can best represent all the other series in the same cluster,

while the temporal-driven method aims to choose the sig-

nature series that can be best predicted within each cluster.

Specifically, the spatial-driven method selects the signature

series with the strongest spatial dependency (i.e., the smallest

distance dissimilarities or the highest correlation values) with

all the other series in the same cluster, while the temporal-

driven one selects the signature series with the highest value

of goodness of temporal dependency within each cluster. After

applying either signature selection method, each cluster will

be represented by one signature series.

3) Step 3 - Stepwise Regression: To further reduce the

number of signature series, we calculate the variance infla-

tion factor (VIF), a metric that can detect multicollinearity in

regression. For each series in the signature set, we regress it

on the rest of signature series and obtain its VIF value [17].

A rule of thumb is that a VIF greater than 4 indicates a

dependency with the other series in the initial set [17]. After

detecting the risk of multicollinearity, i.e., at least one series

has a VIF greater than 4, we perform standard stepwise regres-

sion to remove the series that can be represented as linear

combinations of the other signature series.

B. Prediction Models

To predict all M × N demand series, we first predict the

signature series Di (i ∈ "s), using neural network models and

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 45

Fig. 8. Usage series reduction and prediction errors are compared between
two steps (before and after stepwise regression) for (a) VM and (b) box usage
series. Notice that the left y-axis represents the ratio of the signature set to
the original series, and the right y-axis represents the prediction error.

their historical data [8]. To predict all dependent series, we

regress each dependent series on the set of signature series,

obtaining coefficients using ordinary least square estimates.

We stress that the signature series predictions are not tied to

the any specific model. Rather, any suitable prediction model

can be easily plugged into our ATM framework.

In summary, we first leverage historical data to develop spa-

tial models to define dependent series, and then select their

respective signatures. Later, we use temporal models to predict

the signature series and inexpensive linear transformation

models to predict the dependent series.

C. Results on Spatial Models

Prior to moving to the proposed capacity planning policy,

we present evaluation results of the proposed spatial models

across the demand series of the trace data (6K boxes and 80K

VMs) presented in Section II. The evaluation consists of two

parts. The first part focuses on the comparison between differ-

ent clustering methods, while in the rest of the evaluation we

turn the focus on the analysis of the two signature selection

methods. Note that in the first part, we use the spatial-driven

signature selection method. Since the purpose of spatial mod-

els is to use a minimum subset of original series to accurately

represent the data center, the metrics of interest are: (I) the

percentage of signature series out of the total demand series

and (II) the prediction error.3

In this section we only focus on the effectiveness of the spa-

tial models, i.e., how close the dependent series are from the

actual time series counterparts. The overall prediction accu-

racy of combining spatial models with temporal models is

presented in Section V.

1) Results on DTW: In Figure 8, we present the boxplots

of the series reduction and prediction errors on VM and box

usage series of RAM and CPU, applying DTW. The box-

plots in this figure show the 25th, 50th, and 75th percentiles,

the whiskers correspond to the extremes of the distribution,

and the dot represents the average. Figure 8(a) compares the

results on two steps (before and after stepwise regression) for

VM usage series. We observe that DTW is quite aggressive in

reducing the number of time series, such that there is almost

no further reduction after applying stepwise regression. Both

steps reduce the entire set to 31%, with around 30% prediction

errors. Turning to prediction results on box usage series in

3The Prediction error in this paper refers to the absolute percentage error

(APE), defined as: APE =
|Prediction−Actual|

Actual
.

Figure 8(b), we clearly observe that stepwise regression indeed

helps further reduce the signature set (from 32% to 26%), with

similar prediction error (from 10% to 11%). This result verifies

the efficiency of stepwise regression in reducing the signature

set without degrading prediction accuracy.

2) Results on CBC: Different from DTW where the number

of clusters is determined by the silhouette value (see Eq. 4),

CBC provides a customized interface that allows users to

determine how aggressively they want to reduce the number

of usage series (i.e., save the computational cost), via setting

ρTh within [0, 1]. In this section, we focus on understanding

the behavior of the proposed CBC, i.e., the trade-off between

series reduction and prediction accuracy.

We use different values of ρTh in CBC, to measure the trade-

off between series reduction and prediction accuracy. Figure 9

presents (a) the average percentage of signature series com-

paring to all series and (b) the mean APEs using CBC, with

different levels of correlation thresholds for VM usage series.

As expected, the higher the correlation threshold ρTh, the more

accurate the prediction as series reduction is less aggressive.

Interestingly, when focused on the case of the lowest cor-

relation threshold ρTh = 0.1 with more than 80% of series

reduction, we observe that CBC still achieves satisfactory

prediction accuracy, with the mean APE around 27%. Notice

that the average coefficient of variation of VM usage series is

approximate 53%. In other words, simply using the mean to

predict VM usage series will result in 53% prediction error.

Compared to the mean-value prediction method, the proposed

CBC still provides superb prediction accuracy even for an

aggressive reduction of the usage series, The same conclu-

sion is also applied to prediction results on box usage series,

shown in Figures 9(c) and 9(d).

Figure 9 further verifies the effectiveness of stepwise regres-

sion. When ρTh is less than 0.6, stepwise regression does

not reduce further the signature set, which is an outcome

of aggressive clustering. With ρTh > 0.6, the chance of

multi-collinearity within the signature set becomes much

higher, and stepwise regression furthers the reduction of the

signature set, with only a small degradation in prediction accu-

racy. To quantify the effectiveness of stepwise regression, we

define a new metric δ for both series reduction and prediction

accuracy as follows:

δ =
Metricbefore_stepwise − Metricafter_stepwise

Metricbefore_stepwise

. (5)

Here Metric can be either the series reduction or

prediction error. Metricbefore_stepwise represents the series

reduction or prediction error before stepwise regression while

Metricafter_stepwise represents those after stepwise regres-

sion applied. Intuitively, δ quantifies the relative increment

of series reduction or decrement of prediction accuracy

after stepwise regression, which allows us to compare the

two different metrics quantitatively. Higher increment of

series reduction with less decrement of prediction accuracy

suggests that applying stepwise regression results in fur-

ther reduction of the signature set with ignorable errors

introduced.

46 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 9. Trade-off between series reduction and prediction accuracy for CBC for (a-b) VMs and (c-d) boxes.

TABLE I
COMPARISON OF PREDICTION ACCURACY AND SERIES REDUCTION

BEFORE AND AFTER STEPWISE REGRESSION APPLIED FOR

VM USAGE SERIES PREDICTION WITH CBC

TABLE II
COMPARISON OF PREDICTION ACCURACY AND SERIES REDUCTION

BEFORE AND AFTER STEPWISE REGRESSION APPLIED FOR

BOX USAGE SERIES PREDICTION WITH CBC

Tables I–II summarize δ for both series reduction and

prediction accuracy of three threshold values, i.e., ρTh ∈

{0.7, 0.8, 0.9}, for VM and box usage series, respectively.

We observe that stepwise regression always achieves higher

series reduction but with minimal reduction in prediction

accuracy, which quantifies the effectiveness of stepwise

regression.

3) Spatial Models - DTW v.s. CBC: Compared with DTW,

one advantage of CBC is the customized correlation thresh-

old to allow users to dynamically adjust how aggressive is

the reduction in series. A possible question is that for a simi-

lar level of series reduction, between DTW and the proposed

CBC, which one achieves better prediction accuracy.

To compare fairly the prediction accuracy between DTW

and CBC, we select ρTh = 0.2 for CBC, where CBC has a

similar reduction in series as DTW. DTW achieves around

70% and 75% series reduction for VM and box usage series

respectively, while CBC results in more than 75% series reduc-

tion for both VMs and boxes on average. At the same time,

the average prediction errors of DTW are 30% and 11%

for VM and box usage series, while CBC achieves 27%

and 11% prediction errors for VMs and boxes. The above

observations suggest that, compared to DTW, CBC not only

enables customized prediction efficiency but also achieves

higher prediction accuracy with similar prediction cost.

4) Signature Selection - Spatial v.s. Temporal: In

Sections III-C1–III-C3, we apply the spatial-driven signature

selection method. In this section, we compare two different

signature selection methods in terms of the prediction effi-

ciency of spatial models. In general, if the signature series

lacks strong spatial dependency with other series in the same

cluster, it may not represent the cluster well. While if the sig-

nature series has weak temporal dependency within itself, the

signature series cannot be predicted well by temporal models.

Consequently, it is important to understand how the two sig-

nature selection methods affect prediction efficiency. As a first

step, we compare the effectiveness of spatial- and temporal-

driven signature selection methods with CBC. Figure 10 shows

(a) the average reduction in the signature set and (b) the over-

all prediction accuracy across different correlation thresholds,

for spatial- and temporal-driven signature selection methods,

in terms of VM usage series. Results on box usage series are

shown in Figures 10(c) and 10(d).

Figures 10(a) and 10(c) show that both signature selec-

tion methods share the same amount of reduction in the

signature set for VM and box usage series. This is expected

because the same time series clustering method (namely CBC)

is applied. Figures 10(b) and 10(d) show that the spatial-

driven signature selection method achieves marginally better

accuracy than the temporal-driven one, for both VM and

box usage series. This is consistent with intuition since the

spatial-driven method selects the signature series with the

strongest spatial dependency from each cluster. Surprisingly,

the temporal-driven method achieves comparable prediction

accuracy. This implies that the selection of the signature

series does not play a key role in prediction accuracy of

spatial models. Moreover, given that temporal dependency

dominates prediction accuracy when models are used, it is

anticipated that temporal-driven signature selection would

yield better overall prediction accuracy. Due to space lim-

its, a comparison between two signature selection methods

for DTW is not shown here, but the same conclusion is

drawn.

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 47

Fig. 10. Comparison between two different signature selection methods with CBC for (a-b) VMs and (c-d) boxes.

IV. CAPACITY PLANNING

Being able to accurately predict future usage enables the

very first step to actively manage usage-related tickets. Having

future usage knowledge, it is possible to develop a capac-

ity planning policy that can effectively reduce the number

of usage tickets. Monitoring systems in modern data centers

track resource usages at discrete windows, e.g., 15 minutes,

termed as the ticketing window, and compare them with ticket

thresholds to determine whether a ticket needs to be issued

or not. To avoid incurring over-reaction to transient loads, we

set the window of capacity planning to be greater than the

ticketing window. For the data centers considered here, ticket

resolution occurs within a day of the ticket being issued, so

setting the window to one day is reasonable and practical.

This implies that the prediction horizon of the demand series

needs to be also one day. Note that past work has shown

that the accuracy of prediction decreases as the prediction

horizon increases [8], so setting the prediction window to

such a high value makes ATM more conservative than it

can actually be. During each window, to reduce the usage

tickets on VMs, ATM computes and actuates the virtual

resource allocation of co-located VMs on boxes. Similarly,

to reduce the box usage tickets, ATM performs capacity plan-

ning of physical resources for single-client boxes within the

same client. The objective is to find optimal sizes for co-

located VMs or single-client boxes to achieve the lowest

number of tickets, subject to various resource constraints. The

resources considered are: CPU measured in GHz and RAM

measured in GB.

There exist a large body of resource allocation studies aim-

ing to satisfy various performance targets, e.g., user response

time, system utilization, and fairness. For example, max-min

fairness [18], [19] is one of the most applied allocation poli-

cies that tries to guarantee the performance of small VMs,

given the assumption of known demands. Our capacity plan-

ning problem can be viewed similarly but with the objective

to minimize the occurrences of target utilization threshold

violations.

For the remaining of this exposition, we assume a fixed

resource thresholds that trigger tickets. Yet, we stress that

dynamic thresholds can be also used since resource alloca-

tion (and ticket reduction) is based on the resource prediction

per ticketing window, which depends on the spatio-temporal

models. We develop a capacity planning algorithm based on a

rigorous optimization formulation, which is later transformed

into a multi-choice knapsack problem (MCKP) with tunable

discretization parameters. The introduction of such discretiza-

tion parameters enables us to reduce the complexity and

increase the safety margin in resource allocation. In contrast

to spatial-temporal prediction models, the capacity planning

algorithm treats CPU and RAM separately due to different

constraints on each resource. For simplicity, in the following

section, we take the capacity planning problem of co-located

VMs (namely virtual resource resizing) as an example to

illustrate the proposed capacity planning algorithm.

A. Ticket Optimization Formulation

We formally introduce the problem, including notations and

constraints, for resizing all co-located VMs on a single box.

The foremost important constraint is that the summation of

allocated virtual resources should be less than or equal to

the total available virtual resource, i.e.,
∑

i Ci ≤ C, where

Ci denotes the virtual capacity allocated to VM i, and C is

the total available virtual capacity at the box. The decision

variable is Ci and needs to be determined at the beginning of

the capacity planning horizon.

The prediction module provides all demand series values

for the entire capacity planning window, equal to T ticket-

ing windows, for VM i, Di = {Di,1, . . . Di,T}. We introduce

an indicator variable, Ii,t, when Ii,t = 1 a usage ticket occurs

to VM i at ticketing window t, because the demand exceeds

a certain threshold of the capacity, say, αCi (e.g., α = 0.6);

otherwise Ii,t = 0. We aim to minimize the total number of

tickets occurring on all co-located VMs during the capacity

planning window. Thus, we can write the objective func-

tion as
∑

i

∑
t Ii,t. In summary, we can define the ticketing

optimization problem as:

(R) min
∑

i

∑

t

Ii,t (6)

s.t.
∑

i

Ci ≤ C (7)

Di,t − αCi ≤ Di,tIi,j (8)

Ii,t ∈ {0, 1} (9)

Constraint (8) ensures that Ii,t = 1, when the demand

exceeds the ticket threshold αCi; otherwise the objective func-

tion drives Ii,t to zero. The problem R is a classical mixed

integer linear programming (MILP), whose complexity greatly

depends on the number of integer variables, i.e., the indicator

variables Ii,t in our case. The number of indicator variables

48 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

for each box is thus the product of the number of ticketing

windows, T , and the number of VMs, M.

1) Capacity Planning Algorithm: Instead of resorting to a

standard MILP solvers, such as CPLEX [20], we transform

the original problem into a multi-choice knapsack problem by

Lemma 1: the optimal size for each VM must be equal to one

of the demand values in Di or 0. The advantages of transform-

ing the original problem into a MCKP are twofold: (i) there

exist a large number of efficient algorithms for MCKP and

(ii) it allows for a reduction of the number of integer variables.

We elaborate on the second point after formally introduc-

ing the transformation of the original optimization problem

to MCKP.

Lemma 1: For VM i, the optimal size Ci∗ ∈ Di ∪ {0}, Di =

{Di,1, Di,2 . . . Di,T}.

Proof: If there exists an optimal solution (Ci∗) for each

VM (i) for the capacity planning problem, Ci∗ has to be

in one of the three ranges: [0, min{Di}), [min{Di}, max{Di}),

and [max{Di},+∞). If Ci∗ is less than min{Di}, we argue

that Ci∗ could be set to 0 and the objective function stays

unchanged while the constraints are not violated. Similarly,

it is proven that if Ci∗ is not less than max{Di}, Ci∗ can be

set to max{Di}. If Ci∗ is in [min{Di}, max{Di}), sort Di in a

descending order as Di
descend = {O1, O2, . . . , Op, Op+1, . . .}.

Following the same reasoning, it is possible to determine that

∃ q, Ci∗ ∈ [Oq, Oq+1). In addition, setting Ci∗ equal to Oq,

the minimum objective function can be obtained without any

constraint violation. Hence the optimal size Ci∗ is either in Di

or 0.

Based on Lemma 1, we can transform the original formula-

tion into a multi-choice knapsack problem, whose complexity

can be further simplified by reducing the number of indica-

tor variables. We first introduce a reduced demand set with 0

added, denoted as D′

i
, containing the unique values of the orig-

inal demands in decreasing order, D′
i,v+1 ≤ D′

i,v. According

to Lemma 1, one of them is the optimal capacity. We note

that D′
i,v is not the same as Di,t. The following small exam-

ple illustrates the difference. Given a specific demand series

Di = {30, 30, 40, 40, 23, 25, 60, 60, 60, 60}, its reduced series

is D′

i
= {60, 40, 30, 25, 23, 0} containing only the unique

values plus 0 in descending order.

We introduce a new binary variable Yi,v, denoting that the

unique value D′
i,v is chosen to be the capacity for VM i. The

next step to reduce the problem into MCKP is to define the

number of tickets, denoted Pi,v, seen by VM i when the value

of D′
i,v is chosen as capacity, i.e., Yi,v = 1. Following the

previous example of reduced demand set, we show an exam-

ple of ticket calculation. Let us assume the current capacity

is 70 and the ticketing threshold for issuing usage tickets is

60%. We thus know that demands greater than 70×60% = 42

at any ticketing window will result into tickets. We can then

obtain Pi = {0, 4, 6, 8, 9, 10}. Due to the decreasing order

of D′

i
, Pi has an increasing order, i.e., Pi,v+1 ≥ Pi,v. The

total number of tickets for a box can thus be written as∑
i

∑
v Yi,vPi,v and the resource constraint of the total capacity

as
∑

i

∑
v Yi,vD′

i,v ≤ C.

In summary, we reach a multi-choice knapsack problem,

where items (in the original knapsack problem) are divided

into subgroups and exactly one item needs to be selected

from each group. Putting our problem into the context of

multi-choice problem, we have M groups of VM demands

and we need to choose exactly one demand from each group

as their capacity. The decision variables are Yi,v denoting that

a particular demand is chosen as the size for VM i, where

i ∈ [1, M] and that the number of tickets, Pi,v, can be seen as

“weights”. The transformed ticket reduction problem is:

(R′) min
∑

i

∑

v

Yi,vPi,v (10)

s.t.
∑

i

∑

v

Yi,vD′
i,v ≤ C (11)

∑

v

Yi,v = 1 (12)

Yi,v ∈ {0, 1} (13)

The formulation of problem R
′ enables the introduction

of a tunable parameter, ε, which decides the discretization

of demand values. We illustrate this point using the run-

ning example of original series Di and its reduced series D′

i
.

The original formulation R has 11 integer variables (includ-

ing the 0), whereas the transformed problem R
′ has only 6

integer variables. One can even further decrease the number

of binary variables in Pi by discretizing the demand val-

ues, such as rounding off the first digit. For example using

D′

i
= {60, 40, 30, 0}, where 23 and 25 are rounded up to 30.

Another point worth mentioning is that we need to update the

number of corresponding tickets too, i.e., Pi = {0, 4, 6, 10}.

Rounding up demands makes the capacity planning algo-

rithm more aggressive in allocating resources. Consequently,

we formally introduce a discretization factor, ε, which fur-

ther reduces the complexity and provides a safety margin for

resource allocation. We note that ε is only applied on the pre-

dicted series. In summary, the initial step computes D′

i
from

Di using ε, and calculates their corresponding tickets, Pi for

all co-located VMs i.

To solve the MCKP problem, we resort to the so-called

minimal algorithm [21]. We illustrate the general idea in

the context of our capacity planning problem. The algorithm

chooses capacity candidates for each VM and shuffles around

the capacity across VMs, comparing to the available capacity

and marginal ticket reductions. For all VMs, it chooses capac-

ity candidates that can incur a minimum number of tickets,

i.e., starts from the maximum values in D′

i
. When there is no

sufficient capacity to achieve such allocations for all VMs,

the priority is given to the VM having the lowest marginal

ticket reduction values (MTRV). MTRV represents the addi-

tional ticket increment when reducing one unit of capacity

provisioning. Its formal definition is:

MTRV =
Pi,o − Pi,o−1

D′
i,o−1 − D′

i,o

, (14)

where o denotes the index of candidates in D′

i
. The VM with

the lowest MTRV is always chosen to reduce the capacity

provision from its current candidate value to the next one in

D′

i
. Note that as D′

i
is in decreasing order, the next candidate

immediately implies a capacity reduction. Once the candidate

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 49

list is updated, the same process continues until the sum of all

candidates is less or equal to the available capacity.

For a practical implementation, in addition to the constraint

of total available capacity, it is also imperative to consider

the lower and upper bounds of capacity. In order to avoid

spillovers of unfinished demands from previous ticketing win-

dows, we impose a lower bound on the VM capacity size, such

that its peak usage before resizing is satisfied. Moreover, as

any VM is not able to use more resources than the available

resource amount of the underlying physical box, we introduce

the allocation upper bound based on the box resource capacity.

We can easily incorporate such lower and upper bounds into

our capacity planning algorithm by limiting the values in D′

i
for each VM i.

B. Results on Usage Ticket Reduction

Prior to moving on to the evaluation of the full-fledged

ATM, i.e., the combination of spatial-temporal prediction and

capacity planning, we first show how effective the proposed

capacity planning algorithm is against existing resource allo-

cation heuristics. For a fair comparison, the demand inputs

are based on the original dataset described in Section II,

instead of prediction. We implement the max-min fairness

algorithm [18] and a “stingy” algorithm which only allo-

cates the capacity according to the lower bound, i.e., the

maximum demand regardless of the ticket threshold, often

used in practice. In contrast, the max-min algorithm consid-

ers the fairness of resource allocation among co-located VMs

or single-client boxes. For example, the max-min algorithm

starts to allocate resources to all VMs based on the demand of

the smallest VM, considering its ticket threshold, and contin-

ues onto VMs in the increasing order of their demands until

all capacity is exhausted. Similarly, for single-client boxes,

the max-min algorithm always first determines the appropri-

ate physical capacity for the smallest box, and then continues

to other boxes in the same client.

Here, we evaluate the trace data of April 3, 2015 across all

6K boxes within around 300 clients and set the threshold to

trigger usage tickets to 60%, i.e., in every ticketing window

the monitoring system checks if the average usage of CPU or

RAM exceeds the 60% of the allocated capacity for both VMs

and boxes. Figure 11 summarizes the mean ticket reduction

and its standard deviation, when applying the proposed ATM

capacity planning, max-min fairness, and stingy algorithms. As

expected, the stingy algorithm is completely unaware of the

ticket threshold. On average it achieves a reduction of 54%

and 15% on VM usage tickets for CPU and RAM respec-

tively, see Figure 11(a). Similar observations hold for the

stingy algorithm on box usage tickets, with a reduction of

only 20% for both CPU and RAM, shown in Figure 11(b).

Max-min fairness reduces VM usage tickets by around 70%

for both CPU and RAM, and box usage tickets by around

50% and 40% for CPU and RAM, respectively. This is still

roughly 30% worse than the proposed ATM capacity plan-

ning results. Due to the nature of favoring small machines,

large machines can be severely punished under max-min fair-

ness resulting in no ticket reduction, this explains the high

Fig. 11. Ticket reduction of CPU and RAM for (a) VMs and (b) boxes:
comparing ATM, max-min fairness, and stingy algorithms.

standard deviation under max-min fairness for both VMs and

boxes.

The proposed capacity planning algorithm does exception-

ally well. It achieves 95% VM usage ticket reduction and 70%

box usage ticket reduction for both CPU and RAM, a remark-

able improvement for both performance and cost. This is also

attributed to the fact that the systems of the original traces are

equipped with abundant resources, i.e., typically data centers

are lowly utilized [6]. By simply shuffling resources across co-

located VMs and efficient capacity planning on single-client

boxes, we are able to achieve significant performance gain.

Moreover, we also eliminate the overhead of inspecting and

resolving a large number of usage tickets, a process that is

known to be expensive.

V. EVALUATION

We extensively evaluate ATM on a large number of data

center production traces. For the first part of evaluation, we

focus on illustrating the effectiveness and versatility of ATM in

time series prediction using spatial-temporal prediction mod-

els. In the second part of evaluation, we focus on presenting

the effectiveness of ATM in ticket reduction to improve system

dependability and to reduce the high cost associated with ticket

resolution.

A. Analysis on Spatial-Temporal Models

We engage training of the signature series for 5 days and

then predict the following day. For spatial models, we con-

sider both DTW and CBC. The temporal models used for the

signature series are feed-forward neural networks [8], trained

using back-propagation via MATLAB [22]. ATM performs the

prediction of 16000 usage series, each of which has 96 tick-

eting windows, with each window being 15 minutes long. To

50 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 12. CDF of prediction accuracy between DTW and CBC methods for
(a) VM and (b) box usage series.

check the generalization of our spatial-temporal models, the

tested usage series include VMs and boxes for both CPU and

RAM. We note that results presented in this section differ from

Section III, where only the proposed spatial models are evalu-

ated, excluding the temporal prediction models. Here, we have

the full effect of both prediction models.

1) Spatial Models - DTW v.s. CBC: As discussed in

Section III-C, temporal-driven signature selection method is

supposed to dominate the prediction accuracy. Consequently,

we leverage a temporal-driven method to select signature

series from each cluster. To fairly compare DTW and CBC,

we set ρTh = 0.2 for CBC in order to have similar usage series

reduction between DTW and CBC.

Figures 12(a) and 12(b) present the CDFs of the prediction

accuracy of ATM in terms of APE with different spatial mod-

els, i.e., DTW and CBC, for VM and box usage series respec-

tively. The average prediction errors of VM usage are 23.8%

and 21.8%, for DTW and CBC respectively, see Figure 12(a).

Given that peak usages trigger tickets, it is also important to

check the prediction errors of peaks, i.e., usage higher than

60%, also shown in Figure 12. Average peak errors across all

VM usage series are 17.3% and 15.7% for DTW and CBC,

respectively. This shows that neural networks can capture well

the temporal dynamics of the signature series. Similar observa-

tions are seen in box usage series prediction, see Figure 12(b).

Note that our proposed CBC beats DTW with higher accuracy

in overall and peak VM usage series prediction, as well as box

usage series. We further note that compared with VM usage

series prediction, we achieve even better prediction for box

usage series, see Figures 12(a) and 12(b). This is an outcome

of the strong temporal dependency within the box usage series,

as discussed in Section II-C.

2) Signature Selection - Spatial- v.s. Temporal-Driven:

To evaluate the efficiency of two different signature selec-

tion methods, we consider their effectiveness when used with

CBC. Consistent with the focus of this section, we also report

on overall prediction errors after neural networks prediction

is sdone. In Figures 13(a) and 13(b), we compare the mean

prediction accuracy with spatial- and temporal-driven signa-

ture selection methods across different correlation thresholds,

in terms of all and peak usages, for VMs and boxes. It is

clearly shown that in all cases, the temporal-driven signa-

ture selection method outperforms the spatial-driven one. The

lower the correlation threshold, the bigger the prediction dif-

ference between them. It is clear that taking advantage of both

Fig. 13. Comparison of prediction errors between spatial- and temporal-

driven signature selection methods with CBC for (a) VM and (b) box usage
series.

Fig. 14. Comparing ticket reduction of CPU and RAM for (a) VMs and (b)
boxes for ATM, max-min fairness, and stingy algorithms.

spatial and temporal dependencies achieves higher efficiency

in both prediction accuracy and computational cost.

B. ATM on Ticket Reduction

In this section, we show how different configurations of

ATM can proactively reduce the number of tickets. After

obtaining the predicted VM series, ATM triggers the capacity

planning algorithm for every box to determine the near optimal

CPU and RAM capacity for all co-located VMs. Similarly for

each client, ATM plugs in the predicted box series to perform

the capacity planning algorithm across single-client boxes for

both CPU and RAM. We stress that this analysis is post-hoc,

i.e., we can not change the size of the actual VMs or physical

boxes in the trace, we focus only on ticket reduction via ATM.

In the remaining of this section, we assume that usage tick-

ets related to CPU and RAM are automatically issued when

utilization is greater than 60%.

Figure 14 compares the results of average ticket reduc-

tion using two different versions of ATM (i.e., DTW and

CBC) against the max-min fairness, and stingy policies, see

XUE et al.: SPATIAL–TEMPORAL PREDICTION MODELS FOR ATM IN DATA CENTERS 51

Section IV. Each bar illustrates the mean and standard devi-

ation of ticket reduction across tested boxes (in Figure 14(a))

and clients (in Figure 14(b)) divided into CPU and RAM tick-

ets. The key observations are the following. Both versions of

ATM are able to achieve a higher ticket reduction, around

60% and 70% for CPU and RAM, respectively, compared to

the other two heuristics. We also like to point out that the

standard deviation is high for stingy and max-min fairness

algorithms, indicating instability of these two heuristics. ATM

suffers from much lower variation of ticket reduction, which

argues for ATM’s robustness. In summary, ATM achieves effi-

cient and stable ticket reduction for both VM and box usage

series.

VI. RELATED WORK

Ticketing systems are widely used to improve on system

dependability, e.g., slow responsiveness, failure [5], software

bugs [23], [24] and system misconfigurations [25]. Prior

art in ticketing systems centers on two directions: derive

system management for software concurrency [23], database

systems [4], and distributed data-intensive systems [26] but

also to develop automatic detection systems for different types

of tickets, bugs [24] and software misconfigurations by lever-

aging the rich correlation between configuration entries [25].

Machine learning has been used for automating ticket resolu-

tion recommendation [9], [27], [28]. To the best of our knowl-

edge, there are no proactive methodologies for preventing

ticket issuing, with the exception of models for database recon-

figuration [29]. The proposed ATM policy fills this gap by not

only deriving management insights for usage ticket patterns,

but also by developing novel prediction and ticket avoidance

strategies via capacity planning.

Time series prediction and analysis have been viewed as

an excellent way to develop proactive system management

policies [30], [31]. Temporal models such as ARIMA mod-

els [10] have been widely used to predict time series with

strong seasonality. Sophisticated neural network models show

a strong promise in capturing highly irregular time series at

a cost of long training overheads [32]. Time series clustering

aims to explore spatial dependency, either through their orig-

inal series, e.g., DTW [14], or extracted features [13], e.g.,

moments. Spatio-temporal models are also used to mitigate

issues related to missing data in time-series by filling up the

data gaps [33].

Virtualization technology has become the industry standard

offering great opportunities to multiplex physical resources

over a large number of VMs. There are two ways to change

the efficiency of resource multiplex ratios: by sizing the vir-

tual resource capacities [34] and by dynamically consolidating

VMs [35]. While dynamically changing the degree of VM

consolidation is shown effective to take advantage of the time

variability of the workload [36], the overhead of migrating

VMs can greatly reduce its performance benefits. On the con-

trary, sizing resource of co-located VMs incurs less system

overhead [34]. A central question of multiplexing resources

is how to strike a good tradeoff of fairness and performance

for workloads, e.g., latency [37] and throughput [38]. Fairness

driven policies, e.g., max-min fairness, proportional fairness,

and bottleneck resource fairness [39], have been proposed for

various systems components, including storage systems [38]

and networks [40]. The capacity planning algorithm proposed

in ATM differs from related work by its objective to reduce the

number of usage tickets. While max-min fairness also reduces

the number of tickets, it cannot achieve this as effectively as

ATM since ticket reduction is a side-effect rather than a main

focus.

Compared to [1], here we apply the proposed spatial-

temporal prediction model and capacity planning algorithm to

a new data set, namely box usage series from IBM private data

centers. Evaluation results again verify the efficiency of ATM.

Moreover, we propose a new, improved signature selection

method for the spatial-temporal prediction model, by reducing

computation overhead while maintaining accurate prediction.

The improved version of ATM presented here provides a cus-

tomized interface for users to determine the trade-off between

prediction accuracy and prediction cost. In summary, this paper

not only more comprehensively evaluates ATM [1], but also

further improves its accuracy and effectiveness.

VII. CONCLUDING REMARKS

We present ATM, a methodology to achieve efficient time

series prediction and capacity planning so as to reduce VM and

box usage tickets that are issued in production data centers.

We have shown the effectiveness of ATM in predicting usage

series in production data centers by exploiting spatial-temporal

usage patterns across/within co-located VMs and single-client

boxes, and by using detailed prediction of a small subset of

the usage series, allowing the methodology to scale well. This

prediction drives the development of a capacity planning pol-

icy that is shown effective on a production trace. In future work

we intend to use ATM’s prediction abilities to drive online

dynamic workload management.

REFERENCES

[1] J. Xue, R. Birke, L. Y. Chen, and E. Smirni, “Managing data center
tickets: Prediction and active sizing,” in Proc. DSN, Toulouse, France,
2016, pp. 335–346.

[2] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R. Sahoo,
“BlueGene/L failure analysis and prediction models,” in Proc. DSN,
Philadelphia, PA, USA, 2006, pp. 425–434.

[3] I. Giurgiu, J. Bogojeska, S. Nikolaiev, G. Stark, and D. Wiesmann,
“Analysis of labor efforts and their impact factors to solve server
incidents in datacenters,” in Proc. CCGrid, Chicago, IL, USA, 2014,
pp. 424–433.

[4] I. Giurgiu, A.-D. Almasi, and D. Wiesmann, “Do you know how to
configure your enterprise relational database to reduce incidents?” in
Proc. IM, Ottawa, ON, Canada, 2015, pp. 339–347.

[5] R. Birke, I. Giurgiu, L. Y. Chen, D. Wiesmann, and T. Engbersen,
“Failure analysis of virtual and physical machines: Patterns, causes and
characteristics,” in Proc. DSN, Atlanta, GA, USA, 2014, pp. 1–12.

[6] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-practice
in data center virtualization: Toward a better understanding of VM
usage,” in Proc. DSN, Budapest, Hungary, 2013, pp. 1–12.

[7] R. Birke, M. Bjöerkqvist, L. Y. Chen, E. Smirni, and T. Engbersen,
“(Big)data in a virtualized world: Volume, velocity, and variety in cloud
datacenters,” in Proc. FAST, Santa Clara, CA, USA, 2014, pp. 177–189.

[8] J. Xue et al., “PRACTISE: Robust prediction of data center time series,”
in Proc. CNSM, Barcelona, Spain, 2015, pp. 126–134.

[9] M. M. Botezatu, J. Bogojeska, I. Giurgiu, H. Voelzer, and H. Voelzer,
“Multi-view incident ticket clustering for optimal ticket dispatching,” in
Proc. SIGKDD, Sydney, NSW, Australia, 2015, pp. 1711–1720.

52 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

[10] C. Chatfield, The Analysis of Time Series: An Introduction. Hoboken,
NJ, USA: CRC Press, 2013.

[11] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and
structural periodic similarity,” in Proc. SDM, 2005, pp. 449–460.

[12] L. M. Leemis and S. K. Park, Discrete-Event Simulation: A First Course.
Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

[13] B. D. Fulcher and N. S. Jones, “Highly comparative feature-based time-
series classification,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 12,
pp. 3026–3037, Dec. 2014.

[14] D. J. Berndt and J. Clifford, “Using dynamic time warping to find pat-
terns in time series,” in Proc. KDD Workshop, vol. 10, pp. 359–370,
1994.

[15] L. Rokach and O. Maimon, “Clustering methods,” in Data Mining and

Knowledge Discovery Handbook. New York, NY, USA: Springer, 2005.

[16] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20,
pp. 53–65, Nov. 1987.

[17] M. Kutner et al., Applied Linear Regression Models. Boston, MA, USA:
McGraw-Hill Educ., 2004.

[18] L. Tassiulas and S. Sarkar, “Maxmin fair scheduling in wireless
networks,” in Proc. INFOCOM, vol. 2. New York, NY, USA, 2002,
pp. 763–772.

[19] A. Ghodsi et al., “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. NSDI, Boston, MA, USA, 2011, pp. 323–336.

[20] CPLEX Optimizer. Accessed: Jan. 2018. [Online]. Available:
http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/index.html

[21] D. Pisinger, “A minimal algorithm for the multiple-choice knapsack
problem,” Eur. J. Oper. Res., vol. 83, no. 2, pp. 394–410, 1995.

[22] H. Demuth and M. Beale, MATLAB Neural Network Toolbox User’s

Guide Version 6, Mathworks Inc., Natick, MA, USA, 2009.

[23] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A com-
prehensive study on real world concurrency bug characteristics,” in Proc.

ASPLOS, Seattle, WA, USA, 2008, pp. 329–339.

[24] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel: Detecting and
fixing performance problems that have non-intrusive fixes,” in Proc.

ICSE, Florence, Italy, 2015, pp. 902–912.

[25] J. Zhang et al., “Encore: Exploiting system environment and correlation
information for misconfiguration detection,” ACM SIGPLAN Notices,
vol. 49, no. 4, pp. 687–700, 2014.

[26] D. Yuan et al., “Simple testing can prevent most critical failures: An
analysis of production failures in distributed data-intensive systems,” in
Proc. OSDI, Broomfield, CO, USA, 2014, pp. 249–265.

[27] W. Zhou, L. Tang, T. Li, L. Shwartz, and G. Y. Grabarnik, “Resolution
recommendation for event tickets in service management,” in Proc. IM,
Ottawa, ON, Canada, 2015, pp. 287–295.

[28] Q. Shao, Y. Chen, S. Tao, X. Yan, and N. Anerousis, “Easyticket: A
ticket routing recommendation engine for enterprise problem resolution,”
Proc. VLDB, vol. 1, no. 2, pp. 1436–1439, 2008.

[29] I. Giurgiu, M. Botezatu, and D. Wiesmann, “Comprehensible models
for reconfiguring enterprise relational databases to avoid incidents,” in
Proc. CIKM, Melbourne, VIC, Australia, 2015, pp. 1371–1380.

[30] N. Tran and D. A. Reed, “Automatic ARIMA time series modeling for
adaptive I/O prefetching,” IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 4, pp. 362–377, Apr. 2004.

[31] Z. Zhuang et al., “Capacity planning and headroom analysis for taming
database replication latency: Experiences with Linkedin Internet traffic,”
in Proc. ICPE, Austin, TX, USA, 2015, pp. 39–50.

[32] R. Livni, S. Shalev-Shwartz, and O. Shamir, “On the computational
efficiency of training neural networks,” in Proc. NIPS, Montreal, QC,
Canada, 2014, pp. 855–863.

[33] J. Xue, B. Nie, and E. Smirni, “Fill-in the gaps: Spatial-temporal models
for missing data,” in Proc. CNSM, Tokyo, Japan, 2017, pp. 1–9.

[34] S. Spinner et al., “Proactive memory scaling of virtualized applications,”
in Proc. CLOUD, New York, NY, USA, 2015, pp. 277–284.

[35] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” in Proc. INFOCOM,
Shanghai, China, 2011, pp. 71–75.

[36] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware cluster management,” in Proc. ASPLOS, 2014, pp. 127–144.

[37] A. Gulati, A. Merchant, and P. J. Varman, “pClock: An arrival curve
based approach for QoS guarantees in shared storage systems,” in Proc.

SIGMETRICS, San Diego, CA, USA, 2007, pp. 13–24.

[38] H. Wang and P. Varman, “Balancing fairness and efficiency in tiered
storage systems with bottleneck-aware allocation,” in Proc. FAST, 2014,
pp. 229–242.

[39] T. Bonald and J. Roberts, “Multi-resource fairness: Objectives, algo-
rithms and performance,” in Proc. SIGMETRICS, Portland, OR, USA,
2015, pp. 31–42.

[40] A. Sridharan and B. Krishnamachari, “Maximizing network utilization
with max–min fairness in wireless sensor networks,” Wireless Netw.,
vol. 15, no. 5, pp. 585–600, 2009.

Ji Xue received the Ph.D. degree in computer sci-
ence from the College of William and Mary in
2017 under the supervision of Prof. E. Smirni. He
is currently a Software Engineer with Google. His
research interests broadly lie in system reliability
analysis, performance optimization and modeling,
cloud computing, data center, machine learning, and
data mining, especially in time series.

Robert Birke received the Ph.D. degree from
Telecommunications Group, Politecnico di Torino
in 2009 under the supervision of Prof. F. Neri.
He is currently a Post-Doctoral Fellow with the
Cloud Server Technologies Group, IBM Research
Zurich Laboratory. He has co-authored over 40
scientific papers. His main research interests are high
performance computing, cloud computing, and data-
center networks with special focus on performance,
quality of service, and virtualization.

Lydia Y. Chen received the Ph.D. degree in oper-
ations research and industrial engineering from
the Pennsylvania State University in 2006. She
is a Research Staff Member with IBM Zurich
Research Laboratory, Zurich, Switzerland. Her
research interests include performance modeling in
multicore systems and power-workload management
in data centers. She has served on several techni-
cal program committees in various performance and
network conferences, including DSN, INFOCOM,
Globecom, ICC, ICNC, and ICCCN, and has served

as an Organizer of the Data Center Performance workshop from 2011 to 2013.

Evgenia Smirni (A’03–M’13–SM’26) received the
Diploma degree in computer science and informat-
ics from the University of Patras, Greece, in 1987
and the Ph.D. degree in computer science from
Vanderbilt University in 1995. She is the Sidney
P. Chockley Professor of computer science with
the College of William and Mary, Williamsburg,
VA, USA. Her research interests include queuing
networks, stochastic modeling, resource allocation,
storage systems, cloud computing, workload charac-
terization, and modeling of distributed systems and

applications. She is an ACM Distinguished Scientist and a member of the
Technical Chamber of Greece.

